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Abstract
Although the anatomical configuration of the amygdala has been studied a great
deal, very little research has been conducted on understanding the precise mecha-
nism by which this emotional regulatory center exerts its control on emotional and
sexual behavior. By applying research methodology from the Neuroscience Re-
search Institute, State University of New York, College at Old Westbury, we in-
tended to demonstrate that much of the mediated effects of the amygdala, specifi-
cally the regulation of the male and female sexual response cycles, as well as
related emotional considerations, exert their effects coupled to nitric oxide (NO)
release.  Furthermore, by using current anatomical and histological data, we
demonstrated that amygdalar tissue rich in endocannabinoid and opiate, as well
as catecholamine, receptors could exert its neurochemical effects within an NO-
mediated paradigm. This paradigm, together with the existence of estrogen and
androgen signaling within the amygdala, further lends credence to our theoretical
framework. We begin with a brief anatomical and functional review of amygdalar
function, and then proceed to demonstrate its relationship with NO.
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Introduction to the structure and function of
the amygdala

The region of the human brain commonly referred to as
the amygdala comprises an area of approximately 3 cm3 [1,2].
At the dorsal base of the brain, the elevation of the para-
hippocampus at the uncus is in part a result of the amygdala,
which resides dorsal to it.  Although neuro-anatomists often
make reference to this portion as a single unitary structure,
the amygdala is actually three distinct collections of nuclei.
The largest portion of the amygdaloid complex is the
basolateral nuclear group, consisting of the lateral nucleus,
the irregular basal nucleus, and the accessory basal nucleus.
The other major portion consists of the centro-medial group,
which comprises the central nucleus and the medial nucleus.
The centromedial group communicates via fibers of the stria
terminalis to the bed nucleus of the stria terminalis (BST)[2]

(Figure 1).  Cell types in the BST are identical to those in the
centromedial, causing the BST to be included in the classifi-

cation of amygdalar tissue.  The BST lies in the basal
forebrain, which also contains the basal nucleus of Meynert,
the nucleus accumbens, and the ventral portions of the puta-
men and globus pallidus.  Anatomically, the smallest portion
of the amygdaloid complex is the cortical nucleus; with pri-
mary input originating from the olfactory bulb and olfactory
cortex, undoubtedly this plays a role in emotion-associated
olfaction[2].

Nitric oxide correlates amygdalar function  When we
examine nitric oxide (NO) signaling, we notice two constitu-
tive enzymatic components, the constitutive NO synthase
(cNOS), including endothelial (eNOS) and neuronal (nNOS)
isoforms.  cNOS, as the name implies, is always expressed.
When cNOS is stimulated, NO release occurs for a short
period of time, but this level of NO can exert profound physi-
ological actions for a long period of time[3].  NO not only is
an immune, vascular, and neural autoregulatory signaling
molecule, but also performs vital physiological activities via
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its constitutive expression[4,5].
Both the amygdala and the hippocampus contain numer-

ous receptors for varying neurotransmitters.  The central
nucleus of the amygdala is most strongly modulated by
dopamine, norepinephrine (NE), epinephrine, and serotonin[6,7].
The basal nuclei receive moderately high inputs of dopamine,
NE, and serotonin[6,7], each of which has been demonstrated
to exert their desired effect via NO[4].  Taken together, we
surmise that NE initially promotes a slight vasoconstriction
of the artery during the amygdalar compensatory response,
which is defined as the limbic system’s inherent mechanism
to maintain homeostasis and lower stress levels.  This mecha-
nism is indicated by a slight enhancement of sympathetic
activity on stimulation (ie, emotional), and is immediately
followed by the release of NO from the peripheral nitroxi-
dergic nerve, which mediates a concentration-dependent va-
sodilation[5].  In primates, the cerebral arterial diameter, un-
der resting conditions, is maintained by tonic release of NO
from the nerve (10%–20%), or from the nerve and endothelium
(30%)[8].  This observation is supported by other data from
our laboratory because of the fact that basal NO is cNOS-
derived and keeps particular types of cells in a state of inhi-
bition[5].  Endogenous superoxide dismutase in the cerebral
artery appears to protect the relaxation induced by NO from
perivascular nerves from the NO scavenger action of super-
oxide anions[9].  This NO then produces the longer-lived
phenomenon of smooth muscle relaxation.  In another report,
it was found that NE vascular hyperresponsiveness in hy-
pertension was dependent on an impairment of NO activity
that was realized through NE-induced oxygen free radical pro-
duction[10], providing an important contribution to the un-
derstanding of this regulatory process.

