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Bromberg-Martin ES, Matsumoto M, Hong S, Hikosaka O. A
pallidus-habenula-dopamine pathway signals inferred stimulus
values. J Neurophysiol 104: 1068–1076, 2010. First published June
10, 2010; doi:10.1152/jn.00158.2010. The reward value of a stimulus
can be learned through two distinct mechanisms: reinforcement learn-
ing through repeated stimulus-reward pairings and abstract inference
based on knowledge of the task at hand. The reinforcement mecha-
nism is often identified with midbrain dopamine neurons. Here we
show that a neural pathway controlling the dopamine system does not
rely exclusively on either stimulus-reward pairings or abstract infer-
ence but instead uses a combination of the two. We trained monkeys
to perform a reward-biased saccade task in which the reward values of
two saccade targets were related in a systematic manner. Animals
used each trial’s reward outcome to learn the values of both targets:
the target that had been presented and whose reward outcome had
been experienced (experienced value) and the target that had not been
presented but whose value could be inferred from the reward statistics
of the task (inferred value). We then recorded from three populations
of reward-coding neurons: substantia nigra dopamine neurons; a
major input to dopamine neurons, the lateral habenula; and neurons
that project to the lateral habenula, located in the globus pallidus. All
three populations encoded both experienced values and inferred val-
ues. In some animals, neurons encoded experienced values more
strongly than inferred values, and the animals showed behavioral
evidence of learning faster from experience than from inference. Our
data indicate that the pallidus-habenula-dopamine pathway signals
reward values estimated through both experience and inference.

I N T R O D U C T I O N

It is thought that the brain contains multiple learning systems
that compete to control behavior. An influential distinction is
between two learning mechanisms: reinforcement learning by
repeated stimulus-reward pairings (Bayley et al. 2005; Knowl-
ton et al. 1996; Wise 2004) and abstract inference using
task-specific rules (Daw et al. 2005; Dayan and Niv 2008;
Hampton et al. 2006). The reinforcement mechanism is often
theorized to be controlled by midbrain dopamine neurons,
including those located in the substantia nigra pars compacta
and their projection targets in the dorsolateral striatum (Knowl-
ton et al. 1996; Yin and Knowlton 2006). Dopamine neurons
are thought to be responsible for reinforcement processes such
as forming stimulus-response associations (Wise 2004), habit
learning (Knowlton et al. 1996), and model-free reward learn-
ing (Daw et al. 2005). In contrast, abstract inference is often
theorized to be performed by prefrontal cortical areas respon-
sible for knowledge of task-specific rules, reversal learning,
and model-based reward learning (Daw et al. 2005; Hampton
et al. 2006; Miller and Cohen 2001; Sakai 2008).

However, there is evidence that dopamine neurons are not
constrained to treat stimulus-reward pairings in the conven-
tional manner of reinforcement learning. Dopamine neurons
have been studied using tasks in which reward delivery on one
trial caused a reduction in the reward value of future trials
(Nakahara et al. 2004; Satoh et al. 2003). Even though a trial
was paired with a rewarding outcome, neurons correctly de-
creased their estimate of the next trial’s value. These results
show that dopamine neurons are able to improve their value
estimates by learning from stimulus-reward pairings in an
unconventional manner. In light of these results, we hypothe-
sized that the dopamine system has even greater flexibility: that
it is able to learn stimulus values even in the absence of
stimulus-reward pairings through a process of abstract infer-
ence. The most direct test of this hypothesis would be whether
dopamine neurons can infer that the value of a stimulus has
changed even in a situation where the stimulus has not been
physically presented and has not been paired with a reward
outcome. In addition, it would be ideal to compare neural
coding of values that have been inferred with values that have
been directly experienced, to see which form of reward learn-
ing these neurons preferentially represent.

We tested this hypothesis by training monkeys to perform a
task with a “reversal set,” in which the reward values of two
stimuli are anticorrelated (Hampton et al. 2006; Meyer 1951;
Watanabe and Hikosaka 2005). In this task, animals learn the reward
statistics of the task environment, so that when the value of one
stimulus is changed, the animal infers that the value of the
second stimulus has changed in the opposite direction (Wa-
tanabe and Hikosaka 2005). This is a form of inference in the
sense that animals can tell the second stimulus has changed its
value based on their prior knowledge of the task environment,
without requiring new exposure to that stimulus or its outcome.
We found that, in parallel with the animal’s behavior, neurons
signaled stimulus values that had been experienced as well as
stimulus values that had been inferred. This coding was found
in neurons at three locations in a neural pathway controlling the
dopamine system: 1) substantia nigra dopamine neurons them-
selves; 2) neurons of the lateral habenula, a major source of
input to dopamine neurons that is thought to exert inhibitory
control over the dopamine system (Matsumoto and Hikosaka
2007); and 3) neurons in the globus pallidus internal segment
that transmit negative reward signals to the lateral habenula
(GPiLHb-negative neurons) (Hong and Hikosaka 2008).

