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Abstract
In recent years the ventral pallidum has become a focus of great research interest as a mechanism of
reward and incentive motivation. As a major output for limbic signals, the ventral pallidum was once
associated primarily with motor functions rather than regarded as a reward structure in its own right.
However, ample evidence now suggests that ventral pallidum function is a major mechanism of
reward in the brain. We review data indicating that 1) an intact ventral pallidum is necessary for
normal reward and motivation, 2) stimulated activation of ventral pallidum is sufficient to cause
reward and motivation enhancements, and 3) activation patterns in ventral pallidum neurons
specifically encode reward and motivation signals via phasic bursts of excitation to incentive and
hedonic stimuli. We conclude that the ventral pallidum may serve as an important ‘limbic final
common pathway’ for mesocorticolimbic processing of many rewards.
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Ventral Pallidum Function: Moving Beyond Movement
The ventral pallidum was recognized as a distinct anatomical structure only a few decades ago.
Heimer and Wilson first identified the ventral pallidum in 1975 as the primary output for the
ventral striatum (nucleus accumbens), and suggested it served a role similar to globus pallidus
in the striatal-pallidal circuitry for dorsal striatum (caudate-putamen) [1]. Previously the ventral
pallidum often had been lumped with adjacent areas including the globus pallidus, substantia
innominata, extended amygdala system, lateral preoptic area of hypothalamus (far rostral and
lateral hypothalamus), or the polymorph layer of the olfactory tubercle. Today, however, its
distinctive limbic-thalamocortical anatomical connectivity, histochemical and neuronal
makeup (e.g. high levels of substance P, enkephalins, and iron; heterogeneous cell types
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including cholinergic and GABAergic projection neurons; basal firing rates that are generally
slower than dorsal pallidal but faster than striatal projection neurons) are recognized to
distinguish ventral pallidum from other surrounding structures [1–16].

Notions of the ventral pallidum as a striatal output for movement, comparable to globus
pallidus, contributed originally to a view that it functioned as a motor expression site [17,18].
For example, based on a series of behavioral studies, Mogenson and colleagues proposed that
nucleus accumbens projections to the ventral pallidum translated limbic motivation signals
into motor output [18,19]. This account attributed “limbic-motor integration” [19] to
accumbens-pallidal systems, and specifically identified ventral pallidal projections to
brainstem (e.g. pedunculopontine tegmentum) as a primary motor output for limbic motivation
signals. However, transferring input from accumbens to brainstem motor-related targets is only
one feature of ventral pallidum connectivity. The ventral pallidum is also a central convergent
point for input from orbitofrontal, prefrontal and infralimbic cortex, the amygdala, lateral
hypothalamus, ventral tegmental area, parabrachial nucleus, subthalamic nucleus, and other
structures related to reward [20–35]. Conversely, the ventral pallidum projects back to nearly
all of its input sources including the nucleus accumbens for reciprocal information exchange
[8,13,36–41]. Further, ventral pallidum outputs re-enter corticolimbic loops via direct
projections to medial prefrontal cortex, and dense projections to mediodorsal nucleus of
thalamus, which relays in turn to prefrontal cortex [6,10,11,13,36,38,42,43]. Such limbic-
related anatomical connectivity sets the stage for the ventral pallidum to mediate reward and
motivation functions at many levels in the brain, beyond merely aiding translation to movement
[35,40,44–54].

The most crucial evidence that ventral pallidum mediates reward, however, must come from
actual functional demonstrations that ventral pallidum manipulations have consequences for
reward. That is, do manipulations of ventral pallidum actually alter reward-related measures
of neural activation and reward-directed behavior? Many such studies have now been
conducted, which we review below. Together they provide strong evidence that the ventral
pallidum is needed for normal reward, that it can add new reward value to stimuli, and that its
neurons can encode reward and incentive motivation to gain external rewards.

The Ventral Pallidum is Necessary for Reward
Necessary for motivation to eat and hedonic impact

Perhaps the earliest experiments to implicate ventral pallidum in reward and motivation
functions were a set of studies by Morgane that pushed the boundaries of food reward functions
beyond the lateral hypothalamus to include the ventral pallidum and globus pallidus [55].
Morgane reported that electrolytic lesions to the globus pallidus (which now can be recognized
to have damaged ventral pallidum), caused aphagia (failure to voluntarily eat) and adipsia
(failure to drink) in rats, similar to lesions of the lateral hypothalamus [55–61], despite not
damaging the lateral hypothalamus (the pallidal lesions being anterior, further lateral or dorsal
to the hypothalamus). This early lesion study did not distinguish between globus pallidus and
ventral pallidum, but rather damaged both, and used the name of globus pallidus for the entire
damaged region. However, our own inspection of Morgane’s lesions, as well as early lateral
hypothalamic lesions, in published histological figures indicates the aphagia-inducing lesions
damaged ventral pallidum as well as their intended target structure. These data, together with
a later study that found that aphagia can be produced by lesions of the posterior ventral pallidum
that do not invade globus pallidus or lateral hypothalamus [60], confirmed a role for the ventral
pallidum as a key component of the neural system for eating and food ‘wanting’ [62].

The ventral pallidum may play an even more unique role in mediating reward beyond being
necessary for motivated eating: it is the only structure known to us in which local lesions also
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eliminate normal ‘liking’ for sucrose, and replace it with ‘disliking’ [60]. ‘Liking’ is a second
core component of reward, in addition to ‘wanting,’ and for many the most crucial. For natural
food rewards, ‘liking’ has objective consequences in affective reactions patterns, such as
orofacial reactivity patterns in response to tastes that are homologous across species [63–66].

