
The habenula encodes negative motivational value
associated with primary punishment in humans
Rebecca P. Lawsona,b,1, Ben Seymourc,d, Eleanor Lohb, Antoine Luttib,e, Raymond J. Dolanb, Peter Dayanf,
Nikolaus Weiskopfb, and Jonathan P. Roisera,1

aInstitute of Cognitive Neuroscience, University College London, London WC1N 3AR, United Kingdom; bWellcome Trust Centre for Neuroimaging, University
College London, London WC1N 3BG, United Kingdom; cComputational and Biological Learning Laboratory, Department of Engineering, University of
Cambridge, Cambridge CB2 1PZ, United Kingdom; dCenter for Information and Neural Networks, National Institute for Information and Communications
Technology, Osaka 565-0871, Japan; eLaboratoire de Recherche en Neuroimagerie, Département des Neurosciences Cliniques, Centre Hospitalier Universitaire
Vaudois, Université de Lausanne, 1011 Lausanne, Switzerland; and fGatsby Computational Neuroscience Unit, University College London, London WC1N 3AR,
United Kingdom

Edited by John P. O’Doherty, California Institute of Technology, Pasadena, CA, and accepted by the Editorial Board June 24, 2014 (received for review
December 18, 2013)

Learning what to approach, and what to avoid, involves assign-
ing value to environmental cues that predict positive and neg-
ative events. Studies in animals indicate that the lateral habenula
encodes the previously learned negative motivational value of
stimuli. However, involvement of the habenula in dynamic trial-
by-trial aversive learning has not been assessed, and the func-
tional role of this structure in humans remains poorly character-
ized, in part, due to its small size. Using high-resolution functional
neuroimaging and computational modeling of reinforcement learn-
ing, we demonstrate positive habenula responses to the dynami-
cally changing values of cues signaling painful electric shocks, which
predict behavioral suppression of responses to those cues across
individuals. By contrast, negative habenula responses to monetary
reward cue values predict behavioral invigoration. Our findings
show that the habenula plays a key role in an online aversive
learning system and in generating associated motivated behavior
in humans.
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Learning which stimuli predict positive and negative outcomes,
and thus should be approached or avoided, respectively, is

central to an organism’s ability to survive. Midbrain dopamine
neurons respond to both unpredicted rewarding stimuli and to
cues previously paired with rewards (1), consistent with behav-
ioral approach toward those cues. As a counterpoint to these
reward-related signals, neurons in the lateral habenula (LHb) of
nonhuman primates respond to previously learned stimuli pre-
dicting the delivery of punishments and the omission of rewards,
whereas they are inhibited by stimuli that signal upcoming
rewards (2). These studies in nonhuman primates have concen-
trated on well-learned stimuli, and so have forsaken the oppor-
tunity to study the details of dynamic adaptation in the habenula.
However, in many real-world scenarios, organisms learn about
the motivational value of novel cues in their environment grad-
ually, one exposure at a time, which raises the question as to
whether the habenula plays a role in encoding the dynamically
changing motivational value of cues that predict negative events.
Dynamic learning from aversive events permits the rapid

experience-dependent updating of behavior, for example, the au-
tomatic suppression of approach, which is a characteristic of
aversive conditioning (3). The LHb receives inputs from the
globus pallidus (4), and its excitation inhibits midbrain dopamine
neurons via the rostromedial tegmental nucleus (2). This posi-
tion as a hub between corticolimbic networks and midbrain
monoaminergic nuclei provides a means through which positively
or negatively valenced stimuli can modulate motor output, leading
to the hypothesis that the habenula plays a critical role in mo-
tivated behavior (5).
Studies using temporally precise optogenetic stimulation of the

LHb in rodents provide convincing evidence that the habenula

drives behavioral suppression (6). This structure has been sug-
gested as a novel target for deep brain stimulation in the treatment
of depression (7) based on the hypothesis that its overactivity
might drive symptoms, such as disrupted decision making and
anhedonia (8). Understanding the involvement of the habenula
in generating negatively motivated behavior in humans is there-
fore central to our understanding of how the brain learns from and
modifies behavior in response to aversive events, and its relevance
for neuropsychiatric disorders, such as depression.
Investigating the habenula in humans with functional magnetic

