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Abstract

The unique capability to precisely tune the few and many-body configurations of

ultracold Fermi gases provides a multi-dimensional platform for studying novel, ex-

otic aspects of quantum systems. These aspects include superfluid/superconducting

phenomena supported by potentially exotic pairing mechanisms, non-equilibrium and

critical dynamics, and proposed quantum sensing or computing applications based on

atomtronics.

Ring geometries provide natural arenas for probing transport properties of super-

fluids. Metastable states of quantized superfluid flow —persistent currents— exhibit

remarkable properties, and the manner in which they form is an incredibly rich sub-

ject. Studies of quenched superfluids demonstrate that persistent currents can form

from fragments of spontaneous symmetry breaking as second-order phase transitions

are crossed at finite rates. The extent of these fragments of the higher-symmetry

phase can in some limits be predicted by the Kibble-Zurek mechanism (KZM), which

is fundamentally tied to the universal properties characterizing the transition. Thus,

studies of spontaneous currents in superfluid rings can shed light on universality

classes that microscopically distinct systems fall into.

This thesis describes the experimental results of two separate yet complimen-

tary investigations of the physics of ultracold 6Li atoms confined to ring geometries.

The subject of the first investigation is the heating of degenerate fermionic rings

subject to collisions with background molecules. The most important result of this
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study was that the heating due to these ever-present collisions can be substantially

reduced by maintaining a reservoir of non-degenerate fermions in contact with the

deeply-degenerate atoms in the ring. These findings permit the possibility to perform

seconds-long experiments that require maintaining low temperatures. The second

part of the thesis describes the first experimental studies of the KZM ever conducted

with ultracold fermions in ring-shaped traps. By exploiting long lifetimes offered

by the trapping potential utilized in the aforementioned heating studies, we reveal

two distinct regimes of quench dynamics. The fast-quench regime agrees with KZM

predictions, while the slow-quench regime governed by finite-size effects follows a dif-

ferent trend. Our KZM studies should be readily extendable to scenarios that include

current biases, inhomogeneities and disorder, where these controls can be employed

to obtain additional information about the phase transition.
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Preface

In my years as a graduate student at Dartmouth college, I have had the absolute

privilege of working with a small yet incredibly talented and dedicated team of physi-

cists in the Wilder hall basement. I was fortunate enough to be given the chance to

contribute to the construction and operation of a unique, carefully planned experi-

mental ecosystem that would eventually conduct my first main contributions to the

vast and rapidly growing field of ultracold atoms.

Of course, none of this would have been possible without Kevin’s expansive vi-

sion, laser-focused attention to detail, and methodically-executed construction of our

ultracold lithium machine. Kevin was an invaluable resource to me, not just for his

assistance in the lab when we relied on him most, but also for his ever-present en-

thusiasm for physics and how he welcomed discussion with open arms at a moment’s

notice. Despite numerous experimental setbacks along this journey, Kevin taught me

to meet challenges with an attitude of “if it’s broken, I can figure out how to fix it”,

which is a mindset I plan to carry with me in any of my future endeavors. He has

taught be how to be a professional within an incredibly demanding ecosystem, and

to lead a battle against entropy. I’m forever grateful for the opportunity you gave to

me when you enthusiastically welcomed me into your lab.

The time I have spent in the lab has been made infinitely easier with the help and

presence of several incredible labmates. Firstly, Yanping, who pioneered with Kevin

the construction of our experimental apparatus, has been someone who I have turned
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to on countless occasions for guidance and technical advice. As the one most familiar

with the intricacies of the many devices in our lab, he was an invaluable resource to me

even after his graduation in 2020. You were always willing to pick up the phone when

I had a troubleshooting question or when I couldn’t see atoms on the camera. I forgive

you for being a bandwagon Warriors fan, plus you know I can’t say much because my

favorite teams are perpetually bad. Secondly, I have witnessed Parth over the last

few years become a talented and confident physicist, who welcomed the opportunity

to choreograph the incredibly complex ultracold atoms dance, and whose capabilities

have now awarded him a unique opportunity to explore potentially groundbreaking

physics. I am excited to see where you lead the lab within the remainder of your time

at Dartmouth. I also wanted to say thank you for all the root beers you offered to me

when we were working late night shifts in the lab. Finally Pradipta, I can tell from

even our limited overlap in the lab that you have the toolkit, passion, and ambition

required to be a capable AMO physicist, and I wish you nothing but the best of luck

on your Ph.D journey.

There have been a great number of friends and colleagues within Dartmouth who

have had a lasting impact of my years in graduate school. Kanav, you never ceased to

amaze me with the manner in which you could elevate the stupidity of your ”Kanav”

jokes. But joking aside, it is inspiring to see where your devotion to and passion for

quantum computing has taken you. Max, there’s no one I’d rather take an impromptu

trip to Switzerland with in my first year of grad school than you. You better come

visit us after we move there. Christina, the Nats are the wrong team but I forgive

you because so are the Mets. Ben and Mana, I thank you for being all ears to bounce

physics and math concepts off of, including the highly controversial reciprocal delta

function idea. Jesse, I think you and Yanping convinced me to join the lab after my

first year, and I don’t know whether to thank you or resent you for that, but I’ll
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choose to thank you. To the “basement dwellers,” I know we didn’t get the chance

to interact very often, but the times we got to chat were always enlightening to me,

and I wish you all success in your future endeavors.

To family, and the friends I have made along this journey, you mean more to

me than perhaps I have shown. I do not want to understate just how much your

unwavering support and numerous words of encouragement you have provided to me

have meant. To my mom, dad and sister, you have been the backbone and pillar

of support for my graduate career and I will be forever grateful for this. You have

truly been my rock throughout my graduate career. There are certainly a great many

others, from aunts and uncles to friends in other Dartmouth departments, who I also

say thank you to.

Finally, I would like to say thank you to my wife, travel buddy, best friend and

life partner Alejandra. You have been my most constant source of support, someone

who motivates me to succeed and picks we up with words of encouragement, support,

and love. This journey would have felt a lot less meaningful had I not bumped into

you at that grad student mixer almost seven years ago. I can’t wait to see where the

future takes us. Maybe someday Truffles will even let us get a full night’s sleep.
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Chapter 1

Introduction

The incredibly rich and vast subjects of fermionic superfluidity and superconductivity

are known to house many unanswered questions regarding, in particular, the role of

pairing and many-body correlations in giving rise to macroscopic quantum phenom-

ena observed in real material systems. Unconventional aspects of superconductivity,

such as those seen in high-Tc or heavy fermion superconductors and in hypotheti-

cal “super” systems supporting exotic pairing mechanisms such as the Fulde-Ferrell-

Larkin-Ovchinnikov phases, have either eluded satisfactory theoretical descriptions

or have not seen concrete physical realization [1–3]. Furthermore, attempts at a uni-

fied theoretical description of even conventional superconducting systems have been

mostly fruitless except in several outstanding limits. The success of BCS theory in

describing aspects of the Cooper and Meissner effects in superconducting electronic

systems is perhaps the most notable example [4], although it is a mean-field descrip-

tion that sweeps the many-body correlations under the vast rug of the many-body

quantum system. Nonetheless, the theory is non-perturbative and incredibly manages

to capture some of the core pieces of the extraordinarily complex many-body quantum

physics, and in particular how a Cooper pair superfluid that supports dissipationless

flow can remarkably emerge from the coupling of moving electrons to phononic lattice
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excitations.

On the other hand, it is well known that systems supporting a second-order

phase transition often carry certain simple, universal descriptions of the otherwise

rich physics near the critical point. Due to the diverging correlation length, much of

the microscopic details of the interacting sample can be ignored, at least in certain

limits, and the resulting theory is said to become universal, depending only a small

set of generic properties of the system. In this way, distinct physical systems with

vastly different microscopic properties can display remarkably similar behavior near

their critical points. The phenomenological Landau-Ginzburg theory and renormal-

ization group techniques, for instance, have seen success in describing the universal

properties of strongly correlated systems near a second-order phase transition [5,

6]. Incorporating time-dependence into the physics revolving around second-order

phase transitions, the Kibble-Zurek mechanism (KZM) has become a paradigmatic

model of non-equilibrium critical dynamics [7, 8]. In its original and most elegant

form, it predicts a scaling law for the spatial extent of the fragments of a system’s

spontaneously-broken symmetry as its second-order phase transition is crossed at vari-

able rates. The laws of thermodynamics allow the system to pick up these fragments,

but nature randomly decides the manner in which they are pieced back together. The

newly reassembled system will then assume a topological order that reflects the ge-

ometry of the underlying confinement. In multiply-connected geometries for instance,

spontaneous persistent rotation can emerge following the symmetry-breaking. Due to

the universal properties of second-order transitions, the key arguments of the KZM

are indeed elegant and encompass a broad range of scenarios, but oftentimes sweep

under the rug the complexity experienced in real systems. Yet, the beauty of the

Kibble-Zurek argument lies in its ability to predict the outcomes of quenching a sys-

tem across its critical point, whether that system is the universe experiencing rapid
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cool-down moments after the Big Bang [7, 9], or a mesoscopic ring of superconducting

material [10]. These examples are certainly not exhaustive, and indeed observations

of the KZM have been made in many diverse settings that include superfluid 3He,

colloidal monolayers, spinor BECs, and non-linear optical systems [11–18]. Exten-

sions to the quantum regime, where thermal fluctuations are completely frozen out

and quantum fluctuations pave the way for the KZM, have also been observed, for

instance in programmable atomic Rydberg arrays [19–22]. That there exists a unified

theory that can encapsulate the dynamics of systems with such vastly disparate mi-

croscopic complexity is at the heart of the KZM. It is the simplicity and elegance of

the KZM argument that experiments probing non-equilbrium critical dynamics often

hope to preserve, but also to utilize the predictions of the KZM to further connect

observables to the critical exponents describing the corresponding phase transition.

These critical exponents encode the essential features of the phase transition and

their universal properties, and for this reason the measurement of these exponents in

various systems is a focus of much experimental effort.

Section 1.1

In This Thesis

Ultracold atoms have emerged over the past few decades as leading candidates for

studying superfluid phenomena as well as offering a promising platform for quantum

simulation and computing [23, 24]. In particular, the high degree of controllability,

cleanness, and versatility offered by ultracold atoms lays out a promising path forward

to answering several of the key unanswered questions that have presented themselves

in studies of real materials systems. In this work, we exploit this versatility to ex-

plore both equilibrium non-equilibrium physics associated to ring-shaped ensembles

of ultracold fermionic samples of 6Li, where the metastable states of quantized su-
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perfluid flow provide invaluable information on the rich physics associated to various

quantum phenomena. Building on the findings of Yanping Cai in his doctoral work,

this work places a heavy focus on studying the Kibble-Zurek mechanism (KZM),

and more generally spontaneous current formation, in samples of quenched-cooled

ultracold fermionic rings. The use of ring-shaped traps provides a natural setting for

investigating the stochastic formation of spontaneous currents, which carry a directly

observable metric quantifying their flow called the winding number. In fact, a ring-

shaped geometry was the setting originally envisaged by W. Zurek in his attempts to

bridge predictions by T. Kibble of cosmic string formation on cosmological scales with

spontaneous currents in superfluid 3He [7, 8]. Much of the ability to perform these

studies in an ultracold atoms setting relies on our unique experimental capabilities,

and the great deal of effort spent characterizing the superfluid properties of fermionic

6Li in multiply-connected geometries.

This thesis is organized as follows:

• Chapter 2 gives an overview of the thermodynamics of non-interacting Fermi

ensembles. It then discusses the role of interactions and how those interac-

tions are tuned experimentally via Feshbach resonances, and how superfluidity

emerges from the two and many-body physics.

• Chapter 3 Gives an overview of the experimental apparatus and some of its key

features.

• Chapter 4 discusses the findings of a recent experiment pertaining to hole-

induced heating of a sample of degenerate 6Li confined to a ring-shaped trap. In

particular, it discusses a means of mitigating this heating via a particular choice

of trapping configuration. More than just a technical result, the findings pave

the way for future experiments performed on weakly interacting BCS superfluids

that require maintaining extremely low temperatures for long periods of time.
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• Chapter 5 gives a detailed theoretical description of the Kibble-Zurek mecha-

nism and its mathematical foundations. Furthermore, we investigate theoret-

ically the statistics of spontaneous currents formed in ring-shaped superfluids

after quenching a system across its second-order phase transition.

• Chapter 6 discusses the techniques used to detect persistent currents in ring-

shaped traps. We put a heavy focus on the interferometric detection technique

that was utilized extensively in the experiment discussed in Chapter 6.

• Chapter 7 discusses the findings of an experiment performed on thermally-

quenched rings of 6Li. In particular, we discuss the techniques used to measure

the statistics of spontaneous current formation, and describe how these observa-

tions are and are not in line with predictions from the Kibble-Zurek mechanism.

• Chapter 8 describes two potential future experiments that are essentially exten-

sions of the experiment performed in Chapter 6 to even richer settings. These

experiments are certainly within reach of our current experimental capabilities.

• Chapter 9 gives a summary of the work performed in this thesis, and the outlook

for the future directions of the lab.
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Chapter 2

Ultracold Fermi Gases

This chapter introduces and describes the core elements of ultracold fermionic physics.

We will first introduce the fundamentals of the non-interacting (ideal) Fermi gas,

applied to both uniform systems and the non-uniform ring-shaped systems relevant

to the experiments performed in this work. Next we will discuss interacting Fermi

systems in the ultracold regime, and an incredibly useful technical feature particularly

well-suited to 6Li studies called a Feshbach resonance. We will then discuss how

superfluidity and macroscopic phenomena can emerge from interacting Fermi systems

in certain limits, and apply these findings to ring-shaped geometries.

Section 2.1

Thermodynamics of Trapped Fermi Gases

2.1.1. The Non-Interacting Fermi Gas

In this section, we study the equilibrium properties of trapped (non-interacting) Fermi

gases. We are particularly interested in deriving key quantities that parameterize

the BEC-BCS crossover, such as the Fermi energy, and properties that capture the

essential thermodynamics of interacting Fermi systems.
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The equilibrium properties of a uniform ensemble of non-interacting fermions are

captured by the well-known Fermi-Dirac distribution. Because of the Pauli exclusion

principle, at zero temperature fermions will fill up successively higher and higher

energy levels, up to the Fermi energy. The Fermi energy is a function of the density

of fermions for a uniform system, but the exact form depends on the dimensionality

of the system under consideration.

We study explicitly the thermodynamic properties of an ideal trapped Fermi gas

confined to some conservative potential V (r). The exact form of V (r) will depend on

the details of the experiment. The lasers used to trap our atoms, for instance, gener-

ate a piece of such a conservative potential, Voptical(r), that is proportional to the local

intensity I(r) of the laser field [25]. Furthermore, the exact form of the potential de-

pends on the implementation of those laser fields. For instance, while the ring-shaped

potential generated by an axicon is an approximately Gaussian function with radius

R and full-width w, that generated by a ring-shaped, binary digital micromirror de-

vice (DMD) pattern has a more box-like structure [26]. Other potentials such as

those due to magnetic fields and the ever-present gravitational field will additionally

contribute to the total potential. The exact details of implementation will affect the

thermodynamics of the ensemble, at the fundamental level modifying the density of

ideal fermionic states. Additionally, while many ultracold atoms experiments (both

fermionic and bosonic) have typically operated in a regime where a harmonic ap-

proximation to the potential can be safely applied, we have found that our trapping

potentials have a significantly more complex landscape whose full structure must be

maintained for theoretical considerations of the thermodynamics. Thus, we will keep

approximations to a minimum and attempt to describe the thermodynamics in as

general a framework as possible.
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Partition and distribution functions. We begin with a non-interacting system

described by the generic single-particle Hamiltonian operator

H(r̂, p̂) =
p̂2

2m
+ V (r̂) (2.1)

The goal of equilibrium statistical mechanics is to compute the partition function Z

from which the relevant thermodynamic properties of the system can be derived. We

will employ a grand canonical ensemble to describe the systems in this work, where

explicitly Z = Z(µ, T,V , η) where µ is the chemical potential, T the temperature, and

V and η represent sets of variables containing any additional extensive and intensive

quantities used to describe the system, respectively. In a uniform system, i.e., V could

represent the volume, while η could represent the aspect ratios of a rectangular box.

The grand canonical partition function is computed as

Z(µ, T,V , η) =
∞∑
N=0

∑
J

e−[EJ (N,V,η)−µN ]/kBT (2.2)

where the sum runs over all particle numbers and many-body energy levels J . For

concreteness, we have made explicit how the dependence on V and η enters into the

partition function via the energy spectrum. Due to the non-interacting nature of

the Hamiltonian, EJ(N,V , η) =
∑

j εj(V , η)nj with
∑

j nj = N , and the partition

function factorizes into products of mini-partition functions within each energy level

εj. Additionally, for fermions, the occupancies per level nj can only be 0 or 1. We

therefore have

Z(µ, T,V , η) =
∏
j

∑
nj=0,1

e−[εj(V,η)−µ]nj/kBT =
∏
j

{
1 + e−[εj(V,η)−µ]/kBT

}
(2.3)
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From the mini-partition functions, we can derive the familiar Fermi-Dirac distribu-

tion, given by

f(εj) ≡ 〈nj〉 = −kBT
∂ lnZ
∂εj

=
1

e(εj−µ)/kBT + 1
(2.4)

The Fermi-Dirac distribution allows one to compute statistical properties of the full

system from knowledge of the single particle properties. Namely if xj is some dy-

namical quantity (energy, momentum, etc.) pertaining to a single particle eigenstate,

then its ensemble average X can be computed as

X =
∑
j

f(εj)xj (2.5)

Density of States. Even if xj is a simple function of j, explicitly computing the

sum (2.5) is generally difficult even for simple and known energy spectra {εj}. Com-

puting ensemble averages can be simplified using the so-called density of states (DoS),

which measures the number of available single-particle energy levels per unit of energy.

Its utility arises in replacing discrete sums over the energy levels εj, such as those in

(2.5), with integrals over a continuous energy variable E. If N (E) =
∑

j Θ(E − εj)

is the number of states with energy at or below E (Θ is the step function), then the

density of states g(E) is simply given by its derivative

g(E) =
dN
dE

=
∑
j

δ(E − εj) (2.6)

from which we may compute

X(µ, T ) =

∫
dEg(E)f(E;µ, T )x(E) (2.7)

where we have made the dependence of this quantity on µ and T now explicit. The

expression (2.6) is merely a definition, used to recast (2.5) as an integral. To proceed
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with analytics, however, we can utilize the semi-classical approximation, where it

is assumed that the discrete and potentially complicated energy spectrum of the

(non-interacting) Hamiltonian operator can be replaced by a continuous classical

Hamiltonian function H(r, p) = p2

2m
+ V (r). This approximation is valid whenever

the potential is roughly constant over the average interparticle spacing, and atoms in

some small volume of phase space locally experience a constant potential [27]. The

density of states in D dimensions can then be approximated as

gD(E) =
s

(2π~)D

∫∫
δ[E −H(r, p)]dDrdDp (2.8)

where E is the energy, and the factor (2π~)D is the discretization unit inD-dimensional

phase space. The integral is taken over all phase space, while the factor of s accounts

for the spin-s degeneracy. We can use the “delta function of a function” property to

write δ[E −H(r, p)] = m
p0(r;E)

δ[p− p0(r;E)], where p0(r;E) ≡
√

2m[E − V (r)] is the

classical momentum for a fixed-energy orbit. The density of states simplifies to

gD(E) =
smSD
(2π~)D

∫
V (r)≤E

dDr[p0(r;E)]D−2 (2.9)

where SD is the surface area of the D-dimensional unit sphere and the integral is

taken over the so-called Thomas-Fermi region defined by V (r) ≤ E.

Fermi Energy. With the density of states, one may compute relevant thermody-

namic quantities pertaining to the Fermi ensemble. One important quantity is the

Fermi energy EF , which is the energy of the highest occupied state for a system of

N fermions at T = 0. The Fermi energy, and similar quantities such as Fermi mo-

mentum pF ≡
√

2mEF , set useful scales for normalizing thermodynamic quantities

pertaining to the BEC-BCS crossover. Knowledge of the density of states is sufficient
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to compute the Fermi energy. At finite temperature T , we may use the density of

states to compute the average atom number N (taking x(E) = 1 in (2.7))

N(µ, T ) =

∫ ∞
0

dEgD(E)f(E;µ, T ) (2.10)

This equation may be inverted to compute the chemical potential µ(N, T ). At T = 0,

the Fermi-Dirac distribution becomes a step function with a sharp energy cutoff

defining the Fermi energy EF (N) ≡ µ(T = 0, N). Evaluating Eq.(2.10) at T = 0, we

implicitly define the Fermi energy via

N =

∫ EF (N)

0

dEgD(E) (2.11)

Taking x(E) = E gives the definition of the internal energy

U(µ, T ) =

∫
dEgD(E)f(E;µ, T )E (2.12)

It is interesting to note that the Fermi energy is essentially a geometric property of the

trap; It is defined by the number, N , of lowest available single-particle energy levels

offered to the system of fermions, and is completely agnostic to the other thermom-

dynamic variables such as temperature and chemical potential, or even interactions

(which have been neglected thus far). It is partly for this reason that the Fermi en-

ergy is often sought as a convenient energy scale for normalizing other thermodynamic

energies with.

Finite Temperature. Inverting equations (2.10) and (2.12) allows one to express

the intensive quantities µ and T in terms of the extensive N and U , which can be

beneficial in certain cases. As is discussed in chapter 4.4, heating associated to trap

losses is governed by a simple dynamic evolution of N and U , and the associated rate
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of temperature increase is derived via the above relations.

Local Density Approximation. We may equivalently define (2.10) as

N(µ, T ) ≡
∫
n(r)dDr (2.13)

where we associate to the total atom number N the density of atoms n(r) at position

r, and the integral is taken over all space. By inserting the density of states integral

(2.8) into equation (2.10) and swapping the order of integration, we may write

N(µ, T ) =
s

(2π~)D

∫∫
dDrdDpf [H(r, p);µ, T ]

=
s

λDT

∫
dDrFD

2
−1

[
µ− V (r)

kBT

] (2.14)

where λ2
T ≡ 2π~2/(mkBT ) is the thermal deBroglie wavelength and Fj is the Fermi-

Dirac integral of order j [28]. We used the explicit form of the Fermi-Dirac distribution

function to evaluate the momentum integral, and we can now identify

n(r) =
s

λDT
FD

2
−1

[
µ− V (r)

kBT

]
(2.15)

The spatial dependence of the density of fermions is seen to depend only on the vari-

able µ(r) ≡ µ−V (r), i.e. n(r;µ, T ) ≡ n0[µ−V (r), T ]. This is the essence of the local

density approximation (LDA); The density of particles in potential V (r) with chemi-

cal potential µ can be approximated by the density of the corresponding homogeneous

system at V (r) = 0 and chemical potential µ− V (r). This approximation, as stated

before, breaks down when the variation in V (r) over the average interparticle spacing

becomes large relative to the Fermi energy, and the semiclassical approximation to

spectrum of the quantum Hamiltonian breaks down.

Experiments, such as those performed in this work, often probe density profiles
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via absorption imaging [29], which provides information on the column density

ncol(r⊥) ≡
∫ ∞
−∞

dxproben(r⊥, xprobe) (2.16)

where xprobe is the so-called probe axis, r⊥ is a position vector transverse to this axis,

and r = (r⊥, xprobe). In certain cases, the observable column density can be inverted

to find the total density by exploiting certain symmetries of the trapping potential

via the inverse Abel transform [30]. For the common scenario where the potential

is both harmonic along the probe axis and separable along the probe and transverse

axes, V (r) = V⊥(r⊥) +mω2x2
probe/2, equation (2.15) can be directly integrated:

ncol(r⊥) =
s

λDT

√
2πkBT

mω2
FD−1

2

[
µ− V⊥(r⊥)

kBT

]
T→0∼ s

(2π)
D−1

2 Γ
(
D+3

2

) 1

aD−1

[
EF − V⊥(r⊥)

~ω

]D+1
2

(2.17)

where a ≡
√

~/(mω) is the usual harmonic oscillator length and the definition EF =

µ(T = 0, N) was used in the T → 0 limit. This equation can be readily inverted to

solve for the local Fermi energy as a function of the column density in the T → 0 limit.