Lesion studies of ventral pallidum and lateral hypothalamus have attempted to map the locus
for a particular affective change in reward that often accompanied aphagia-producing lesions:
the loss of acceptance or positive hedonic reactions to the taste of palatable food (such as tongue
protrusions and lip licking), and replacement by active aversion reactions (such as gapes or
headshakes). In the late 1970s, studies by Schallert and Whishaw [59] and Stellar, Brooks, and
Mills [61] found that active avoidance of food (e.g. withdrawal from a food- or chocolate-
containing spoon) and aversion to intraorally infused food (e.g. ejection of the reward followed
by aversion reactions like face washing) was produced by what was described as damage to
the anterior portion of lateral hypothalamus [59,61]. That damage encroached on what is now
known to be ventral pallidum. Active avoidance-aversion was not produced by damage to more
posterior subregions in the lateral hypothalamus (which caused aphagia without active
aversion) [59]. A later mapping study actually contrasted ventral pallidum, globus pallidus or
lateral hypothalamic excitotoxin lesions, and found that active aversion to sucrose was caused
only if a lesion damaged the ventral pallidum (specifically its posterior end, overlapping with
part of the adjacent substantia innominata) [60] (Figure 1) 1. Of note, the posterior and medial
edge of ventral pallidum abuts the anterior and lateral edge of the lateral hypothalamus, and in
fact, many classical electrolytic lesions of the lateral hypothalamus that produced aphagia with
aversion also damaged the ventral pallidum as well as lateral hypothalamus [59,60]. This
positioning may be important, given evidence for a ‘hedonic hotspot’ in the posterior ventral
pallidum that we will describe below where ‘liking’ can actually be enhanced by neurochemical
activity.

This elimination of normal food reward (suppressed ‘liking’ and ‘wanting’, with enhanced
aversion) that follows posterior ventral pallidum lesions may also be achieved with temporary
neurochemical inactivation of ventral pallidal activity by excessive GABAergic inhibition.
Microinjection of the GABAA agonist muscimol in the ventral pallidum was recently reported
to attenuate intake of saccharine-flavored water or of bitter quinine-water, and to replace
positive hedonic taste reactions to saccharine taste with aversive reactions [78]. These GABA
microinjections that enhanced aversion did not explicitly distinguish subregions of the ventral
pallidum, and reported effects were averaged for the entire ventral pallidum (though
placements fell within the posterior lesion-aversion zone and extended anteriorly too).

Some evidence from humans also supports the idea that the ventral pallidum may be needed
for normal motivation and hedonics. A recent clinical report describes a drug-addicted human

1The only other neural lesion known to cause active aversion to sweet tastes is the classic ‘thalamic preparation’, in which the entire
telencephalon composed of all structures anterior to the thalamus is removed by suction ablation or similar surgery, leaving intact
thalamus, hypothalamus, midbrain and brainstem [67,68]. Importantly, the ‘thalamic preparation’ may damage the ventral pallidum,
which is part of the telencephalon, raising the possibility that ventral pallidum damage might similarly be responsible for the thalamic
animal’s aversion to sucrose. The importance to positive hedonic reactions of a ventral telencephalic structure such as ventral pallidum
is emphasized by the consideration that basic hedonic reactions to taste are preserved in decerebrate animals transected above the superior
colliculus but below most of the hypothalamus (with only the brainstem functioning) [68–70]. This presents a rather curious scenario:
removing the ventral pallidum by itself or with the rest of the telencephalon, while leaving the diencephalic hypothalamus and thalamus
as well as the brainstem, dramatically reduces hedonic reactions. But removing the ventral pallidum and telencephalon, plus the
diencephalic hypothalamus and thalamus, fails to have much of an effect on hedonics. How can this be? For many behavioral functions,
the brain contains a hierarchical organization such that brainstem signals are regulated by forebrain structures [71–74]. The taste pathway
traverses through brainstem structures, such as nucleus of the solitary tract and parabrachial nucleus in rodents, then through the forebrain
in bifurcating gustatory sensory paths (e.g. to gustatory thalamus then gustatory cortex) and limbic paths (e.g. to ventral pallidum) [75,
76]. We have argued that basic affective and emotional reactions can be generated by the brainstem (e.g. in parabrachial nucleus: [77]),
but in the normal intact brain these signals are under inhibitory control by forebrain hedonic structures like the ventral pallidum. This
may be why we can observe relatively normal hedonics in decerebrated animals but impaired hedonics in animals with localized ventral
pallidal lesions. See [74] and [54] for more detail.
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patient with partial lesions to the ventral pallidum (overlapping with globus pallidus) who,
after the lesions, “reported the disappearance of all drug cravings and remained abstinent from
all recreational drugs other than an occasional glass of wine with dinner,” and “reported that
he no longer experienced pleasure from drinking alcohol” (p. 786) [79]. The patient also
“endorsed a depressed mood” and doctors noted a general “anhedonia” (p. 786) [79]. However,
the patient also gained weight throughout this period, contrary to the lesion-induced aphagic
effects in rodents described above, which may perhaps reflect spared parts of the ventral
pallidum in the patient (the extent of damage is not clear from the published report of the still-
living patient). In a second recent case [80], a patient with bilateral damage to the globus
pallidus (the lesion is described by the authors as perhaps extending into the ventral pallidum)
reported an “inability to feel emotions”, and was noted by analysts to have a flat affect and “a
profound lack of motivation” (p. 413). In a reward task, the patient worked much less than
normal to increase viewing time of pleasant pictures like food (by pressing a keyboard key),
and reported less arousal from the pictures. His ratings of picture pleasantness were normal,
and he worked normally to decrease viewing time of unpleasant pictures. The lesions thus
appear to have impaired his ability to motivate behavior towards positive visual stimuli, though
the extent of ventral pallidum damage is again not clear.