resonance imaging (fMRI) is nontrivial (9) due to its small size.
Prior fMRI investigations have been limited by the use of stan-
dard data acquisition protocols, in which a single image volume
element (volumetric pixel or voxel) is typically as large as the
habenula itself. This low resolution, exacerbated by substantial
spatial smoothing during standard data processing, is likely to
induce localization error (9), rendering a signal from the habe-
nula difficult to resolve from adjacent structures, such as the
medial dorsal (MD) nucleus of the thalamus (10–12). Here, by
using high-resolution fMRI, in conjunction with computational
modeling of reinforcement learning in a paradigm that included
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primary punishments (painful electric shocks), we were able to test
directly whether the habenula encodes changing associations with
positive and negative stimuli over time in humans, and whether
this encoding is linked to the modulation of behavioral output.
During fMRI, subjects (n = 23) performed a Pavlovian con-

ditioning task in which they were passively exposed to seven
abstract images [conditioned stimuli (CSs)] that were followed
by different reinforcing outcomes (with high or low probability of
reinforcement: win £1, lose £1, or painful electric shock, with the
nonreinforced outcome being neutral, or a guaranteed neutral
outcome) (Fig. 1A and Materials and Methods). During condi-
tioning, subjects performed a fixation cross-flicker detection task
to ensure attention (20% of trials, overlaid on CSs), which was
independent of reinforcement. For the analysis of habenula
responses, we used a model-based fMRI approach (13, 14),
exploiting a reinforcement learning algorithm to calculate the
trial-by-trial associative values of CSs that probabilistically pre-
dicted wins, losses, and shocks. We then used these values in the
fMRI analysis as parametric regressors whose onsets were time-
locked to the presentation of win, loss, and shock CSs. Because
our central hypothesis related to the habenula, and given the
small size and potential interindividual anatomical variability of
this structure, we manually defined regions of interest (ROIs) on
high-resolution anatomical scans for the left and right habenula
in each subject according to a previously established protocol (9).
This, and the use of high-resolution functional scans, enabled us
to avoid signal contamination from adjacent structures, such as
the MD thalamus. Additionally, our computational fMRI ap-
proach permitted us to investigate value-related responses in,
and functional coupling with, regions that have known direct and
indirect anatomical connections with the habenula, including

the striatum and globus pallidus (4, 15). We therefore conducted
additional exploratory whole-brain categorical and functional
connectivity analyses enabling us to exploit our anatomically
precise high-resolution data to examine how the habenula
interacts with a wider network of brain regions known to play
a crucial role in reinforcement learning.

Results
Behavioral Performance. We confirmed conditioning using three
methods: explicitly (CS preference scores, measured after each
block), implicitly (reaction times from the flicker detection task),
and via autonomic responses [pupil dilation, measured using
concurrent eye-tracking (16)]. Consistent with a pilot behavioral
study (Fig. S1), all three approaches confirmed conditioning for
shocks. Shock CSs were least preferred [significant effect of CS
type: F(1.87,41.30) = 97.28, P < 0.001; Fig. 1B], were associated
with slower responses [significant effect of CS type: F(3,66) =
5.62, P = 0.002; Fig. 1C], and elicited the largest peak pupil
dilations [significant effect of CS type: F(1.25,23.77) = 29.86, P <
0.001; Fig. 1D]. Across subjects, the magnitude of pupil dilation
to shock CSs (relative to neutral CSs) correlated positively with
our behavioral measure of conditioned suppression [i.e., the
slowing of responses on the flicker detection task during shock
trials relative to neutral trials (r = 0.45, P = 0.044; Fig. 1E].