M E T H O D S

Subjects and surgery

Four rhesus monkeys (Macaca mulatta), monkeys E, L, D, and N,
were the subjects in this study. All animal care and experimental
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procedures were approved by the Institute Animal Care and Use
Committee and complied with the Public Health Service Policy on the
humane care and use of laboratory animals. A head-holding device, a
chamber for unit recording, and a scleral search coil were implanted
under general anesthesia. During experimental sessions, monkeys
were seated in a primate chair in a sound-attenuated and electrically
shielded room.

Behavioral task

Behavioral tasks were under the control of a QNX-based real-time
experimentation data acquisition system (REX, Laboratory of Senso-
rimotor Research, National Eye Institute, National Institutes of
Health, Bethesda, MD). The monkeys sat facing a frontoparallel
screen with an eye-to-screen distance of �30 cm. Stimuli were
generated by an active matrix liquid crystal display projector (PJ550,
ViewSonic) and rear-projected on the screen. The monkeys were
trained to perform a one-direction-rewarded version of the visually
guided saccade task (Fig. 1A). A trial started when a small fixation
spot appeared on the screen, typically 0.6° in diameter. After the
monkey maintained fixation on the spot for 1,200 (monkeys E and L)
or 1,000 ms (monkeys D and N), the fixation spot disappeared and a
peripheral target appeared on the left or right, typically 15 or 20° from
the fixation spot and 1.2° in diameter. The monkey was required to
make a saccade to the target within 500 ms. Errors were signaled by
a beep sound followed by a repeat of the same trial. Correct saccades
were signaled by a 100 ms tone starting 200 ms after the saccade. In
rewarded trials, a liquid reward was delivered that started simulta-
neously with the tone stimulus. The intertrial interval was fixed at
2.2 s or randomized from 2.2 to 3.2 s (monkeys E and L) or was
randomized from 2.5 to 3.5 s (monkeys D and N). In each block of 24
trials, saccades to one fixed direction were rewarded with 0.3 ml of

apple juice, whereas saccades to the other direction were not re-
warded. The position-reward contingency was reversed in the next
block. There was no external instruction indicating that the block had
changed. Both outcomes (rewarded and unrewarded) and target loca-
tions (left and right) occurred with equal frequency. For monkeys E
and L, each sub-block of four trials contained two left target and two
right target trials in a random order. For monkeys D and N, each trial’s
target location was chosen with a computerized coin toss. The rate of
correct behavioral performance was high at all times during the task
(trial 1, 96 � 0.5%; trial 2, 93 � 0.7%; last 10 trials of the block,
95 � 0.2%).

Single-neuron recording

We used conventional electrophysiological techniques described
previously (Hong and Hikosaka 2008; Matsumoto and Hikosaka
2007). Eye movements were monitored using a scleral search coil
system with 1-ms resolution. Recording chambers were placed over
the midline of the parietal cortex, tilted posteriorly by 38°, and aimed
at the habenula; or placed over the frontoparietal cortex, tilted laterally
by 35°, and aimed at the globus pallidus internal segment or substantia
nigra. The locations of globus pallidus, lateral habenula, and dopa-
mine neurons were mapped based on MRIs (4.7 T, Bruker) and the
distinctive activity patterns in nearby brain structures, and the loca-
tions were confirmed by histology (Hong and Hikosaka 2008; Matsu-
moto and Hikosaka 2007). Single-unit recordings were performed
using tungsten electrodes (Frederick Haer) that were inserted through
a stainless steel guide tube and advanced by an oil-driven micro-
manipulator (MO-97A, Narishige) or an electrically driven micro-
manipulator (MicroStepper, LSR/NEI/National Institutes of Health).
Single neurons were isolated on-line using custom voltage-time win-
dow discrimination software (MEX, LSR/NEI/National Institutes of

FIG. 1. Reward-biased saccade task. A: task diagram. The
monkey fixated a central spot for 1.2 s. The spot disappeared
and simultaneously a visual target appeared on the left or right
side of the screen. The monkey was required to saccade to the
target. In 1 block of 24 trials, left saccades were rewarded and
right saccades were unrewarded (block 1); in the next block, the
reward values were reversed without notice to the animal (block
2). B: example sequence of events after a block change. In the
1st trial of the new block, the monkey receives an unexpected
reward outcome (trial 1: right target, reward). The 2nd trial of
the block could present the same target, whose new reward
value had just been experienced (trial 2: same target, experi-
enced value), or it could present the other target, which had
been absent on the previous trial and whose new reward value
had to be inferred based on the reversal rule of the task (trial 2:
other target, inferred value). C: 2 ways to learn stimulus values
from the pairing right target ¡ reward. Left: if the animal
learned through experience alone, the right target value would
be increased but the left target value would remain unchanged.
In trial 2, the animal would show no preference between the
targets. Right: if the animal learned through inference, the
animal would additionally infer that the block had changed to
block 2, and hence the left target value had decreased. The
animal’s preference would switch from the left target to the
right target.
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Health). We searched for dopamine neurons in and around the
substantia nigra pars compacta. Dopamine neurons were identified by
their irregular and tonic firing around 5 spikes/s and broad spike
potentials. In this experiment, we focused on dopamine neurons that
responded to reward-predicting stimuli with phasic excitation. Do-
pamine-like neurons that were not sensitive to reward-predicting
stimuli were not examined further. Globus pallidus internal segment
neurons projecting to the lateral habenula were identified with anti-
dromic stimulation techniques (Hong and Hikosaka 2008).