Necessary for reward learning and performance
Lesion or inactivation studies have further shown the ventral pallidum to be crucial for learning
or performing learned responses related to rewards, in addition to generating the impact of
unconditioned rewards. In operant and place preference conditioning studies, for example,
ventral pallidum excitotoxin lesions or temporary inactivation (by microinjection of GABA or
glutamate drugs, or lidocaine to block sodium channels) reduce baseline or primed lever
pressing for alcohol, i.v. cocaine, and electrical stimulation to the medial forebrain bundle
[81–88]. Rats with ventral pallidum GABAergic inactivation also have diminished willingness
to work hard on an instrumental task to obtain sucrose reward, and instead shift their choice
toward normal chow that can be obtained more easily, an effort shift similar to that produced
by depletion of mesolimbic dopamine [89]. Ventral pallidum inactivation also reduces
Pavlovian incentive learning about rewards, such as acquiring and expressing learned
preferences for environments paired with sucrose, amphetamine, and morphine reward [90–
92], and additionally impair performance in a variety of discrimination or matching tasks
[93–104].

Thus, in total, features of normal reward learning and memory, motivational ‘wanting’, and
hedonic ‘liking’ all appear to depend critically on the ventral pallidum. Among these reward
components, normal hedonics may quite specifically require the ventral pallidum in a relatively
unique way, whereas the other components can also be impaired by damage to other brain
structures.

Ventral Pallidal Mechanisms for Enhancing Reward Impact
Beyond being necessary for normal reward, as reflected by impairments induced by lesion or
inactivation, specific neurobiological activations in the ventral pallidum may also be sufficient
to cause increases in the hedonic or motivational impact of stimuli. That is, it may be possible
to enhance reward ‘liking’ or ‘wanting’ by chemical or other stimulation of the ventral
pallidum. Necessary and sufficient causations are distinct forms of reward mediation, and do
not always converge on the same reward substrates [54,105], but they may do so in the ventral
pallidum.

Perhaps the first evidence suggesting that ventral pallidum activations can enhance the
rewarding impact of stimuli and actions came from brain stimulation studies in the 1990s,
which demonstrated that animals would repeatedly press a lever to self-stimulate through
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electrodes implanted in ventral pallidum [53,106,107], similarly to electrodes in the lateral
hypothalamus and medial forebrain bundle [106,108–110]. This finding indicated that circuit
activation through ventral pallidal stimulation was sufficient to activate a reward for
instrumental pursuit, and placed the ventral pallidum as part of a larger network of limbic sites
where reward might actually be generated in neural activity. More recent studies have begun
to characterize the ventral pallidal neurotransmitters systems that play a role in enhancing
reward ‘liking’ versus ‘wanting’, with some intriguing chemical and anatomical
compartmentalizations.

Disinhibition of ventral pallidum from GABA suppression: stimulation of food ‘wanting’ (but
not ‘liking’)

The use of intracranial drug microinjection to manipulate neurotransmission in limbic circuits
has been particularly important for evaluating the natural chemical signals that mediate reward
enhancement. This work has indicated the possibility that release of ventral pallidum neurons
from tonic inhibitory GABA inputs from nucleus accumbens, central amygdala, and other areas
(i.e. disinhibition), is a chief ‘downstream’ mechanism by which hyperpolarizations in nucleus
accumbens stimulate motivation and reward [44,111–114]. Microinjections in nucleus
accumbens of GABA agonists, glutamate AMPA antagonists, or opioid or cannabinoid
agonists all stimulate eating behavior and pursuit of drugs and other rewards, through
mechanisms that have been suggested to include local accumbens inhibition and disinhibition
of ventral pallidum [48,50,113,115–122].

In an early study addressing chemical mechanisms of reward enhancement within the ventral
pallidum, microinjection of a GABAA receptor antagonist (bicuculline) in ventral pallidum
was shown to dramatically increase eating behavior and food intake [52], which has also been
observed subsequently [78,123] (Figure 1). In order to test whether this stimulation of the
motivation to eat involved enhancement of hedonic impact of food, we and others have
conducted taste reactivity tests of ‘liking’ changes induced by bicuculline in the ventral
pallidum [123] (Figure 1). Taste reactivity results indicated that GABA blockade in the ventral
pallidum completely fails to elevate hedonic reactions to taste rewards. Neither in the posterior
area where lesions produce aversion nor in any other area did bicuculline microinjection cause
any detectable elevation of normal hedonic reactions to sucrose [78,123]. This has led us to
conclude that ventral pallidal GABA disinhibition appears to be a mechanism of enhancing
‘wanting’-without enhancing ‘liking’-for food reward [50,54].