Amygdalar NO release and its relationship to
sexual behavior

In addition to NO and the amygdala, new knowledge has
emerged concerning the role of hypothalamic, limbic, and
brainstem structures, neuropeptides, and brain monoamines
in the control of partner preference, sexual desire, erection,
copulation, ejaculation, orgasm, and sexual satiety – the de-
tails of which are discussed below.  At least one important
sex difference exists between the male and female amygdala
of many species.  Owing to the interplay of the differing sex
hormones, males and females will experience pleasure from
differing experiences (eg, it has been shown that males are
more visually stimulated than females[7,11]).  In addition, modu-
lating the concentration of testosterone may cause a male to
partake in stereotypical “male behavior.”  Likewise, modify-
ing the concentration of estrogen may cause the female to
partake in specified, stereotypical “female behavior”[7,11].  The
amygdala is intimately involved in sex and sexuality.  It is
important to note that the male amygdala is slightly bigger
than that of the female.  The medial part of the female
amygdala plays an important role in pregnancy and appro-
priate coordination of the endocrine system.  Stimulation of
the amygdala will produce penile erection, sexual sensation,
representations/memories of intercourse, and orgasm[7,12,13].
Furthermore, precortical region epilepsy has been shown to
elicit spontaneous sexual arousal and orgasm, thus clearly
demonstrating the role of the amygdala in sexual pleasure[12,13].

Stimulation of the corticomedial amygdala has been
shown to induce ovulation in the female, and cutting the
stria terminalis abolishes this effect.  The introduction of
tract lesions to the rat amygdala, including the medial nucleus,
eliminates male libido, but not female libido[2,7,11,14].  In humans,
temporal lobe epilepsy has been associated with sexual

Figure 1.  The limbic system.
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arousal in women to the point of orgasm; however, evidence
of this in men is unsubstantiated[12,13].

Nitric oxide release has been demonstrated as the critical
link between corticomedial stimulation and its relationship
with the densely packed estrogen/androgen regions within
the amygdala[15–19].  NO has been shown to be crucial for the
occurrence of basal luteinizing hormone (LH) release in males[15],
and for the LH surge in ovariectomized females treated with
estradiol plus progesterone[16–18].  Furthermore, NO donors
induce an LH surge in estradiol-treated ovariectomized fe-
males[16–20], and thus, have a progesterone-like effect.  Con-
comitant findings show that estradiol stimulates nNOS ex-
pression in the preoptic area and exerts a helping influence
on NO-producing neurons[17].  The released NO appears to
be able to modulate the activity of gonadotrophic releasing
hormone neurons (GnRH)[17].  These observations implicate
neuronal NO in the regulation of GnRH cell activity in the
preoptic area[20–23].  It is important to note that some studies
suggest that at the median eminence (ME) level, the NO im-
plicated in the modulation of GnRH release is endothelial in
origin, rather than neuronal[23].  This is consistent with the
fact that, unlike in the preoptic area where GnRH perikarya
are surrounded by nNOS-containing cells, nNOS fibers and
GnRH fibers in the ME are distributed separately in the inter-
nal and external zones, respectively[19].  Furthermore, in the
ME, eNOS immunoreactivity is observed in endothelial cells
of the pituitary portal blood vessels[20], located in immediate
proximity to the GnRH terminals[21].  The endothelial origin
of NO secreted from ME fragments is further substantiated
by the results of prior reports that show that central admin-
istration of eNOS antisense is more efficacious than nNOS
antisense administration in suppressing an estradiol-/proges-
terone-induced LH surge in ovariectomized females[21].  These
findings are directly related to amygdalar function by way of
neuronal projections extending from the amygdala precortical
region to the ME (interestingly, this relationship can be made
without regard to whether ME signaling occurs via neuronal
or endothelial NO).  Thus, we can hypothesize a more robust
signaling system involving both NO from amygdalar origins,
as well as hypothalamic hormonal relationships.