Database

We analyzed behavior and neural activity that had been recorded in
two previous studies (Hong and Hikosaka 2008; Matsumoto and
Hikosaka 2007). Animals had �30,000 trials of prior experience at
the task before these neurons were recorded. In monkeys E and L, our
database consisted of 65 lateral habenula neurons (28 in monkey E, 37
in monkey L) and 64 reward-positive putative dopamine neurons (20
in monkey E, 44 in monkey L). In monkeys D and N, our database
consisted of 35 sessions of lateral habenula multiunit activity (18 in
monkey D and 17 in monkey N) and 74 habenula-projecting globus
pallidus internal segment neurons (42 in monkey D and 32 in monkey
N). In this study, we analyzed only globus pallidus neurons that had
negative reward signals, which were identified using the following
procedure (Hong and Hikosaka 2008). We defined each neuron’s
normalized target response on each trial as its firing rate during a
window 150–350 ms after target onset, minus its mean firing rate
during a 1,000 ms window before fixation point onset averaged over
all trials with the same target direction and reward outcome. We
classified a cell a as negative-reward neuron if its normalized target
responses had a significant negative main effect of reward in a
two-way ANOVA with the factors reward (unrewarded or rewarded) �
target position (left or right; P � 0.01). This yielded 37 globus
pallidus neurons (19 in monkey D and 18 in monkey N). There was
also a population of globus pallidus neurons that carried positive
reward signals (Hong and Hikosaka 2008), but the number of such
neurons was too small for our analysis.

Data analysis

All statistical tests were two-tailed. The target response was mea-
sured using the firing rate in a window 150–350 ms after target onset.
The outcome response was measured using the firing rate in a window
200–600 ms after outcome onset. In this analysis, we focused on the
first and second trials of each block, because by the third trial of the
block the reversals in neural activity and behavior were essentially
complete (Hong and Hikosaka 2008;Matsumoto and Hikosaka 2007).

To measure the neural and behavioral change in estimated values of
the targets, we defined a reversal index denoted with symbol RI, for
each neural population and each set of behavioral sessions. We will
first describe the general form of the reversal index and then describe
its detailed calculation. Conceptually, the reversal index specifies the
degree to which the neural discrimination D between the targets on
the current trial (DCUR) has changed from its previous level before the
target value reversal (DBEF) to its asymptotic level after target value
reversal (DAFT). The reversal index is calculated using the equation

RI � (DCUR � DBEF) ⁄ (DAFT � DBEF)

Thus if neural discrimination on the current trial is the same as its
level before reversal, RI � 0, whereas if neural discrimination is the
same as its asymptotic level after reversal, RI � 1. To calculate this
for our data, we defined the neural discrimination as the difference in
firing rate between the two targets: D � (firing rate for rewarded
target) – (firing rate for unrewarded target). In our analysis, DCUR was
defined as the mean firing rate difference measured on the second trial
of the block (trial 2 in Figs. 2 and 4). DAFT was defined as the mean
firing rate difference measured on the last 10 trials of the block. DBEF

was defined as the mean firing rate difference measured on the last 10
trials of the block with the firing rates switched for the two targets
(such that DBEF � �DAFT), thus mimicking the condition that
occurred before learning, on the first trial of the block immediately
after the two target values had been switched.

The specific calculation procedure was as follows. To calculate the
reversal index for experienced value trials, RIExp, we first calculated
the terms DCUR, DBEF, and DAFT for each neuron, using only trials
when the target was presented at the same location compared with the
previous trial (“same” target in Figs. 2 and 4). Thus for each neuron
i, this produced the terms DCUR(i, same), DBEF(i, same), DAFT(i,
same). We then calculated RIExp using the equation

RIExp � �i [DCUR(i, same) � DBEF(i, same)]/�i [DAFT(i, same)
� DBEF(i, same)]

The reversal index for inferred value trials, RIInf, was calculated in the
same way but using only trials when the target was presented at a
different location on the screen compared with the previous trial
(“other” target in Figs. 2 and 4)

RIInf � �i [DCUR(i, other) � DBEF(i, other)]/�i [DAFT(i, other)
� DBEF(i, other)]

The reversal indexes for behavioral reaction times were calculated in
the same way as for neural activity, except for treating each behavioral
session as a separate neuron and calculating the difference in reaction
times instead of the difference in firing rates. For each animal, the
behavioral data were pooled over all recording sessions. Note that
each reversal index was calculated using only neurons or behavioral
sessions i that had enough data to calculate the relevant measure of
neural discrimination DCUR(i, same) or DCUR(i, other), meaning that
it had to have at least one rewarded trial and one unrewarded trial. For
each reversal index, the mean number of trials available from each
neuron was 1.7 for rewarded trials (range, 0–6) and 1.5 for unre-
warded trials (range, 0–6). Note also that, because of the relatively
small number of trials that were available for each individual neuron,
reversal indexes could not be calculated reliably at the single neuron
level. For this reason, the reversal index was calculated at the
population level, based on the population average activity (see equa-
tions above). The SE of the reversal index was estimated using a
bootstrap procedure (Efron and Tibshirani 1993). To calculate a
bootstrap reversal index, we randomly sampled the neurons with
replacement to create a bootstrap dataset and calculated the reversal
index for that dataset. The SE was defined as the SD of a set of 20,000
such bootstrap reversal indexes.