We can further utilize this equation by noting that for xprobe = 0, V (r) = V⊥(r⊥),

and the total density here is given by

n(r⊥, xprobe = 0) =
s

λDT
FD

2
−1

[
µ− V⊥(r⊥)

kBT

]
T→0∼ s

(4π)
D
2 Γ
(
D
2

+ 1
) {2m[EF − V⊥(r⊥)]

~2

}D
2

(2.18)

Comparing this equation with the column density (2.17), we find that for any trans-

verse position r⊥, there is a direct relationship between the measurable column density

and the total density at xprobe = 0. At T = 0 in particular, we can use the asymptotic

13
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behavior of the Fermi-Dirac integrals to derive an explicit relationship between the

two:

n(r⊥, xprobe = 0) =
s

1
D+1

Γ
(
D
2

+ 1
) [Γ

(
D+3

2

)
2π

] D
D+1 [

ncol(r⊥)

a2

] D
D+1

. (2.19)

For a D = 3 sample with s = 2 spin states, this reduces to

n(x, y, z = 0) =

(
512

81π5

)1/4 [
ncol(x, y)

a2

]3/4

(2.20)

where the probe axis was chosen to be the z-axis.

The LDA is an incredibly powerful tool for studying the local equation of state of

trapped Fermi gases, and offers a convenient means of performing thermometry on

degenerate Fermi gases. This will be discussed and expanded upon in Sec. 4.4.

2.1.2. Ring-Shaped Traps

Simplified Ring Trap. The density of states integral (2.9) can be readily evaluated

for certain potentials. In most of our experiments, we employ potentials with cylindri-

cal symmetry, such that V (r) = V (r, z) with r and z the distance from the symmetry

axis and axial coordinate, respectively. Furthermore, our potentials typically employ

a tight vertical confinement, such that the potential is separable in regions of the

trap and the axial component is roughly harmonic. While in general our trapping

potentials are extended and quite complex, we can gain insight into several general

thermodynamic features of our systems by applying our results from the previous

subsection to the specific case of a Gaussian ring-shaped trapping potential on top of

a harmonic axial confinement.

V (r) = V0

[
1− e−2( r−Rw )

2]
+

1

2
mω2

zz
2 ≡ Vr(r −R) + Vz(z) (2.21)
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Figure 2.1: Qualitative visual depiction of the discrete energy levels in a har-
monic (left) and experimentally-relevant ring-dimple (right) trap. The cylindrically-
symmetric potentials are depicted via a 1D slice along trap center. Fermions in two
distinct spin states (red/blue circles) populate the energy levels up to the Fermi en-
ergy. While the levels are equally spaced in the harmonic trap, anharmonicities and
a weakening in the curvature of the ring-dimple potential cause a decrease in the
discrete energy level spacings, and thus an increase in the density of states, towards
higher energies.

The ring depth V0 is related to the experimentally-measurable radial trapping fre-

quency ωr via V0 = 1
4
mω2

rw
2, where w is the 1/e2 radius of the ring. The axial poten-

tial Vz(z) is characterized by its frequency ωz. In certain limits, it can be safe to ap-

proximate the radial potential as a parabola centered a R as Vr(r−R) = 1
2
mω2

r(r−R)2.

This is typically the case for trapped Bose gases that condense into a small region

about the potential minimum, and i.e. for wide pancake-shaped dipole traps used

routinely to trap both fermions and bosons. However, we will refrain from the har-

monic approximation in subsequent analysis as our experiments often operate in a

regime where the anharmonic regions of the traps are occupied. Fig. 2.1 shows a

qualitative depiction of the distinction between a harmonic trap and the so-called

ring-dimple potential landscape typically employed in the studies performed in this

thesis and discussed in detail in Sec. 4.4.
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The density of states in 3D, given by (2.9) can then be written explicitly for the

potential (2.21) as

g3(E) = 2
m

π~3

∫ R+rF

R−rF
dr r

∫ zF (r)

−zF (r)

dz
√

2m[E − Vr(r −R)− Vz(z)]

= 2

√
π

2

mRwV0

~3ωz
K(β) ≡ 2

√
2N0

V0

K(β)

(2.22)

where the integration (in cylindrical coordinates) is taken over the Fermi volume

bounded axially by zF (r) ≡
√

2
mω2

z
[E − Vr(r −R)] and radially by rF ≡ w√

2
β. Here

β ≡
√

ln
(

1
1−E/V0

)
∈ [0,∞] is a dimensionless function of the energy that inter-

polates between the harmonic (E � V0) and anharmonic (E ≈ V0) regimes. The

dimensionless function

K(β) ≡ Erf(β)− 2√
π
β exp

(
−β2

)
(2.23)

lies between 0 and 1. N0 ≡ mRwV 2
0

√
π

2~3ωz
=
√
π

2

(
Rw
a2
z

)(
V0

~ωz

)2

is the number of available

free-fermion states in the ring. It has a simple geometric interpretation: If the average

atom extent is given by az, we can fit ∼ Rw/a2
z atoms in the ring trap for a given

axial energy level, where Rw is the transverse area of the ring. There are ∼
(
V0

~ωz

)2

axial states, so N0 ∼ Rw
a2
z

(
V0

~ωz

)2

. For the case of the Gaussian ring, the geometric

scaling factor is
√
π/2, while the scaling is exact for a box-like ring trap.

We find N by integrating eq. (2.22) up to EF , which interestingly still admits a

closed form solution:

N =
mRwV 2

0

√
π

2~3ωz
K(β|EF )

≡ N0K(βF )

(2.24)
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where the dimensionless function

K(β) ≡ Erf(
√

2β)− 2
√

2 exp
(
−β2

)
Erf(β) + 2

√
2

π
β exp

(
−2β2

)
(2.25)

is again bounded between 0 and 1. This equation can be inverted numerically to

find EF (N), but admits a simple closed form solution in the harmonic (βF ≈ 0 →

N � N0) limit, where K(βF ) ≈ 16
15

√
2
π

(
EF
V0

)5/2

. Thus,

EF
V0

≈
(

15

16

√
π

2

N

N0

)2/5

(Harmonic approximation) (2.26)

We can equivalently express this in terms of trapping frequencies as

EF
~Ω

=

(
15N

16

)2/5 ( ω̄
Ω

)4/5

(2.27)

where Ω ≡ ~/(2mR2) is the angular frequency associated to motion around the ring

and ω̄ ≡ √ωrωz is the geometric mean trapping potential.

It is interesting to note that, in this simple potential, there is a finite capacity

for the ring to hold fermions. For trap parameters typical of our experiment, we find

the dimple capacity N0 ∼ O(103). While the actual experimental trapping geometry

can be much more complicated, the dimple capacity N0 sets a scale for the number

of atoms confined to the ring-shaped region of highest density. The average dimple

(2D) density n0 ≡ N0/(2πRw) ∼ V 2
0 /ωz. This implies that one can more densely pack

fermions into the ring by either increasing the ring depth or decreasing the vertical

confinement. The former makes intuitive sense; A deeper ring can hold more atoms.

The latter can be understood intuitively by the fact that atoms are “squeezed” out

of the ring dimple when the trap is compressed vertically. This axial squeezing leads

to a greater spacing between axial energy levels, and thus a decrease in the density
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of ring-bound states.

We now discuss the experimentally relevant case where the Fermi energy is larger

than the ring dimple depth V0. This can be the case when, for example, there is a

broad radial confinement superimposed upon the ring potential, as was the case in the

experiments performed in [31, 32]. We can account for this weak radial confinement by

adding a potential of the form Vs(x, y) = 1
2
m(ω2

xx
2+ω2

yy
2) to (2.21), where ωx ≈ ωy are

the transverse trap frequencies. Because the confinement is weak, we can attempt to

modify the ring density of states described previously by adding a term that accounts

for any spill-over into the broad sheet-like potential. Namely, we approximate

g3(E) =
2
√

2N0

V0

K(β)Θ(V0 − E) +
2(E − 1

2
mωxωyR

2)2

(~ω̄)3
Θ(E − V0) (2.28)

where ω̄3 = ωzωyωz is the sheet geometric mean trap frequency and Θ is the Heaviside

function and the second term describes the density of states of the (3D) sheet trap.

Because the sheet may be slightly anisotropic, the ring potential minimum may vary

azimuthally. We thus take the geometric mean of the sheet transverse frequencies to

approximate the slightly elliptical trap by a circular trap with the same integrated

power. Then, we set the potential zero at the ring minimum r = R and z = 0.

This makes V (r = 0) ≈ −1
2
mωxωyR

2 for w � R. Thus, the full potential can be

approximated as

V (r, z) ≈ V0

[
1− e−2( r−Rw )

2]
+

1

2
mω2

zz
2 +

1

2
mωxωy(r

2 −R2) (2.29)

We find a closed form solution for the Fermi energy now by integrating the modified

g3(E) up to a Fermi energy EF ≥ V0, making use of the fact that the integral over
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Figure 2.2: Plot of 3D Fermi energy in the combined ring plus sheet trap, where the
effect of the weak radial sheet confinement at ω̄ = 132.7 Hz, is included. Vertical
dashed line is the number N0 (≈ 613) of available ring bound states.

the first term simply gives N0:

EF =
1

2
mωxωyR

2 +

(
V0 −

1

2
mωxωyR

2

)[
1 +

3

2
(N −N0)

(
~ω̄

V0 − 1
2
mωxωyR2

)3
]1/3

(2.30)

Figure 2.2 shows the plot of 3D Fermi energy versus atom number for the ex-

perimental configuration used. Fermi energies below V0 ≈ 7 kHz are computed by

numerically inverting (2.24), while above V0 they are given by (2.30). Clearly, the

Fermi energy remains roughly constant at V0 forN > N0 in this simplified model. This

is because the ring depth is typically much greater than the energy scales associated

with the broad sheet. This simplified model does not account for the incompressibil-

ity of the Fermi sea, and the density of states should be computed from the combined

trap.
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Numerically-modelled Ring Dimple Trap. The incompressibility of the Fermi

sea at T = 0 means that the density of states and local Fermi energy for atoms above

the ring dimple depth V0,r are affected by the presence of the fermions occupying

the dimple. To properly quantify the density of states, one would have to carry

out the integral (4.2) over the entire Thomas-Fermi region, which may extend well

into the sheet region for energies E > V0,r. This integral is typically impossible to

carry out analytically for the trapping potentials utilized in the experiment, which are

generally non-separable and complicated. However, one may compute the density of

states numerically with knowledge of this potential. We will discuss the experimental

implementation of the potential and its various components in Chap. 4.4, but for

now, we will take it to consist of three main terms: A narrow ring-shaped potential, a

broad circular sheet-like potential, and gravity. The inclusion of gravity is important

for discussion of evaporative dynamics, and plays an important role in setting the

fermion capacity for the entire trap, as we will also see in chapter 4.4.

We assume the sheet-like potential is formed from a flat Gaussian beam propa-

gating along the y-axis, and whose width along the z-axis is small compared to the

transverse width. Thus, we write

Vtot(r, z) = Vring(r, z) + Vsheet(r, z) +mgz (2.31)

where

Vsheet(r, z) = V0,se
−2

(
r2

w2
s

+ z2

w2
z

)
(2.32)

and ws � wz. Note the difference between this potential and the simplified ring

potential (2.21) discussed previously; This one has generally inseparable character.

We have assumed that the sheet beam is transversely (x, y) circularly symmetric in

the region of interest, despite the fact that it will become asymmetric outside of its
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Rayleigh range. The ring potential Vring is slightly more complicated. Since this

potential is formed experimentally by projecting a ring-shaped pattern, propagating

along the z-axis, onto the broad sheet, we must account for the through-focus diffrac-

tion experienced by this propagating beam to fully model its potential. If we assume

that at z = 0 the ring comes to a sharp, unaberrated focus described by a Gaussian

ring-shaped function with radius R

Vring(r, z = 0) = V0,re
−2( r−Rwr )

2

, (2.33)

then we can find the through-focus potential by propagating (2.33) via the angular

spectrum method [33]. This method essentially decomposes the light-field, and thus

the potential, at z = 0 into plane waves whose propagation has a simple analytic

form. The resulting field at some distance z away is then obtained by summing these

plane waves up, each having been modified by the Fourier-space (kx, ky) transfer

function h(kx, ky; z) = exp
(
iz
√
k2

0 − k2
x − k2

y

)
associated with the monochromatic

Helmholtz equation, where k0 is a constant [34]. With the definition Ã(kx, ky) =

F [
√
Vring(r, z = 0)](kx, ky), may write

Vring(r, z) =

∫∫
dkxdkyÃ(kx, ky)h(kx, ky; z)ei(kxx+kyy)

= F−1
[
Ã(kx, ky)h(kx, ky; z)

]
(x, y)

(2.34)

where F is the Fourier transform operation and the square-root of the potential is

taken to properly model the propagation of the amplitude of the light field (as opposed

to its intensity). This propagation, expressed as a pair of Fourier transforms, can be

efficiently carried out numerically via a fast Fourier transform (FFT) operation. We

show an example of Vring(r, z) computed via (2.34) in Fig. 2.3.

With the full 3D trapping potential, given by equation (2.32), one may compute
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Figure 2.3: A mosaic showing the through-focus propagation of the ring beam. The
ring comes into focus at z = 0 with a radius of 12 µm and width 2.3 µm. Interestingly,
it retains its sharp focus for several tens of microns above and below the focal plane,
but blurs considerably outside this range.

the density of states by numerically integrating equation (2.9), using D = 3. This

integral can be further simplified using the cylindrical symmetry of the potential, and

we can write

g3(E) =
(2m)3/2

π~3

∫∫
Vtot(r,z)≤E

drdz r
√
E − Vtot(r, z). (2.35)

We show an example of a cross-section of our model trap in Fig. 2.4, for a ring of

radius 12 µm. In addition we plot the Fermi energy for atoms populating this trap,

computed from the density of states (2.35) and the definition of the Fermi energy
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Figure 2.4: (Left) A cross-section of the combined trap including gravity along the
plane y = 0. The ring is clearly recognized as the two dense regions, whereas gravity
is responsible for the asymmetry about z = 0. It is notable how the ring dimple has
the structure of a vertically elongated cylindrical “can”, but away from the dimple
the potential is flat and “washer”-like. (Right) The trap Fermi energy as a function of
the total atom number (green solid line). We also show the harmonic approximation
of the Fermi energy to the ring dimple minimum (red dashed line), and the dimple
capacity (black vertical dashed line).

(2.11). The Fermi energy computed from a simple harmonic approximation to the

trap minimum is shown for comparison, highlighting the need for a complete trap

model as the ring becomes overfilled. We note that the Fermi energy, for EF > V0,r,

doesn’t plateau as it does in the crude model described by equation (2.30). We

certainly notice a weaker dependence of the Fermi energy in this regime on atom

number, which is a result of the vastly larger density of states in the broad sheet.

However, Pauli blocking is responsible for reducing the density of states at energies

EF > V0,r, and the Fermi energy does not plateau as strongly as it does in the crude

model.
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Section 2.2

BEC-BCS Crossover and Pair Superfluids

This section will discuss how interactions between pairs of 6Li atoms are controlled,

and how ultracold samples of fermionic 6Li can be smoothly and reversibly tuned be-

tween two distinct limits using this feature. The first is the molecular BEC (mBEC)

limit of tightly bound 6Li dimers, which exhibit bosonic charcater due to their large

binding energies. The second is the limit of weakly bound Cooper pairs, where sig-

natures of Bardeen-Cooper-Schrieffer (BCS) superfluidity emerge from strong corre-

lations between pairs of fermions in equal and opposite momentum and spin states.

The crossover between these two limits is described by a variational wavefunction

ansatz that smoothly interpolates between these two limits and provides the means

to compute the relevant many-body thermodynamic quantities as the interactions are

tuned.

2.2.1. Feshbach Resonances

The Feshbach resonance, first studied by Herman Feshbach in the context of nuclear

reactions, is routinely used to modify the scattering properties of ultracold atoms

[35–39]. With such modifications, ultracold atoms exhibiting a useful and control-

lable Feshbach resonance can be made to interact more or less strongly with eachother,

and with either attractive or repulsive character. In 6Li, a broad Feshbach resonance

exists, which allows interactions to be tuned precisely and controllably over an ex-

tremely large range. This is perhaps the most exemplary feature of 6Li as an ideal

species for ultracold fermion experiments.

Feshbach resonances occur when the energy of two atoms, scattering in free space,

is brought into degeneracy with the energy of a certain bound molecular state. In

most cases, the potential energy landscape experienced by two interacting atoms
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depends on the internal structure of the atoms. Scattering in the so-called open

channel occurs for atoms in a certain internal configuration, which gives rise to a

potential energy landscape that is accessible by energy conservation. The potential

energy in this channel asymptotically approaches 0 at large inter-atomic separation,

and scattering in this channel can occur when the two-atom energy E > 0. The so-

called closed-channel potential experienced in a different internal state, on the other

hand, asymptotically approaches a potential energy V ∞closed > E at large separations,

and is thus inaccessible to the outgoing scattering pair. A non-zero coupling between

one or more bound states in the closed-channel and the open channel continuum

modifies the scattering properties of the two interacting atoms. By reformulating the

scattering problem entirely in the open channel by means of an effective scattering

potential, one finds that the scattering length can be affected by changes to the energy

difference between the free atoms and molecular bound states. Typically, this energy

difference can be tuned by an external magnetic field, as the magnetic moments of

the closed and open channel states are different.

Using a simple model which assumes only a single relevant bound molecular state

in the closed channel, one can derive an expression for the scattering length as a

function of the external magnetic field using an effective potential model [40]. The

result is that the s-wave scattering length, with encodes all the relevant scattering

properties in the low-energy (ultracold) regime, can be written as

a = abg

(
1− ∆B

B −B0

)
(2.36)

where B is the magnetic field. ∆B is the width of the resonance and abg is the

off-resonance background scattering length, each of which depends on the atomic

details. Some important observations of (2.36) are that the scattering length can be

tuned from negative (attractive) to positive (repulsive) values, and that the scattering
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length diverges at the Feshbach resonance field B = B0. As we will soon discuss,

this tunability can allow the investigation of many interesting features of ultracold

fermions in a many-body setting.

In the case of ultracold 6Li, scattering occurs between atoms in the lowest-energy

hyperfine states |F,m〉 = |1/2, 1/2〉 and |F,m〉 = |1/2,−1/2〉, referred to as |1〉 and

|2〉, respectively. The open and closed channel potentials are distinct due to the

different interatomic interactions between the triplet |1〉|1〉 and singlet |1〉|2〉 states,

respectively, and the hyperfine interaction couples the two channels. The background

scattering length and the resonance width are abg = −1405a0, where a0 is the Bohr

radius and ∆B = 300 G, respectively. More detailed scattering properties of 6Li

(and of 6Li in general) can be found in [41]. We note that the s-wave scattering

length across the Feshbach resonance can be precisely measured via radio-frequency

dissociation spectroscopy [42] .

2.2.2. BEC-BCS Crossover

In an ultracold gas of fermions, pairing can typically occur between atoms within

different hyperfine states. The nature of this pairing, however, depends fundamen-

tally on the nature of the interactions, and more specifically the scattering length.

Using Feshbach resonances to tune the interparticle scattering properties between

the attractive and repulsive limits, both the two-body and many-body physics can

be altered in a controllable way. Typically, the strength of interactions is param-

eterized by (kFa)−1, where kF is the Fermi wave-vector. On the weakly repulsive

(BEC, (kFa)−1 � 0) side of the Feshbach resonance, one or more bound states in

the interatomic potential exist in 3D free space, and two fermions can form a bound

molecule at some energy εB � 0. These molecules are tightly bound and exhibit

bosonic character, and can thus undergo Bose-Einstein condensation. On the weakly

attractive (BCS, (kFa)−1 � 0) side, pairing is a many-body effect in 3D and happens
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most robustly in momentum space; Two fermions with opposite spin and momenta

can form Cooper pairs. These pairs can condense due to the presence of off-diagonal

long-range order (ODLRO) in the pair correlation function [43]. Furthermore, the

existence of the superfluid phase in this limit is a direct consequence of the finite

pair energy gap required to break a Cooper pair into its constituent fermions. On

the resonance where the scattering length diverges, the system is in the so-called

unitarity regime. Here, the only relevant length scale in the (uniform) system is

the interparticle spacing n−1/3, and thermodynamic properties of the system depend

functionally only on the ratio of the system temperature to the Fermi temperature,

T/TF . The BEC and BCS regimes, while seemingly distinct, are actually connected

by a smooth crossover [44]. Just beneath the Feshbach resonance, the bound state

energy disappears as εB = ~2/(ma2); Pairing is actually quite fragile despite the

diverging (positive) scattering length.

Crossover Wavefunction. In mean-field BCS theory, the ground state wavefunc-

tion takes the form

|ΨBCS〉 =
∏
k

(uk + vkc
†
k,↑c−k,↓)|vac〉 (2.37)

in which uk and vk are the coefficients of the Bogoliubov transformation, c†k,σ and ck,σ

are the creation and annihilation operators for fermions in momentum state k and

spin state σ (=↑, ↓), and |vac〉 is the vacuum state. This BCS wavefunction is derived

from the pair wavefunction product state ansatz which minimizes the mean-field free

energy of the interacting system. This pair wavefunction describing two particles at

positions r1 and r2 in states ↑ and ↓ is defined as

φ(r1 − r2) = 〈ΨBCS|Ψ̂†↑(r2)Ψ̂†↓(r2)|ΨBCS〉 (2.38)
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where Ψ̂†σ(r) is the fermionic field operator for position r. The full coordinate-space re-

spresentation of the many-body wavefunction is then built up from antisymmeterized

products of these two-particle functions. The full BCS wavefunction, while mean-field

in nature, smoothly connects the thermodynamic properties of the interacting Fermi

system throughout the BEC-BCS crossover. Furthermore, by virtue of the variational

ansatz itself, a macroscopic number of pairs can occupy the same quantum state with

pair wavefunction φ. This hints at the possibility of forming a coherent many-body

object from these pair states, in line with the notion of a condensate or order param-

eter, although the nature of this condensate again depends on the interaction regime.

Indeed, it can be shown that off-diagonal long range order, the signature of conden-

sation, exists below a certain critical temperature that smoothly varies across the

BEC-BCS crossover, and reaches a maximum value near the Feshbach resonance. In

this way, condensates of molecules, Cooper pairs, and more exotic pairs that exhibit

a qualitative mixing of real and momentum space pairing, exist and can be accessed

using the tunable interactions in 6Li.

Section 2.3

The Superfluid Transition

2.3.1. Order Parameter

It was shown in [44] that below some interaction-dependent critical temperature Tc

the ODLRO in the pair correlation function that signifies the presence of a condensate

is non-zero. In the language of second-order phase transitions, there exists a field -

the order parameter- that is zero in the “disordered” phase at T > Tc and grows

in magnitude into the ordered phase T ≤ Tc. The order parameter in particular

associated to a superfluid transition of fermionic 6Li is the bosonic field ψ describing

a pair condensate. Above the Feshbach resonance, pairing is a many-body effect. In
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the weakly attractive (BCS) limit in particular, this pairing typically occurs between

states of equal and opposite momenta, and of opposite spin [4]. These so-called

Cooper pairs exhibit a strong delocalization of their relative separation, as pairing in

this limit predominantly occurs between fermions in a narrow momentum-space shell

around the Fermi surface. Cooper pairs may display bosonic character in certain

limits and can form a condensate. As mentioned above, the presence of ODLRO

which signifies the existence of a condensate shows up in the Cooper pair correlation

function. This macroscopically-occupied state described by the wavefunction ψ is

directly proportional to the BCS pairing field or gap ∆, which is the energy cost to

break a Cooper pair into its constituent fermions.

As the order parameter can be represented by a coherent, macroscopically oc-

cupied object ψ(r), certain mathematical restrictions must be placed on the values

that ψ(r) can take to ensure it is physically allowable. The order parameter can

therefore be represented by some single-valued, analytic and complex-valued func-

tion, and can be written in density-phase form as ψ(r) =
√
n(r) exp[iφ(r)]. The flow

velocity associated to the order parameter is given by v(r) = ~∇φ(r)/m. Imposing

single-valuedness on ψ means that, for some closed contour C, the net phase ∆φ ac-

cumulated around this contour must be quantized in units of 2π. The average flow

speed v̄ = ~∆φ/(mLC) around this contour is therefore also quantized, in units of

v0 ≡ 2π~/(mLC), where LC is the length of the contour. In particular, we have

∆φ =

∮
C
∇φ · ds = 2πw (2.39)

v̄ =

∮
C v · ds∮
C |ds|

= v0w (2.40)

with ds the line element of the contour and w ∈ Z is the so-called winding number

of the order parameter. Deforming the closed contour C does not affect the winding
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number except in extraordinary cases; Only when the contour intersects a point

r0 where the superfluid density n(r0) becomes zero does the phase φ(r0) become

locally undefined and the winding number can change abruptly. In a thermodynamic

context, there is a free-energy barrier associated with these states of persistent and

metastable superfluid flow with non-zero w. These persistent currents are not only

relevant to theoretical studies of quenched ring-shaped superfluids, but are oftentimes

the fundamental objects associated to potential neutral atom quantum computing

applications such as atomtronics [24, 45].