Such a pattern of ‘wanting’ without ‘liking’ augmentation is similar to the effect previously
shown to result from activating mesolimbic dopamine systems by several manipulations:
electrical stimulation of the medial forebrain bundle, systemic amphetamine or cocaine
administration, microinjection of amphetamine into nucleus accumbens, neural sensitization
induced by repeated psychostimulant exposure, or elevation of synaptic dopamine levels by
genetic knockdown of the dopamine transporter [124–128]. In all of these cases of pure
‘wanting’ enhancement, dopaminergic stimulation enhanced motivated behavior to obtain or
consume reward but failed to enhance hedonic reactions to tastes. Similarly in humans
psychostimulant exposure that elevates dopamine levels and subjective ratings of drug or food
reward ‘wanting’ has been reported in several studies to fail to also enhance subjective ratings
of pleasure liking or euphoria [129,130]. It is not yet known how ventral pallidum GABA and
mesolimbic dopamine interact in such cases, but there are several possibilities. For example,
dopamine neurons also innervate ventral pallidum directly [25,26] and appear to have an
important, but as yet unspecified, role in reward. For example, psychostimulant microinjection
into the ventral pallidum is sufficient to condition a place preference [131] and increase eating
behavior [132], while D1 receptor antagonist microinjection reduces intake [78] and
dopaminergic terminal lesions block the development of a preference for cocaine-paired
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environments [133]. Local dopamine release can suppress the inhibitory influence of GABA
transmission on ventral pallidum firing [134], indicating a modulatory role in GABAergic
disinhibition of neural activity that may be important for motivation enhancements.
Additionally, direct ventral pallidal modulation of midbrain dopamine activity via projections
to ventral tegmental area [135–138] is another possible mechanism by which ventral pallidal
GABAergic disinhibition might stimulate ‘wanting’ without ‘liking’.

However, while GABAergic disinhibition of ventral pallidum neurons does not increase
hedonic impact, GABAA receptor activation by the agonist muscimol into the central ventral
pallidum reduces normal hedonic reactions to sucrose and elevates aversive reactions [78,
139], which may parallel the aversion consequence of ventral pallidum lesions [60].
Additionally, normal avoidance and aversion to a taste previously paired with lithium-chloride
sickness can be reduced by ventral pallidal GABAA activation with bicuculline [140]. One
possibility is that baseline neuronal activity in ventral pallidum has a necessary role in normal
hedonic valuation, although depolarization induced by GABAergic disinhibition is not
sufficient to cause enhancement of food’s hedonic valuation (despite enhancing the motivation
to eat and reducing the expression of learned aversions).

Ventral pallidum opioids: ‘liking’ and ‘wanting’ stimulation in a posterior hotspot
Opioid neurotransmission is a more potent substrate for hedonic reward in ventral pallidum.
Mu opioid stimulation is capable of enhancing hedonic ‘liking’ as well as motivational
‘wanting’, at least in a cubic millimeter hotspot of posterior ventral pallidum. Brain opioids
have long been linked to hedonic and motivational properties of food, drugs and other
incentives [141–147]. The ventral pallidum has abundant mu opioid receptors [148–151], and
ventral pallidum opioid transmission is centrally involved in conditioned place preference and
drug self-administration [30,152–156].

In contrast to GABA blockade, it turns out that increase in opioid transmission in the ventral
pallidum is sufficient to enhance hedonic ‘liking’ reactions to sucrose as well as motivational
‘wanting’ to eat, but only in a restricted subregion of posterior ventral pallidum (Figure 1). In
a recent study, we identified this posterior subregion as an opioid hedonic hotspot where
microinjections of the mu opioid agonist DAMGO more than doubled taste ‘liking’ (hedonic
reactions to sucrose) and quadrupled food ‘wanting’ (eating behavior) [123]. Fos plume
mapping of drug functional spread helped reveal that the opioid hedonic hotspot was contained
in the posterior half of the ventral pallidum and was roughly a cubic millimeter in size.
Interestingly, the hedonic hotspot overlaps with the area where lesions abolish food reward
and cause sucrose aversion [60], although an explicit comparison mapping of these opposite
manipulations has yet to be made.

The special reward features of the posterior hotspot are underscored by observations that mu
opioid stimulation of a more central and anterior coldspot location in ventral pallidum actually
suppresses taste ‘liking’ reactions and eating behavior below normal levels, instead of
enhancing them [123]. This difference reveals that opioid ‘liking’ and ‘wanting’ enhancement
mechanisms are both highly localized to the hotspot in the posterior ventral pallidum. By
contrast, the same reward functions are suppressed by the opioid coldspot in the anterior ventral
pallidum.

An intriguingly similar segregation of positive affect to the posterior half ventral pallidum has
recently been observed in human brain activations. In functional MRI studies, posterior ventral
pallidum was reported to become more active during the presentation of images depicting
appetizing food like chocolate cake, perhaps corresponding to the rat posterior hotspot above
[157,158]. By contrast, negative pictures of disgusting and rotten food were reported to
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stimulate activity in more anterior regions of the ventral pallidum, perhaps corresponding to
the rat anterior coldspot [158].

The posterior opioid hotspot additionally may be the best location for stimulating instrumental
seeking for brain stimulation reward. In perhaps the first foreshadowing of the hedonic hotspot,
microinjection of an opioid agonist in the posterior ventral pallidum was reported to increase
the amount a rat will work to self-stimulate through electrodes implanted in the medial forebrain
bundle, while the same microinjection in anterior ventral pallidum suppressed self-stimulation
below normal levels [46]. That bivalent pattern seems quite similar to the more precisely
mapped effects on taste ‘liking’ reactions and spontaneous food intake [123]. Also, the
posterior ventral pallidum has an advantage for brain stimulation facilitation by microinjections
of a delta opioid agonist [159]. Further, self-stimulation of an electrode in the ventral pallidum
itself also appears to have a anterior-posterior gradient, as electrical current thresholds required
for maintaining self-stimulation decline from the anterior to posterior ends, indicating that
stimulation in the posterior hotspot is a more potent reward to animals even at low intensities
[106].