This analysis was designed to isolate the effects of task-specific
inference while controlling for any other potential difference between
experienced value and inferred value trials. In particular, on experi-
enced value trials the target location and reward outcome were the
same as the previous trial (repeating), whereas on inferred value trials,
the target location and reward outcome were different from the
previous trial (switching). We designed the reversal index to control
for any idiosyncratic effects of staying versus switching on neural
activity or behavior by calculating RIExp using only neural activity
from trials that shared the identical repeating condition (same target)
and calculated RIInf using only neural activity from trials that shared
the identical switching condition (other target). This also ensured that
the two indexes provided independent measurements, because they
were calculated using separate subsets of the data. In addition, note
that animals could not be certain in advance whether a trial would be
experienced value or inferred value because the target location was
chosen pseudorandomly on each trial. Thus the comparison between
RIExp and RIInf controls for any effect of the animal’s preparatory
state, such as levels of arousal, motivation, attention, or motor readi-
ness.

Statistical significance and P values were calculated using shuffling
procedures. First, we tested the hypothesis that the RI was equal to 0
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(no reversal), which occurs when DCUR � DBEF. To generate a
distribution of RIs representing this hypothesis, we generated 20,000
shuffled datasets in which DCUR(i) and DBEF(i) were randomly shuf-
fled within each neuron. For each shuffled dataset, we calculated the
reversal index. We then computed the two-tailed P value by compar-
ing the distribution of reversal indexes from the shuffled datasets to
the measured reversal index from the original data. Second, we tested
the hypothesis that the RI was equal to 1 (full reversal), which occurs
when DCUR � DAFT. We tested this hypothesis using the same
procedure as before, except by shuffling DCUR(i) and DAFT(i).

Finally, we tested the hypothesis that the reversal indexes RIExp and
RIInf were equal to each other, i.e., that the difference (RIExp – RIInf)
was equal to 0. To generate a null distribution representing the
hypothesis of no difference, we used the following procedure. We first
considered the M neurons that contributed data from “same target”
trials for calculating RIExp and collected their neural discrimination
values that were used to calculate RIExp, producing for each of these
neurons i a three-element vector [DCUR(i, same), DBEF(i, same), and
DAFT(i, same)]. We then considered the N neurons that contributed

data from “other target” trials for calculating RIInf, producing for each
of these neurons j the analogous three-element vector [DCUR(j, other),
DBEF(j, other), DAFT(j, other)]. Of the total M � N vectors, we
randomly reassigned M to the same (experienced value) condition,
reassigned the remaining N to the other (inferred value) condition and
recalculated the two RIs and their difference, (RIExp – RIInf). We
repeated this shuffling procedure to produce a distribution of 20,000
differences and computed the two-tailed P value by comparing this
distribution of differences to the measured difference from the orig-
inal data.

R E S U L T S

Behavioral combination of experienced and inferred
stimulus values

We trained four monkeys to perform a reward-biased sac-
cade task (Fig. 1A). In this task, the monkey began each trial by
holding its gaze on a fixation point for 1.2 s. Then the fixation

FIG. 2. Combination of experienced and inferred stimulus values in neural activity and behavior in monkeys E and L. The rows represent (A) lateral habenula
neurons, (B) dopamine neurons, and (C) behavioral reaction times. First 3 columns: data for the 1st trial of the block (trial 1), for the 2nd trial of the block when
the target was different from the 1st trial (trial 2, Other Target), and for the 2nd trial of the block when the target was the same as on the 1st trial (trial 2, Same
Target). Data are shown separately for the target that was rewarded in the previous block and unrewarded in the current block (old R, new U, blue) and for the
target that was unrewarded in the previous block and rewarded in the current block (old U, new R, red). Neural firing rates were smoothed with a Gaussian kernel
(� � 15 ms) and averaged over neurons. Shaded areas and error bars are �SE. Gray bars along the time axis indicate the response window for calculation of
reversal indexes. Note that each red or blue curve in A and B only includes data from neurons that had at least 1 trial in which the appropriate current-trial and
past-trial targets were presented (n � 42–63 for each curve). Right 3 column: reversal index on the 2nd trial of the block, calculated using all data (1st column),
using data from monkey L (2nd column), and using data from monkey E (3rd column). Reversal indexes were calculated separately for other-target trials when
the value of the target had to be inferred (white bars, Inf) and for same-target trials when the value of the target had already been experienced on the 1st trial
of the block (gray bars, Exp). Numbers at the bottom of each bar indicate the number of neural recording sessions for that bar. Symbols indicate statistical
significance measured using a shuffling procedure (*P � 0.05; �P � 0.06; ns P � 0.06). Error bars are �SE. Neural and behavioral measures of stimulus values
reversed on both trial types but reversed less fully on inferred value trials.
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point disappeared and the monkey made an eye movement to
a visual target that appeared on the left or right side of the
screen. The location of the saccade target indicated the trial’s
upcoming reward outcome. In each block of 24 trials, one
target location was rewarded, whereas the other target location
was unrewarded. Even on unrewarded trials, monkeys still had
to make the saccade correctly or else the trial was repeated. As
shown in previous studies, monkeys closely tracked the values
of the two targets, saccading with short reaction times to the
rewarded target and long reaction times to the unrewarded
target (Figs. 2C and 3C). At the end of each block, the reward
values of the two target locations were reversed without warn-
ing to the animal.