Habenula Responses to Negative CS Value.Analysis of blood oxygen
level-dependent (BOLD) signals in the habenula, corresponding
to computationally derived trial-by-trial fluctuations in CS values
(Fig. 2A), revealed a significant linear effect of CS type [F(1,22) =
4.34, P = 0.049], which was qualified by a significant linear CS
type * laterality interaction [F(1,22) = 7.31, P = 0.013]. Analysis
of the right habenula only revealed a significant linear effect of
CS type [F(1,22) = 10.15, P = 0.004], with planned pairwise
comparisons showing that the response to parametrically varying
shock CS values was significantly greater than to win CS values
[t(22) = 3.19, P = 0.004], and also significantly different from zero
[t(22) = 2.35, P = 0.028; Fig. 2B]. This latter result means that as
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Fig. 1. Conditioning task and multiple indices of learning. (A) Exemplar trial
(a detailed description is provided in the main text). (B) Explicit preference
scores for win, loss, shock, and neutral (NEU) CSs (maximum score of 24). (C)
Reaction times to respond to fixation flickers on win, loss, shock, and neutral
CSs. (D) Pupil responses to win, loss, shock, and neutral CSs. (E) Relationship
between autonomic (pupil responses to shock relative to neutral CSs) and
implicit (conditioned suppression) measures of conditioning. Error bars and
the shaded region in D represent SEMs. *P < 0.01; **P < 0.005.
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Fig. 2. Habenula results. (A) Location of the habenula on a coronal slice of
a representative subject (Upper) and the trial-by-trial evolution of shock CS
value during a single task block for a representative subject (Lower). Empty
markers (□) indicate high-probability trials, and filled markers (■) indicate
low-probability trials. (B) BOLD responses from the right habenula corre-
spond to the dynamically changing values of win, loss, and shock CSs. (C)
There is a positive correlation between the right habenula response to shock
CS value and conditioned suppression. (D) There is a negative correlation
between the right habenula response to win CS value and conditioned in-
vigoration. Error bars represent SEM. *P < 0.01; **P < 0.001.
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CSs become more predictive of shock, the response in the habenula
increases linearly. Habenula responses to win and loss CS values
were not significantly different from zero [win: t(22) = −1.64, P =
0.12; loss: t(22) = 0.62, P = 0.54]. Although the left habenula
showed the same linear pattern of responses to win, loss, and
shock CS values, the main effect of CS type was nonsignificant
(F < 1; Fig. S2).

Relationship Between Habenula Responses and Behavior. If the habe-
nula influences motor output (5), we would expect individual
variability in our implicit conditioning measure to correlate with
habenula responses, in a valence-specific manner. Strikingly, our
behavioral measure of conditioned suppression was positively
related to habenula responses to shock CS value across subjects
[r(23) = 0.60, P = 0.002; Fig. 2C]. Furthermore, our behavioral
measure of conditioned invigoration, the speeding of responses
during the presentation of win CSs (relative to neutral CSs), was
negatively related to habenula responses to win CS value [r(23) =
−0.44, P = 0.04; Fig. 2D]. These correlations differed signifi-
cantly from one another (Pearson–Filon Z = 3.48, P < 0.001).

MD Thalamus Responses. To determine whether signal from the
MD thalamus, a comparatively large structure adjacent to the
habenula, could be contributing to our effects, we drew left and
right MD thalamus ROIs on the average normalized anatomical
scan (Materials and Methods). BOLD responses to the compu-
tationally derived values of win, loss, and shock CSs were
extracted in the same manner as for the habenula. We found no
main effect of CS type (F < 1) and no interaction with laterality
[F(2,44) = 1.03, P = 0.37; Fig. S3].

Habenula Responses to High- vs. Low-Probability Stimuli. To estab-
lish whether the habenula encodes a more general representa-
tion of (anti-) reward association, similar to that demonstrated
in prior nonhuman primate studies (i.e., high vs. low probability
of reinforcement, in addition to the trial-by-trial varying effects
reported above), we ran another first-level model identical to
that described above but with the addition of a second para-
metric modulator of the CS, which represented the contrast of
the high- and low-probability CSs for each of the win, loss, and
shock conditions.
We first confirmed that the results reported above for trial-by-

trial fluctuations in CS value were unchanged in this analysis. Fol-
lowing a significant linear CS type * laterality interaction [F(1,22) =
7.50, P = 0.012], analysis of the right habenula only revealed a sig-
nificant linear effect of CS type [F(1,22) = 10.06, P = 0.004], and
planned comparisons confirmed that right habenula response to
parametrically varying shock CS values was significantly greater
than to win CS values [t(22) = 3.17, P = 0.004], and also significantly
different from zero [t(22) = 2.53, P = 0.019]. The main effect of CS
type was nonsignificant for the left habenula (F < 1).
We then examined habenula responses corresponding to the

high- vs. low-probability categorical contrasts, which showed no
interaction with laterality (F < 1). Collapsing across the left habe-
nula and right habenula, we found a significant linear effect of CS
type [F(1,22) = 6.14, P = 0.021]. The high- vs. low-probability
contrasts for win and shock CSs were significantly different from
each other [t(22) = 2.48, P = 0.021], and both showed a trend to-
ward differing from zero (in opposite directions: win: t(22) = −1.86,
P = 0.08; shock: t(22) = 1.83, P = 0.08; Fig. S4]. These results
suggest that consistent with our finding that the habenula tracks
trial-by-trial changes in shock CS value, the habenula may also
encode a more general representation of negative value, similar to
results reported previously in nonhuman primates (2).

Whole-Brain Analysis. To examine whether regions anatomically
connected with the habenula also represent negative motivational
value, we conducted a whole-brain analysis in normalized space.