Why would the hotspot in posterior ventral pallidum have more positive reward functions than
the anterior ventral pallidum? There are a few known neurobiological features of the hotspot
in the posterior ventral pallidum that might be involved. The posterior ventral pallidum appears
to have higher enkephalin levels than anterior ventral pallidum [160,161], a higher ratio of
noncholinergic to cholinergic cells [162], and a less dense concentration of presynaptic mu
opioid receptors [149] compared to anterior ventral pallidum. Lastly, marked differences in
anatomy have been noted for dorsal and lateral versus ventral and medial subregions of ventral
pallidum in a plane at the anteroposterior level of the anterior commissure [14–16,37], which
may be relevant as posterior ventral pallidum is more laterally placed in the brain (though the
functional role of medial-lateral or dorsal-ventral subdivisions in reward is not yet clear).

Accumbens-pallidum opioid interaction: asymmetric paths for ‘liking’ and ‘wanting’
The ventral pallidum hotspot forms a functional circuit with another cubic-millimeter hedonic
hotspot in medial shell of nucleus accumbens that similarly uses mu opioid signals to control
‘liking’ and ‘wanting’ [50,54,163]. To evaluate interactions between hotspots and structures,
we pitted opioid activation of the ventral pallidum hotspot against simultaneous opioid
suppression of the accumbens hotspot, and vice versa [164]. We found that opioid inactivation
in the nucleus accumbens (via microinjection of naloxone in nucleus accumbens hotspot)
blocked the elevation of ‘liking’ normally caused by opioid activation in the posterior ventral
pallidum (via microinjection of DAMGO in ventral pallidum hotspot). Similarly, ‘liking’
elevation from opioid stimulation of the accumbens hotspot was blocked by opioid inactivation
of the ventral pallidum hotspot. In addition, opioid activation in either hotspot also increased
distant Fos protein expression in the other hotspot (and naloxone suppressed distant Fos),
showing that opioid activation in one site recruits the other into activation as a neurobiological
circuit. Thus, ‘liking’ elevation appears to require simultaneous participation of both opioid
hotspots in ventral pallidum and accumbens (Figure 4).

These results imply that a traditional anatomical view of the ventral pallidum as purely a serial
output for ventral striatal signals is only partially true. The ventral pallidum can equally
influence the functional reward output of upstream accumbens as be influenced as a
downstream consequence of accumbens activation, indicating a bidirectional interaction in
which opioid-related information flows both ways. This possibility is also consistent with
known bidirectional physiological interactions and reciprocal anatomical connections [1,39,
44,165–168].
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The circuit dynamics for controlling ‘wanting’ turn out to be a bit different from those
controlling ‘liking’. Elevation of food ‘wanting’ appears to be asymmetrically dominated by
opioid activation of the accumbens hotspot [164]. We found that eating elevation after opioid
activation in the accumbens hotspot was not blocked by opioid blockade of the ventral pallidum
hotspot. However, accumbens opioid blockade prevented any eating stimulation by opioid
activation of the ventral pallidum hotpot. For motivation to eat (food ‘wanting’), opioid
activation in the nucleus accumbens seems able to stimulate food intake in the absence of
endogenous opioid recruitment in ventral pallidum (perhaps through connections with other
motivation sites like the lateral hypothalamus[164,169–174]).

Neuronal activity in Ventral Pallidum Hotspot Codes Reward
How are reward ‘liking’ and ‘wanting’ encoded by neuronal firing within the ventral pallidum
hotspot? A neural reward code must represent features of a sensory reward in profiles of neural
activity, and the information in this neural representation is available for communication to
efferent targets [175]. We have found evidence in recent behavioral electrophysiology
experiments that the firing patterns of neurons in the ventral pallidum hotspot code reward and
associated stimuli, and may discriminate learning, ‘liking’ and ‘wanting’ components of
reward.

Ventral pallidal neurons fire with a phasic burst of excitation to a sucrose pellet reward [176].
If that sucrose pellet is paired associatively as an unconditioned stimulus (UCS) with a tone
conditioned stimulus (CS+), ventral pallidum neurons develop an anticipatory excitation
response to the auditory Pavlovian CS+ that predicts future sucrose reward as rats learn
[176]. When multiple serial CS+ cues are presented, ventral pallidum neurons fire to each cue,
and with extended training develop a more prominent phasic excitation to the first predictive
cue (CS+1) compared to a subsequent cue (CS+2) that occurs closest to reward [127,176]
(Figure 3). This pattern is similar to mesolimbic dopamine neurons [177](but see: [178]), and
maximal firing to the first predictor has been taken to imply representation of cue predictive
value [127,177,179]. Unlike dopamine neurons, however, neurons in the ventral pallidum
hotpot continue to be strongly activated by sucrose rewards even long after they are predicted
(when the Pavlovian association is well established), suggesting that the firing can represent
hedonic information in addition to the predictive value of cues.

However, firing to reward properties of stimuli is confounded with sensory stimulus identity
(e.g. sweetness of reward), arousal, and motor reactions, making their functional interpretation
difficult. More focused experiments are required to pinpoint the coded neuronal representation
for the hedonic value of reward and incentive value of a cue. Recently, we have conducted a
series of studies designed explicitly to isolate hedonic, motivation, and learning features in
excitatory bursts of ventral pallidum firing.