In this study, we analyzed behavior and neural activity on
the first two trials after the reversal, when animals had to learn
that the reward values of the targets had been changed (Fig.
1B). For example, suppose that in the previous block the left
target had been rewarded and the right target had been unre-
warded. Then on the first trial of the new block, the right target
appears and is rewarded, an unexpected outcome. How should
the monkey adjust its estimate of the reward values of the two
targets? Clearly, the monkey can use the right target’s most
recently experienced outcome, a reward, to estimate that the
right target now has a high value (Fig. 1B, same target,
experienced value). However, what about the other, left-side
target? If the monkey learned only from stimulus-reward pair-
ings, the monkey would not update the value of the left target
because the left target had not been physically present and had
not been paired with its new reward outcome. The monkey
would still believe that the left target had a high value and
would have no preference between the targets (Fig. 1C, stim-
ulus values learned by experience). On the other hand, if the
monkey learned using a strategy tuned to the reward statistics
of the task environment, the monkey would correctly infer that
an increase in the value of the right target implied a decrease
in the value of the left target. The monkey would switch its

preference from the left target to the right target (Fig. 1C,
stimulus values learned by inference).

Consistent with a previous study, we found that monkeys
used outcomes gained from one target to infer the value of the
other target (Watanabe and Hikosaka 2005). In the following
section, we will focus on monkeys E and L, which were used
for recording lateral habenula and dopamine neurons (Fig. 2).
On the first trial of each block, the monkeys did not yet know
that the target values had reversed. Their reaction times were
fast for the old rewarded target and slow for the old unre-
warded target (Fig. 2C, trial 1). By the second trial of the block,
however, the monkeys changed their reaction times to match
the new reward values of both targets. This happened when the
second-trial target was the same as the first-trial target and its
new reward value had been experienced (Fig. 2C, same target);
it also happened when the second-trial target was different
from the first-trial target and its new reward value had to be
inferred based on the reward statistics of the task (Fig. 2C,
other target). The reaction time bias favoring the rewarded
target was somewhat weaker on inferred-value trials than
experienced-value trials, suggesting that animals learned more
fully through direct experience than through inference alone
(Fig. 2C).

Inferred value signals in lateral habenula
and dopamine neurons

We next asked whether inferred stimulus values could be
accessed by neurons that control the dopamine system. We
analyzed the activity of 65 neurons in the lateral habenula and
64 reward-responsive putative dopamine neurons in the sub-
stantia nigra pars compacta, recorded in monkeys E and L
(Matsumoto and Hikosaka 2007 and METHODS). As shown in
previous studies, these neurons responded to the targets with
strong reward-predictive signals (Matsumoto and Hikosaka
2007). Lateral habenula neurons were inhibited by the re-
warded target and strongly excited by the unrewarded target

FIG. 3. Neural responses to outcome delivery in monkeys E
and L. The rows represent (A) lateral habenula neurons and (B)
dopamine neurons. Same format as the left 3 columns of Fig. 2.
Data are plotted from the same neurons and trials as in Fig. 2,
A and B, but aligned on outcome delivery. Gray bars along the
time axis indicate the time window for measuring the outcome
response. On the 1st trial of each block when an unexpected
outcome was delivered, lateral habenula and dopamine neurons
had a strong outcome response (left column). On inferred-value
trials, lateral habenula neurons had a tendency for a small
residual outcome response (middle column).
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(Fig. 2A, trial 1). Dopamine neurons had the opposite response
pattern, excited by the rewarded target and inhibited by the
unrewarded target (Fig. 2B). Crucially, on the second trial of
each block, neurons changed their reward-predictive activity to
match the new reward values of both targets. This could be
seen when the value of the second-trial target had already been
experienced (Fig. 2, A and B, same target); it could also be seen
when the second-trial target had been absent on the previous
trial and its value had to be inferred (Fig. 2, A and B, other
target). Thus lateral habenula and dopamine neurons signaled
both experienced and inferred stimulus values. As in the
monkey’s behavior, the difference in neural response strength
between the two targets was somewhat weaker on inferred-
value trials, suggesting that the neurons accessed the same
estimate of target value that was controlling the monkey’s
behavior. These data indicate that monkeys and neurons did
not estimate stimulus values exclusively based on either stim-
ulus-reward pairings or task-specific inference rules; instead,
they used a combination of the two.