BOLD responses corresponding to computationally derived trial-
by-trial shock CS values were detected in the vicinity of the
medullary lamina of the left globus pallidus (peak voxel: [x = −18,
y = −6, z = 2]; Z = 3.10, P = 0.036; small-volume corrected [SVC];
Fig. 3). Importantly, unlike most pallidal output, which is in-
hibitory, this region provides an excitatory input to the LHb in
nonhuman primates (4, 17) and rats (18). Details of all other
brain regions identified in this whole-brain analysis are presented
in Table S1, and the corresponding negative contrasts can be
found in Table S2.

Connectivity Analysis. To reveal how the habenula is functionally
connected to other brain regions, we performed a psychophysi-
ological interaction (PPI) analysis. We used the right habenula as
the seed region for each subject, because the left habenula ROI
showed no significant responses corresponding to CS value.
Initially, we examined which brain regions are functionally con-
nected to the habenula over the entire fMRI time series (i.e.,
separate from any CS value-dependent connectivity). At a whole-
brain voxel-wise corrected significance level, we identified a large
cluster showing positive connectivity, extending from the seed
region to the left habenula, thalamus, and left pallidum ([x = 7.5,
y = −7.5, z = −3], Z = 5.20). There was another large cluster in
the right ventral striatum ([x = 18, y = 12, z = −8], Z = 5.41),
extending to the bilateral medial wall of the caudate (left: [x =
−11, y = 5, z = 6], Z = 4.94; right: [x = 11, y = 6, z = 12], Z = 4.92)
and also the right amygdala ([x = 27, y = 2, z = −12], Z = 4.80;
Fig. S5A). Several other regions survived whole-brain correction
and are reported in Table S3.
The PPI analysis additionally allowed us to investigate patterns

of functional coupling with the habenula as a function of changing
CS value. At an exploratory threshold (P < 0.005 uncorrected,
cluster size ≥10), we detected increased coupling with the right
habenula as a function of increasing shock CS value in the left
amygdala ([x = −18, y = 2, z = −21], Z = 3.00); bilateral posterior
orbitofrontal cortex (pOFC) (left: [x = −15, y = 15, z = −23], Z =
3.39; right: [x = 23, y = 12, z = −21], Z = 2.78) and subcallosal
anterior cingulate (Brodmann area [BA] 25: [x = 3, y = 15, z = −12],
Z = 3.29; Fig. S5B). We provide these results (which did not fall
within our a priori specified ROIs) for information only, without
making inference, noting that they did not survive correction for
multiple comparisons. Coupling with the right habenula in-
creased as a function of increasing win CS value in the right
ventral striatum extending to anterior putamen, which survived
correction for multiple comparisons within our striatal ROI ([x =
23, y = 18, z = −3], Z = 3.10, P = 0.028 SVC; Fig. S5C). Other
brain regions surviving the above exploratory threshold for both
win and shock PPIs are presented in Table S3.

Discussion
Our results indicate that in humans, the habenula encodes the
dynamically changing negative motivational value of stimuli that
predict primary punishments. Importantly, these data go beyond
prior findings in nonhuman primates (2, 19), which tested for
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Fig. 3. Whole-brain analysis showing activation to shock CS value. Pallidal
BOLD responses correspond to shock CS value. Images are thresholded at P <
0.005 (uncorrected) and at k ≥ 10, and they are overlaid on the average
normalized anatomical image; the color bar represents t values.
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single-unit responses to previously overlearned stimuli. Our
confirmatory analysis found some evidence of an additional
correspondence with such responses in the habenula (Fig. S4);
however, our computationally derived value regressors (Fig. 2A)
show variation consistent with trial-by-trial learning that does not
asymptote simply toward the true reinforcement probabilities.
Consequently, our computational fMRI analysis uniquely dem-
onstrates that the habenula represents the changing value of cues
that predict reinforcers, as would be the case in naturalistic sit-
uations where organisms need to learn about dynamic cue–
outcome associations from gradual exposure to environmental
stimuli over time.
We overcame the limitations of standard fMRI acquisition for

small subcortical brain structures by using high-resolution BOLD
imaging in conjunction with anatomically precise ROIs, which
were placed manually in native MRI space [on 770-μm ana-
tomical images (9)]. This approach enables us to be confident
that the signals we identified emanate from the habenula and not
the neighboring MD thalamus. We confirmed this by showing
that responses in the MD thalamus do not correspond to moti-
vational value (Fig. S3). However, it is also worth noting that
even with high-resolution fMRI, we do not have sufficient res-
olution to disambiguate the medial and lateral portions of the
habenula, as outlined in our prior methodological paper on
imaging the habenula in humans (9).
The linear response profile of the right habenula to in-