Ventral pallidum neurons encode reward hedonic ‘liking’ and incentive salience ‘wanting’
To isolate hedonic signals in ventral pallidum activity, we challenged ventral pallidum neurons
with a shift in hedonic value of reward while keeping sensory identify stable [180] (Figure 2).
When rats were in a normal physiological state, ventral pallidal neurons were observed to fire
vigorously in response to an orally infused sucrose taste, which evoked hedonic ‘liking’
reactions in a behavioral taste reactivity test, but firing was less to an intensely salty taste (3X
seawater concentration) that evoked aversive reactions. However, after animals were given
diuretic injections to deplete them of bodily sodium, a sodium appetite developed and the
intense salt taste evoked hedonic ‘liking’ reactions similar to sucrose. Ventral pallidal neurons
then responded with an increased firing rate to the intense salt taste, equal in magnitude to the
response evoked by the sucrose taste [180] (Figure 2) Additional analyses of firing during oral,
grooming, and locomotion movements indicated that ventral pallidum firing did not simply
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encode movements. Ventral pallidum neurons thus pass the most stringent test for hedonic
coding that is dis-confounded from sensory coding: being able to track hedonic shifts of a single
sensory stimulus from nasty to pleasant [116,175,180,181].

A separate but related study asked whether ventral pallidum neurons could additionally code
the incentive salience of Pavlovian cues predicting salt or sucrose, in a way that could
differentiate incentive ‘wanting’ from learned prediction of reward outcome [182]. Incentive
salience theory posits that Pavlovian reward cues take on motivation features, which are similar
in some ways to the motivation features of the unconditioned rewards they predict [183–
185]. For example, reward cues become attractive and ‘wanted’ themselves. Although the
incentive value of a conditioned reward cue is confounded with its predictive value, there is a
way to disentangle these features in studies of neuronal coding by exploiting natural appetites.
‘Wanting’ for cues that predict sweet or salty rewards can be modulated directly by the same
hunger, and sodium appetite physiological states that modulate the value of sucrose or salt UCS
rewards, even if the unconditioned rewards have never been experienced in those appetite states
[184,186–189]. For example, rats that have learned that a sour or bitter flavor is associated
with salt, will later seek out and drink just the sour or bitter flavor by itself when they are in a
physiological salt appetite state, and will show positive hedonic facial reactions to the
conditioned flavor that previously was aversive [187,188,190]. In reverse, cues paired with
normally pleasant sweet tastes can come to evoke aversive reactions and avoidance if the
associated taste is devalued in a separate context (e.g., through pairing with lithium-chloride
sickness) [190,191]. We harnessed this feature of cue incentive modulation to ask if ventral
pallidum neurons code the motivation value of a learned cue, independently of what hedonic
consequence the cue predicts based on its prior associative pairings with an unconditioned
stimulus [182]. We paired auditory tone CS+s with either sucrose taste or intense sodium
chloride taste UCSs that were infused into a rat’s mouth. Initially after training, an auditory
CS+ tone predicting oral infusion of an aversive salt taste evoked virtually no firing response
from posterior ventral pallidal neurons, whereas a tone predicting sucrose evoked a large firing
response. After sodium depletion was induced by hormone injections, the salt and sucrose tones
equally evoked intense firing from ventral pallidal neurons, even in extinction and prior to ever
re-experiencing the salt taste in its new ‘liked’ state (salt ‘liking’ was confirmed in a subsequent
taste reactivity test) (Figure 2). This indicates that ventral pallidum firing tracks the incentive
salience of reward-predictive cues, and can integrate physiological needs to engage incentive
motivation in an ‘on the fly’ manner without time spent learning new cue-reward contingencies.

The ventral pallidum may code for incentive motivation in humans as well. In one intriguing
recent functional MRI study, ventral pallidal activity was elevated during the presentation of
images signaling that a relatively large amount of money would be earned, which also evoked
a motivated behavioral response (lever squeeze) to obtain the money [192]. Remarkably,
ventral pallidal activity was even increased when the presentation of a relatively large money
reward was too fast to be consciously detected, even though it still evoked a motivated
behavioral response. Motivation-related activations of ventral pallidum in neuroimaging
studies have similarly been observed with consciously detectable stimuli, including smells
predicting tasty food or pictures depicting food [193,194].

Ventral pallidum neurons encode incentive sensitization and distinguish ‘wanting’ versus
‘liking’ enhancements

In the neural recording studies above, incentive salience ‘wanting’ and hedonic ‘liking’ were
enhanced together by natural appetite, but ‘wanting’ can be separately enhanced alone by other
manipulations, such as mesolimbic dopamine activation by amphetamine or psychostimulant
drug-induced sensitization [105]. Can hedonic versus motivational features of reward codes in
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neuronal firing be separately tracked or told apart by ventral pallidum circuits? The answer
seems to be yes.

A recent study in our group found that sensitization of motivation ‘wanting’, but not ‘liking’,
caused by repeated drug exposure is encoded in profiles of ventral pallidum neural activity
[127] (Figure 3). First, rats were trained to associate a series of two cues (CS+1 followed by
CS+2) with a sucrose reward. They were then given acute amphetamine injections, chronic
intermittent amphetamine injections to cause sensitization, or both, and examined for ventral
pallidum neuronal responses to reward cues in the context of elevated dopamine transmission.
After sensitization, the response profile of ventral pallidum neurons shifted away from
prediction coding (maximal response to initial predictor CS+1) and towards incentive coding
(maximal response to a CS+2 cue that occurred subsequently just before reward when
motivation was highest), even though the sensitized rats had been drug-free for two weeks prior
to testing (Figure 3). This incentive magnification change was not attributable to new learning
as it occurred when the animals had no opportunity to experience new cue-reward pairings
after sensitization was induced. Acute administration of amphetamine on the day of test
similarly shifted neural responding toward the incentive cue, and combining acute
amphetamine with prior sensitization biased the profile towards incentive responding most of
all.