2.3.2. Winding Numbers on Ring-Shaped Contours

In general, the winding number is a functional of the complex, single-valued order

parameter defined on some closed contour in real space. The order parameter rep-

resents a complex mapping from this contour onto the complex plane. There exist

many equivalent definitions of the winding number. The most visually intuitive defi-

nition counts the number of times the order parameter wraps around the origin, and

back onto itself, as the contour is traversed. As the focus of much of the work in this

thesis is on ring-shaped geometries, we specialize to the case of a ring-shaped contour

parameterized by angle θ. We use the polar representation to write

ψ(θ) =
√
n(θ)eiφ(θ) (2.41)

where n(θ+2π) ≡ n(θ) ≥ 0 and φ(θ+2π) ≡ φ(θ)+2πw, defining the integer winding

number w. To compute w directly, we may logarithmically differentiate and then

integrate (2.41) around the ring, using
∫ 2π

0
dθφ′(θ) = 2πw, to find

w =
1

2πi

∫ 2π

0

ψ′(θ)

ψ(θ)
dθ =

1

2πi

∮
Γ(ψ)

dψ

ψ
(2.42)
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where in the second equality Γ(ψ) represents the closed curve traced out by ψ in

the complex plane as θ is advanced by 2π. In this equation we have assumed that

n(θ) > 0, or else the phase (at one or more points) and thus winding number would

become undefined. From the residue theorem, (2.42) shows that the winding number

is non-zero whenever the closed contour traced by ψ encloses the simple pole at the

origin. Additionally, (2.42) shows that the winding number is a functional of the

complex-valued order parameter and the contour on which it is evaluated. We can

recast the definition of the winding number by using the Fourier decomposition of ψ.

Namely, we write

ψ(θ) =
∑
`

c`e
i`θ =

∑
`

c`z
`(θ) (2.43)

where z ≡ exp(iθ). By inserting this expansion into (2.42), and using d/dθ = izd/dz,

we may write

w =
1

2πi

∮
|z|=1

dz
d

dz
logψ (2.44)

Now, using the argument principle of complex analysis, evaluation of the integral

(2.44), which contains a logarithmic derivative of ψ, is obtained by counting the

number of roots (with multiplicity) of the complex polynomial

ψ(z; {c`}) ≡
∑
`

c`z
` (2.45)

whose magnitudes are less than 1 and subtracting off the order of the largest pole in

the expansion (2.43). For the finite-mode expansion

ψ(z; {c`}) =
`c∑

`=−`c

c`z
`, (2.46)
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Figure 2.5: An example showing how the winding number is computed in the Fourier
space representation. For some single-valued function, the winding number is found
as the number of roots of the complex polynomial (2.45) lying within the unit circle,
with the order of the largest pole subtracted off.

with `c ≥ 0 we have an explicit equation

w =
2`c+1∑
n=1

Θ(1− |zn|)− `c (2.47)

Here, zn with n ∈ [1, 2lc + 1] denotes a root of (2.45) and Θ is the step function. The

simplest example of functions with well-defined winding numbers are the complex

exponentials ψ
(1)
` (z) ≡ z`. Taking WLOG ` ≥ 0, the roots of these functions occur

at z = 0 with multiplicity `, and thus ψ
(1)
` (z) has trivially winding number `.

The simplest non-trivial examples of functions with well defined winding number

are those composed of two modes. It suffices to study a function of the form

ψ
(2)
` (z) ≡ c0 + c`z

` (2.48)

with ` ≥ 1. This function has a root of multiplicity ` at z` = −c0/c`. Furthermore,

this root lies within the unit circle when |c0| < |c`|. The winding number of the
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function (2.48) is therefore determined by the ratio |c0/c`|:

w =


`,

∣∣∣ c0c` ∣∣∣ < 1

0,
∣∣∣ c0c` ∣∣∣ > 1

(2.49)

To go beyond simple one or two-mode functions means solving an order n ≥ 2

polynomial equation and finding conditions on the coefficients c` that place the roots

within the unit circle. This is a very challenging task analytically, but we note

that numerically this is very straightforward, as polynomial roots can be efficiently

computed using i.e. Newton’s method. In general, the winding number of a many-

mode expansion will not be given by the dominant Fourier component, as is the case in

the two-mode expansion; It will depend in a complicated manner on the magnitudes

and phases of each of the Fourier components. Equivalently, a given winding number

w may still be observed even if the c`=w mode is not the dominant one.

Finally, it is insightful to ask when happens when one or more of the complex

roots lies precisely on the unit circle |z| = 1. In this case, the argument principle

cannot be directly applied to (2.44), and the winding number becomes undefined. In

real space, the presence of one or more roots lying on |z| = 1 implies that the order

parameter vanishes at one or more points around the ring. This in turn creates one

or more phase singularities that cause the winding number to become ill-defined. In a

dynamical setting where the order parameter varies in time, these “phase slip” events,

where the order parameter locally vanishes at one or more points, provide a means

for the topologically protected winding number to change its value, even though the

probability of observing such an event at any given time is vanishingly small. One

should note the analogy between a complex root of the order parameter crossing

the unit circle and a vortex migrating across the ring. Simple examples of single-

valued functions with ill-defined winding numbers are the elementary trigonometric
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functions sin(`θ) and cos(`θ), with |`| ≥ 1. Clearly, these functions have zeroes at at

least one position on the ring, and their complex Fourier expansion ψ(z) ∼ z`±z−` =

z`(1 ± z−2`) gives roots lying on |z| = 1, implying that their winding numbers are

undefined.
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Chapter 3

The Experimental Apparatus for

6Li

This chapter will outline some of the architecture of the experimental apparatus

as well as techniques used to conduct experiments on ultracold fermionic 6Li. We

point to the Ph.D thesis of Yanping Cai as a thorough and detailed reference to

the experimental apparatus. The details of the 2D magneto-optical trap and its

performance will be discussed in greater detail in the Ph.D thesis of Parth Sabharwal

from our group. We will now expand the discussion of the pair of custom microscope

objectives and the digital micromirror device (DMD) and its accompanying software

control implementation. Although used in the previous work of Yanping Cai to some

extent, we describe these experimental components in greater detail in this section as

they played a central role in the outcome of experiments described in this work.
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Section 3.1

Custom Microscope Objectives

Imaging objectives for ultracold atoms experiments often require high resolution,

multi-element designs that are compatible with the rigid geometric constraints im-

posed by the experimental apparatus. Additionally, the often strict requirement of

a non-conductive, non-magnetic objective housing imposes limitations on the type of

materials used. We will now discuss the details of the design, assembly, and installa-

tion of the objective pair.

3.1.1. Objective Design

Typically, an ultracold atoms experiment would like to probe features of an atomic

ensemble down to micron-sized scales. To achieve the necessary numerical aperture,

and thus resolution, a highly curved front lens is usually required to gather light

at large angles. This lens may be placed external to the cell, or, in some cases,

inside the cell to enhance numerical aperture [46]. Due to potentially large aberra-

tions introduced by this lens and the flat glass cell experiment window, additional

compensation lenses are required to achieve sufficient optical performance, however.

The appropriate compensation lenses typically depend on the nature of this front lens.

While aspheric front lenses perform very well for on-axis field points, the point spread

function rapidly degrades for even small departures from the optical axis. The com-

pensation lenses must therefore be chosen to correct for off-axis aberrations, such as

coma and astigmatism. A simple plano-convex front lens, on the other hand, will suf-

fer greater symmetric aberrations such as spherical aberration and Petzval curvature,

and will therefore benefit from compensation lenses that correct these aberrations.

We designed and tested the performance of a five-element objective using the ray

tracing software OSLO, with a 75 mm focal length, 1” diameter plano-convex front
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lens and a numerical aperture NA = 0.33 (See Fig. 3.1). This design was based off of

a four-element long working distance objective design by Alt [47]. Notably, each ele-

ment is commercially available (Thorlabs), and the non-conductive and non-magnetic

housing was 3D printed using readily-available materials, offering an economic, in-

house alternative to typically expensive custom objectives costing upwards of 100, 000

USD. The main body of the objective housing was designed to properly reference the

desired positions of each of the lenses in the objective. Its inner diameter was chosen

to be 1.1”, slightly larger than the lens diameters, to allow for some small amount of

play within the housing during the lens positioning. The walls of the housing were

chosen to be thick enough to provide structural integrity, but thin enough to allow for

a modified 3D printed Thorlabs 1” cage plate to fit around. Two 3D printed spacers

were inserted to provide the necessary spacings between lenses 1 and 2, and lenses 3

and 4 (See Fig.3.1). The spacings between lenses 2 and 3 were set by a constriction

in the inner diameter of the housing with an appropriately chosen length, such that

the lenses rest upon the constriction at the proper separation. The cost to procure

the objective components and assemble each objective was only 500 USD.

In order to mount the objective and properly interface it to the experimental ap-

paratus, we designed a simple 3D printed objective “skirt” that allowed the objective

to be interfaced with a suitably modified cage assembly system. The length of the

skirt was chosen to provide the necessary 1 mm standoff between the glass cell win-

dow and the front objective plano-convex lens. Additionally, to provide a modest

hermetic seal between the objective lenses and the glass cell, we epoxied a thin soft

silicone ring around the base of the skirt with an inner diameter equal to that of the

circular glass cell window.
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Figure 3.1: We show the five-element objective design modelled using OSLO’s ray-
tracing software (top left). The top right image shows a cross-section of the objective
with the 3D printed, non-conductive housing and lens-skirt attachment used for se-
curing and mounting the objective in the experimental assembly. The lower table
gives the relevant lens information.

3.1.2. Objective Assembly and Optimization

To assemble and optimize the objectives, we 3D printed the objective housing with

tap holes designed for tapping 4-40 threads. For each lens in the objective, these

tap holes were positioned at three equally-space distances around the circumference

of the housing, and aligned to the positions of the lenses that would rest inside the

housing. After threading each of these holes, we used nylon 4-40 set screws to contact

the lenses inside the housing and position them appropriately. In addition to these

tap holes, we included an equivalent set of slightly smaller clearance holes to be used

as access points for injecting an epoxy syringe, that would be used to cement the

lenses in place once positioned.

We optimized the positions of the lenses within the objective by monitoring the

point spread function (PSF) on a CCD, and adjusted the positions of the lenses using

the set screws on the sides of the housing. To monitor the PSF actively, we illumi-

nanted a 10 µm pinhole with laser light generated from a source at the wavelength
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Figure 3.2: Non-conductive/magnetic objective and housing mounted in the cage
assembly system, rendered using SolidWorks. The cage plate is a 3D printed modifi-
cation to the Thorlabs 30 mm cageplate, with a bore diameter of 1.1” to accommodate
the objective housing. The cage rods are carbon fiber and are held in place within
the cage plate with set screws. The cage plate, objective housing and skirt are held
together with four screws that slide through clearance holes in the cage plate and
screw into threaded holes in the skirt.

of interest. The pinhole acted as a point source, which was subsequently collimated

by a large focal length achromatic doublet, for the projection optical assembly. This

collimated light field was large enough to uniformly illuminate the objective’s front

negative lens. The objective brought the beam to a focus at a distance of about 1

cm after its final plano-convex lens. Finally, we re-imaged this focal plane, and thus

the objective’s PSF, onto a CCD using a relay imaging system consisting of a high

numerical aperture (NA) microscope objective and re-focusing tube lens. Thus, we

actively monitored the objective’s PSF and made adjustments to the lens positions

to make the PSF as symmetric as possible. Because the lens spacings were properly

set by the choice of housing and spacers, the symmetric aberrations were inherently

small to begin with. Due to the possible tilt and decentrations of the lenses in the
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Figure 3.3: PSF of objective, optimized for 630 nm and 671 nm use. (Top) CCD-
recorded image of the PSF. (Bottom) Horizontal cut of the normalized intensity profile
of the above PSF. The resolution of this objective is about 1.2 µm.

housing, asymmetric aberrations dominated the PSF unless the lenses were properly

positioned. When positioned properly, the PSF was highly symmetric, and corrected

to a Strehl ratio of close to 1. The PSF of one of our objectives, measured on a test

bench, is shown in Fig. 3.3.
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Installation Process. In retrospect, the objective should have been assembled

with ease-of-alignment during installation in mind, which we detail now.

While optimization on a test bench is comparatively simple, optimizing the po-

sition and orientation of the objective pair becomes substantially more complicated

when installed into the main experimental apparatus. This is mainly due to the

limited visual access, the tight geometric constraints (mainly set by the concentric

science cell coils), and the need to simultaneously optimize the two objective posi-

tions with respect to the cell and each other. During installation, it would have been

ideal to have a set of geometric references used to optimize the objective alignment.

One important reference is the normal axis to the cell. This can be obtained from

the back-reflection off a cell window before the objectives have been installed, and

from an iris centered on a cell window, which combined give the normal axis to the

cell. A second usable reference should be from the objective itself. Namely, the front

planar surface of the negative lens allows a back reflection to be used as an additional

reference axis. This reference axis, however, is only useful as an alignment aid if this

negative lens is properly centered in the objective housing and the perpendicular to

the normal axis to the cell.

We now outline the installation procedure assuming each objective has been con-

structed with the following criteria in mind:

• The objective’s PSF was optimized (on the test bench) while simultaneously

ensuring the objective’s negative lens planar surface is parallel to the 5 mm thick

fused silica window surface mimicking the cell window. This can be achieved

by first finding the normal axis to the window by means of a back reflection,

and then matching the back reflection off the negative lens to that axis.

• The negative lens is referenced to the exact geometric center of the objective

housing. This can be achieved by mounting the objective on a cage assembly
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with a pair of irises attached to it, centering the irises on the normal axis defined

via the window back-reflection, and then monitoring the back reflections from

both lens surfaces of the negative plano-concave lens to ensure centration on

the irises.

Assuming these criteria have been met, the negative lens provides a planar surface

for monitoring the back reflections of a reference beam, which by construction is

referenced to the cell window normal axis, and which subsequently allows the tilt of

the objective to be optimized. It also provides a geometric center to reference the

objective to an iris attached to the cage assembly supporting the objective. Once the

negative lens is properly positioned, it should be fixed while the other lens positions

can be adjusted and optimized.

We install the objective into the experimental apparatus following a step-by-step

procedure outlined below:

• 1) Find normal axis to the cell by sending a collimated beam down on the

window and observing the back-reflection. The axis can be centered on the

window by using a 3D printed cylindrical shroud with a small aperture in the

center which can rest snugly around the cell window. Fix this axis with pair

of sufficiently separated irises. Place another iris centered on this axis on the

other side of the cell.

• 2) Carefully place the first objective over the cell. Use front lens planar surface

back-reflection to align the objective tilt to the normal axis defined via 1). The

throughput beam should simultaneously be centered on the downstream iris;

this can be accomplished via objective translation after the tilt is fixed

• 3) Send another collimated beam the other way through the cell and installed

objective, aligned with the normal axis defined in 1)
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• 4) Install second objective, observing again the back-reflection off the front

planar surface to ensure its tilt is correct. Simultaneously translate the objective

such that the throughput beam goes through both irises aligned to the normal

axis.

• 5) To ensure the objective separations are correct, first send a collimated 780 nm

beam through the projection objective. Then, observe the effect of this focused

beam on an atomic sample in the sheet (which is axially centered on the cell) to

deduce the plane of best focus for the projection objective: Atoms will clearly

be pulled to the focal point of the objective due to its high numerical aperture,

when viewed from the side. Then adjust the projection objective’s axial position

until its focal plane coincides with the sheet. This plane should then be made to

coincide with the imaging objective’s plane of best focus. We do this by sending

a collimated 670 nm beam through the projection objective and adjusting the

position of the imaging objective until the beam emerges collimated. Due to the

small chromatic focal shift in the projection objective for 670 nm light, further

fine-tuning of the imaging objective’s position can be made by observing the

impact of the same focused resonant light on the atomic sample and adjusting

until maximum atom depletion is observed. Alternatively, the imaging objective

can be moved back by the same amount as the projection objective’s chromatic

shift between 670 nm and 780 nm (which can be measured before installation)

using a calibrated micrometer stage.

We followed this installation procedure to install the pair of objectives in the

experimental apparatus. To aid in the tip-tilt and translational positioning of the

objective, we mounted the cage assembly supporting the objective on a tip-tilt mount,

which itself was mounted onto a separate 3-axis translation stage. This mounting

scheme had deficiencies in that the tip-tilt mount coupled rotational movements of
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the objective to translation movements since the center of rotation was far below

the glass cell. An ideal tip-tilt alignment structure would have its center of rotation

in the middle of the cell (i.e. a gimbal-type mounting scheme), which is a goal of

future objective mounting schemes. Nonetheless, we were able to install and position

the objectives via this mounting and alignment scheme. While the performance was

sufficient for the experiments details in this thesis, it was clear that a small amount of

residual coma due to alignment imprecision was present. We did not have sufficient

references to the optimal objective positions to make precise and informed adjustment

to their positions. It is another goal of next generation objective design to have

measurable references to the optimal positions and orientations.

Section 3.2

Digital Micromirror Device

In this section we will discuss how we use a digital micromirror device (DMD) to

manipulate the spatial distributions of 6Li atoms confined in the vertical plane of the

cell.

DMDs are widely becoming to go-to for patterned optical potentials used in ul-

tracold atoms experiments. They consist of a ∼ 1” rectangular megapixel array of

micron-sized mirrors, each of which may be selectively toggled into either an “on”

or and “off” state, which physically corresponds to the tilting of the mirror by ± 12

degrees. While a subset of mirrors on the DMD mirror array is in the “on” state,

a blazed diffraction grating is formed, and light impinging on these mirrors will be

diffracted into a set of orders with the pattern of the mirror subset in the “on” state

projected into each. The patterns may be updated dynamically at rates exceeding 10

kHz for some DMDs, and thus sequences of patterns may be projected with each in-

dividual pattern crafted by the user. We note that when unpowered, and transiently,
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Figure 3.4: Credit: Texas Instruments. A photomicrograph showing a small number
of the micron-scale mirrors on the DMD and each of their available states (on, off,
and flat).

mirrors can exist in a third “flat” and untilted state.

Patterns are loaded onto the DMD as bitmap arrays of the native DMD pixel

array size, each consisting of zeros and ones corresponding to inactive and active mir-

rors, respectively. We have written Python code to automatically generate and save

commonly-used pattern bitmaps to appropriately-named file paths, which are then

called during scripted experimental execution to generate desired pattern sequences.

3.2.1. Grey-Scale Projection

While incredibly versatile in the ability to produce sequences of arbitrary patterns,

DMDs are binary in nature, as the micro-mirrors only operate in an on or off state.

Grey-scale intensity distributions are possible to create, however, by utilizing the

finite resolution of the projection optics. As long as the projection optics are unable

to resolve a small block of DMD mirrors, then one can control the intensity of a region
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projected from the DMD by varying the number of active mirrors within that small

block. For instance, if the resolution limit of the projection optics in its focal plane

corresponds to an N × N block of DMD mirrors (i.e. in the object plane), we can

write

MN∆x ≡ res (3.1)

where M is the projection optics demagnification factor and ∆x is the (square) mirror

pitch. Thus the projection optics will project this block of mirrors to an airy disk

with radius res in the focal plane. As long as N > 1, then the peak intensity of

this Airy disk can be controlled to a relative precision of 1/N2. For the parameters

used in the experiment, we have M ≈ 1/10, ∆x = 7.6 µm and res = 1.5 µm, giving

N = 2. Thus, by controlling the number of active mirrors in 2 × 2 blocks, we may

create grey-scale intensity distributions with 2-bit precision.

3.2.2. Floyd-Steinberg Dithering

In order to generate and project grey-scale intensity distributions, one must selectively

activate a certain number of mirrors in the resolution blocks defined in equation (3.1)

in a spatially dependent manner. The most common way to accomplish this algorith-

mically is to use a dithering algorithm that converts an 8-bit grey-scale image into

a binary image that approximates the original image when convolved with the finite

resolution of the projection optics. The most commonly used dithering algorithm is

the Floyd-Steinberg dithering algorithm, which in an error diffusion algorithm that

shunts the binary quantization error onto neighboring pixels [48]. Essentially, by

adaptively alternating between zeros and ones, depending on the desired local inten-

sity, the dithering algorithm can achieve an approximation to the desired grey-scale

image with precision determined the projection optics’ resolution and demagnifica-

tion.
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3.2.3. Optical Potential Feedback

Oftentimes, the desired potential is smooth and flat, i.e. a smooth ring or box.

Various factors, such as magnetic field curvatures, optical aberrations, and intensity

variations in the DMD illumination beam, can cause the actual in-plane potential

experienced by the atoms to deviate from the desired potential. Using the adaptive

Floyd-Steinberg dithering algorithm, one can generate a larger set of optical potentials

using the DMD that extend beyond binary intensity distributions. In particular,

one can create tailored optical potentials with spatially-dependent intensities for the

transverse atomic confinement. To achieve a desired potential that circumvents the

issues discussed above, one may first compare the density of atoms measured in

a given optical potential to the desired “target” potential. As the atomic density

approximates the confining potential in certain limits, one may compute the spatially-

dependent error defined as the normalized difference between the target potential and

the atomic density. This error may then be fed back to the DMD pattern generation

code, with some proportionality factor, to add or subtract pixels where the error

is positive or negative. After several iterations, the DMD potential will begin to

converge to the desired potential.

3.2.4. DMD Flicker and Clock-Thief

The DMD implemented in our experiment is a Texas Instruments DMD (DLP Lightcrafter6500).

We found empirically that the measured intensity of a beam diffracted off of the DMD

transiently dipped to close to zero every at regular 105 µs intervals. Atoms trapped

in ring-shaped potentials generated from DMD, which experienced trap frequencies

around 4 − 5 kHz, were subject to rapid parametric heating from this roughly 10

kHz “flickering” of the DMD. This flickering in fact was a known issue relating to 6Li

experiments utilizing DMDs, and was discussed specifically for the Lightcrafter6500
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in the review [49], who found a workaround to disable this flickering when desired.

We now give a brief description of the core functionality of our DMD and address

the issue of this DMD flickering. To dynamically update the state of the DMD

to display a user-defined pattern, the DMD board sends a “mirror clocking pulse”

(MCP) that interacts with every mirror on the DMD array. This MCP then causes

the mirrors to unlatch from their current position into a temporary “flat” state, and

after several µs the mirrors then settle into the state described by the pattern encoded

onto the static random access memory (SRAM) array beneath it. Hard-wired into

the Lightcrafter6500 is a MCP that is designed to be emitted every 105 µs. This is

to prevent mirrors from sticking to the landing pads on which they rest in the on or

off states. For most applications, this 9.5 kHz flickering does not cause issues, but

can when optical trap frequencies are roughly half this value, which is common for

experiments utilizing the low-mass 6Li. The workaround implemented in [49] involves

augmenting the DMD circuit board with additional “clock-thief” circuitry that can

selectively pull the MCP off the board when desired, and only return it to the board

when the pattern is to be updated. We implemented the same version of this clock

thief circuit into our DMD, with success.

Section 3.3

Loading the Ring Trap

Having discussed the custom microscope objectives and DMD, we will now give a brief

general description of the loading procedure that produces degenerate ensembles of

fermions in ring-shaped traps, the starting point for subsequent experiments. To aid

in visualization of the following loading procedure, we show a SolidWorks rendering

of the relevant components of the experimental apparatus in Figs. 3.5 and 3.6.

Hot atomic 6Li is collected from an angled vapor source in the 2D MOT chamber.
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The 2D MOT transversely cools the hot atoms, producing a collimated beam of 6Li

aimed at the 3D MOT chamber. The axial velocity of this beam is sufficient to allow a

small fraction of these atoms through the small differential pumping tube connecting

the 2D and 3D MOT chambers. The atoms transmitted through the differential

pumping tube are then collected and cooled along all axes in the 3D MOT. The

time taken to load the 3D MOT to an acceptable number is typically less than 10

seconds. After this loading time, we perform a brief grey molasses cooling on the

D1 line. This cools the ensemble of about to about 50 µK. Moments before the

grey molasses cooling, we ramp up power in the 1064 nm crossed optical dipole trap

(XODT) generated by an IR laser (IPG YLR-50-1064-LP), which intersects the 3D

MOT. After the grey molasses cooling, the MOT beams and MOT magnetic fields

are extinguished, and a small fraction (∼ 2%) of the atoms are captured in the 45

W XODT, whose depth is several mK. Further evaporative cooling is then performed

during the hand-off from the XODT into the movable optical dipole trap (MODT)

derived from the same IPG laser. This hand-off proceeds by a second-long reduction

in the power to 25 W, and a simultaneous 6 second long rotation of a motorized

λ/2 waveplate, which redistributes the power into the MODT beam line. The focal

position of the MODT is controlled by a focus-tunable lens (Optotune EL-10-30-C-

NIR-LD-MV), driven by the Gardasoft TR-CL180 lens controller. Over 5 seconds,

we move the atoms trapped in the MODT from the 3D MOT chamber into the glass

cell. While the transport is happening, we ramp up power in both the 1064 nm

sheet beam (generated from a Koheras fiber laser) and DMD pattern beam to their

maximum values. The sheet beam reaches 4 W, while the DMD beam reaches a value

that is depends on the desired trapping geometry. Once transported into the cell, the

MODT power is lowered to zero in one second, and the sheet is populated. At this

stage, there are about 1 × 106 6Li atoms in the lowest two hyperfine states |1〉 and
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|2〉. We perform the final evaporative cooling by first ramping the Feshbach fields to

a value just below the 83.2 mT Feshbach resonance. Then, we lower the sheet power

in an exponential fashion in about 2 seconds to some small final value. During the

final moments of evaporation, weakly bound molecules form, and the DMD-generated

potential is substantially occupied by cold (and typically condensed) molecules. This

is now the starting point for any subsequent experiment in the cell.