creasingly aversive cues suggests that this region may provide
a single mechanism for representing negative motivational value
induced by both rewards and punishments. Although the habe-
nula response to the value of win cues was significantly different
from the value of shock cues, only the response to shock cues was
significantly different from zero. It is possible that value coding
by the habenula may be different for rewards and punishments;
indeed, electrophysiological data in nonhuman primates support
the notion that the representation of punishment in the LHb may
be more precise than that of reward (19). Consistent with our
results, the only previous high-resolution fMRI study of the
habenula (which only examined the processing of appetitive
stimuli) also failed to detect significant negative-going responses
to the onset of reward-predicting cues (20).
It is also possible that the electric shocks, which were the most

aversive outcomes in our study, framed the task such that non-
shock cues were less motivationally salient, attenuating their as-
sociated neural responses, a suggestion supported by our pupil
data, which showed greater dilation for shock-predictive cues
relative to all other cues (Fig. 1D). Such contextual effects of
primary and secondary reinforcers in aversive learning paradigms
have previously been reported (21). We also note that, although
still aversive, the average magnitude of shocks delivered in the
scanning study was lower than in our behavioral pilot study (5.48
mA relative to 20.3 mA) to avoid discomfort-related movement,
which would have corrupted our images. This may explain why
there was no significant conditioned suppression at the group
level in our scanning study, whereas there was in our behavioral
pilot study (Fig. S1). The difference in reaction times between
these conditions nonetheless reflects the extent to which a par-
ticular individual suppressed responses to the shock CS (relative
to the neutral CS). It is this individual variability in reaction time
that is predicted by habenula response to shock CS value, dem-
onstrating a crucial link between habenula function and behavior.
Our main result demonstrates that the habenula tracks the

values of cues that predict motivationally salient outcomes
(primary punishments). A recent study demonstrated that in-
activation of the LHb in rodents abolished subjective decision
biases, effectively making choice behavior random (22). Our
findings suggest that this effect could arise as the result of
a failure to encode accurately the values of the available op-
tions during decision making, although further studies would be

necessary to address this hypothesis. Furthermore, the finding
that the right habenula alone showed robust responses to the
value of shock cues is interesting in the wider context of laterality
research on this structure in nonprimate species (23). The habenula
shows phylogenetic conservation from fish to human and has
attracted interest as a model for brain asymmetry, because many
vertebrates show left–right differences in habenula size and
neural circuitry (24). However, in our study, the electric shocks
were always delivered to the left hand of subjects, and we specu-
late that this could provide a more parsimonious explanation of
stronger responses to shock cue values in the contralateral LHb.
In addition to our primary analysis focused on the habenula, a

whole-brain analysis revealed that globus pallidus responses also
represent the value of shock cues. Interestingly, LHb-projecting
neurons in this region are known to respond to punishment-
predicting cues and nonreward-predicting cues in nonhuman
primates, with pallidal responses occurring earlier than those in
the LHb (4). Our data hint that LHb projecting pallidal neurons
provide a driving input to this structure in humans, transmitting
negative value-related information. Exploiting our high-resolu-
tion functional images and precisely placed anatomical ROIs,
our connectivity analysis revealed that signal in the right habe-
nula covaries with signal in a number of regions that have direct
and indirect anatomical connections with the habenula (23). We
found that the seed region, the right habenula, was strongly
coupled with a large cluster extending into the left habenula. The
left habenula and right habenula have a known direct connec-
tion, the habenular commissure, which likely mediates any con-
tralateral functional connectivity. The finding that the habenula
is functionally coupled with the pallidum is consistent with our
whole-brain analysis of responses to shock CS value, as well as
studies in rodents and nonhuman primates that have identified
excitatory pallidal input to the LHb (4, 17, 18). Furthermore, we
found that the habenula is functionally coupled with the stria-
tum, including the medial wall of the caudate, which is strongly
innervated by dopamine neurons (15) and has previously been
implicated in fMRI studies of Pavlovian aversive learning (13).
Unfortunately, we did not have full coverage of the brainstem