A more detailed statistical analysis supported these conclu-
sions. Neurons distinguished between the rewarded and unre-
warded targets on both inferred-value trials and experienced-
value trials (Wilcoxon signed-rank test, inferred-value: habe-
nula, P � 0.004; dopamine, P � 10�3; experienced value:
habenula P � 10�4; dopamine, P � 10�4). We quantified the
degree of neural reversal expressed on the second trial of each
block using a reversal index denoted RI (see METHODS; Fig. 2,
A and B, right). The reversal index was defined based on the
population average neural activity (METHODS). This index was 0
if the population continued to respond as it had in the old block
(no reversal) and was 1 if the population completely reversed
and reached its full response strength in the new block (full
reversal). An analogous reversal index was defined for behavior,
based on saccadic reaction times (METHODS; Fig. 2C, right). Statis-
tical significance was measured using shuffling procedures
(METHODS). All reversal indexes were greater than zero (P �
10�4), and the reversal indexes were larger for experienced
values than for inferred values (RIExp � RIInf: habenula, P �
0.02; dopamine, P � 0.0008; behavior, P � 0.006). The
reversal index on experienced value trials was not significantly
different from 1, consistent with full reversal (habenula, P �
0.68; dopamine, P � 0.25; behavior, P � 0.08). The reversal
index on inferred value trials was close to 0.75 and was
significantly �1, indicating partial reversal (habenula, P �
0.001; dopamine, P � 10�4; behavior, P � 10-4). Inspection of
data from individual animals indicated that the same qualitative
pattern of effects was present in both monkeys, although not all
effects reached statistical significance in each animal possibly
due to the smaller number of neurons (Fig. 2).

In a previous study, we found that dopamine neurons can be
classified into multiple types that carry different motivational
signals (Matsumoto and Hikosaka 2009). One type of dopa-
mine neurons is inhibited by punishments, as though encoding
their negative motivational value, whereas other types of do-
pamine neurons react to punishments with no response or with
excitation. These types of dopamine neurons could potentially
carry different inferred value signals. Although we cannot
identify these neuron types directly in this study because we
did not measure neural responses to punishments, we can take
advantage of the fact that dopamine neurons that are inhibited
by punishments are also strongly inhibited by reward omission

cues, whereas other types of dopamine neurons have weaker or
no inhibition (Matsumoto and Hikosaka 2009). We therefore
sorted dopamine neurons into two subpopulations based on
whether they were strongly inhibited below their baseline firing
rate in response to the unrewarded target (P � 0.001, signed-
rank test using data from trials 3–24 of the block). Both
subpopulations of dopamine neurons had experienced and
inferred value signals consistent with those seen in the popu-
lation as a whole, although the results were somewhat noisier
because of the smaller number of neurons. This could be seen
in the subpopulation that was strongly inhibited by the unre-
warded target (n � 31, RIExp � 0.91, RIInf � 0.73; both
indexes �0, P � 0.001), as well as in the subpopulation that
was not (n � 33, RIExp � 1.44, P � 0.20; RIInf � 0.79, P �
10�4). Thus it is likely that inferred value signals are prevalent
in the general population of dopamine neurons as a whole.

We also examined neural responses to reward outcome
delivery. In this task, lateral habenula and dopamine neurons
responded to the unpredicted reward outcomes delivered on the
first trial of each block (Matsumoto and Hikosaka 2007) (Fig.
3, left column). These outcome responses might remain on
inferred-value trials because the target values were only par-
tially learned and therefore the outcome might be only partially
predicted. There was evidence for such a tendency in lateral
habenula neurons (Fig. 3A). We measured the outcome re-
sponse as the difference between firing rates for the rewarded
and unrewarded outcomes. Lateral habenula neurons had a
significant negative outcome response on the first trial of each
block (P � 10�4, Wilcoxon signed-rank test) and on the
second trial of each block on inferred value trials (P � 0.001)
but not on experienced value trials (P � 0.14). However, the
difference between inferred and experienced value responses
fell short of statistical significance (P � 0.06, Wilcoxon
signed-rank test). There was no clear evidence for such a
tendency in dopamine neurons (Fig. 3B). Dopamine neurons
had a significant positive outcome response on the first trial of
each block (P � 10�4) but not on the second trial of each block
(inferred value trials, P � 0.23; experienced value trials, P �
0.72).

Inferred value signals in globus pallidus neurons that
project to the lateral habenula

Given that lateral habenula and dopamine neurons encoded
inferred stimulus values, we wondered which upstream site in
the reward pathway could be the source of these signals. One
candidate is a subpopulation of neurons in the globus pallidus
internal segment that project to the lateral habenula (Parent et
al. 1981; Hong and Hikosaka 2008). We therefore analyzed
data from monkeys D and N in which we recorded the activity
of globus pallidus neurons as well as lateral habenula multiunit
activity (Hong and Hikosaka 2008). We focused our analysis
of pallidus neurons on a subpopulation, which we will refer to
as GPiLHb-negative neurons—those that projected to the lateral
habenula (confirmed using antidromic stimulation techniques)
and that carried negative reward signals similar to those seen in
lateral habenula neurons, responding with a higher firing rate to
the unrewarded target than to the rewarded target (METHODS).