We finally discuss the details of the DMD projection and imaging beam lines used

in the experiment, which is also shown schematically in Fig. 3.7. A fiber launch

outputs a 2 mm 1/e2 radius collimated 780 nm beam, which passes through a λ/2

waveplate and polarizing beam splitter (PBS) cube for polarization clean-up. This

beam is directed onto the DMD, which is optimized to accept the incident beam at

24 degrees with respect to its normal. A small portion of this light is picked off via a

wedged pick-off window and directed to a photodiode for intensity stabilization of the

beam. The brightest diffracted order emerging from the DMD is then folded by two

mirrors and impinges on a 1, 000 mm focal length plano-convex “tube” lens placed at

the same distance from the DMD. This light is then directed to the lower projection

objective with focal length 33 mm at a distance 1033 mm from the tube lens, ensuring

the 4f condition is met. The 4f condition is crucial to maintaining object and image-

space telecentricity, which ensures that the propagating DMD beam remains roughly

constant in size between the tube lens and projection objective. The tube lens and

objective combination results in a demagnification factor of about 1/30. Finally, the

probe beam line frequency stabilized to the relevant 6Li D2 imaging transition is

combined with the 780 nm beam line on a PBS cube. A subsequent λ/4 waveplate

circularizes the polarity of this beam. The final PBS and λ/4 waveplate do affect

the polarization of the 780 nm beam, but this is irrelevant to the trapping potential

generated by its optical field which only depends on intensity (in the limit of not-too-
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Figure 3.5: A SolidWorks rendering showing a cross-section of the main components
of the experimental apparatus. The loading proceeds from the 2D MOT chamber, to
the 3D MOT chamber, and ends in glass cell. The various beams represent the MOT
(red) and dipole (purple/pink) beams.

large numerical aperture).
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Figure 3.6: SolidWorks rendering of a cross section of the science cell and its immedi-
ate surroundings. We show the pair of NA=0.33 microscope objectives, the magnet
coils surrounding the science cell, and the various beams and beamlines utilized in
the experiment.

52



3.3 Loading the Ring Trap The Experimental Apparatus for 6Li

Figure 3.7: Schematic showing a top-down view of the projection and imaging beam
opto-mechanical setup.
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Chapter 4

Fermi Hole Heating

In this chapter, I discuss an important source of heating relevant to weakly attractive,

degenerate (T/TF � 1) fermionic systems. We demonstrate a useful technique to

mitigate the detrimental effects of this heating mechanism, and compare experimental

measurements of heating rates to a microscopic model of this heating process. This

reduction in the heating rate played an important role in the study of spontaneous

currents discussed in Chap. 7, but also opens the possibility to perform seconds-long

experiments on weakly interacting BCS superfluids, where maintaining extremely

low temperatures is crucial. Furthermore, this section will give important insight

into the trap configuration most typical of the experiments described in this thesis,

as well as our main method of in-situ thermometry involving a measurement of the

local equation of state. The findings of this chapter are additionally presented in a

publication from our group from 2023 [32].
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Section 4.1

Introduction

Experimental studies of fermionic superfluids in the weak-pairing limit require deep

quantum degeneracy. However, achieving and maintaining temperatures well below

the Fermi temperature in ultracold atomic systems is experimentally challenging.

Pauli-blocking reduces the efficiency of evaporative cooling in the quantum degenerate

regime [50], dramatically slowing down the cooling process (For reviews, see [51, 52]).

Various protocols have been proposed for circumventing this limitation, especially

relying on adiabatic processes with deformations of the trapping potential [53–60].

On top of this fundamental limitation to cooling, deeply degenerate Fermi gases

are especially sensitive to losses caused by collisions with background gas molecules;

when atoms deep in the Fermi sea are expelled, the creation of holes substantially

raises the effective temperature of the system. This “hole heating” effect was first

predicted in Ref. [61] and has been previously modeled for uniform and harmonically

trapped Fermi gases and Fermi-Bose mixtures [62–64]. These previous studies also

investigated the possible use of a bosonic reservoir with a large heat capacity to

achieve and maintain low temperatures.

In this paper, we show experimentally that for an inhomogeneous fermionic system

with a deeply degenerate subsystem embedded in a large low-density reservoir, the

effects of hole heating are reduced compared to the case of a similar system without

the reservoir present. This result is achieved by focusing on a ring-dimple trap, a ge-

ometry advantageous to study superfluid phenomena and persistent currents, though

we expect the outcome to hold for a generic trapping geometry. More specifically, we

investigate the effects of fermion-hole heating for a spin-balanced pair superfluid of

6Li atoms in the deep BCS limit of weak attractive interactions. Minimizing heating
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rates is important for some experiments with fermion pair superfluids since the natu-

ral time scale for investigating low-energy, long-wavelength dynamics in a superfluid

ring is set by the period of the lowest quantized circulation state, typically several

seconds. It is even more critical for experiments in the deep BCS limit, because

present methods for detecting supercurrents by matter-wave interference require an

interaction ramp to the molecular BEC regime before ballistic expansion [31, 65].

Unless the initial system temperature is very low, loss of contrast makes coherent

phase measurements difficult or impossible. Our most important finding is that the

heating rate for fermionic atoms in a superfluid “circuit” can be substantially reduced

by embedding it in a large, dilute population of atoms that acts as a heat sink and

as a particle reservoir.

The paper is organized as follows: Sec. 4.2 gives a brief overview of theory pertain-

ing to non-interacting Fermi systems, along with an outline of the optical potentials

employed in the experiment. Sec. 4.3 discusses the in-situ thermometry technique

we used to measure heating rates in the limit of weak attractive interactions. Sec.

4.4 gives an outline of hole-heating theory and discusses the important findings of

our heating rate measurements. Finally, we conclude in Sec. 4.5 by discussing the

collisions that re-establish equilibrium throughout the hole-heating process.

Section 4.2

Fermions in a Ring-Dimple Trap

A wide range of magnetic and optical trapping techniques have been used in experi-

ments where Bose-Einstein condensates (BEC) of ultracold atoms have been confined

to multiply-connected trap potentials [66–76]. Experiments with ultracold Fermi

gases generally make use of magnetic Feshbach resonances and all-optical trapping

techniques, and recent experiments with rings of ultracold fermions have made use of
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Figure 4.1: a) Side-view cross-section of a red-detuned optical trap potential used
in our experiments with rings of fermionic atoms. This model includes the effects
of the ring beam, the sheet beam and gravity. b) Intensity profile of the vertically
propagating red-detuned ring-pattern beam modeled in (a).

both red- and blue-detuned trap configurations [31, 65]. While the conclusions of this

paper about heating rates are relevant to a wide range of possible trap configurations,

we will focus here on red-detuned ring traps of the type used in our first experiments

with rings of ultracold fermions, which have some potentially helpful features.

Optical ring traps typically employ at least two independent laser fields, one pro-

viding mainly vertical confinement, and the other radial. In our experiments with 6Li

the main vertical confinement is provided by a red-detuned (1064 nm) horizontally-

propagating asymmetric Gaussian beam. In most of our experiments, the radial

confinement was provided by a red-detuned (780 nm) vertically propagating laser

shaped into a ring-pattern beam. This overall red-detuned beam configuration is

similar to those used in many previous experiments with ring-shaped Bose-Einstein

condensates [72]. If the chemical potential of a quantum gas is sufficiently small com-

pared to the depth of the ring-dimple, the atoms will be localized to the ring potential

minimum and it is reasonable to treat the transverse confinement as approximately

harmonic about the minimum. It is more straightforward to analytically calculate

the chemical potential and other important properties of the system when this ap-

proximation is valid. For a gas of non-interacting fermionic atoms in a ring with
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harmonic transverse confinement, the Fermi energy can be expressed as a function

of the number of fermions N , the geometric mean of the vertical (z) and radial (r)

trapping frequencies ω̄ =
√
ωzωr, and the characteristic angular rotation frequency

Ω ≡ ~/(2mr2
0), where r0 is the ring radius.

EF
~Ω

=

(
15N

16

)2/5 ( ω̄
Ω

)4/5

(4.1)

Figure 4.2: Density distribution of 6Li atoms in our trap when the Fermi level is
around 0.1 µK larger than the depth of the dimple created by the ring-pattern beam.
The figure shows the average of 10 in-situ absorption images taken at a magnetic field
of 100 mT. Both the ring-shaped region of increased density and the dilute halo are
clearly visible.

We conducted our first experiments expecting to work within this approximation,

but were surprised to see evidence that heating rates were higher when we evaporated

until the Fermi level was smaller than the dimple depth. The atoms in the ring

remained in the superfluid phase much longer when the Fermi level was higher, with

many atoms spilling from the ring-dimple into the shallow extended potential created
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by the sheet beam as shown in Fig. 4.2. This dilute “halo” of atoms typically contained

more than two-thirds of the total atom population, and played a crucial role in the

thermodynamics of the system in our experiments. The harmonic approximation is

clearly not valid for this situation, so we used a numerical 3D model of the potential

to estimate the relevant thermodynamic properties of our system.

To compute the Fermi energy for atoms in this extended ring-dimple potential, we

used a semi-classical model to obtain the total (spin up and down) density of states,

g3D(E), for a fully 3D model of the trap (V (r)) that included the sheet beam, the

ring beam, and gravity:

g3D(E) =
8πm

(2π~)3

∫
V (r)≤E

d3r
√

2m[E − V (r)] (4.2)

We then used the defining relation N =
∫ EF

0
g3D(E)dE to numerically compute the

Fermi energy EF (N), setting E = 0 at the ring potential minimum. We modeled the

ring beam as having an average radius of 12.5 µm and a transverse Gaussian profile

with a radial 1/e2 half-width of 2.2(1) µm, in the plane of the sheet beam. Vertical

trapping forces from this tightly focused ring were non-negligible, and so we found

the through-focus intensity profile by numerically propagating the beam using the

angular spectrum method [34] to obtain its full 3D profile. We modeled the sheet

beam as having an asymmetric Gaussian profile with a horizontal waist of 290 µm

and a vertical waist of 7 µm.

The effect of gravity turned out to be crucial in the numerical calculation of the

density of states. While gravity’s effect on the exact value of the density of states at a

given energy is small, the gradient due to gravity weakens the vertical confinement of

atoms more substantially near the ring dimple region. This is conveniently visualized

by plotting vertical cuts of the potential energy at radii near the ring radius r0 =

12.5 µm. These cuts each have a local maximum at some z < 0 and linearly fall away
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Figure 4.3: Potential energy slices of our combined trap (gravity included). a) 40 mW
and b) 30 mW sheet power. Left plots show the radial trap profiles at z = 0 while the
right plots show the vertical profiles for two different radii: The blue (dashed) line is
the vertical cut along r = 0 and the red (dotted) line is along r = r0. The shaded
regions in the radial profiles (a,b) indicate where the potential energy is below the
evaporation depth Vevap.

to −∞ for z � 0 due to gravity. The smallest of these maxima lies on the cut along

r = r0, as shown in Fig. 4.3. Its potential energy sets the “evaporation depth” Vevap

of the trap. Atoms with energy greater than this evaporation depth may overcome

this “lip” and fall out the bottom of the trap, and thus states with E > Vevap should

carry zero weight insofar as equilibrium thermodynamic quantities are concerned. We

therefore multiply equation (4.2) with the step function Θ(Vevap − E), which in turn
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has the dramatic effect of placing upper bounds on the allowed atom number and

internal energy.

As we will discuss below, there are additional subtleties in addressing the states

with E > Vevap that may remain bound to the trap via conservation laws that prevent

escape through the evaporation channels near the ring dimple. The equilibrium con-

figuration should not include these “quasi-bound” orbits, but the relaxation dynamics

may depend on them.

Section 4.3

Temperature Measurement

We obtained estimates of the system temperature by fitting an appropriate theoretical

model to the column density of the halo. In this region, we can approximate the

potential V (r, z) ≈ V0,s + mω2
zz

2/2 + Vsheet(r) where V0,s is the potential energy

offset of the full trap at the origin and Vsheet(r) is the cylindrically-symmetric sheet

potential, with Vsheet(r = 0) ≡ 0. To allow for the possibility of mixed dimensionality

in our description of the density profile, we quantize the vertical motion to harmonic

oscillator levels, while treating the radial motion semi-classically. This procedure is

similar in spirit to the theoretical treatment of a quantum well in solid state systems

[77]. In this way, we may write a hybrid description of the density of states

gj(E) =
s

(2π~)2

∫
d2rd2p δ

(
E − p2

2m
− ~ωzj − Vr(r)

)
(4.3)

which represents the density of available states in the jth axial harmonic oscillator

level (j = 0, 1, ...), for a system with s spin degrees of freedom. We have defined

Vr(r) = V0,s + Vsheet(r) + ~ωz/2, accounting for the zero-point energy of the axial

motion. Again, we assume states with E > Vevap do not contribute to the density of
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states. Integrating over momenta and summing over j, we identify the local density

of states

g(r;E) = s
m

2π~2

⌈
E − Vr(r)

~ωz

⌉
Θ[E − Vr(r)]Θ(Vevap − E) (4.4)

where dxe is the ceiling function. The column density n2(r) is found by integrating

the Fermi-Dirac-weighted local density of states over energy, with the substitution

x = E/(kBT ), giving

n2(r) =
s

λ2
T

∫ ηc− q−q(r)γ

0

dx
dx/γe

ex−q(r) + 1

=
s

λ2
T

∞∑
j=0

{
F0[q(r)− γj]

− F0

[
q(r)− γj +

q − q(r)
γ

− ηc
]}

(4.5)

We have further defined λ2
T ≡ 2π~2/(mkBT ), γ ≡ ~ωz/(kBT ), q(r) ≡ [µ−Vr(r)]/(kBT ),

ηc = Vevap/(~ωz) and F0(x) = log(1 + ex) (∼ ex for x → −∞). We note, however,

that typically ηc & 20, and so the second term in the summation form of (4.5) may be

neglected, and we will assume this approximation in the subsequent analysis. The in-

tegral form of (4.5) looks remarkably similar to the order 1 Fermi-Dirac integral used

to describe the 3D (column) density, except for the presence of the ceiling function in

the integrand, which accounts for the discrete axial energy levels. This discreteness is

blurred out if either γ or γ/q(r) is small compared to unity, which corresponds to the

3D limit. In this case, we can replace dx/γe with x/γ, and the resulting expression

gives the proper integrated 3D column density

n2(r) ≈ s

γλ2
T

F1[q(r)] ; γ � 1 or γ/q(r)� 1 (4.6)
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where Fν(x) is the usual Fermi-Dirac integral of order ν. Conversely, if γ � 1 and

γ/q(r) � 1, we approach the 2D limit, and we may replace dx/γe with 1, and the

resulting column density gives the proper 2D density

n2(r) ≈ s

λ2
T

F0[q(r)] ; γ � 1 and γ/q(r)� 1 (4.7)

At this point, we have not assumed a particular form for the radially symmetric

sheet potential. If we do have knowledge of the sheet trap parameters, however, we

may use them to eliminate a fit parameter from the fitting function. In our case,

the sheet potential may be described by Vsheet(r) = V0[1 − exp(−2r2/w2
s)] where

V0 = mω2
sw

2
s/4 and ωs and ws are the sheet radial angular trapping frequency and

1/e2 radius, respectively. We may therefore introduce η ≡ V0/(kBT ) to write q(r) =

q−η[1−exp(−2r2/w2
s)], and eliminate γ = ~ωz/(kBT ) ≡ η/N as a free fit parameter,

assuming N = V0/(~ωz) is a known, albeit potentially uncertain, input. We rewrite

the column density (4.5) as

n2(r) = n∞ + n0

∑jmax

j=0 F0

{
q − η

[
1− e−2( r−r0ws

)
2

+ j
N

]}
∑jmax

j=0 F0

(
q − jη

N

) (4.8)

where we have introduced n0 as the column density at r = r0 and allowed for a non-

zero density offset n∞ and center shift r0 in the density profile. jmax is the number

of terms to include in the sum, and typically does not need to be very large. In

total, there are five free parameters (q, η, n0, n∞, r0) that can be extracted via a least

square fitting routine. However, one should ensure that n∞, n0 and r0 are as tightly

bound and accurate as possible. This is achieved via careful image processing and

pre-fitting analysis of the density profiles. Furthermore, the guesses for the remaining

q and η should be physically reasonable. Namely, η ≥ 0 and q = (kBT/µ)−1 is not
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too negative if dealing with a presumed near-degenerate ensemble.

We show an example radial profile of the measured density distribution obtained

from the average of 10 absorption images in Fig. 4.4. The hold time used was 0.1 s.

Using the hybrid fitting function, we fit the data and extract a reduced temperature

and absolute temperature of 0.03 and 40 nK, respectively. The hybrid Fermi-Dirac

function is only meant to fit the density profile of the halo but it does so quite well,

and with sufficient precision to give reliable thermometry. Although not discussed

presently, we point the reader to Appendix C which discusses a potentially useful

technique to boost the accuracy of degenerate fermion thermometry.

It is also important to note that, for deeply degenerate Fermi gases, absolute

temperature enters into the fit of the data only in the far dilute thermal wings of

the density distribution. The use of a hybrid fitting function (4.8) was motivated by

this fact, and we found that a simple 3D Fermi-Dirac function consistently overes-

timated the density at large radii. We found empirically that the largest source of

uncertainty in the temperature estimate is from our measurement of the weak radial

trap frequency of the sheet beam, fs. Measurement noise introduces a much smaller

uncertainty, and uncertainty in the axial trap frequency introduces a similarly small

amount. Uncertainty in imaging beam parameters such as saturation intensity and

polarization impurity will introduce systematic errors onto the temperature estimate.

For the dilute halo atoms, error due to saturation effects may be neglected, and po-

larization purity is almost unity, so uncertainty due to it may be neglected. Finally,

at large radii, the sheet becomes slightly elliptical, and this in turn causes a small

systematic shift in measured temperatures to smaller values. This shift becomes more

apparent in thermal ensembles where the extent of the atomic distribution into these

elliptical regions is larger.
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Figure 4.4: Radial profile obtained from a set of 10 in-situ measurements of the atomic
density distribution after 0.1 s of holding time, and at a field of 100 mT. The profile
is fit with the hybrid Fermi-Dirac function (4.8), from which we extract the reduced
temperature and absolute temperature shown in the plot. The radial profile is the
column density in a single spin state.

Section 4.4

Fermi hole heating

4.4.1. Theory

In the far BCS limit, the lifetime of atoms in the trap is limited by the inelastic

scattering rate with background particles. In a single background scattering event, a

particle in the trap is ejected from the Fermi sea, leaving a hole behind. Assuming the

subsequent relaxation dynamics does not eject any additional particles, the tempera-
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ture increases slightly. For uniform one-body loss with lifetime τL, the single-particle

populations in state |k〉 and eigen-energy εk evolve according to ṅk = −nk/τL (k is a

set of good single-particle quantum numbers for the inhomogeneous trap). The total

atom number N =
∑

k nk and internal energy U =
∑

k nkεk subsequently evolve as

Ṅ = −N/τL and U̇ = −U/τL, respectively, where the single-particle loss equation

was used. We note that the populations nk need not be thermally distributed. There

are several equivalent methods of deriving the heating rate associated with this loss.

Perhaps the most insightful method relies on the observation that the internal energy

per particle u ≡ U/N is a conserved quantity. Interestingly, this is true even during

the elastic collisions that return the system from a non-equilibrium state to equilib-

rium after a hole is created. This fact implies that one can, at all times, meaningfully

associate an effective temperature to the ensemble as if it were in equilibrium at the

same energy and atom number. In our system, the thermodynamic variables used to

describe the internal energy per particle u are atom number N , temperature T , and

a set of trap parameters which we call V . We note that the only thermodynamic role

that V plays is in setting the energy scales for the single particle energy spectrum,

which is fixed for the measurements performed in this paper as we are not varying

the trap. The reversible mechanical work associated to trap deformations is therefore

set to zero. We thus treat N , U and T as the only time-varying quantities under

one-body loss, with the evolution u(t) = u0 and N(t) = N0e
−t/τL known, and that of

T (t) unknown. We can study the evolution T (t) in a grand canonical picture, where

a time-dependent chemical potential µ(t) is introduced and whose role is to fix N(t)

at each instant in time. We thus solve two equations

U(t)

N(t)
= u0 =

∫
dE g(E)Ef [E;µ(t), T (t)]∫
dE g(E)f [E;µ(t), T (t)]

(4.9)
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and

N(t) = N0e
−t/τL =

∫
dE g(E)f [E;µ(t), T (t)] (4.10)

for the two unknowns T (t) and µ(t), where f(E;µ, T ) = {exp[(E − µ)/kBT ]+1}−1 is

the usual Fermi-Dirac distribution function and g(E) the density of states. By taking

a time derivative of (4.9) and utilizing (4.10), it is possible to show that the evolution

is equivalent to a differential equation governing the temperature dynamics. This is

easier to demonstrate, however, by simply differentiating the internal energy function

U(N, T ) with respect to time:

U̇ = Ṅ(∂U/∂N)T + Ṫ (∂U/∂T )N (4.11)

We then use the first law of thermodynamics dU = TdS + µdN = T [dN(∂S/∂N)T +

dT (∂S/∂T )N ] + µdN to compute (∂U/∂N)T = µ + T (∂S/∂N)T . Next, the Maxwell

relation (∂S/∂N)T = −(∂µ/∂T )N is used to write (∂U/∂N)T = µ − T (∂µ/∂T )N .

Finally, identifying the heat capacity at constant atom number CN = (∂U/∂T )N , we

solve for the temperature derivative in (4.11):

Ṫ = −
T 2
(
∂
∂T

µ
T

)
N

+ u0

τLcN
(4.12)

with cN ≡ CN/N and the time-dependent forms for N(t) and U(t) were used. This

expression is in fact an extension of equation 5 in [61], which was derived using energy

balance considerations, to arbitrary temperatures and inhomogeneous traps.

To quantitatively motivate the need, in certain experiments, to maintain low tem-

peratures for long times, we briefly draw connection to the potential experiments

performed in the BCS limit, which typically rely on maintaining a temperature be-

low the critical temperature for pairing. Pairing can occur below Gor’kov’s critical

temperature [78], kBTc ≈ 0.277µ exp(−πλ/2), with λ = 1/kF |a| the interaction pa-
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rameter. Equating this expression to kBT gives the threshold reduced temperature

above which pairing cannot occur, i.e.

(
kBT

µ

)
max

≡ 0.277 exp(−πλ/2) (4.13)

Even if initially T < Tc, hole heating will drive the system temperature and the critical

temperature towards each other until eventually T = Tc. Using Gor’kov’s expression,

we write kBT (tc)/µ(tc) ≡ 0.277 exp[−πλ(tc)/2], defining the time tc at which the

BCS superfluid is completely destroyed and the temperature begins to exceed the

critical temperature. We note that tc depends on the initial interaction parameter

λ(t = 0) ≡ λ0, and that the critical temperature also inherits its time-dependence

from the one-body loss. Furthermore, we must assume that the BCS pairing gap

remains small relative to the Fermi energy to justify the use of non-interacting model

of the hole-heating rate, which will inevitably break down when λ0 → 0.

We emphasize now the role the halo plays in maintaining low temperatures for

long periods of time. First, the large density of states offered by the broad sheet helps

fermions disperse external energy imparted into the system into the closely spaced

energy levels. In other words, the low-density halo has a larger specific heat than the

deeply-degenerate ring and can serve as an efficient heat sink, lowering the overall

heating rate. Secondly, the halo acts as a particle reservoir for the ring-dimple, since

the global chemical potential is only weakly dependent on the atom number when a

substantial halo is present. Intuitively, any atom ejected from the ring-dimple can be

“replenished” by an atom in the halo. This in turn retains large densities in the ring-

dimple region for longer periods of time. Combined, these two effects help maintain a

deeply degenerate Fermi gas, especially in the ring-dimple region, for times exceeding

the trap lifetime.