In a further study, we separated ‘liking’ and ‘wanting’ firing codes in ventral pallidum more
distinctly by enhancing them individually with different pharmacological manipulations
[195]. We used neurochemically and neuroanatomically focused manipulations of the nucleus
accumbens to enhance ‘wanting’ only (with dopaminergic amphetamine microinjection) or to
enhance ‘liking’ as well as ‘wanting’ (with opioid DAMGO microinjection). At the same time,
we assessed phasic excitations in ventral pallidal firing that encode cue incentive salience and
reward hedonics. Accumbens stimulation with dopamine or opioid agonists led to a striking
magnification of ventral pallidum phasic excitation peaks to an incentive CS+2 cue, without
affecting excitation to the first and maximally predictive CS+1 cue (nor to a CS-minus that
lacked any incentive value), and did so on the very first cue presentations in extinction prior
to re-learning or reward revaluation. Both DAMGO and amphetamine also increased
consumption of a tasty chocolate candy as a behavioral consequence of heightened ‘wanting’.
By contrast, only opioid stimulation also enhanced hedonic ‘liking’ reactions to sucrose and
caused ventral pallidum neurons to also magnify their firing response to a sucrose reward.
Amphetamine by comparison completely failed to enhance either behavioral ‘liking’ reactions
or ventral pallidal excitatory firing to sucrose. Our results suggested that the ventral pallidum
may use separate population and firing rate activity patterns to distinguish ‘wanting’ from
‘liking’ enhancements. This would mean that ventral pallidum neurons may convey distinctly-
coded signals for ‘liking’ versus ‘wanting’ features of reward enhancement to downstream
structures, which might modulate decision making and behavioral reactions appropriate to the
particular reward component being enhanced.

Reward cues also activate ventral pallidum in humans, and we speculate that the incentive-
coding patterns we have observed in rats may underlie ventral pallidum blood flow activation
to drug reward cues in drug addicts that trigger motivation to take drug again. Cue-triggered
‘wanting’ for drugs may be a very basic response that does not need elaborate cognition. For
example, Childress et al. [196] presented cocaine addicted subjects with pictures of drug-
associated cues (e.g. images of drug taking) that could not be consciously detected. Yet the
images not only triggered ventral pallidum activation (along with other limbic/cortex sites),
but the intensity of ventral pallidal (and amygdala) activation predicted later positive affective
reactions to the same cues when they were consciously seen (specifically, facilitated correct
labeling of positive affective words). This shows that even subconsciously detected drug cues
can engage ventral pallidum activation in addicts to promote motivational reactions, which
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may contribute to exacerbation of drug taking in the presence of incentive cues. Indeed, there
is now a wealth of evidence that the ventral pallidum is an important structure for drug seeking,
taking, and relapse in animal models of addiction [81,83,90,91,111,131,154,197–200], and a
key site of neuroadaptations following repeated drug exposure that may contribute to
sensitization, addiction, and relapse vulnerabilities [201–207]. How incentive processing of
reward cues by ventral pallidum circuits contribute to drug taking and addiction will be an
important issue for future research.

Ventral Pallidum Roles in Affiliation and Sex
Another important natural reward for evolution and behavior is sex and social affiliation, and
several studies have revealed a ventral pallidal involvement in those processes too. For
example, in humans, ventral pallidum/ventral globus pallidus activity is reported to increase
during male sexual arousal [208], and in response to subliminally presented pictures of happy
human faces or sexual images [196,209]. In the Callicebus Titi monkey, a monogamous species
of South American primate, males that are co-habitating and pair bonded with their female
mate show elevated ventral pallidal glucose metabolism, which was interpreted as implying a
link between ventral pallidum neural activity and the maintenance of male/female affiliation
[210].

In rodents, an exciting body of work on the monogamous prairie vole has demonstrated that
transmission of the hormone vasopressin in the ventral pallidum is especially critical in
regulating social affiliation and pair bonding [211–214]. After cohabitating and mating with a
female, monogamous male voles form a preference for that particular female over another, and
vasopressin in the ventral pallidum appears to play a critical role. Monogamous male prairie
voles have greater vasopressin V1a receptor binding in the ventral pallidum compared to a
non-monogamous species of meadow vole in which a male may have multiple female mates
but not form any pair bonds [215]. Male prairie voles contain a greater density of V1a receptors
in the ventral pallidum compared to females [216], and active mating behavior by the male
vole engages vasopressin-dependant mechanism that increase Fos expression in the ventral
pallidum [217]. Pair bonding can even be enhanced in some prairie voles by directly stimulating
vasopressin V1a receptors in the ventral pallidum via viral vector gene delivery of V1a
receptors, which also causes male voles to increase their affiliative behavior towards other
males [215]. Further, V1a receptor upregulation in the ventral pallidum can cause the sexually
promiscuous meadow vole to behave like a prairie vole and form a preference for a single
familiar female [218].

However, at present it is too early to say if the ventral pallidum mediates ‘liking’ and/or
‘wanting’, or learning, of affiliation and sex. Still, it is worth highlighting at this early stage
that the ventral pallidum is a common site for enhancing at least two critical natural rewards,
both sex and food, as well as drug rewards.

The Ventral Pallidum as a Limbic Final Common Pathway
To summarize, a growing body of work has demonstrated major roles for the ventral pallidum
in food reward, sex, social affiliation, electrical brain stimulation reward, drugs of abuse,
winning money, and other rewards. The ventral pallidum is a convergent point for limbic
reward signals and an intermediate stage to diverse cognitive, affective and motor processes.
It is a central site for coding and causing enhancements of reward learning, hedonics, and
motivation (Figure 4).