in our functional field of view (FOV); therefore, we were not able
to investigate coupling between the habenula and midbrain do-
paminergic nuclei. However, we did find the habenula to be
functionally coupled with the amygdala, which has reciprocal
connections with the substantia nigra (25). The substantia nigra is
the main output of the LHb (5) and plays a crucial role in asso-
ciative learning. One limitation of fMRI is that we are not able to
infer whether the functional coupling detected with the habenula
is inhibitory or excitatory. Nonetheless, these results provide ev-
idence that the habenula operates within a network of brain
regions known to participate in reinforcement learning (26).
In addition to the results discussed above, our PPI analysis

provides very preliminary evidence that coupling between the
habenula and the amygdala, pOFC, and BA25 increases as a
function of shock CS value (Fig. S5B), consistent with the role of
the latter regions in the acquisition of conditioned fear in both
rodents and humans (27, 28). However, we note that these effects
were detected at a liberal statistical threshold and did not survive
stringent correction for multiple comparisons; we report them for
completeness and they should be treated with caution until rep-
licated. Furthermore, we found that coupling between the habe-
nula and the striatum increased significantly as a function of win
CS value (Fig. S5C), suggesting a role for habenula-striatal cou-
pling in encoding information relating to reward value.
What is the functional role of value-related responses in the

habenula? To answer this question, it is informative to consider
how habenula responses relate to conditioned behavior. We
identified a striking relationship across subjects between pos-
itive habenula responses to the value of shock cues and asso-
ciated conditioned suppression and, conversely, between negative
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habenula responses to the value of win cues and conditioned
invigoration (Fig. 2 C and D). These data suggest that value-
related responses in the habenula guide behavioral invigoration
to rewards and suppression of behavior to punishments in humans,
even when approach and withdrawal have no consequence. This
accords with the view that the LHb output to the midbrain
monoaminergic nuclei provides a critical pathway through which
motor output can be modulated (5). This link with the in-
vigoration and suppression of behavior hints at a potential role
for the habenula in disorders characterized by aberrant moti-
vated behavior, such as depression. Abnormalities in habenula
structure and function have been reported in depressed patients
(29, 30), as well as in animal models (31). Additionally, a recent
study reported that glucose metabolism in the vicinity of the
habenula decreased in depressed patients following treatment
with ketamine (32). The data from the present study lend cre-
dence to the hypothesis that the habenula contributes to the
generation of core depressive symptoms, especially those related
to reinforcement processing, such as anhedonia and aberrant
decision making (8).

Materials and Methods
Subjects. Twenty-seven subjects participated in this study. All had normal or
corrected to normal vision, had no present or past neurological or psychiatric
diagnosis, and provided written informed consent to participate. The study
was approved by the London-Queen Square Research Ethics Committee, and
subjects were compensated £50 for participation. Data were lost for two
subjects due to scanner failure, and two subjects were removed from the
analysis due to movement-induced image corruption, leaving 23 (15 female,
mean age = 26 y, SD = 4.48, range = 20–37 y) participants in the analysis.

Experimental Procedures. Pain calibration. Pain was delivered to the left hand
(fascia over adductor pollicis muscle) via a silver chloride electrode, using
a single 1,000-Hz electrical pulse. Subjects underwent a thresholding pro-
cedure to control for heterogeneity in skin resistance and pain tolerance (33).
Shocks were administered sequentially with step increases in amplitude, and
subjects provided visual analog ratings of each shock on a scale from 0 (not
painful) to 10 (terrible pain/pain that would cause me to move in the
scanner). The level of shock delivered in the experiment was set to 80% of
the maximum tolerated for each individual. The average shock strength was
5.48 (SD = 3.24) mA.
Conditioning paradigm. We used a Pavlovian paradigm with visual CSs (fractal
images), probabilistically paired with win, loss, shock, or neutral outcome.
There were seven CSs, associated with the following fixed outcome associ-
ations: 75% chance of £1 win, 25% chance of £1 win, 75% chance of £1 loss,
25% chance of £1 loss, 75% chance of shock, 25% chance of shock, and
100% no outcome (neutral). CSs were luminance-matched and assigned to
conditions randomly across subjects. On trials where the reinforcing out-
come (win, lose, or shock) was not presented, and on neutral trial outcomes,
the word “nothing” was presented on-screen. The task is presented in Fig.
1A. On each trial, subjects initially saw a fixation cross, which remained on-
screen for the entire trial; the CS appeared after 500 ms, remaining on-
screen until the end of the trial; and the outcome was presented 2,000 ms
following the CS onset. To ensure attention, on 20% of trials, the fixation
cross present in the center of the screen flickered from black to red for 300
ms during CS presentation (but before outcome), and subjects were instruc-
ted to respond via a button press whenever this occurred. They were explicitly
instructed that their responses made no difference to the outcomes they
received. These trials were excluded from fMRI analysis. In total, 420 trials
were presented over three blocks, which lasted 9.3 min each. Pilot reaction
time data using this paradigm indicated robust conditioning (Fig. S1A).
Preference task. After each conditioning block, subjects’ explicit knowledge of
CS values was assessed using a preference task involving forced choices be-
tween pairs of CSs. Each CS was paired four times with every other CS, and
subjects indicated which one they preferred. The position of each CS (on the
left or right side of the screen) was randomized. The total number of
preference choices for each CS was summed to calculate a total preference
score (out of 24). Pilot data again indicated robust conditioning (Fig. S1B).
Pupillometry. Pupil diameter was measured during fMRI scanning by an IR eye
tracker (Eyelink 1000; SR Research) recording at 500 Hz, and data were
processed using custom-written algorithms inMATLAB R2011b (MathWorks).
For each trial, blinks were treated with interpolation. Due to hardware
failure, pupil data were not collected for one subject. Two subjects had more