In comparison, experiments performed in a “bare” ring, i.e without a halo present,
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Figure 4.5: a) Predicted initial heating rate (see text) versus atom number relative
to the dimple capacity. We show the point where the ring dimple is just filled (blue
circle) and the conditions used in the experiment (blue square). b) Time taken to
heat to the critical temperature for different initial values of the interaction parameter
λ0, and with τL = 25 seconds. In both plots, kBT

µ
|t=0 = 0.03.

are likely to suffer from unacceptable heating rates. This may become particularly

apparent in experiments utilizing a blue-detuned, repulsive ring beam, where the halo

population would typically be absent or separated from the superfluid population,

unless the potential is carefully tailored to make this possible. Blue-detuned traps

have advantageous characteristics for some experiments, but the limits imposed by
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hole-heating will be a much greater problem for experiments requiring many seconds

to perform.

The dependence of the heating rate on atom number is in fact strongly dependent

on the distribution of the fermions in the trap. In particular, the heating rate becomes

noticeably suppressed as fermions begin overfilling the ring. We demonstrate this by

numerically computing the initial heating rate as a function of atom number using

equation (4.12) and the 3D model of the trap density of states. To this end, it is

insightful to introduce the “dimple capacity” ND ≡
∫ V0,r

0
g3D(E)dE, defined as the

number of ideal fermion states with energy below the ring depth V0,r. In the “bare

ring” scenario, with N ≤ ND, the atoms are confined to the ring-shaped region of

lowest potential, while for N > ND, atoms spill over into the broad harmonic sheet

potential and populate a dilute “halo”. Fig. 4.5 shows the results of our computations.

The upper plot shows the initial dimensionless heating rate Γ0 ≡ τL
d
dt
kBT
µ
|t=0, when

kBT
µ
|t=0 = 0.03, as a function of N/ND. We see a sharp fall-off in this rate as the

dimple fills up and eventually becomes overfilled, at which point the Fermi energy

becomes only weakly dependent on the atom number and the halo becomes populated.

For this sheet trap geometry the heating rate approaches a floor of around 0.1 when

there are ten times more atoms in the halo than in the dimple, and there is negligible

benefit from increasing the halo population further.

The impact of the reduced heating rate is evident in the lower plot in Fig. 4.5,

which shows the time taken, tc, for the system to heat from kBT/µ = 0.03 to the

(reduced) critical temperature as a function of the same relative atom number N/ND

and a 25 second vacuum lifetime. The various curves represent different values of the

interaction parameter, λ0. The plots for λ0 > 1 are not shown, because they already

begin at T & Tc. Limits imposed by hole-heating rates clearly become quite restrictive

for weakly interacting systems, but can be mitigated substantially by allowing the
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ring to be overfilled.

4.4.2. Experiment

Our experimental apparatus is designed to produce ultracold gases of lithium atoms

in highly configurable optical dipole traps. Lithium is a natural choice for these

experiments because it has a fermionic isotope (6Li) with high natural abundance, a

broad Feshbach resonance, and an unusually stable and long lived molecular state.

After initial cooling and capture using a 2DMOT, 3DMOT, and crossed-beam optical

dipole trap, we use a movable optical trap to transport 106 atoms to the center of a

glass cell located between vertically oriented confocal objective lenses. Magnet coils

surrounding the cell can generate a nearly uniform magnetic field of up to 108 mT.

We prepare the 6Li atoms in an equal spin mixture of the two lowest energy spin

states, for which there is a broad Feshbach resonance at 83.2 mT. For more detailed

information see Supplemental Material of Ref. [31]

The typical vacuum-limited lifetime of atoms in our glass cell experimental cham-

ber is at least one minute. To ensure we could clearly distinguish the effects of hole

heating from the effects of slow technical drifts in controlling the experimental con-

ditions, we deliberately reduced the trap lifetime to 25 seconds by shutting off the

ion pumps attached to the 3DMOT vacuum chamber and allowing the pressure in

the cell to reach a new equilibrium, pumped only by non-evaporable getters. Under

these conditions we evaporatively cooled an initial ensemble of ∼ 106 atoms near the

83.2 mT Feshbach resonance to a final, spin-balanced population of N = 3.5 × 104

total atoms. For this number of atoms, the Fermi energy is EF = kB × 1.1(1) µK,

computed from the 3D density of states of our numerically-modeled trap. The ring

and sheet powers were Pr = 1.3 mW and Ps = 50 mW, respectively. The axial and ra-

dial sheet trapping frequencies were measured using a parametric heating technique,

and cross-checked using our sheet beam optical model, to be fz = 1.6(1) kHz and
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fs = 41(2) Hz, respectively. Furthermore, our trap model predicts EF/Vevap = 0.95.

Figure 4.6: Reduced temperature versus time for an ideal Fermi gas in our trap
potential. Blue circles are experimental data for an over-filled ring dimple with N =
3.5×104 atoms at T/TF = 0.03. The lower filled curve (blue online) is the temperature
predicted by the model described in the text, with τL = 25 seconds and fs = 60(4)
Hz. The upper filled curve (red online) is the model’s predicted temperature for
N = 2.7 × 103 atoms in the same potential, which just barely fills the ring. The
black dotted lines show the threshold reduced temperatures (kBT/µ)max required for
pairing when λ0 = 1.0 (lower) and λ0 = 0.5 (upper) in the ring.

Next, to ensure atom loss was predominantly due to one-body background colli-

sions, and not due to rethermalizing collisions (discussed later) or parametric heat-

ing via trap vibrations, we recompressed the sheet immediately after evaporation to

roughly 2.5 times the minimum sheet power. This in turn approximately halved the

ratio EF/Vevap and increased the sheet trap frequencies by a factor of
√

2.5. We sub-
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sequently ramped the magnetic field adiabatically to 100 mT where the interaction

parameter 1/kF |a| ≈ 1.0. At this stage, T/TF ≈ 0.03. Here, we held the atoms in

the trap for varying amounts of time and took a set of absorption images to be used

for in-situ analysis of the local equation of state in the halo region. In particular, we

extracted the global reduced temperature, kBT/µ, using the hybrid fitting function

(4.8). The use of this hybrid fit function was justified a-posteriori since the ratio

kBT/~ωz . 1 for all hold times used, and dimensional crossover thus occurred in

regions of the halo where µ(r) ∼ ~ωz.

Fig. 4.6 shows the reduced temperatures measured in this configuration, for dif-

ferent holding times. For comparison, we also plot the predicted temperature profile

obtained by numerical integration of the heating rate equation (4.12), for the initial

conditions, estimated trap parameters, and vacuum lifetime in the experiment. The

theory and measurements agree to within the error shown in Fig. 4.6, which was esti-

mated from temperature fits using the upper and lower bounds of the sheet radial trap

frequency, which is the dominant source of uncertainty. The filled region in the theo-

retical curve is obtained using the same radial sheet frequency uncertainty, which after

recompression is about 4 Hz. By comparison, this uncertainty has a much smaller

effect on the theoretical heating curve than the experimental one. In Fig. 4.6 we also

show the predicted temperature increase for the bare ring with N = ND ≈ 2.7× 103

atoms in this potential. The effects of hole-heating on the system temperature are

significantly greater for a bare ring due to the reduced heat capacity per particle. In

either case, hole heating also sets a practical limit on the lowest achievable T/TF ,

due to both the finite state preparation time used in the experiment and the balance

between the thermalization rate and hole-heating rate. This window of preparation

time is narrower in the bare-ring configuration however, since the heating rate is

roughly twice that of the ring-dimple for all hold times shown in Fig. 4.6.
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Additionally, we plot the time-dependent threshold reduced temperatures, given

by the R.H.S. of equation (4.13), in Fig. 4.6 for λ0 = 1.0 and λ0 = 0.5. tc can be iden-

tified as the time at which the threshold reduced temperature intersects the reduced

temperature curve. Clearly, a ring-dimple configuration can offer a substantially

larger (more than twice as large) window of time to perform BCS-limit experiments

compared to a bare-ring configuration. This could be especially important in an ex-

perimental apparatus with limited vacuum lifetime, or for experiments attempting to

probe increasing 1/kF |a| limits.

Because our temperature measurement method involves a fit to the halo atoms,

whose broad extent into the harmonic sheet potential makes in-situ thermometry

convenient, we did not obtain measurements of the temperature of atoms in a bare

ring, as some other method of thermometry would be required to obtain data on

the heating rate in that configuration. One alternative we may eventually employ is

to adiabatically deform the trap into a harmonic potential, then relate temperature

measurements in that configuration to the temperature of the bare ring by conserva-

tion of entropy (see, for example, Refs. [79, 80]). This technique is substantially more

complex and involves more potential sources of error than extracting the tempera-

ture from a fit to the halo, however. The utility that a halo offers for temperature

measurements in these kinds of fermionic systems should not be overlooked.

Section 4.5

Thermalization and Loss

In the idealized scenario described above, the equilibrium state after the ejection of

an atom by a background collision is still a mostly-filled Fermi sea, and subsequent

elastic collisions within the system will tend to repopulate the empty state. In the

simplest case, this occurs when two atoms at the Fermi level scatter (Pauli blocking
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suppresses scattering in the Fermi sea), one drops in energy to fill the empty state

and the other is promoted to an energy ε ≥ EF , in something like an Auger process.

If ε ≥ Vevap, the excited atom can escape from the trap, and the new equilibrium is

a filled Fermi sea with N − 2 atoms. This loss of an additional atom always occurs

(at T = 0) for Vevap = EF , and the probability decreases to zero when Vevap = 2EF ,

since the maximum scattering energy is 2EF .

More generally, the additional loss above the background rate will depend on other

quantities that may include the ratio EF/Vevap, the elastic collision rate, temperature,

and conserved quantities pertaining to the trap potential. Experimentally we observed

that the initial loss rate was three times the background rate when we did not increase

the sheet depth after evaporation. This can occur if fermions scattered via the Auger

process (with energy up to 2EF ) scatter off another fermion and in turn excite another

fermion to an energy above the Fermi level (up to 1.5EF ), which can also escape if its

energy is above Vevap. This process can repeat if one or both of these atoms remain

in the trap long enough. Thus, a single background collision in our ring-dimple trap

may seed a cascade of energy from a single highly excited “Auger” fermion to a

state of many weakly excited fermions above the Fermi level, some of which may

escape the trap. A non-trivial trap geometry can make the re-equilibration dynamics

quite complicated, but qualitatively we would expect modifications to the loss and

heating rates especially for EF ≈ Vevap. In this case the system would typically

experience increased initial loss, with high energy atoms being lost from the trap,

keeping the temperature low but causing the Fermi energy to drop rapidly. The loss

rate would also become time dependent, and asymptotically approach the vacuum-

limited loss rate as the Fermi energy drops well below the evaporation depth. These

re-equilibration dynamics in ring-shaped systems are interesting in their own right,

and further experimental and theoretical investigation is warranted.
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Section 4.6

Adiabatic Cooling/Heating

Adiabatically ramping the scattering strength from the BCS limit to the weakly inter-

acting BEC limit causes the system temperature to increase. This is a consequence of

entropy and atom number being constant for such a ramp. If expressions are known

for the entropy in both regimes, one may in theory enforce entropy conservation to

extract a heating/cooling factor attained during the ramp. In the spirit of [60], we

compute the entropy as a function of temperature, numerically, for a fixed atom num-

ber in both regimes, and invert the resulting entropy-conservation equation to find

the heating factor.

The entropy may be universally computed as

S(N, T ) = logZ(µ, T ) +
U(µ, T )− µN

kBT
(4.14)

with µ = µ(N, T ), Z the grand canonical partition function and U the internal energy.

We assume the trap parameters, which define the extensive thermodynamic volume

and intensive trap depths and aspect ratios, are fixed. The quantities Z and U may

each be calculated with knowledge of the density of states, while µ is computed by

equation of state for the atom number. It therefore is a matter of computing the

appropriate density of states in each regime.

The 3D DoS for ideal fermions is given by

gF (E) = 2× 4πm

(2π~)3

∫
V (r)≤E

d3r
√

2m[E − V (r)] (4.15)

which one may have to compute numerically if V (r) is complicated. In our case,

the optical potential is formed by the intersection of a vertically propagating ring-
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shaped beam and a broad horizontally propagating sheet beam. The full potential

V (r) includes gravity as well. The DoS for a weakly interacting BEC is slightly less

straightforward. One begins with the Bogoliubov dispersion relation in the local-

density approximation [60]

εb(r, p) =


√

p2

2mmol

{
p2

2mmol
+ 2[µ− V (r)]

}
p2

2mmol
+ V (r)− µ

(4.16)

where we have used the Thomas-Fermi approximation to express the condensate

density as gncond(r) = µ − V (r) ≡ µ(r). This dispersion may be inserted into the

density of states integral

gB(E) =
1

(2π~)3

∫∫
d3rd3p δ [E − εb(r, p)] (4.17)

which is then broken into two pieces, corresponding to the Thomas-Fermi region and

its exterior. Carrying out the integrations explicitly gives

(2π~)3

4πm
√

2m
gB(E) = E

∫
µ(r)≥0

d3r

√√
µ(r)2 + E2 − µ(r)

µ(r)2 + E2

+

∫
0<−µ(r)≤E

d3r
√
E + µ(r)

It is important to note that here the energy E is measured above the chemical po-

tential, as the Bogoliubov dispersion relation was obtained by diagonalizing Ĥ−µN̂ .

The density of states is sufficient to compute the relevant thermodynamic quantities

in the weakly interacting BEC limit. Importantly, one may compute the BEC en-

tropy and equate it to the BCS entropy to obtain the adiabatic heating factor during

a ramp from the BCS to BEC limit. This heating factor sets practical limitations on

the detecting superfluid coherence on the mBEC side of resonance.
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For completeness we give the relevant thermodynamic formulae:

logZF = −
∫ ∞

0

dE gF (E) log
[
1 + e−(E−µ)/kBT

]
(4.18)

NF =

∫ ∞
0

dE gF (E)
1

e(E−µ)/kBT + 1
(4.19)

UF =

∫ ∞
0

dE gF (E)
E

e(E−µ)/kBT + 1
(4.20)

logZB =

∫ ∞
0

dE gB(E, µ) log
(
1− e−E/kBT

)
(4.21)

NB =

∫ ∞
0

dE gB(E, µ)
1

eE/kBT − 1
+Ncond (4.22)

UB =

∫ ∞
0

dE gB(E, µ)
E

eE/kBT − 1
(4.23)

Then, from equation (4.14) we may, equation the fermionic and molecular bosonic

entropies

SB(N, TmBEC) = SF (N, TBCS), (4.24)

which describes the adiabatic connection for a ramp from the BCS to BEC limit. One

may solve for TmBEC , the final temperature in the mBEC limit, as a function of the

initial TBCS, the initial BCS temperature. We plot the entropies in the mBEC and

BCS limits in figure 4.7 for a system of 20, 000 atoms in the trap described above.

Due to the flatness of the fermionic entropy (red dashed line) above 250 nK, the final

mBEC temperature is roughly constant as long as the atom number is fixed. Due to

the hole-induced loss and heating, however, the shape of these entropy plots changes
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Figure 4.7: Entropy per particle as a function of temperature for the BEC (blue-solid
line) and BCS (red-dashed line) regimes, with fixed N = 20, 000.

over time, and we will discuss the impacts below.

In addition to the above thermodynamic relations, we may also consider the con-

densed fraction of molecules present in the mBEC regime. Since the local con-

densate density ncond is defined by the Thomas-Fermi relation gncond(r) = µ −

V (r), we can define the condensed molecular number within some region Ω of space

Ncond(Ω) =
∫

Ω
d3r ncond(r). The condensed fraction of molecules is then fcond(Ω) =

Ncond(Ω)/Ntotal(Ω).

It is important to notice that, for the sake of interferometric detection, the con-

densate fraction fcond before ballistic expansion should be sufficiently non-zero, at
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Figure 4.8: Top: Final relative temperature, Tfinal/Tc, after holding for a given
time in the BCS limit and adiabatically ramping back to the mBEC limit. Bottom:
Final molecular condensate fraction, fcond, after the same process. The initial BCS
temperature is 10 nK and hole-heating drives this temperature up over the holding
time. Blue x markers corresponds to an initial population of 20000 atoms, while red
+ markers corresponds to 1500.

least in the regions of the trap of interest (i.e. the ring dimple region). In some

of the early experiments performed in this thesis and in that of [31] and [65], sig-

natures of BCS superfluidity are detected interferometrically in time-of-flight (ToF)

expansion after an adiabatic ramp to the mBEC side of resonance. Due to Fermi hole

heating, there is a finite amount of time one has to perform BCS-side experiments be-

fore the adiabatic BCS-to-mBEC ramp heating depletes, or substantially reduces, the

molecular condensate. To predict the upper limits on BCS-side experiment time, we
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combine the predictions for the time-dependent BCS heating rate (4.12) with the adi-

abatic heating factor modelled using the BCS and mBEC entropies. Namely, we solve

(4.24) for the final mBEC temperatures as a function of the initial time-dependent

BCS temperature and atom number obatined from the hole-heating equations. We

plot in figure 4.8 the final temperatures and condensate fractions in the ring-shaped

region of highest density after an adiabatic ramp to the mBEC side of resonance, as

a function of the BCS hold time. Furthermore, we distinguish the cases of a ring-

dimple and a bare ring by studying the adabatic heating for a initial populations of

N = 20, 000 and 1, 500 atoms, respectively. We see that the condensate fraction for

the ring-dimple system is still substantial even for hold times thold ∼ τL/2, while that

of the bare-ring is practically zero at this time. This demonstrates numerically the ca-

pability of our system to perform bosonic interferometric detection after seconds-long

experiments in the BCS limit, as long as one operates in the ring-dimple configration.

One may still have to worry about decreased phase coherence as atom loss drives the

system to lower dimensions and phase fluctuations become more prominent, which is

an interesting topic for several reasons, but not discussed presently.

Section 4.7

Conclusion

We have demonstrated that one-body loss in a ring-shaped ensemble of ultracold

fermions causes heating. We predicted the rate of temperature rise using a model that

accounted for hole-induced heating, and have argued that this heating can be reduced

by a particular choice of trap configuration. In particular, maintaining a large, dilute

atomic background in contact with the ring helps to dissipate energy imparted into the

ensemble via background collisions, which in turn keeps the temperature low for longer

periods of time. A high quality vacuum is still essential to ensure that timescales
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for heating are long enough to permit low-energy long-wavelength experiments on

superfluids with low critical temperatures, but there are clear advantages to consider

forgoing the simplicity of a bare-ring configuration in favor of the more complex but

useful ring-dimple configuration.
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Chapter 5

Detection of Persistent Currents

The experiment performed in Chap. 7 hinged on the ability to properly measure both

the sign and magnitude of spontaneous persistent currents formed after quenching an

degenerate ensemble of fermions into a superfluid state. This chapter gives important

theoretical and experimental background for describing how the in-trap momentum

distribution can be mapped in various ways onto observable density distributions.

In particular, we will describe how the winding number -the observable quantifying

the degree of quantized circulation of a persistent current around some closed path-

can be measured using several different techniques. This chapter also presents the

methods used to reliably perform such measurements, and discusses complications to

their successful implementation for the given experimental configuration.

Section 5.1

Mapping Momentum onto Density

Experiments probing the signatures of superfluidity in ultracold gases very typically

rely on obtaining information about the superfluid’s flow properties. In multiply

connected geometries such as the ones employed in this work, superfluidity can man-

ifest itself in metastable states of quantized circulation. We are typically interested
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in obtaining measurements of not just the total amount of flow around some closed

path (i.e. global flow properties/winding numbers), but also local variations in the

superfluid velocity field due to, for instance, thermal phase fluctuations or a locally

introduced density perturbation. As flow properties are typically difficult to observe

by taking in-situ measurements, time-of-flight (ToF) techniques are often employed

as a means of mapping momentum distributions into observable density variations.

We note however that Bragg or Raman techniques may be used to obtain informa-

tion about the momentum distribution and correlation functions, although we do

not discuss those techniques here [81–83]. In standard ToF, information about the

initial momentum distribution of the ensemble is obtained after some amount of

mostly-free ballistic expansion. For sufficiently long time of flight tToF, and in the

non-interacting limit, the initial in-situ momentum distribution n0(k) becomes pro-

portional to the instantaneous density distribution ρ(x, tToF); The two are related by

n0(k) ∼ ρ(x = ~ktToF/m). Furthermore, the momentum distribution is related to the

density distribution through a Fourier transform. Thus, in this limit, there is a direct

connection between the observable density and the desired momentum distribution

in the trap. For shorter times of flight, there is still important information that can

be extracted from the density profile after ToF, as we will discuss later in this chap-

ter. However, the density distribution will not directly reflect the in-trap momentum

distribution as it does in the long-time limit.

Section 5.2

Techniques for Detecting Persistent Currents

There are two main techniques used to detect persistent currents: The vortex core-

size measurement, and the interferometric detection method. Both typically rely on

a stage of ballistic expansion in the weakly interacting molecular BEC (mBEC) limit,
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although one may still have sufficient signal to perform the latter technique on weakly

interacting Cooper pairs in the BCS limit. We focus on mBEC ballistic expansion

here.

Vortex core size measurement. With the vortex core-size measurement, the

magnitude of a persistent current is obtained from the size of the vortex core after

some amount of ballistic ToF [84]. In the far-field expansion limit, the density distri-

bution is related to the in-situ momentum distribution by a simple Fourier transform.

A persistent current state in a smooth, narrow ring of radius R and width w � R,

is represented in polar coordinates as ψ`(r, θ) = f`(
r−R
w

) exp(i`θ) where the z coordi-

nate has been neglected for simplicity. Although technically the amplitude function

f` generally depends on `, its dependence is typically very weak for small values of

`. The Fourier transform of ψ` is related to J`(x), the cylindrical Bessel function of

order `:

φ(k, θk) = ei`θk
∫ ∞

0

drrf`

(
r −R
w

)
J`(kr)

w�R∼ ei`θkJ`(kR) (5.1)

The complex square of this expression give the in-situ momentum distribution of the

persistent current. In ToF, a non-zero winding number ` will reveal itself as density

depletion in the vortex core around r = 0. For some fixed ToF tToF & mR2/~, the size

of this core will grow with increasing `, as characterized by the ToF density distribu-

tion ρ(r, tToF) ∼ J2
` [mrR/(~tToF)], and the core size rcore ∼ ~tToF`/(mR). Measuring

this core size at some specific tToF and comparing to a pre-determined reference core

size for an ` = 1 persistent current at the same time allows the magnitude of the

winding number |`| to be obtained. It is important to note that no sign information

about the persistent flow can be obtained from measurements of this nature. Addi-

tionally, only the global features of the flow (i.e. winding number) can be extracted

from the vortex core size measurement.
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5.2.1. Interferometric Detection

We now discuss in detail the interferometric detection technique, which was utilized

extensively in the study of spontaneous current formation. While the magnitude of a

persistent current may be revealed by the size of the vortex core after sufficiently long

time of flight, extracting the sign of the current requires an alternative approach. A

phase-sensitive measurement, i.e. one that extracts the complete phase information

of the ensemble, is a commonly used technique for probing the flow of a persistent

current state. Specifically, these techniques utilize the phase coherence between the

superfluid ring and a suitably chosen reference superfluid to convert their respective

local phase differences into a physically observable density profiles [65, 85–87]. This

configuration can be engineered experimentally using the DMD, where either a target-

shaped trap or a double ring is projected onto the atoms, with one sub-trap serving

as the reference. The reference should be made to have as fixed and unchanging a

phase as possible, regardless of the experiment being performed.

When released into ballistic expansion, the superfluids expanding from each of the

sub-traps will begin to overlap and interfere coherently. The superfluid density ntot

can in general be written as

ntot = |ψ + ψref|2 (5.2)

= n+ nref + 2
√
nnref cos ∆φ (5.3)

where ψ, n are respectively the wavefunction and density of the “experiment” sub-

system, ψref and nref are respectively the reference wavefunction and density, and

∆φ is the phase difference between the two ensembles. The self-interference terms

can be difficult to interpret, and do not give straightforward insight into the phase

profile of the respective ensemble. The interference term, proportional to cos ∆φ,
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contains the relevant information about the phase profile of the experimental sub-

trap of interest, insofar as the phase difference ∆φ of the overlapping superfluids can

be straightforwardly mapped back onto the phase difference in the trap.

To extract meaningful information about the phase profile of one of the sub-

ensembles, there is an optimal time of ballistic expansion to perform the absorption

image. This time should be chosen long enough such that the sub-ensembles can in-

terfere substantially with each other, but short enough such that a given sub-ensemble

doesn’t self-interfere substantially. Additionally, the far-field expansion limit should

be avoided as the density distribution becomes isotropic and phase differences between

the sub-ensembles become too small to detect.