Its centrality in reward anatomy and function might be captured most comprehensively by
describing the ventral pallidum as a ‘limbic final common pathway’ for reward signals in the
brain. This concept borrows from Charles Sherrington’s early formulation of “final common
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pathway” to describe spinal motor nuclei as the last-stage through which signals must travel
to influence movement [219]. Applied to limbic reward functions, the ventral pallidum might
analogously be viewed as an essential convergent point for hedonic and motivational signaling
pathways in the brain, and thus a final pathway for reward. This does not mean that reward
functions are all contained within the ventral pallidum, nor that the ventral pallidum is
necessarily the only pathway for reward to influence behavior or cognition. It simply suggests
that reward pathways converge upon ventral pallidum, and that this funneling of signals plays
a special role in generating major reward components. As with motor nuclei for movement,
the ventral pallidum as a limbic final pathway passes the tests of being necessary for reward
(without it, hedonics and motivation cannot be enhanced), sufficient to enhance reward
(contains mechanisms that actively enhance hedonic impact and motivation), and a site of
neural reward representation (represents hedonics and motivation in patterns of activity that
can be sent to efferent target systems). These roles distinguish the ventral pallidum as among
the most crucial sites for reward and motivation in the brain.
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Figure 1.
Neurochemical maps of hedonic ‘liking’ and motivational ‘wanting’ in the ventral pallidum.
Microinjections of DAMGO to stimulate opioid transmission in the posterior ventral pallidum
hotspot enhance reward ‘liking’ (increased hedonic orofacial reactions to sweet taste such as
tongue protrusion shown in image insert) and also enhance ‘wanting’ (increased motivated
eating behavior) (top; red hexagons). The same DAMGO microinjections in an anterior
coldspot decrease both ‘liking’ and ‘wanting’ measures below normal (blue). The posterior
hedonic hotspot overlaps with the crucial zone where ventral forebrain lesions produce aversion
to palatable tastes and aphagia (purple outline). By contrast, blockade of ventral pallidal GABA
with bicuculline microinjections increase food ‘wanting’ and eating behavior virtually
throughout the ventral pallidum (bottom left; red), but fail to change normal hedonic ‘liking’
reactions at the same sites (bottom right; white). Maps depict data reconstructed from [60,
123]. VP ventral pallidum; SI substantia innominata.
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Figure 2.
Ventral pallidum hotspot neurons encode the incentive salience of cues and hedonic value of
rewards. (Top) Neurons fire little to a learned cue predicting an unpalatable salt taste, but fire
in a phasic burst when the cue gains incentive value after sodium depletion and salt-appetite
(raster and histogram traces show an example neuron recorded during baseline homeostasis
and another neuron recorded after salt depletion firing in response to the salt cue at time zero)
[182]. This dynamic computation integrates prior learned associations and physiological state
to update incentive salience ‘on-the-fly’ and prior to ever re-experiencing the predicted taste.
(Bottom) Normally, the unpalatable salt taste evokes ‘disliking’ reactions (e.g. oral gaping)
and evokes little ventral pallidum firing, but after sodium depletion the same taste evokes
‘liking’ reactions (e.g. tongue protrusions) and bursts of ventral pallidal excitatory firing to
compute magnified hedonic impact [180].
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Figure 3.
Ventral pallidum neurons encode incentive sensitization. Mesolimbic dopamine stimulation
after acute or repeated (sensitized) amphetamine injection increases incentive salience coding
in magnified phasic burst of firing of to an incentive cue (CS+2), but not maximally predictive
cue (CS+1), in a cue series. When the cue sequence is learned, ventral pallidum neurons fire
little to the fully predicted CS+2 (shown at left is an example neuron). After acute or repeated
amphetamine exposure to increase ‘wanting’, ventral pallidum neurons fire vigorous bursts of
excitation to the same CS+2 incentive cue in an extinction session (shown in center is an
example neuron recorded after amphetamine sensitization) [127]. Profile analysis (Right) on
responses to multiple stimuli shows that dopaminergic ‘wanting’ increases by sensitization or
acute amphetamine injection shift ventral pallidum firing away from a more predictive cue (CS
+1) toward a incentive cue (CS+2), and fail to increase firing to the predicted UCS reward.
Similar magnification of incentive firing over prediction firing in ventral pallidum neurons
occurs with dopamine or opioid stimulation directly in the nucleus accumbens [195].
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Figure 4.
Sagittal rodent brain diagram highlighting the ventral pallidum as a final pathway for limbic
‘liking’ and ‘wanting’ signals. ‘Liking’ systems (shown in red) link together opioid hedonic
hotspots in the posterior ventral pallidum and dorsal-rostral accumbens shell, and potential link
with a GABAergic hedonic signal in the parabrachial nucleus. ‘Wanting’ systems (green) link
together mesolimbic dopamine, and opioid motivational signals in the accumbens and ventral
pallidum, and larger circuits. The ventral pallidum is also connected with mesolimbic-
thalamocortical loops (pink) and basal ganglia or brainstem motor output (gray) to influence
cognition and action. Pie chart schematic shows ventral pallidum at an intersection of limbic
connections with cognitive, motor, and reward structures. VTA ventral tegmental area; SN
substantia nigra; PPT pedunculopontine tegmentum; LH lateral hypothalamus; PBN
parabrachial nucleus; PFC prefrontal cortex; STN subthalamic nucleus; NAc nucleus
accumbens; VTA ventral tegmental area; SN substantia nigra; mdThal mediodorsal thalamus;
PBN parabrachial nucleus; Amyg amygdala.
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