than one-third missing data on over one-third of trials and were removed
from the analysis. For the remaining 20 subjects, we used the peak pupil
response after presentation of the CS as a measure of autonomic arousal (16).
fMRI acquisition. MRI data were acquired with a 3-T Magnetom TIM Trio
scanner (Siemens Healthcare) fitted with a 32-channel radio frequency receive
head coil and body transmit coil. High-resolution, T2*-weighted, 2D echo-
planar images (EPIs) were obtained using a custom-written sequence with the
following parameters (34): matrix size of 128 × 128, FOV of 192 × 192 mm, in-
plane resolution of 1.5 × 1.5 mm, interleaved slice order acquisition, slice
thickness of 1.5 mm with no gap between slices, excitation flip angle of 90°,
echo time (TE) of 36.2 ms, slice repetition time (TR) of 84.2 ms, and volume TR
of 3.2 s. Thirty-eight slices were acquired with the FOV centered manually in
line with the habenula in each subject. After reconstruction, three slices were
discarded on either side of the encoding slab to avoid edge artifacts due to
motion, leaving a total of 32 slices in each volume. Five dummy volumes were
acquired before the image volumes to allow for T1 equilibration effects. Field
maps were also acquired. Cardiac pulse signal and respiration were measured
during EPI runs using a pulse oximeter and a pneumatic belt, respectively.
These were used to correct for pulse- and respiration-related artifacts during
analysis (see below) (35). High-resolution T1-weighted anatomical images
were acquired using an optimized 3D modified driven equilibrium Fourier
transform imaging sequence with correction for B1 inhomogeneities at 3 T
(36). Image resolution was 770 μm isotropic (matrix size of 304 × 288 × 224, TR
of 7.92 ms, TE of 2.48 ms, and excitation flip angle of 16°).
fMRI analysis. Statistical Parametric Mapping (SPM8; Wellcome Trust Centre
for Neuroimaging, www.fil.ion.ucl.ac.uk/spm) was used to analyze all MRI
data. For the ROI analysis of the habenula, each subject’s data were slice
time-corrected, realigned to the first image, unwarped using a field map of
the static (B0) magnetic field (37), and coregistered to their individual ana-
tomical scan, on which the habenula ROIs were placed according to a pre-
viously described procedure (9). Images were smoothed using a 2-mm FWHM
Gaussian kernel to increase the signal-to-noise ratio without smoothing
signal beyond the limits of the habenula ROI (9).

We used a reinforcement learning model to generate inferred values for
the win, loss, and shock CSs on every trial (14). Specifically, we used a tem-
poral difference model with a learning rate of α = 0.5. This learning rate
is supported by a number of studies examining both Pavlovian and in-
strumental learning (38, 39). Nonetheless, the results we acquired were ro-
bust to a range of learning rates (0.3–0.7; Fig. S6). In this model, the value (v)
of a particular CS [referred to as a state (s)] is updated according to the
following learning rule: v(s + 1) ← v(s) + αδ, where δ is the prediction error,
defined as δ = r − v(s), and r is the outcome received.

At the subject level, fMRI data were analyzed in an event-related manner,
using the general linearmodel, with the onsets of eachwin, loss, and shock CS
(high- and low-probability stimuli combined in a single regressor) convolved
with a synthetic hemodynamic response function in separate regressors. We
used the model-based fMRI approach, in which the computationally derived
CS values (see above and Fig. 2A) parametrically modulated the CS onset
regressors on a trial-by-trial basis. In the model, we also included regressors
for the onsets of win, loss, shock, and neutral outcomes, as well as re-
alignment parameters to correct for subject movement and cardiac and
respiration parameters to correct for physiological noise. A second model, in
all other respects identical to the first, included a second parametric mod-
ulator of CS onset representing the contrast of high- vs. low-probability CS
for each of the win, loss, and shock conditions. Note that our main infer-
ences relate to the parametric regressors corresponding to the values of win,
loss, and shock CSs, which are orthogonal to the regressors they modulate.