We can study the specific case of the double ring geometry used extensively in

the spontaneous currents experiment. In this scenario, we have two concentric rings

of inner radii r1 and r2 and equal widths w1 = w2 ≡ w (with r2 > r1 + w). The ring

widths roughly set the velocity scale at which the superfluid expands ballistically

in the radial direction: vr ≈ ~/(2mw) (The factor of 2 accounts for the molecular

pair mass). The sub-ensembles begin to interfere substantially at time tToF when

vrtToF ≈ (r2 − r1)/2 ≡ ∆r/2. This defines the optimal time scale tToF = mw∆r/~

at which phase differences can be meaningfully extracted interferometrically. Self-

interference becomes substantial at time t ≈ mwr̄/~, where r̄ = (r1 + r2)/2. For

the double ring configuration typically employed in our experiment, r1 = 6 µm,

r2 = 11 µm, and w = 3 µm. This gives tToF = 1.4 ms. This is roughly the same as

the time of flight typically used in the spontaneous current experiments to perform

interferometric detection of the winding number.

In a cylindrically-symmetric (not necessrily ring-shaped) trap, the expectation

value of the order parameter representing a low-lying metastable persistent cur-

rent state or vortex state with winding ` may be generally written as ψ`(r) =

87



5.2 Techniques Detection of Persistent Currents

√
n0,`(r, z)ei`θ, with density n0,` being a function of only the transverse degrees of

freedom. In the target or double ring trap configuration, we have additionally an

azimuthally-symmetric reference wavefunction, ψref (r) =
√
n0,ref (r, z). When the

trap and interactions are suddenly switched off, the atomic ensemble is projected onto

free particle eigenstates which propagate according to the corresponding free-particle

propagator. Due to angular momentum conservation, the time-evolved persistent

current wavefunction retains the same angular phase dependence, and can be writ-

ten Ψl(r, t) = [
√
n`(r, z, t)e

iφ`(r,z,t)]ei`θ for some time-dependent density n` and phase

φ`. This wavefunction will interfere with the time-evolved reference wavefunction,

Ψref (r, t) =
√
nref (r, z, t)eiφref (r,z,t), whose angular phase profile is flat but whose ra-

dial phase profile is in general not. The total density profile after time of flight t is

ntot
` (r, t) = |Ψ`(r, t) + Ψref (r, t)|2

= n`(r, z, t) + nref (r, z, t) + ...

2
√
n`(r, z, t)nref (r, z, t) cos [φ`(r, z, t)− φref (r, z, t) + `θ]

(5.4)

Thus, the interference results in a periodic modulation of the azimuthal density profile.

There are exactly ` maxima (or minima) present in the angular density profile for fixed

r. Sign information is revealed whenever there is a radial velocity mismatch between

the persistent current state and the reference state for non-zero `. This can be seen by

examining curves of maximum or minimum density, rc(θ), defined by
∂ntot

`

∂θ
|r=rc(θ) = 0.

This condition implies φ`(rc(θ), z, t)− φref (rc(θ), z, t) + `θ = mπ, with m an integer.

Even m describe the density maxima, while odd m the minima. Assuming a linear

radial phase difference between the persistent current and reference state (valid in

the near-to-mid field limit), a series of spiral arms emerge in the density profile, with

polar profile rc(θ) = r0(lθ + 2mπ) for some constant r0. Tracing a single spiral arm
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(labelled by integer m) around a full 2π revolution, a (signed) radial displacement

∆r = 2πr0` is observed. The radial distance between successive spirals (m and m+1)

is δr = 2πr0. Thus, the ratio of these two quantities, rounded to the nearest integer,

is the winding number `, with both magnitude and sign.

We can further isolate the interference (third) term in equation (5.4) by multi-

plying by e−imθ (with m 6= 0) and integrating from 0 to 2π. As the first two terms

in (5.4) are θ-independent, they integrate to 0. Meanwhile, the integration picks out

only terms with |m| = |`|. Explicitly, with ∆φ` ≡ φ` − φref , we find

c`,m ≡
1

2π

∫ 2π

0

ntot
` (r, t)e−imθdθ =

√
n`nref

(
δm,`e

i∆φ` + δm,−`e
−i∆φ`

)
(5.5)

which is zero for any |m| 6= |l|. Furthermore, when m = l, if we take m > 0 WLOG,

then the phase difference ∆φl(r, z, t) = arg cl,l(r, z, t) can be extracted. The sense of

the persistent current is also extractable via ∆φl(r, z, t); Since the phase difference is

approximately linear in the near-to-mid field limit, and ∆φl = ∆φ−l, then by fitting

a line to this phase profile, we identify the sign of the winding number with the sign

of the fit-extracted slope. The m = 0 case should be treated separately, since we

would have the additional non-interfering terms entering into the analysis. If ` 6= 0,

then an azimuthal average of the density profile will eliminate the interference term,

whereas if ` = 0 this term will remain unaffected, and the density profile is equal to

its azimuthal average. This azimuthally averaged comparison allows one to check for

an ` = 0 non-circulating state.

We can further model the expansion dynamics in the molecular BEC (mBEC)

limit by assuming an initial Thomas-Fermi distribution in each ring and assuming

the expansion occurs ballistically [88]. Then, the time-evolved wavefunction can be

obtained from the free-particle propagator acting on the initial wavefunction, which

essentially amount to performing a Fourier and inverse Fourier transform. Namely,
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if the initial wavefunction in sub-ring j and its momentum-space representation are

given by ψ
(j)
0 (r) and φ

(j)
0 (k) = F [ψ

(j)
0 ](k), respectively, then the time evolution is

obtained via

Ψ(j)(r, t) =

∫
dkφ

(j)
0 (k)e−i~k

2t/2m+ik·r = F−1{F [ψ
(j)
0 ](k)e−i~k

2t/2m}(r) (5.6)

In the Thomas-Fermi limit, the initial wavefunction within each sub-ring can be

written as ψ
(j)
0 (r) ∼

√
1− V (r)/µj exp(i`jθ), where where V is the ring potential,

typically of the form V (r) ∼ 1−exp[−2(r − rj)2/w2], µj is the chemical potential and

`j the winding number for sub-ring j. From earlier analysis, we have approximately

φ
(j)
0 (k, θk) ∼ exp(i`jθk)J`j(krj).

For long ToF t � mw2/~, a stationary phase analysis of the integral (5.6) with

rapidly oscillating phase function f(k) = ~k2t/(2m) + k · r reveals the asymptotic

behavior

Ψ(j)(r, t) ∼ 1

t3/2
φ

(j)
0

(mr

~t

)
eimr

2/(2~t). (5.7)

Due to the common radial phase factor between the two subrings, there is no ra-

dial velocity mismatch between the expanding condensates at long ToF. Therefore,

signatures of persistent currents in this limit show up only as azimuthal density mod-

ulations with frequency |`1 − `2|, superimposed upon vortex cores of size rcore ∼

tmin(|`1|, |`2|). Importantly, interferometric techniques do not reveal sign informa-

tion in this limit, but only magnitude. Additionally, the signal strength falls as t−3/2,

which makes detection even more difficult in this limit.

The appearance of spiral arms occurs in the near-to-mid field expansion regime.

If t0 ≡ mw2

~ ∼ 1.5 ms sets the expansion time scale for a ring of width w ∼ 2 µm,

then we expect to see spirals when 0 < t . t0. The fringe visibility and spacing is

also a function of the reference ensemble population and geometry. A tightly confined
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Figure 5.1: Simulation of a typical ` = 1 spiral interferogram showing expansion from
two concentric annuli at various times of flight. The outer (reference) ring has ` = 0
while the inner ring has ` = 1. Spirals start to become visible after about 0.5 ms
ToF, and the vortex core can also be seen in the two latter-most images.

reference ensemble will expand more rapidly than a weakly confined one, producing

spirals that are initially closely spaced together as the rapidly moving molecules ex-

pand, but grow apart during the expansion into the far field. Furthermore, the density

of molecules in the overlap region should be made to be as equal as possible amongst

the persistent current and reference ones, to ensure maximum spiral contrast. This

can be achieved by ensuring an equal population of molecules in each sub-ring before

expansion. Additionally, closely spaced spirals will be blurred by the imaging objec-

tive PSF (see figure 5.1 for a numerical simulation). While local phase information

can be measured in the near-field, variations in the position of the fringes may be
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difficult to detect if they occur on length scales at or beneath the imaging resolution.

Phase Fluctuations. Due to the possibility of phase fluctuations in tightly con-

fined rings with small atom number (below the limit for the phase-fluctuating conden-

sate regime), the contrast and/or connectivity of spirals may be noticeably reduced.

We can model phase fluctuations around the ring by assuming, when in this regime,

that the phase of the order parameter is a fluctuating quantity. That is, at each point

on the circumference of the ring, the phase field is decomposed as φ`(θ) = `θ+ δφ(θ).

The smooth non-fluctuating component encodes the phase winding ` of the super-

fluid. The fluctuating component δφ of the phase field is represented as a stochastic

Gaussian variable satisfying 〈δφ(θ)〉 = 0. Following the theory in [89–91], we can

expand the fluctuating phase field in terms of the small-amplitude phononic excita-

tions of the superfluid. In the long-wavelength limit, and in 1D for simplicity, we can

model phase fluctuations as

δφ(θ) =
1

π

√
C

lφ

∞∑
m=1

1

m
ξme

imθ + c.c (5.8)

where the phonon creation/annihilation operators were replaced with Gaussian vari-

ables with variance Nm, the Bose-Einstein distributed occupancy of mode m. The

long-wavelength behavior Nm ∼ 1/Em, with the phononic dispersion Em ∼ |m|. lφ is

the so-called thermal correlation length, quantifying the extent over which phase fluc-

tuations are correlated, and C the ring circumference. Finally, the ξm are standard

i.i.d. random variables. Due to the built-in single-valuedness of the expansion (5.8),

the phase fluctuations do not contribute to the winding number, which is set only by

the smooth non-fluctuating part 〈φ(θ)〉. For larger amplitude superfluid excitations,

we may expect phase-slips events to occur randomly due to these fluctuations, but

they do not appear in the linear phononic model.
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We show the results of simulating the phase fluctuating regime on the interfer-

ometric detection of a persistent current in Fig. 5.2. While it is also possible that

density fluctuations can impact the interferometric of a persistent current, we assume

that the condensate is robust enough that density fluctuations are heavily suppressed,

and that structure in the spiral fringes is predominantly due to phase fluctuations.

It is a goal of future experiment to measure these phase fluctuations, and in par-

ticular their onset, by utilizing the interferometric detection scheme. With a perfectly

flat and non-fluctuating phase reference, phase fluctuations in the “experiment” ring

appears as ripples in the spiral arms. These ripples thus encode important infor-

mation about the strength of phase fluctuations, and the distances over which those

fluctuations are correlated.

5.2.2. Experimental protocols for interferometric detection

Both the vortex core-size measurement and the interferometric detection technique

rely on a stage of (mostly) free ballistic expansion so that the momentum distribu-

tion is minimally altered during flight. To accomplish this, one may chose to either

adiabatically ramp the scattering length in ∼ 100 ms from a potentially large initial

value to the weakly attractive mBEC limit before release, or to utilize a magnetic

field “jump” to rapidly reduce the scattering length over ∼ 10 µs time scales before

release. The field jump technique preserves the pair momentum distribution, which

adjusts on much longer time scales compared to the two-body collisional time scale

[40, 92]. We discuss now the two approaches.

Adiabatic Ramp Technique. The adiabatic ramp technique, while most straight

forward to implement technically, is prone to complications. Three-body losses for

weakly interacting molecules set upper limits on the ramp times one may use before

release: One must be sure to ramp slow enough for the dynamics to remain adiabatic,
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Figure 5.2: 1.3 ms time evolution of the same in-situ double ring configuration as
in Fig. 5.1, but with phase fluctuations included, simulating the phase-fluctuating
regime. The interferograms have been convolved with a 1.5 µm point-spread function
to simulate the finite resolution of our imaging objective. The top row shows persis-
tent currents with winding number 1, and the bottom row with winding number 2.
We can see how thermal phase fluctuations, quantified by their correlation length lφ,
can play a very important role in the subsequent ToF dynamics, and can greatly di-
minish the signatures of the persistent current in the initial state. These fluctuations,
however, do not cause phase slips, and the winding number is still preserved despite
the ripples and breaks in the interference fringes. In this simulation, both the inner
and outer ring are fluctuating, although experimentally measuring the fluctuations
may require engineering the reference ensemble to be as smooth as possible.

while fast enough to avoid loss on the ramp time-scales. Losses are accelerated by

the fact that, for round-bottomed ring traps, the molecular condensate density can

become quite large, especially when the scattering length becomes small. This can
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Figure 5.3: Example measured interferograms obtained after ballistic expansion for
1.2 ms from a double ring configuration, and using the rapid ramp technique. From
left to right, the winding numbers are 0, 1, and 2. The ripples in the fringe patterns are
indicative of phase fluctuations in the in-situ phase profile of the superfluid, although
they do not destroy the topological properties of the persistent current.

be mitigated somewhat by using a wider, flatter ring to limit the density. On the

other hand, slightly faster ramps, which are still adiabatic with respect to the local

many-body thermodynamics, may not be adiabatic with respect to motion of bound

pairs or atoms within the trap. This is especially true with atoms present in the halo,

which may experience radial trap frequencies of only a few tens of hertz. Clearly

ramps on the order of a few tens of milliseconds are not sufficient for halo atoms

or molecules to wick into the ring dimple region and equilibrate. As a result, the

pre-release distribution won’t be in global thermodynamic equilibrium, and so care

should be taken when interpreting results from ballistic expansion. Additionally, we

found that adiabatic ramps to the mBEC limit affected the stability of persistent

currents, and often times the wicking of normal-component atoms or pairs into the

ring dimple during the ramp caused supercurrent phase slip events. This complicated

initial efforts to measure the statistics of spontaneous current formation.

We discovered that even for mBEC ramps that are adiabatic with respect to

motion in the broad sheet, the rotational state of the halo can significantly impact

the persistent current state in the ring after the ramp. This is because the chemical
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potential decreases as molecules bind more tightly together, which causes these pairs

to wick into the ring region during the ramp. As angular momentum is conserved

in this process, and the moment of inertia is substantially reduced by the end of the

ramp, the average angular momentum per particle in the ring is greatly increased.

This is turn enhances the likelihood of a phase slip causing a vortex, or vortices, to

penetrate into the ring. Thus, if a persistent current is prepared in a well-defined

state near the Feshbach resonance, it may wind up to a larger rotational state after a

slow ramp to the mBEC limit if there is even a small amount of angular momentum

in the halo.

Rapid Ramp Technique. The rapid field jump technique mitigates many of the

above issues, and we will now discuss some of the important criteria for its successful

implementation. The rapid ramp technique relies on a separation of important time

scales in the system. Namely, the jump must be adiabatic with respect to two-body

time scales, but fast enough to project the many-body momentum distribution onto

a state of weakly interacting pairs which can expand freely. The two body-scale is

typically set by the inverse energy gap between the bound Feshbach molecular state

and the zero-energy free two-particle state at the Feshbach resonance. A Landau-

Zener analysis reveals that transitions between this molecular state and an unbound

pair are suppressed when the combination An/Ḃ � 1, where n is the density and A

depends on the details of the Feshbach coupling [40]. The key point is that molecules

are preserved when the density is high, reflecting the enhanced likelihood for two free

atoms to pair up, or when the magnetic field sweep rate Ḃ is small. The requirement

that we preserve the pair momentum distribution, however, means that the time

taken to leave the strongly interacting regime, approximately ∆B/Ḃ, should be small

compared to the inverse scattering rate of pairs in the trap, which scales as (EF/h)−1

near the Feshbach resonance. We found empirically that, for field jumps rates of 10
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G/µs, the pair conversion efficiencies were about 80% for typical densities of around 1

atom/µm3 (See Appendix A). Due to such high efficiencies, we utilized the rapid ramp

technique in most experiments requiring ToF analysis of the momentum distribution,

and in interferometric detection of the winding number.

Several difficulties, however, presented themselves when optimizing the rapid ramp

technique for our system, which we will discuss now. The first difficulty was related

to the technical implementation of a rapid field jump. The field jump is accomplished

by connecting sub-coils in the science cell coil assembly to dedicated power supplies

and switching circuitry. This enabled one or both of the sub-coils to be switched

off independently, and the magnetic field to be jumped quickly. Large transiently

induced currents in the sub-coils from the rapid switching of the so-called “jump

coil”, however, caused oscillations in the magnetic field that only decayed on tens-

of-millisecond time scales. To circumvent this issue, we performed coil switching

“acrobatics”, using the IGBT based switches on each sub-coil, as follows:

• 1) Simultaneously switch off both the jump-coil and main science cell coil to

allow current and transients to rapidly decay.

• 2) Some small amount of time tso later switch back on the main science cell coil

to allow current back through this sub-coil

If timed properly, we found we could stabilize the current in the science cell coil after

the jump coil had been switched off after only 100 µs, as opposed to several ms. The

optimal switch-on time tso for the science cell coils was empirically determined to

follow a linear trend in the jump-coil current:

tso = 9.1 µs + 2.28
µs

amp
IJC (5.9)

where IJC is the jump-coil current before switch-off. The currents in each sub-coil
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Figure 5.4: Oscilloscope traces showing the currents in the science cell (yellow trace)
and jump (blue trace) coils for various switching methods. (Top) A simple switch-off
of the jump-coil causes transients in the science cell coil that decay in about 20 ms,
which is far too long for a successful rapid field ramp. (Middle) Both switches are
shut off and the current in each coil decays rapidly. (Bottom) Using the field-jump
acrobatics described in the text, we can null out the induced transients in the science
cell coil after only 50 µs and in the jump-coil after only a few hundred µs.

were monitored using hall current sensors, which aided in determining the proper

timings to switch the science cell coils back on.
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The second difficulty was due to the slight misalignment of the magnetic field

centers of each sub-coil; The field center when run at the same current together

was different to the field center of a singly operated sub-coil. This in turn caused a

shift in the magnetic field center during the field jump. As a result, the atoms and

molecules would drift towards the new field center during ballistic expansion. Since

the magnetic field gradient experience by the molecules was roughly constant, the

relative motion of the molecules was preserved during time of flight, and only the

center of mass position varied. This meant that the in-situ momentum distribution

could still be faithfully measured in ToF, despite a shift in the center of mass position

of the molecular cloud.

In its present configuration, the magnet coils only allow for jumps between fields

separated by about 200 G. For jumps starting from fields below the Feshbach reso-

nance, the final field ends up being small enough (. 600 G) such that the molecules

begin to bind very tightly together and shift out of resonance of the imaging beam.

Jumps from at or slightly above the Feshbach resonance, however, conveniently place

the final field at around 650 G which is typically used for mBEC ballistic expansion.

This was indeed the configuration used in the experiment detailed in the next chapter,

which utilized a jump from around 850 G to 650 G to initiate free ballistic expansion.

Interferometric detection, in conjunction with the rapid field jump technique, al-

lows one to access the instantaneous phase profile of the order parameter over the

entire BEC-BCS crossover. This is particularly enticing for experiments intending

to probe the dynamics of fluctuating phase-coherent quantities, such as the cooper

pairing field near the BCS transition. Sign information of persistent currents also

opens to door to performing experiments on spontaneous current formation, where

the statistics of the corresponding winding numbers shed light onto dynamical uni-

versality. In particular, the interferometric detection scheme was crucial for probing
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Figure 5.5: Time evolution of an ` = 0 current state undergoing ballistic expansion.
The expansion was initiated after a rapid field jump from the Feshbach resonance at
83 mT to a final field of 65 mT, which preserve the initial momentum distribution of
the pairs at unitarity. Detectable interference features emerge after roughly 1 ms of
ToF, and clear resolvable fringes at around 1.4 ms. Each image is a single realization,
although with sufficient phase stability between the two sub-traps, one may build up
averages of many interferograms to assess the phase profile encoded by the fringes
more precisely.

biases in the winding number statistics due to, for instance, a non-zero rotation in

the normal fluid above the BCS transition.
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Chapter 6

The Kibble-Zurek Mechanism

The Kibble-Zurek Mechanism (KZM) is a paradigmatic model of non-equilibrium

phase transitions. It predicts a scaling law for the density of defects nucleated dur-

ing a quench across a second-order phase transition. The theory originated from

efforts by T. Kibble to describe large-scale cosmological structures that were pur-

ported to have been created after a rapid cooling phase following the big bang [7].

Building upon Kibble’s insights, W. Zurek then attempted to bridge a connection

between Kibble’s predictions in a cosmological setting to experiments performed on

superfluid Helium [8]. The notion of universality -that microscopically distinct sys-

tem can behave strikingly similarly close to a second-order phase transition- provides

such a bridge. The key prediction of the KZM is that the density of defects formed

as a system is dynamically quenched through its critical point is governed by a set

of universal properties pertaining to the static (equilibrium) phase transition. We

will discuss how defects are created by invoking a simple adiabatic-impulse-adiabatic

approximation, and how these defects may subsequently “fuse” into topologically

protected metastable states with observable and measurable properties. While heavy

focus will be placed on ring-shaped geometries here, which support topologically pro-

tected states of quantized flow called persistent currents, more generally we hope to
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understand how dynamically quenching from a disordered state into an ordered state

create spontaneous superfluid excitations, whose properties meaningfully connect to

the properties encoding the description of the corresponding phase transition. To

this end we study a model of spontaneously-formed persistent currents based off of a

stochastic Landau-Ginzburg model, with the goal of understanding how variable-rate

quenches affects the statistics of winding number formation in superfluid rings.

Section 6.1

Homogeneous KZM

6.1.1. Correlation Functions

To understand the Kibble-Zurek mechanism, the notion of a correlation function, and

its associated correlation length, is needed. The correlation length -the quantity that

sets the average extent of an internally-correlated domain during the quench- is a

single length scale associated to the two-point equilibrium correlation function. In

KZ theory, the order parameter is assumed to take on a fixed an well-defined value

within the correlation region.

In a uniform and isotropic system, this correlation function is given by

G(r) = 〈δψ(r)δψ(0)〉 − 〈δψ(0)〉2 (6.1)

where δψ(r) ≡ ψ(r) − 〈ψ(r)〉 measures deviations from the expected value of the

order parameter ψ, r is distance, and angle brackets denote thermal averaging. Near

a second order phase transition, the correlation function has an asymptotic scaling

form

G(r) ∼ r−se−r/ξ (6.2)

with some exponent s that depends on the system dimension and length scale ξ, known
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as the correlation length. Although we do not derive this result here, it is a well-known

consequence of the fluctuation-dissipation theorem that relates statistical fluctuations

in some thermodynamic quantity to its response to small external perturbations [93].

The correlation length ξ sets the length scale over which fluctuations are correlated,

and depends on the distance to the transition, ε ≡ 1− T/Tc. It scales as

ξ ∼ |ε|−ν(1 + c|ε|ν′ + ...) (6.3)

which is the scaling hypothesis for the correlation length with leading-order critical

exponent ν. Non-universal higher-order corrections to this scaling hypothesis are

captured by the additional terms in the series.

In a non-equilibrium setting, the correlation functions become time-dependent,

and should in general be written as

G(r; t, t′) = 〈δψ(r, t)δψ(0, t′)〉 − 〈δψ(r, t)〉〈δψ(0, t′)〉 (6.4)

for potentially distinct times t and t′. Here, angle brackets in general do not denote

equilibrium ensemble averaging but rather averaging over the stochastic realizations

of the order parameter ψ. The equal-time correlation function (t = t′) need not have

the same spatial scaling form as (6.2), as we will see in subsequent sections. However,

in an infinite and uniform system, we can typically write an equal-time correlation

function with scaling form

G(r; t, t) ≡ f(r/ξ, t/τ) (6.5)

with length and time scales ξ and τ , respectively. Near the transition, the two are

typically related by τ ∼ ξz, defining the dynamical exponent z. This relation is
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rooted in causality arguments, which say that the correlations require a finite and

non-zero amount of time to be established. Equivalently, there is a maximal velocity

at which fluctuations can propagate (typically determined by the sound speed) and

communication of these fluctuations can only happen within the sonic horizon set by

the corresponding speed of sound [8, 94].

6.1.2. KZM Basics

A second order phase transition, which occurs at a critical temperature Tc, is char-

acterized by a diverging correlation length, ξ and relaxation time τ as the reduced

temperature ε ≡ 1 − T/Tc approaches zero. For a homogeneous system, the re-

duced temperature may be uniformly swept across the transition in a linear fashion,

ε(t) = t/tq with tq the quench time. This may be done by varying the temperature,

the critical temperature, or both, in some linear fashion. The details of experimen-

tally implementing such a linear quench are discussed in a subsequent section. Near

the transition, the correlation length is hypothesized to diverge at leading order as

ξ(ε) = ξ0|ε|−ν (6.6)

with some microscopic length-scale ξ0 and critical exponent ν, while the relaxation

time is likewise hypothesized to diverge as

τ(ε) = τ0|ε|−νz = τ0

(
ξ

ξ0

)z
(6.7)

with microscopic time-scale τ0 and dynamical exponent z. Equations (6.6) and (6.7)

implicitly assume the thermodynamic limit has been taken, but in a real experiment,

neither of these quantities possess such singular behavior; Finite-size effects smooth

out the transition, and complicate the interpretation of such simple scaling laws. Fur-
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thermore, the correlation and response functions from which the correlation length

and relaxation time are derived can be in general quite complex, perhaps even pos-

sessing many more relevant scales. We simply neglect finite-size effects for the time

being, but revisit their effects in the subsequent sections.