Emotional stressors mediated via amygdalar
NO release

Morphine and related compounds mediating NO release
within the amygdala  The endocannabinoids, anandamide,
and 2-arachidonyl glycerol, are naturally occurring, consti-
tutively expressed, NO-stimulating signaling molecules[24].
Anandamide and morphine can also cause NO release from

human immune cells, neural tissues, and human vascular
endothelial cells[25].  Moreover, both anandamide and mor-
phine can initiate invertebrate immune cell cNOS-derived NO[26].
Additionally, estrogen can stimulate cNOS-derived NO in
human immune and vascular cells[27,28].  Anandamide, as part
of the ubiquitous arachidonate and eicosanoid signaling
cascade, serves to maintain and augment tonal NO in vascu-
lar tissues[24].

Both the hippocampus and the amygdala (particularly
the lateral nucleus) contain high concentrations of recep-
tors for the endocannabinoids[29,30].  In fact, reports have
found endogenous morphine within the structure of the hip-
pocampus[29,30].  In addition, this morphine activates plea-
sure pathways via NO and has been shown to do so in the
rat brain hippocampus and amygdala[31–34].  Studies from our
laboratory confirm the mediated release of NO via real-time
amperometric measurement from the rat brain hippocampus[34]

and amygdala[31].  This information can further be used to
understand some of the pleasurable aspects of sexual activ-
ity that, indeed, are often found to have morphine-like prop-
erties and, perhaps, are mediated via these endocannabinoid
and morphine laden amygdalar pathways[31,35].  Further cre-
dence to these findings stems from lesional data.  Humans
with amygdala lesions show a decrease in emotional tension
and related sexual dysfunction[6,7].  It has been postulated
that endocannabinoids and endogenous morphine may act
on the lateral nucleus to prevent the linkage of sexual signifi-
cance to sensory stimuli prior to conscious processing, thus
interfering with the perception of sexually and emotionally
charged stimuli[36].

Estrogen mediates NO release within the amygdala     Estro-
gen, through NO release, provides an additional pathway by
which the system can downregulate immunocyte and vas-
cular function in women[37].  This may be because of both the
immune and vascular trauma associated with cyclic repro-
ductive activities, such as endometrial buildup, when a high
degree of vascular and immune activities occur.  Given the
extent of proliferative growth capacity during peak estrogen
levels in this cycle, NO may function to enhance down regu-
lation of the immune system to allow for these changes.
Therefore, enhanced cNOS activity would be a beneficial
effect within the concept and time framework of amygdalar
compensation (as defined earlier) and the subsequent sense
of calm it induces.  Thus, these signal molecules, especially
endocannabinoid and opiate alkaloids, have the potential to
make you “feel” good and relax[38] by releasing NO, which
may once again be part of the sexual resolution (post coitus)
phase of the sexual cycle.

Emotionally charged events mediating NO release within
the amygdala  Within this context of varying stimuli evoking
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NO release, emotional stresses such as fear and anxiety can
induce cardiovascular alterations, such as cardiac dysrhyth-
mias.  These are some of the same events that occur when
one is exposed to sexually charged stimulus, or engaged in a
sexual act[39–42].  These cardiovascular events are initiated at
the level of the cingulated, amygdalar, and hypothalamic
processes, as well as their projection into the higher level
cerebral cortex, further altering the heart rate under stressful
or sexually aroused conditions[43].  Neurons in the insular
cortex, the central nucleus of the amygdala, and the lateral
hypothalamus, owing to their role in the integration of emo-
tional and ambient sensory input, may be involved in the
emotional link to the cardiovascular phenomenon[44].  These
include changes in cardiac autonomic tone with a shift from
the cardioprotective effects of parasympathetic predomi-
nance to massive cardiac sympathetic activation[45].  This
autonomic component, carried out with parasympathetic and
sympathetic preganglionic cells via subcortical nuclei from
which descending central autonomic pathways arise, may
therefore be a major pathway in how emotional state may
affect cardiovascular function.  The importance of an elic-
ited emotional response (and therefore limbic activation) was
further demonstrated in ischemic heart disease when patients
with frequent and severe ventricular ectopic rhythms were
subjected to psychological stress[46].  The frequency and
severity of ventricular ectopic beats increased dramatically
during emotional activation of sympathetic mechanisms, but
not during reflexively induced increased sympathetic tone.
Perhaps we can even relate this mechanism to sexual orgasm,
a process dominated by increased sympathetic tone.