Again, we found that behavior and neural activity reflected
inferred values (Fig. 4). The reversal index for inferred-value
trials was significantly greater than zero in each monkey for
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each variable measured: GPiLHb-negative population activity,
lateral habenula population activity, and behavioral reaction
times (all P � 0.01).

Whereas monkeys E and L learned better from experience
(Fig. 2), the averaged behavioral data from monkeys D and N
reflected similar learning from both experience and inference
(Fig. 4C; RIInf � 1.04, RIExp � 1.13, P � 0.10; although RIExp
was �1, P � 0.01). In parallel, the population average neural
activity in these animals also reflected similar learning from
experience and inference (Fig. 4C; habenula, P � 0.49;
GPiLHb-negative, P � 0.87). Inspection of data from single
animals indicated that monkey D had behavioral reversal in-
dexes that were slightly �1 and were very similar to each other
(RIInf � 1.10, RIExp � 1.10, P � 0.91), and likewise, the
animal’s neural reversal indexes were also very similar to each
other (habenula, RIInf � 1.11, RIExp � 1.13, P � 0.92;
GPiLHb-negative, RIInf � 0.88, RIExp � 0.95, P � 0.66).
Monkey N also had no consistently detectable difference in
reversal indexes, although this animal did have a modest
tendency for lower reversal indexes on inferred value trials (the
behavioral RIInf and RIExp had a trend to be different, P � 0.06,
although RIInf was not significantly �1, P � 0.24; for habenula
multiunit, RIInf was significantly �1, P � 0.01, although it was
not significantly less than RIExp, P � 0.62). Taken together,
these data were consistent with the possibility that neural

signals reflect an animal’s knowledge of the task. In some
animals, both behavioral and neural reversal were less than
complete (monkeys E and L; Fig. 2), whereas in at least one
other animal, both behavioral and neural reversal were fully
complete (monkey D; Fig. 4).

D I S C U S S I O N

We found that GPiLHb-negative neurons, lateral habenula
neurons, and substantia nigra dopamine neurons were able to
infer the new reward value of a stimulus even when the
stimulus had not been presented and had not been paired with
its new reward outcome. This form of inferential learning had
a large influence on neural activity and behavior; when stim-
ulus values were changed, animals were able to accomplish
75–100% of neural and behavioral reversal through inference
alone. This shows that a neural pathway controlling the dopa-
mine system does not learn exclusively from stimulus-reward
pairings; it can also infer stimulus values based on knowledge
of the task at hand.

Our study makes three contributions toward understanding
the neural mechanism of the inference process. First, to our
knowledge, our study is the first demonstration that inferred
value signals are present in the basal ganglia including the
dopaminergic reward system. One previous study using a

FIG. 4. Experienced and inferred stimulus values in neural activity and behavior in monkeys N and D. Same format as Fig. 2. The rows represent (A)
GPiLHb-negative neurons, (B) lateral habenula multiunit activity, and (C) behavioral reaction times. Note that each red or blue curve in A and B only includes
data from neurons that had at least 1 trial in which the appropriate current-trial and past-trial targets were presented (n � 24–37 for each curve). In monkey D,
neural and behavioral measures of stimulus values reversed similarly on both experienced value and inferred value trials (right column).
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similar task showed that a subset of neurons in the caudate
nucleus can reverse their activity as quickly as the neurons in
this study, within a single trial after a block change (Watanabe
and Hikosaka 2005). However, these caudate neurons did not
encode the value of the presented stimulus; rather, these
neurons discriminated between the two blocks of trials, with
some neurons activated during block 1 and other neurons
activated during block 2. This block-coding activity would be
useful in the inference process because knowing the current
block of trials would allow animals to deduce the proper
stimulus values, although it is currently unknown whether this
activity is used for value inference. Other previous studies
discovered inferred value signals in prefrontal cortical areas,
notably in single neuron activity in the lateral prefrontal cortex
(Pan et al. 2008b) and in blood oxygen level–dependent
signals in the right ventromedial prefrontal cortex (Hampton et
al. 2006). Thus prefrontal cortical neurons may be the source of
the inferred value signals in the pallidus-habenula-dopamine
pathway. The reverse direction of causality is also possible,
because the prefrontal cortex receives a substantial input pro-
jection from dopamine neurons.

Second, we found that inferred stimulus values were repre-
sented in multiple brain regions in a manner suggesting a
pallidus ¡ habenula ¡ dopamine route of transmission.
GPiLHb-negative neurons are likely to send their inferred value
signals to the lateral habenula because they project to the
lateral habenula and their reward signals occur at shorter
latencies than in lateral habenula neurons (Hong and Hikosaka
2008). Likewise, lateral habenula neurons are likely to send
their inferred value signals to dopamine neurons because elec-
trical stimulation of the lateral habenula is known to inhibit
dopamine neurons at short latencies (Christoph et al. 1986; Ji
and Shepard 2007; Matsumoto and Hikosaka 2007). Thus our
data suggest that stimulus values are likely to be inferred
several steps upstream of dopamine neurons and transmitted to
them through the pallidus-habenula-dopamine pathway.