The correlation length and relaxation time inherit a time-dependence through

the externally imposed changes to the reduced temperature ε(t). The fluctuating

order parameter, i.e. the coherent bosonic field associated to the Landau-Ginzburg

action [95, 96], can only respond to changes in ε(t) if it can relax to equilibrium on

a sufficiently fast timescale; The order parameter follows the quench adiabatically

only when τ [ε(t)] . |ε/ε̇| = t (for a linear quench). The reverse inequality defines

a region near the transition, called the impulse region, where the dynamics of the

order parameter cannot follow changes in the reduced temperature, and fluctuations

in the order parameter are effectively frozen-out. The length-scale over which these

fluctuations are correlated is then set by the correlation length at the moment, t =

t̂KZ , of freeze-out when τ [ε(t̂KZ)] ≡ t̂KZ , from which we compute ξ̂KZ ≡ ξ[ε(t̂KZ)]. For

|t| & t̂KZ , the order parameter can adiabatically follow the quench, however a robust

condensate may only form below the transition where T < Tc. Since the freezing-out

of the fluctuations creates uncorrelated domains of size ∼ ξ̂KZ , within which the phase

is roughly uniform, the subsequent condensate growth allows these domains to fuse

and stochastically choose a topological order guided by free energy minimization. In

a ring geometry, such defects fuse into spontaneously-formed topologically-protected

persistent currents. A depiction of the KZM in a ring-shaped geometry is shown

in Fig. 6.1, within the so-called adiabatic-impulse-adiabatic approximation described

above.
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Figure 6.1: A graphic showing the idea of the KZM within the adiabatic-impulse-
adiabatic approximation. The order parameter can follow the linear quench adiabati-
cally only when its relaxation time is short compared to the time until the transition.
The impulse regime defines the interval during which the order parameter cannot
follow the quench adiabatically, and its fluctuations are effectively frozen. In a ring-
shaped system, the independent domains of size ∼ ξ̂KZ that are frozen in during the
crossing of the transition eventually merge in to a smooth phase profile once the order
parameter can respond to the quench again and the condensate grows. The merging
domains stochastically choose a topological order (winding number) that is guided by
free energy minimization.

6.1.3. Computing the KZ Scaling Laws

The freeze-out time, where the dynamics of the order parameter cease to follow the

quench adiabatically, occurs at time t ≡ −t̂KZ when

τ [ε(t̂KZ)] = t̂KZ (6.8)
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Using the scaling relation (6.7) and ε(t) = t/tq we solve for t̂ as a function of the

quench time tq:

t̂KZ = τ0

(
tq
τ0

) νz
1+νz

∼ t
νz

1+νz
q (6.9)

The corresponding reduced temperature at the freeze-out time is

ε̂KZ ≡ ε(t̂KZ) =

(
τ0

tq

) 1
1+νz

(6.10)

With this, we solve for the correlation length at the freeze-out time using (6.10)

and (6.6) and find

ξ̂KZ ≡ ξ(ε̂KZ) = ξ0

(
tq
τ0

) ν
1+νz

∼ t
ν

1+νz
q (6.11)

Additionally, the relaxation time at freeze-out is given by

τ̂KZ ≡ τ(ε̂KZ) = τ0

(
tq
τ0

) νz
1+νz

∼ t
νz

1+νz
q (6.12)

In the thermodynamic limit, the frozen-out properties of the system as it traverses

the critical point should carry relevant information pertaining to the universality

class of the phase transition. Namely, the combination ξ̂KZ and τ̂KZ , or i.e. ξ̂KZ

and v̂KZ ≡ ξ̂KZ/τ̂KZ , scale with the controllable tq with different combinations of

critical exponents ν and z describing to the transition. One of the goals of the

Kibble-Zurek mechanism is to describe a means of extracting these exponents, or

at least a particular combination a(ν, z), using readily observable and measurable

quantities. Such quantities depend highly on the geometry and dimensionality of the

confinement. For instance, in a annular geometries, the observable is typically the

winding number of spontaneous currents formed after the quench, although the exact

statistics depend on properties such as the ring circumference and thickness [97]. In

uniform or harmonically-trapped systems, the observable is frequently the number of
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vortices nucleated, and in this framework dimensionality plays a critical role in how

these topological defects form [98]. Additionally, finite size effects are known to play

a crucial role in the scaling behavior [99, 100]. In this work, we focus on narrow ring

geometries, the setting originally envisaged by W. Zurek in his attempts to explain

topologically protected states of circulation in quenched superfluid 3He [8].

KZM in a Ring. For a thin one-dimensional ring of circumference C and width

w, i.e. with ξ̂KZ � w such that transverse excitations are frozen out, the number of

uncorrelated domains formed at the freeze-out point is

Nd ≈
C

fξ̂KZ
(6.13)

The scaling reflects the fact that the notion “domain” is not a well-defined concept,

and depends on how the correlation length is defined, which can vary from system to

system. The fudge factor f ∼ O(1− 10) is introduced to account for this ambiguity,

but is system-dependent. While the statistics of spontaneous current formation for

arbitrary rings depend on Nd in somewhat complicated ways, the scenario originally

envisaged by W. Zurek in [8] predicts a scaling of the winding number 〈|w|〉 ∼ N
1/2
d , in

accordance with a large-Nd random walk amongst the phase domains. In the opposite

limit of small Nd, various arguments, based off of a gaussian random velocity field

or the distribution of vortex-antivortex pairs bounding a small ring, have predicted

a doubling of the winding number exponent ([10, 100]). For small Nd, the winding

number formation will become dependent on the exact phase profile within each

domain, and on the periodic boundary conditions, since in general Nd as defined

in (6.13) is not an integer and will have some potentially non-negligible remainder

[101]. Furthermore, meaningfully defining a correlation length that approaches, and

perhaps exceeds, the ring circumference is challenging, which makes the notion of a
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domain an even blurrier concept. While the domain picture is simplistic and accurate

in the large Nd limit, a complete description of the relation between spontaneous

current formation and the quench dynamics is desirable, especially one that accurately

describes the intermediate to slow quench regimes.

Section 6.2

Landau-Ginzburg Theory

To motivate following discussion of spontaneous current formation, it is necessary to

first discuss the Landau-Ginzburg (LG) model, a paradigmatic model used to describe

the order parameter in the vicinity of a generic second-order phase transition [5].

An extension of the LG model to a dynamical setting will then allow us to study

the behavior of spontaneous persistent currents formed during variable-rate quenches

across the critical point.

The LG model is an equilibrium, mean-field description of the order parameter

for values of the reduced temperature |ε| ≡ |Tc−T |/T � 1. Since in all second-order

phase transitions, such as a BCS transition, the order parameter ψ is small when

T ≈ Tc, a Taylor expansion of the relevant free-energy functional for small ψ can be

made.

Landau-Ginzburg free energy. The phenomenological Landau-Ginzburg theory

is defined via the Landau-Ginzburg (equilibrium) free energy functional

F [ψ,∇ψ] ≡
∫
dr

[
~2

2m
|∇ψ(r)|2 + a|ψ(r)|2 +

b

2
|ψ(r)|4

]
(6.14)

Here |ψ|2 is assumed to be small, justifying the expansion to second order. The

constants a and b are assumed to be analytic across the transition, and their Taylor

expansions for small ε and |ψ| are given by a ≡ a0ε and b ≡ b0 ≥ 0. Here, a0 and b0
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are independent of ε. b0 is chosen to be positive to ensure thermodynamic stability.

The exact values of these constants can in theory be derived from the corresponding

microscopic Hamiltonian [78, 102]. We also note that the equation (6.14) holds for

any system (obeying the same generic symmetries as the one described here) near

its second order phase transition, and is exact; The description is universal, apart

from the microscopic details of the constants a0 and b0. In order to utilize equation

(6.14), however, one typically makes a so-called saddle point approximation, where

the equilibrium order parameter chooses a value that extremizes the Landau-Ginzburg

free energy functional. Varying ψ∗(r) in (6.14) then gives

− ~2

2m
∇2ψ + aψ + b|ψ|2ψ = 0 (6.15)

which is the differential equation governing the mean-field spatial distribution of the

order parameter. It has the exact same form as the Gross-Pitaevski formula describing

weakly interacting bosons [103, 104].

Static Configurations. Although the differential equation (6.15) describes a static

configuration, it is still insightful to study generic features in this setting. Taking a

uniform system first, we see the equilibrium order parameter satisfies

aψeq + b|ψeq|2ψeq = 0 (6.16)

The minimum free-energy configuration depends on the value of ε. Namely, above

the transition ε > 0, and

ψ+
eq = 0 (6.17)
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which describes the disordered state. Below the transition point, where ε < 0, the

order parameter assumes a non-zero value given by

|ψeq|2 = −a
b
∼ |ε| (6.18)

In the context of universality classes, we can identify the critical exponent β associated

to the order parameter, which scales as ψ ∼ |ε|β. From (6.18) we find β = 1/2 for

the mean-field LG model.

In a non-uniform configuration and for T < Tc, we can recast equation (6.15) into

an equivalent form by dividing by a|ψeq|, and defining ψ̃ = ψ/|ψeq|:

− ~2

2ma
∇2ψ̃ + ψ̃ + |ψ̃|2ψ̃ = 0 (6.19)

There is a free-energy cost associated to spatial variations in the order parameter.

This cost is substantial for variations that occur over the length scale defined by

ξ ≡
√

~2

2ma
∼ |ε|−1/2 (6.20)

This quantity is referred to as the healing or coherence length of the order parameter.

It is the length scale over which the order parameter can heal from a value of 0 to

its bulk value in a locally homogeneous medium, |ψeq|. By defining r̃ = r/ξ, we can

write the LG equation in non-dimensional form as

−∇̃2ψ̃ + ψ̃ + |ψ̃|2ψ̃ = 0 (6.21)

where ∇̃2 is the Laplacian operator in r̃ space. Clearly, this form of the LG equation

makes no reference to microscopic parameters in the model; It is completely universal.

In the immediate vicinity of the transition, the non-linear interaction can be ne-

111



6.2 Landau-Ginzburg Theory The Kibble-Zurek Mechanism

glected, and we may approximate

− ~2

2m
∇2ψ + aψ ≈ 0 (6.22)

The Green’s function for this equation describes correlations between fluctuations of

the order parameter (in a thermodynamic sense) at two distinct points separated by

some distance r = |r − r′|. This can be seen by studying these fluctuations within

the context of linear response theory, although this is more generally a consequence

of the fluctuation-dissipation theorem. The correlation (Green’s) function G(r, r′) for

the LG equation therefore obeys

− ~2

2m
∇2G(r) + aG(r) = δ(r− r′) (6.23)

In Fourier space, the solution is given by

G̃(k) =
1

a+ ~2k2

2m

=
1/a

1 + ξ2k2
(6.24)

which can be inverted to find the real space behavior for r & ξ

G(r) ∼ f(r)e−r/ξ (6.25)

with some dimension-dependent algebraic function f(r). This establishes a connection

between the healing length as defined in (6.20) and the correlation length of statistical

fluctuations in the order parameter about its mean value. Namely, we find the scaling

relation for the correlation length to be the same as that of the healing length, and

this defines the critical exponent

ξ ∼ |ε|−ν (6.26)
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with ν = 1/2 for this mean-field model.

Time-Dependent LG Theory. In a dynamical setting, one can allow the order

parameter to be perturbed a small amount away from equilibrium. In this case,

the order parameter will attempt to recover to its instantaneous equilibrium value,

and does so at a rate proportional to how strongly it was driven out of equilibrium.

Mathematically, we can account for this by setting the L.H.S of equation (6.15) equal

to a damping term, which gives the time-dependent Landau-Ginzburg equation

− ~2

2m
∇2ψ + a(t)ψ + b(t)|ψ|2ψ = − 1

Γ

∂ψ

∂t
(6.27)

The constant Γ is a relaxation coefficient that sets the rate scale for which the order

parameter can relax to equilibrium. The equation (6.27) is a fairly generic equation

describing the dynamics of the order parameter near a second order phase transition.

It effectively captures the dynamics of the long-wavelength, low frequency dynamics

of the order parameter. Note that we have now allowed for the parameters a and b

to carry explicit time-dependence.

We can analyze the dynamics in the immediate vicinity of the transition, where

the non-linear term can be safely neglected. The linearized equation of motion can

then be written in Fourier space as

(
~2k2

2m
+ a

)
φ = − 1

Γ

∂φ

∂t
(6.28)

where φ(k, t) = F [ψ(r, t)](k). This equation has an exponentially decaying solution

for each value of k, with time constant

τ−1
k = Γ

(
a+

~2k2

2m

)
(6.29)
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In particular, the slowest decay occurs for the uniform component, k = 0, with time

constant

τk=0 =
1

Γa
∼ |ε|−1 (6.30)

which sets the time-scale over which the order parameter can respond to sudden

perturbations. The scaling of this relaxation time scale τk=0 defines the dynamical

critical exponent z. It is conventionally defined such that τk=0 ∼ ξz. Using the

critical exponent ν = 1/2 for the correlation length, we find z = 2 for the mean-field

Landau-Ginzburg model.

Adding Thermal Noise. It is important to realize that, as defined, ψ ≡ 〈ψ̂〉,

i.e. it is the expectation value of the coherent bosonic field associated to the micro-

scopic action, obtained from tracing out any fermionic degrees of freedom (via i.e. the

Hubbard-Stratonovich transformation). In many scenarios, one would like to describe

the stochastic dynamics associated to the order parameter as it interacts incoherently

with the surrounding heat bath. In essence, one models the evolution of the order

parameter in a given realization as a Langevin equation driven by a random forc-

ing term describing the system-bath interactions. Mathematically, we may augment

(6.27) with such a noise term and write

− ~2

2m
∇2ψ + a(t)ψ + b(t)|ψ|2ψ = − 1

Γ

∂ψ

∂t
+ ζ (6.31)

where the stochastic driving force ζ(r, t) is a zero-mean complex Gaussian variable

with white-noise correlations, 〈ζ(r, t)∗ζ(r′, t′)〉 ∼ kBTδ(r−r′)δ(t− t′). Angle brackets

here refer to ensemble averaging over the i.i.d. normal distributions from which the ζ

are pulled from. One can interpret equation (6.31) as follows: As the order parameter

is driven away from equilibrium, it will attempt to recover its equilibrium value at a

rate set by Γ, but interactions with the heat bath will kick the order parameter along
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a random trajectory through the complex plane on its return. This Langevin form of

the dynamics is essential to study the stochastic formation of spontaneous persistent

currents, as will be discussed in Chap. 7. It is the random kicks supplied by the noise

term that continually drive phase slips -discontinuous jumps in the winding number

of the order parameter- near the transition, and this in turn is responsible for the

stochastic nature of spontaneous current formation.

Section 6.3

Phenomenological Theory of Spontaneous

Currents

The purpose of this section is to derive analytical expressions for the probability

distributions and related properties of spontaneous currents formed after a quench

through a second order phase transition. The results of this analysis are then com-

pared to the correlation functions that pertain to the KZ theory of defect formation.

The subsequent theory was developed from initial attempts to explain certain obser-

vations made by Yanping Cai in his studies of fermionic persistent currents in the

BEC-BCS crossover [31]. In particular, the question arose as to what role a finite,

non-zero rotational velocity of the system had on the final distribution of spontaneous

currents obtained on return to a superfluid state from the fully normal state above

the transition. This physical setting has a direct analogy to superconducting rings

pierced by a uniform magnetic field, which plays the role of the rotating normal-fluid

“bias”, and was studied in [99, 105]. While the analysis performed in this section

focuses on the non-rotating scenario -the setting for the spontaneous current mea-

surements performed in Chap. 7- we point the reader to Chap. 8 for further analysis of

the effects of this “rotational bias” on the statistics of spontaneous current formation.

We will now provide a theoretical framework, based off of a stochastic Laundau-
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Ginzburg model, for reproducing and interpolating between the fast quench and slow

quench limits. This model treats the Fourier components of the fluctuating order pa-

rameter as Gaussian variables evolving according to a damped, stochastically-driven

Landau-Ginzburg model introduced in Sec. 6.2. We argue that the linearized ver-

sion of this model is sufficient to reproduce the key predictions in both the large tq

and small tq limits, and provides a reasonable, although non-universal, interpolation

between the two limits.

6.3.1. A stochastic model for spontaneous currents

In a ring-shaped trap, the KZM offers a means to predict the statistics of winding

number formation for variable-rate ramps across a second-order phase transition. In

the BCS limit where the relevant experiment performed in this work takes place, these

spontaneous current are incredibly stable against decay via thermal fluctuations due

to the low compressibility and high heat capacity of the mostly-filled Fermi sea; The

order parameter must locally fluctuate to zero at some point on the ring for the phase

to unwind [106]. Thus, the observed probability for a given winding number w is

typically set by the stochastic dynamics within the narrow “impulse” region of the

ramp near the local critical temperature at the ring minimum.

In particular, we are interested in the limit where the interaction parameter

kF |a| → 0 and T → 0, with T/Tc(n, kF |a|) ∼ 1. The critical temperature Tc de-

pends on both the fermion density n and the interaction parameter. In this limit,

the isothermal compressibility κT → 0, and thus density fluctuations become negli-

gible. Temperature fluctuations similarly become negligible. As the order parameter

ψ (i.e. the superfluid pairing field) depends on the local fermion density and tem-

perature via T/Tc, its fluctuations are effectively frozen out except in the immediate

vicinity of the transition point where |ψ| ≈ 0. Furthermore, the spontaneous per-

sistent currents are incredibly robust once formed, and survive for timescales on the
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order of the vacuum-limited lifetime. Near the transition point is therefore where we

choose to focus attention with respect to analytic considerations. We therefore base

calculations of the order parameter and fluctuations off of a linearized stochastic time-

dependent Landau-Ginzburg equation, motivated by numerical studies of quenched

Bose and Fermi systems, and in field-theoretical models [99, 107–109], and discussed

previously in Sec. 6.2.

In a smooth one-dimensional ring of radius R, the time-dependent stochastic

Landau-Ginzburg equation (SLGE) describing the evolution of the order parameter

can be written in non-dimensional units as

∂ψ

∂t
=

[
α(t) +

∂2

∂θ2
+ β|ψ|2

]
ψ + ζ(θ, t) (6.32)

which is expected to approximate the dynamics at the mean-field level. Here, we

measure time in units of γ/Ω0, where γ is the dimensionless relaxation rate and Ω0 =

~/(2mR2) is the frequency associated to quantized circulation around the ring. α(t) =

(R/ξBCS)2ε(t) is the dimensionless Landau-Ginzburg chemical potential, written in

terms of the BCS coherence length ξBCS, and β is the non-linear interaction strength.

In the limit kF |a| → 0, ξBCS = ~vF/(π∆0), with vF the Fermi velocity and ∆0 the

zero-temperature Cooper pairing gap [40]. ζ(θ, t) is a zero-mean complex Gaussian

white noise field, satisfying 〈ζ(θ, t)〉 = 0 and 〈ζ∗(θ, t)ζ(θ′, t′)〉 = Dδ(θ−θ′)δ(t−t′), with

D ∼ kBT a phenomenological “diffusion” constant proportional to the temperature

T , in accordance with the fluctuation-dissipation theorem. Angle brackets denote

ensemble averaging over the i.i.d complex, zero-mean Gaussian distributions with

variance D at each time t and angle θ).

To study quench dynamics, we vary the reduced temperature linearly as ε(t) =

t/tq,0, and we can write α(t) ≡ t/tq, for some effective quench time tq ≡ (ξBCS/R)2tq,0.

Close to the transition, where fluctuations in the order parameter are expected to
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become frozen in according the KZM, we may neglect the non-linear term and write

a linearized Fourier space representation of (6.33):

ċ` =

(
t

tq
− `2

)
c` + ζ` (6.33)

where the order parameter and noise term were expanded as

ψ(θ, t) =
∞∑

`=−∞

c`(t)e
i`θ (6.34)

and

ζ(θ, t) =
∞∑

`=−∞

ζ`(t)e
i`θ (6.35)

respectively. We can find a formal solution to the stochastic differential equation

(6.33) by integration:

c`(t) =

∫ t

−∞
dt′ζl(t

′)e
−`2(t−t′)+ t2−t′2

2tq (6.36)

Then, we find an exact expression for the mean-square fluctuations of each Fourier

component by complex squaring and averaging (6.36)

〈|c`(t)|2〉 ≡ σ2
` (t) =

√
πDt̂ F

(
t

t̂
− t̂`2

)
(6.37)

where t̂ ≡ √tq. The dimensionless function F (x) ≡ 1
2
ex

2
[1 + erf(x)] = erfcx(−x)/2

where erfcx is the complimentary scaled error function. Importantly, for x → −∞,

F (x) ∼ 1/(2
√
πx) while for x & 1, F (x) ∼ exp(x2). We plot this function and its

asymptotic approximations in Fig. 6.2. The meaning of t̂ will become clear shortly.

For any time t, σ2
` (t) is maximal at ` = 0. Additionally, the growth dynamics of
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Figure 6.2: The function F (x) and its asymptotic approximations.

the σ2
` depend only on the variable

x`(t) ≡
t

t̂
− t̂`2 (6.38)

Due to the exponential nature of F (x) near x = 1, the fluctuations in mode ` =

0 experience a brief period of rapid growth, before any other mode, following the

transition at times when x`=0(t) ≈ 1. This condition defines the “blow-up” time

t∗ ≡ t̂ (6.39)

after which non-linear effects kick in and the condensate begins to relax toward its

instantaneous, non-zero equilibrium value value [108]. Thus, in some short interval

of time following t∗, the condensate becomes robust with respect to fluctuations large

enough to cause any persistent current to decay; The winding number becomes a

topologically protected quantity at times t ≥ teval ≡ ft∗. Here f is an O(1) “fudge”
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factor that scales the blow-up time to the so-called evaluation time where the winding

number is stabilized [110]. We note that although f is non-universal, it depends only

logarithmically on the microscopic parameters and quench details and is thus roughly

constant across many decades of quench times.

While the definition of t̂ is suggestive of the “freezing” and “unfreezing” time

associated to the Kibble-Zurek mechanism, it is not immediately clear why this would

be the case. We will see in subsequent discussion of the relevant correlation functions

that the two are indeed the same, in the limit of sufficiently fast quenches.

6.3.2. Estimating the Winding Number Distribution

With the mathematical machinery needed to calculate the winding number from a set

of Fourier coefficients (see Sec. 2.3), we now turn our attention to the physical scenario

introduced above. The goal is to calculate the probability of observing a given winding

number w given the set of time-dependent Fourier coefficients expressed in (8.2). To

motivate following analysis, we begin by assuming crudely that the order parameter

can be written as a two-mode linear combination of the form ψ(θ) = c0 + c1 exp(iθ),

i.e. that there are only two relevant modes pertaining to the quench dynamics, and

that the winding number w = 0 or 1. As linear combinations of Gaussian variables are

themselves Gaussian variables, the c` are Gaussian variables. The winding number is

thus set by the relative strength of the two modes, |c0/c1|, according to (2.49). One

may construct a so-called complex ratio distribution PR(Z) defined as the distribution

of the ratio Z of two complex Gaussian random variables X and Y . The corresponding

probability density function may be written, assuming X and Y uncorrelated, as

f(z = x/y) =
σ2
x

πσ2
y

1

(|z|2 + σ2
x/σ

2
y)

2
(6.40)
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Here, σx,y are the standard deviations of the corresponding complex random variables

x and y. With the substitutions x = c0, y = c1, σ2
x = σ2

0, and σ2
y = σ2

1, we find

〈w(t)〉 = Prob(|c0/c1|(t) < 1) (6.41)

= 2π

∫ 1

0

d|z||z|f(|z|) (6.42)

=
σ2

1(t)

σ2
0(t) + σ2

1(t)
(6.43)

Here, we used the mean-square fluctuations defined in (6.37). Evaluating this expres-

sion at the evaluation time teval gives the approximate winding number expectation

value 〈w〉 after the quench, since as noted earlier the winding number is effectively

frozen in at this time.

In order to go beyond the simple two-mode model described above, one would have

to determine the winding number from the Fourier components and find the proper

multidimensional complex distribution function that describes those coefficients. This

becomes very challenging for three or more modes, although we note there is a field

of mathematics devoted to the study of roots of random polynomials,and therefore

random winding numbers (see i.e. [111, 112]). Instead, one could claim that the

probability to observe a particular winding number w is proportional to the proba-

bility that |c`=w| > {|c` 6=w|}. This claim is not true in a general realization, as the

winding number also depends on the magnitudes and phases of each of the Fourier

coefficients in a complicated way. However, this is the least restrictive criterion to

observe a given winding number that incorporates many modes in a simple manner.