Group-level contrasts used the standard summary-statistics approach to
random-effects analysis in SPM. Contrast estimates representing the win, loss,
and shock CS values (i.e., the parametric modulator regressors from the
subject level) were extracted from each individual’s habenula ROI using the
MarsBaR toolbox (40). Statistical tests conducted on these parametric con-
trast estimates at the group level indicate the reliability (across subjects) of
the regression coefficient relating continuously varying CS value to habenula
response at the subject level and, as such, do not require inclusion of a
baseline condition because they already entail a contrast. For the explor-
atory whole-brain analysis, the respective contrast images for each subject
were normalized to the standard space Montreal Neurological Institute
template using the Dartel toolbox for SPM (41), smoothed with an 8-mm
FWHM kernel, and included in group-level one-sample t tests thresholded at
an exploratory threshold of P < 0.005 (k ≥ 10). Small-volume correction was
applied to a priori ROIs (described below).

Our PPI model included the deconvolved time series of signal in the right
habenula ROI (physiological effect), a regressor corresponding to the para-
metric modulation of CS value at the time of CS onset (psychological effect),
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and the product of these physiological and psychological regressors (the PPI)
(42). We note that the psychological variable here is already an interaction
between the parametric effect of CS value and the onset of the CS itself,
because CS value is conditional upon CS onset and cannot strictly be isolated
from it (because it is the expected value of a particular stimulus). For com-
pleteness, we also included regressors corresponding to the onsets of the CSs
themselves in the PPI design matrix. Regressors were not orthogonalized
before being entered into the design matrix. Separate PPI analyses were
conducted for shock and win CS value regressors for each participant at the
subject level. In addition to the realignment, cardiac, and respiration
parameters, we included two nuisance time series: from a white-matter
voxel in the center of the splenium of the corpus callosum and from a ce-
rebrospinal fluid voxel in the center of the third ventricle occupying the
same y-coordinate as the habenula. Contrast images corresponding to the
main effect of the physiological variable and the PPI for win and shock CS
values were normalized using the Dartel toolbox as described above and
combined in group-level random-effects analyses. The former connectivity
maps, representing the average linear effect of connectivity over all the
levels of the psychological factor, were thresholded at P < 0.05 family-wise
error corrected at the voxel level across the whole brain, whereas win and
shock CS value PPI images were thresholded at an exploratory threshold of
P < 0.005 (k ≥ 10). Small-volume correction was applied to our a priori ROIs
for the PPI analyses.
ROI definition. Habenula ROIs were placed manually for each subject in native
space on high-resolution anatomical images according to a procedure pre-
viously described and validated (9). As a control region, the MD thalamus ROI
was defined on the average normalized structural as a cylinder with a

diameter of 4.5 mm that started on the same coronal slice as the habenula
and continued anteriorly for 14 mm [approximately the length of the thal-
amus (43), including anterior and posterior MD thalamus regions], with the
dorsolateral curve of the ROI following the dorsolateral edge of the MD
thalamus against the third ventricle. ROIs applied to our whole-brain anal-
yses for small-volume correction were the pallidum and ventral striatum.
Our ventral striatum ROI was drawn as a sphere with a radius of 8 mm
around a coordinate [x = 20, y = 12, z = −8] identified in a previous com-
putational fMRI study of Pavlovian and instrumental learning (44), and the
pallidum ROI was defined using a mask generated from the automated
anatomical labeling atlas incorporated within the Wake Forest University
PickAtlas toolbox for SPM (45).
Statistical analysis. Behavioral, peak pupil dilation, and habenula response
data were analyzed in SPSS 20 (IBM). All data were inspected before analysis
to check for deviations from Gaussian distributions. Differences between
conditions were analyzed using repeated-measures ANOVA, and post hoc
t tests (two-tailed). Where assumptions of heterogeneity of covariance were
violated, degrees of freedom were corrected using the Greenhouse–Geisser
approach. Correlations across subjects were assessed using Pearson’s corre-
lation coefficient (r), and differences in correlation coefficients were tested
using the Pearson–Filon Z test (46).
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