Third, we found that some animals and neurons learned
through a combination of experience and inference, not relying
exclusively on either factor (Fig. 2). The relative influence of
experience and inference is likely to depend on the animal’s
learning strategy and on the amount of skill the animal has gained
at the task. During early training sessions, dopamine neuron
activity reflects gradual learning and extinction of stimulus-
reward associations through repeated pairings (Hollerman and
Schultz 1998; Pan et al. 2008a; Roesch et al. 2007; Takikawa et
al. 2004). In this study, however, animals had extensive prior
knowledge of the task at hand, and neural activity was strongly
influenced by task-specific inference. The transition from ex-
periential to inferential learning could take place through at
least two possible mechanisms. In the first mechanism, this
transition could represent a change between different experi-
ence-based and inference-based task representations within a
single brain structure. Regions such as the prefrontal cortex
and dorsal striatum are thought to contain representations of
multiple rules for task performance (or “task sets”) (Miller and
Cohen 2001; Sakai 2008; Watanabe and Hikosaka 2005), and
could learn to select the most appropriate set of rules through
repeated trial and error (Doya et al. 2002; Haruno et al. 2001).
In the second mechanism, this transition could represent a
change between experience-based and inference-based learn-
ing mechanisms located in separate brain structures. Extended

training could cause a shift in the balance of control between
these structures, similar to the shifts of control between neural
systems during the learning of visuomotor sequences (Hiko-
saka et al. 1999) and spatial mazes (Packard and McGaugh
1996). These structures might correspond to the lateral pre-
frontal cortex and dorsomedial striatum versus the dorsolateral
striatum, which have been proposed to have different roles in
the early and late stages of reinforcement learning (Daw et al.
2005; Haruno and Kawato 2006; Yin and Knowlton 2006). In
both of the mechanisms discussed above, information about
experienced and inferred values could converge on the dorsal
striatum, after which it could be sent directly to the pallidus-
habenula-dopamine pathway through striato-pallidal projec-
tions. Both of these mechanisms also have the common feature
that some prefrontal and striatal neurons would selectively
learn experienced values, whereas other neurons would selec-
tively learn inferred values. In this view, our data indicates that
the pallidus-habenula-dopamine pathway can integrate value
signals from both experience-based and inference-based learn-
ing systems, without being exclusively associated with either
one.

Implications for computational models of
reinforcement learning

The combination of experienced and inferred values also has
an important implication for computational models of dopa-
mine function. Most existing computational models learn stim-
ulus values purely through repeated experience with stimulus-
reinforcement pairings, similar to the experience-based learn-
ing system hypothesized above (Montague et al. 1996).
However, these models are formally designed to assign value
to abstract “states” of the environment (Sutton and Barto
1998), which do not have to correspond to individual sensory
stimuli but can include abstract features of the environment
that permit the use of specialized inference rules. For example,
one computational model of dopamine function is able to
perform inference by dividing the environment into distinct
contexts where stimulus values are stable (e.g., block 1 and
block 2) and learning stimulus values separately for each of
these contexts (Nakahara et al. 2004). This procedure allows
stimulus values to be updated immediately after a change
between blocks, reproducing the pattern of perfect inference
seen in monkey D (Fig. 4, right column); however, this model
cannot reproduce the bias toward experienced value learning
seen in monkeys E and L (Fig. 2). Thus to reproduce our data,
a model is needed that can achieve both experiential and
inferential learning, perhaps by using a mixture of the state
representations that are appropriate for each learning strategy.
This would resemble a class of algorithms that improve the
reliability and flexibility of learning by averaging across mul-
tiple state representations (Daw et al. 2005; Doya et al. 2002;
Haruno et al. 2001) or multiple learning rules (Camerer and Ho
1999).

The inference process seen in our data bears a resemblance
to the inference performed by model-based reinforcement
learning algorithms (Daw et al. 2005; Doya et al. 2002;
Gläscher et al. 2010; Sutton and Barto 1998). These algorithms
learn by observing transitions between states. If state A is
known to transition to state B, and state B is paired with
reward, the algorithm infers that the value of state A has
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increased. Note, however, that standard model-based learning
is different from the inference seen in our task, in two ways.
First, model-based algorithms can infer stimulus values in
novel situations, even before a stimulus has been directly
paired with reward (e.g., after separately observing A ¡ B and
B ¡ reward, they infer that A ¡ reward). In contrast, our task
required an inference rule to be learned through extensive
training in a familiar task environment. Second, most model-
based algorithms assume that the correct representation of task
state is already known at the start of training (Daw et al. 2005;
Doya et al. 2002; Sutton and Barto 1998). In contrast, the
stimulus values in our task depended on hidden task states,
block 1 and block 2, which were not known at the start of
training and had to be discovered during the learning process.
In summary, model-based inference requires subjects to learn
new transitions between states, whereas inference in our task
required subjects to learn a new state representation itself (Daw
et al. 2006; Gluck and Myers 1993; Nakahara et al. 2004). In
this view, our data indicate that the neural source of input to the
pallidus-habenula-dopamine pathway can be trained to con-
struct a faithful internal representation of the hidden structure
of the environment. An important goal of future research will
be to discover how the brain constructs these internal repre-
sentations of its environment and how it uses them to drive the
pallidus-habenula-dopamine pathway and reward-seeking be-
havior.
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