The hard-wiring of emotional and sexual sensations
coupled to cardiovascular neural processes probably in-
volves many subcortical descending projections from the
forebrain, midbrain, and, specifically, the amygdala[47–50].
Cardiovascular changes were observed in experiments where
the motor cortex surface was stimulated, eliciting tachycar-
dia accompanied by and independent of changes in arterial
blood pressure[51].  The “sigmoid” cortex[52] and frontal
lobe[53–55], and, in particular, the medial agranular region[56],
subcallosal gyrus[57], septal area[58], temporal lobe[59], and
cingulate gyrus[60–62] appear to be involved.  The insular cor-
tex in cardiac regulation is important because of its high
connectivity with the limbic system, suggesting that the in-
sula is involved in cardiac rate and rhythm regulation under
emotional stress[53,54].  This form of regulation is mediated
via a parasympathetic response, and is probably active in
the resolution phase following orgasm[2,6,12,13].

The amygdala, with respect to autonomic-emotional in-
tegration[63,64], is composed of numerous subnuclei, which

play a major role in the elaboration of autonomic responses[65].
There are profuse inputs to this region from the insular and
orbitofrontal cortices, the parabrachial nucleus, and the
nucleus tractus solitarius[66].  Amygdalo-tegmental projec-
tions are viewed as a critical link in cerebral cortical control
of autonomic function[8,67].  This level of input allows for
cerebral control of sexual behavior, such as showing sexual
restraint and the ability to pass on sexual gratification.
Indeed, a great deal of research center on sex-offenders’
inability for, or lack of, the above-mentioned amygdalo-teg-
mental projections[68,69].

Mechanisms of amygdala-induced emotional
compensation

As noted above, once individuals are exposed to sexu-
ally explicit or emotionally charged information, they experi-
ence peripheral vasodilation: warming of the skin, an increase
in heart rate, and an ensuing sense of agitation[5,70].  This
experience is remarkably similar to the physiological state
that exists throughout the sexual cycle, from initial arousal
through to resolution.  It is the function of the amygdala to
aid in the relief of these altered states, through the amygdalar
primary compensatory response as defined above[2,6,7,53].  In
examining a potential mechanism for this relief, besides the
overriding central nervous system output via the autonomic
nervous system, peripheral neuro-vascular processes would
appear to be important.  We surmise that NO is of fundamen-
tal importance in this response because of the increase in
peripheral temperature (ie, vasodilation[5]).  For a complete
review of possible related mechanisms as well as the related
mechanisms outlined above, see the studies by Toda et al[8],
Lembo et al[10], Okamura et al[66], and Toda[67].

We also surmise, based on current studies, that endot-
helial-derived NO, released through normal pulsations as a
result of vascular dynamics responding to heart beat[38], as
well as acetylcholine-stimulated endothelial NO release, may
contribute to the effect of NO in inducing smooth muscle
relaxation[5,70].  Furthermore, vascular pulsations may be of
sufficient strength to also stimulate nNOS-derived NO release,
limiting any basal NE actions[5,70].  Interestingly, nitrosative
stress, mediated by involvement of the reactive nitrogen
oxide species, N2O3, does inhibit dopamine hydroxylase,
which, in turn, inhibits NE synthesis and contributes to the
regulation of neurotransmission and vasodilation[5,70].  This
system may provide an autoregulatory mechanism involved
in the neuronal control of peripheral vasomotor responses
and may, once again, aid in the resolution phase of sexual
intercourse (Figure 2).
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Conclusion
Our conclusion is two-fold.  We demonstrate that

amygdalar regulation of the male and female sexual cycle is
medicated by estrogen-/androgen-related signaling
molecules, both of which exert their respective influences on
ovulation and sexual behavior via coupled NO release.
Furthermore, we propose that amygdalar-induced homeo-
static control mechanisms acting in response to emotionally
charged stimuli, including sexually stimulating sensations,
appear to be mediated by a system of regulation involving
NO as a neurotransmitter and as a locally acting hormone.
Hence, these two principal roles of the amygdala exert their
respective behaviors via NO.

In final summary, we have demonstrated numerous mecha-
nisms and neurochemical pathways with regard to both emo-
tion and sexual behavior (ovulation, arousal, etc), and we
have shown a link between each of these complex pathways
systems, as well as the use of NO as a major biochemical
messenger.  Moreover, throughout each of the aforemen-
tioned pathways, we have attempted to offer a possible rela-
tionship to sex, either as a mediator of direct sexual activity,
or as a mediator of an individual aspect of the sexual cycle.
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