Furthermore, given that a winding number w can still be observed even if the above

condition does not hold, we can expect some mitigation of the error due to this sim-

plification. One then analytically models the probability Pw of a given winding w as
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an infinite product of factors of the form (6.41):

Pw ≈ Prob(|cw| > |c0| ∩ |cw| > |c1| ∩ ...)/Z

=
1

Z

∏
`

σ2
w

σ2
w + σ2

`

(6.44)

where Z ensures proper probability normalization,
∑

w Pw = 1.

Alternatively, we may numerically simulate the winding number distribution by

sampling the c`(t) from the complex Gaussian distribution CN (0, σ2
` (t)). The vari-

ances σ`(t) are given by (6.37). Recapping the discussion from Sec. 2.3, the winding

number w is given by

w = N − `c (6.45)

with N the number of roots of ψ(z) =
∑2`c

`=0 c`−`cz
` lying within the complex unit

disk |z| < 1 and `c the mode cutoff. This Fourier-space method of computing the

winding number circumvents issues with phase ambiguities and undersampling errors

associated with the real-space computation of w. For a single randomly-chosen set

{c`(t)}, the roots of ψ(z) are found numerically and w is then computed via (6.45).

When evaluated at teval, the probability distribution depends only on the combi-

nation t̂ ∼ √tq/R2. Also notably the phenomenological diffusion constant D drops

out of the equation as long as the winding number assumes its final value at the

blow-up time and non-linear effects can be neglected. Small values of t̂ correspond to

either rapid quenches, or temperatures well above the initial critical temperature of

the ramp, or large ring radii. The latter-most corresponds to the thermodynamic (in-

finite size) limit, but in each case, it describes the regime initially envisioned by Zurek

(many small, uncorrelated domains with uniform phase locked within). Conversely,

large values of t̂ (slow quenches and small temperatures) or small radius rings give

rise to sharper distributions of persistent currents, centered at winding number ` = 0.

122



6.3 Spontaneous Currents The Kibble-Zurek Mechanism

Importantly, the phase coherence extends across the circumference of the ring, and

the details of the phase profile along the circumference, as well as periodic boundary

conditions, become important. Thus, there is always a small but finite probability to

generate persistent currents even when N ≤ 2 domains are formed. For intermediate

values of t̂, equation (6.44) gives an interpolation between the two regimes discussed

previously, where standard treatments of spontaneous current formation become in-

accurate, and simple scaling laws describing the rate of defect formation break down.

It is still unclear, however, exactly what role microscopic, non-universal details play

in this intermediate regime.

Figure 6.3: (Top) Plot of variance in the winding number as a function of the quench
time using the analytical model, and evaluated at time teval = t̂. We fit the data at
slow and fast quenches with a power-law of the form Var[w] ∼ t−σq . (Bottom) Slope of
upper line-shape as a function of quench time: γ = d log Var[w]/d log(tq). Horizontal
dashed green lines show the two regimes where the scaling is a simple power-law.

123



6.3 Spontaneous Currents The Kibble-Zurek Mechanism

Figure 6.4: Mean-square winding numbers computed from the analytical approxima-
tion to the winding number distribution (red dashed-dotted line) and the simulation
(red squares) as a function of the quench time. The distribution is evaluated at t = 3t̂.

Analyzing the Distribution. With the probability distribution, one may readily

compute the various relevant moments of the distribution as functions of t̂, which we

show in Fig. 6.3 using the analytical approximation to the probability distribution

(6.44). For simplicity, we take teval = t̂. As the Kibble-Zurek mechanism predicts the

scaling of the defect density, and thus the variance of the winding number distribution,

with the quench rate, it is informative to define the quench-rate-dependent scaling

exponent γ ≈ −d log var[w]
d log tq

, which we also plot in Fig. 6.3. The plot of the scaling

exponent highlights three main regimes of stochastic persistent formation. The small

t̂ regime is the KZ regime of Gaussian probabilities. For large t̂, the scaling exponent

is seen to double. This doubling has been suggested to be a result of Gaussianity
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in the winding number density, or due to geometric considerations pertaining to the

distribution of vortex-antivortex pairs in small rings [100, 105]. This scaling is likely

difficult to observe experimentally with great precision, as the probability to generate

non-zero persistent currents becomes incredibly small for large t̂. For intermediate

values of t̂, the winding number statistics become non-universal and as indicated in

Fig. 6.3. Furthermore, the functional dependence of the variance on the quench time

becomes dependent on the blow-up time in a way that depends on the non-linear

interaction term that was neglected. However, it should still be possible to define the

notion of a “defect”, given that the correlation length is still smaller that the ring

circumference at intermediate quench times.

We also show the variances obtained from numerically simulating the winding

number distribution using the procedure described earlier. The result is shown in

Fig. 6.4. In this plot, we evaluate the distribution at time teval = 3t̂. We also

show the analytical approximation evaluated at the same time. We see fairly good

agreement between the two models across many decades of quench times. For fast

quenches, the analytic approximation tends to overestimate the simulated variance,

although the approximate scaling exponent σ = 1/4 is still roughly maintained. For

the slowest quenches, where the probability of measuring a non-zero winding number

becomes incredibly small, the simulated variance starts departs from the analytical

approximation. We see the best agreement between the simulation and the analytical

model in the intermediate regime.

The KZ Regime. We now show that the approximate probability distribution

(6.44) successfully reproduces the KZ scaling laws for rapid quenches. In this regime,

t̂ is small, and we can approximate the scaling function in (6.37) at t = t̂ as

F (1− t̂`2) ∼ exp
(
−2t̂`2

)
(6.46)
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where the term in the exponential of O(t̂2) was neglected. Then from (6.44) we have

logPw ∼ −
∑
`

log
(

1 + zwe
−2t̂`2

)
∼ − 1√

t̂

∫ ∞
−∞

dx log
(

1 + zwe
−x2
)

∼ − 1√
t̂
Li3/2(−zw)

(6.47)

where zw ≡ exp
(
−2t̂w2

)
and the sum was approximated by an integral. A small t̂

expansion of the polylogarithm Li3/2 about zw = 1 then yields

Pw ∼ t̂−1/4 exp

−
√

t̂

t̂0
w2

 (6.48)

where t̂0 is a number. Since t̂ is small, the distribution Pw is very broad, and its

discrete nature is blurred out. w is then approximately a continuous variable. Then,

we compute the lowest order cumulants

E[w] ≈
∫ ∞
−∞

dwwPw = 0 (6.49)

and

Var[w] ≈
∫ ∞
−∞

dww2Pw ∼ t̂−1/2 ∼ t−1/4
q (6.50)

the result predicted by the KZ argument.

6.3.3. Connection to the KZM: Correlation functions

We conclude this chapter by making connection between the phenomenological spon-

taneous current theory outlined previously with the the core predictions of the KZ

scaling hypothesis. As the KZM relies on the concept of a diverging correlation length

and relaxation time, it is the goal of the remainder of this section to study the relevant
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correlation function from the microscopic theory.

The normalized correlation function in an azimuthally symmetric, 1-D ring is

defined as

g(θ, t) =
〈ψ∗(θ, t)ψ(0, t)〉
〈ψ∗(0, t)ψ(0, t)〉

(6.51)

where translation invariance was used to set the reference position to θ = 0, and the

normalization is set by the maximum of 〈ψ∗(θ, t)ψ(0, t)〉, which also occurrs at θ = 0.

As the order parameter ψ(θ, t) is single-valued, in can be Fourier-decomposed as

ψ(θ, t) =
∑
`

c`(t)e
i`θ (6.52)

with the c` the same as those appearing in Eq. (6.36). By inserting (6.52) into (6.51)

and using 〈c∗`c`′〉(t) = δ`,`′σ
2
` (t), we find

g(θ, t) =

∑
` σ

2
` (t)e

i`θ∑
` σ

2
` (t)

(6.53)

with σ2
` (t) defined in (6.37). By symmetry arguments, the distribution of the c` will be

peaked around ` = 0. Due to the inherent periodicity of the correlation function, care

must be taken in meaningfully defining a correlation length, since finite size effects are

expected to play a role when the correlations can extend around the circumference of

the ring. We expect however that for fast quenches, the correlation function should

quickly decay, and the notion of a “domain” can be formulated. Using the scaling

arguments presented earlier, and defining σ̂2
` = σ2

` (t̂), we have

σ̂2
` ∼ e−2t̂`2 (6.54)

Inserting this expression into (6.53) and replacing the sum with an integral, valid in
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the t̂→ 0 limit, we find

ĝ(θ) ≡ g(θ, t̂) = e−(Rθ)2/8t̂R2

(6.55)

from which we can identify the correlation length at the unfreezing time

ξ̂∞ ≡ 4R
√
t̂ ∼ t1/4q (6.56)

since t̂ ∼ √tq/R2. Finite-size effects, captured by the dependence of the correlation

length on the system size 2πR, vanish in this limit. The exponent 1/4 matches that

predicted from the KZ scaling arguments, ν/(1 + νz), using the mean-field exponents

νMF = 1/2 and zMF = 2. The approximation (6.55) should be valid for 0 � |θ| .

π. This is because the slow roll-off of the correlation function at large distances

is captured by the low-frequency components of the order parameter (6.54). On

the contrary, the short-range behavior for |θ| ≈ 0 (where the correlation function

varies most rapidly) is captured by the asymptotic behavior of the c` (∼ 1/`2 for

|`| → ∞). Typically the correlation length is defined via the asymptotic behavior

of the correlation function, and so (6.56) should be a good indicator of the scaling

behavior for short quench times. We derive the more rigorous asymptotic behavior

in Appendix B, however. We note too that the correlation length cannot be defined

by the curvature of the correlation function at θ = 0, as would be possible if the

correlation function had Gaussian character everywhere. This is because the algebraic

1/`2 decay of the fluctuation spectrum gives rise to discontinuities in all derivatives

of the correlation function at θ = 0.

It is interesting to note that the variances σ2
` defined in (6.37) depend only on the

variable t/t̂ − t̂`2. We could have anticipated the scaling relation of the correlation

length from the prefactor of the `2 term, i.e., that the relevant length scale should
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go as t̂1/2 ∼ t
1/4
q . This scaling relation would be expected to hold for t̂ → 0, when

the sum (6.53) can be replaced by an integral with small error estimatable by the

Euler-Maclaurin formula. In fact, insofar as the replacement of this sum with an

integral is justified, then the single relevant length scale in the correlation function

is t̂1/2. It is in this limit that the original Kibble-Zurek argument is expected to

hold, and that deviations occur when additional length scales enter into the problem

due to the discreteness effects of periodicity and/or finite size. The combination

of variables present in (6.37) additionally implies that the relevant time scale τ̂ for

unstable long-wavelength fluctuations to grow should be set by t̂ ∼ t
1/2
q . Both of

these observations are in line with the predicted KZM scaling laws for the correlation

length and the relaxation time. Finally, we can identify the relevant velocity scale at

which fluctuations propagate near the unfreezing time, which is determined from the

condition t/t̂ − θ(t)2/t̂ = 0. This implies that, at the unfreezing point, fluctuations

propagate with a speed limit set by

v̂ . θ̇(t)|t̂ ∼ t̂−1/2 ∼ t−1/4
q (6.57)

This scaling relation will be important for discussions about the imhomogeneous

Kibble Zurek mechanism Chap. 8.

As the quench time is increases, the correlation length defined in (6.56) becomes

comparable to the ring circumference, at which point correlations extend around the

ring (See Fig. 6.5). We choose to define the generalized correlation length as twice the

distance at which the correlation function (6.51) falls to a value of 1/
√
e, in accordance

with the Gaussian definition of the correlation length. By using the exact expressions

for the σ2
` , Eq.(6.37), we compute the tq dependence of the correlation length at time

t = t̂ according to the above criterion. This is shown in Fig. 6.6. We fit a power

law to the points at the shortest quench times to confirm the scaling law ξ̂ ∼ t
1/4
q ,
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Figure 6.5: Example correlation functions for various quench times, each evaluated at
t = t̂. The correlation length ξ̂ is computed at twice the 1/

√
e distance. For ξ̂ ≥ C,

we take the ring circumference C to be the correlation length instead, as correlations
can fully extend around the ring.

but see deviations at longer quenches when correlations begin to extend around the

ring. Eventually, the correlation length equals the ring circumference, at which point

the ring becomes completely correlated according to the above definition. We note,

however, that this does not imply that spontaneous current formation is completely

suppressed; The usual arguments of the KZM break down at this point, and the

details of the order parameter phase profile play a significant role in determining the

winding number statistics.

We can find an approximate expression for the slow-quench correlation function

by noting that F (x) ∼ 1/(2
√
πx) for x → −∞. As t̂ → ∞ in this case, all terms in
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Figure 6.6: Correlation length ξ̂ at time t = t̂, defined via the 1/
√
e criterion, as a

function of the quench time. For the fastest quenches we observe a power law scaling
with exponent 0.25, which matches the mean-field prediction. For slower quenches,
the correlations start to extend around the ring, and modified scaling occurs until
eventually ξ̂ = C, and the ring is completely correlated.

the sum (6.53) with ` 6= 0 can be replaced by their asymptotic expression. We find

ĝ(θ) ≈
1 + 2π3/2

F (1)t̂
B2

(
|θ|
2π

)
1 + 2π3/2

6F (1)t̂

(6.58)

where B2(x) = x2−x+1/6 is the Bernoulli polynomial of order n = 2 and a remarkable

property of the polylogarithm was used, Lin[exp(2πix)] + (−1)nLin[exp(−2πix)] =

−(2πi)nBn(x)/n!. Notably, the expression (6.58) lacks an obvious length scale, other

than the (dimensionless) ring circumference 2π, demonstrating that finite-size effects

tend to ruin the Kibble-Zurek argument in its original form. Any connection to the

critical behavior should therefore be discerned from the order parameter itself, rather

than its correlations, for slow quenches where finite size effects dominate.

We show two examples of correlation functions for fast and slow quenches, and
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Figure 6.7: (Top) Exact correlation function corresponding to a fast quench, with its
gaussian approximation shown for comparison. (Bottom) Exact correlation function
corresponding to a slow quench, and the quadratic Bernoulli approximation shown
for comparison.

their corresponding predicted asymptotic behaviors given by (6.55) and (6.58), re-

spectively, in Fig. 6.7. For fast quenches (upper plot) the Gaussian captures the

average size of the true correlation function quite well, although fails to capture its

exact functional form at all length scales; The Gaussian is a course-grained approxi-

mation to the true correlation function. This is hardly a matter for the KZ argument,

which only predicts the average domain size created during a rapid quench through

the transition. We can obtain a better approximation to the true fast-quench cor-

relation function with more sophisticated analysis, but we divert that calculation
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to Appendix B. On the other hand, for slow quenches, the quadratic Bernoulli ap-

proximation successfully captures the short and long distance behavior of the true

correlation function, although in this limit we lose a well-defined notion of a length

scale meaningful to describe the average domain size during the quench.

We may combine the analytical analysis describing the distribution of spontaneous

currents with the correlation function analysis to connect the variance in the winding

number with average domain size. For faster quenches where a domain can be defined

by a correlation length ξ̂ . C, we can define in the spirit of the KZ argument the

number of domains Nd = C/ξ̂ & 1. Clearly there can be issues with non-integer

or fractional numbers of domains, but we ignore that complication for now. From

the approximate probability distribution (6.44), we compute both 〈w2〉 and 〈|w|〉 as

functions of the quench time tq and evaluated at teval = t̂. We then compute the

number of domains Nd from the correlation function (6.53) using the 1/
√
e criterion

for the same range of quench times. We plot both mean square and mean absolute

value of the winding numbers 〈w2〉 and 〈|w|〉 as a function of Nd, which is shown

in Fig. 6.8. As the Zurek argument predicts a scaling of the mean-square winding

number 〈w2〉 ∼ Nd in accordance to a random walk, we fit a power law to the points

with Nd ≥ 3 and recover an exponent of 1.09. The true random walk regime is

accessed only when the mean absolute winding number 〈|w|〉 ∼ N
1/2
d , which does not

occur until Nd & 10. Our experiment, and the experiment in [86], occurs in the region

Nd . 10, which does not access the random walk regime. Nonetheless, the mean-

square winding number still roughly follows a linear scaling in the defect density for

Nd & 3, which allows it to be conveniently tied back to the critical exponents relating

to the correlation length.

To conclude this subsection, we would like to draw a meaningful connection be-

tween the Kibble-Zurek freeze-out and unfreezing time, t̂KZ , and the blow-up time
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Figure 6.8: Log-log plot of mean absolute value and square of the winding number
computed from the LSLG model. The scaling law 〈w2〉 ∼ Nd is robust for defect
numbers Nd & 3, where 〈|w|〉 & 0.25. Incidentally, a fit to 〈|w|〉 for 3 ≤ Nd ≤ 10
yields and exponent 0.85, which agrees with the result of the simple model in [86],
although it is clear that this regime does not obey a power law.

t̂ defined in our microscopic theory. The former is the approximate moment during

the quench when the time until the transition is crossed becomes equal to the order

parameter’s equilibrium relaxation time. For fast quenches, the dynamics of the order

parameter can adiabatically follow the quench protocol except for a brief period of

time about the transition, where the relaxation dynamics slows down. Since this non-

adiabatic regime is traversed rapidly for fast quenches, the phase transition occurs

rapidly and the correlation length is effectively frozen in at the value it assumes at

t = −t̂KZ , with no chance of adjusting its value as the transition occurs. Only when
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Figure 6.9: Dependence of the instantaneous correlation length (normalized to to
its initial value) versus time in the interval [−5t̂, 2t̂] for various quench times. The
red solid lines indicate the instantaneous correlation length derived from the exact
correlation function (6.53), while the dotted red lines indicate the mean-field (instan-
taneous) equilibrium prediction, ξ ∼ |ε(t)|−1/2. The shaded blue region indicates the
freeze-out region.

the unfreezing time occurs at t = t̂KZ can the correlation length resume adiabatically

following the quench, but at this stage, a sufficiently robust persistent current will

have formed from the merging phase domains whose size were set by ξ̂KZ , the correla-

tion length at the freeze-out time. We explicitly demonstrate the evolution of the cor-

relation length within the non-adiabatic regime from the time-dependent correlation

function (6.53). In Fig. 6.9 we plot the time-dependent correlation length normalized

to its initial value ξ0 as a function of t/t̂ for four different quench times. For compari-

son, we show the equilibrium prediction for the correlation length ξ ∼ |ε(t)|−1/2 using
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the mean-field critical exponent ν = 1/2. For the three fastest quenches, the relative

variation of the correlation length within the non-adiabatic regime is under 50%, while

for the slowest quench the variation is substantial. This behavior suggests a break-

down of the simple adiabatic-impulse-adiabatic cartoon picture for slower quenches.

Furthermore, only for the slowest quenches does the instantaneous correlation length

faithfully track the equilibrium prediction for times t . t̂. Despite being “frozen” out

for the fastest quenches, there is a significant mismatch in the actual and equilibrium

correlation lengths at the freeze-out point. This is the motivation for incorporating

a “fudge” factor into the KZM-predicted freeze-out correlation length that describes

the domain size. Evidently in this case the fudge factor f ∼ 2.
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Chapter 7

Spontaneous currents in a Ring of

Ultracold Fermionic Atoms

In this chapter, I will discuss the experimental details and results of exploring the

Kibble-Zurek mechanism (KZM) in a fermionic ring of 6Li. In particular, I will discuss

the necessary steps to prepare an ensemble of cold fermions above the BCS superfluid

transition, how the cold ensemble is quenched across this BCS transition into a su-

perfluid state, and the statistics of spontaneous persistent current formation resulting

from such quenches. Next, I will highlight several distinct and key advantages to per-

forming KZ-type studies in the configuration that we employed in this experiment.

Finally, I will discuss several key discoveries and open questions pertaining to the

results.

Section 7.1

Introduction

The Kibble-Zurek mechanism (KZM) predicts the scaling of the density of defects

nucleated as a system is quenched at variable rates across a second order phase tran-

sition [7, 8]. While simplistic in its argument, the KZM hinges on the thermodynamic
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limit and uniformity. Neither of these conditions are ever met in reality, and vari-

ous modifications to the KZM have been made to explain scaling laws observed in

experiments. Since one of the goals of the KZM is to relate the quench scaling ex-

ponents to the adiabatic critical exponents ν and z respectively pertaining to the

correlation length and relaxation time, one must be confident that these measured

scaling exponents can be accurately tied back to the adiabatic ones.

To date, experimental studies of the KZM using ultracold atoms have utilized ther-

mal quenches of bosons in harmonic, uniform box, and ring potentials, or of fermions

in a harmonic or uniform box potentials[86, 113–117]. In the case of a harmonic trap,

the KZ scaling exponents are modified, as causality restricts the trap region in which

the KZM can proceed as usual [118]. In harmonic and uniform box traps, post-quench

dynamics of the spontaneously nucleated vortices lead to non-universal saturation of

the defect density for fast quenches. These two observations can complicate interpre-

tation of the KZ scaling laws in those settings. KZM studies in ring-shaped traps have

some advantages for mitigating these effects: The ring is homogeneous azimuthally

and the spontaneous excitations (persistent currents) are long lived and topologically

protected. This work is the first exploration of KZM for fermionic atoms in a ring po-

tential, and the first to simultaneously utilize interaction quenches as well as thermal

quenches. However, finite-size effects can still be important, and for technical reasons

ring traps tend to be smaller than the broad harmonic traps. In all experiments of

these types, there is the additional complicating factor that the universality class

describing the transition may be mean-field or beyond mean-field in nature, and may

depend on both the quench details and the microscopic physics [113].

For a homogeneous system, the reduced temperature may be uniformly swept

across the transition in a linear fashion, ε(t) = t/tq with tq the quench time. The

KZM predicts the density of defects nucleated while crossing the transition, which
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is related to the equilibrium correlation length at the moment the order parameter

ceases to follow the quench adiabatically due to critical slowing down:

ξ̂KZ ∼ t
ν

1+νz
q (7.1)

For a thin one-dimensional ring of circumference C with ξ̂KZ � C the number of

uncorrelated domains formed at the freeze-out point is

Nd ∼
C

ξ̂KZ
(7.2)

This is the scenario originally envisaged by W. Zurek [8], who further predicted a

scaling of the mean absolute winding number 〈|w|〉 ∼ N
1/2
d , in accordance with a

large-Nd random walk amongst the phase domains. Experiments have attempted to

probe this regime but have hit limits on maximum quench rates due to prohibitively

long thermalization times. For slower quenches, ξ̂KZ → C, and the notion of a

single well-defined correlation length starts to lose its meaning as correlations begin

to extend around the ring. Various theories have predicted both a doubling of the

scaling exponent and an exponential damping of the winding number in the slow

quench regime [10, 99, 100]. Importantly, finite-size effects and periodic boundary

conditions will become important, and the winding number statistics will become

dependent on the exact phase profile within each domain.

Section 7.2

Experimental Details

To probe the statistics of spontaneous persistent current formation during a quench

through the BCS transition, it is necessary to first discuss how we experimentally

enact changes to the reduced temperature ε = 1− T/Tc which drives the transition.
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Clearly, one can vary ε by changing either the system temperature T , the critical

temperature Tc, or both. The former is typically controlled via evaporative cooling,

where the height of the confining potential is lowered and hot atoms can escape, low-

ering the system temperature while causing atom loss. While simple in its approach,

changes enacted to the confining potential during evaporation will also cause the

density profile to change, which in turn may complicate the quench dynamics. Fur-

thermore, evaporative quenches are unidirectional in the sense that they are always

associated with irreversible atomic loss. The latter can be controlled, in 6Li, using

a broad Feshbach resonance to tune the scattering length, which in turn affects Tc

through its dependence on the combination kFa. There are several notable advantages

to using an interaction-based quench compared to an evaporative quench. Firstly, the

scattering length a, and therefore the critical temperature Tc, responds to changes in

magnetic field on very short timescales (typically ∼ 100 ns) set by the two-body scat-

tering timescales. In comparison, a temperature quench must be slow enough such

that (local) thermodynamic equilibrium is maintained at each instant in the quench.

This is only true if the elastic scattering rate, which depends on both two-body and

many-body properties, is large enough compared to the instantaneous rate of change

of the confining potential. As a result, interaction quenches are limited primarily by

the rate at which the magnetic field can be slewed, independently of the state of the

system. Secondly, the critical temperature in the BCS limit depends exponentially

on the interaction parameter, i.e. Tc ∼ exp[−π/(2kF |a|)], and thus it can be swept

rapidly across the transition with relatively little change in a. Finally because the

chemical potential is only weakly dependent on kF |a| for 1/(kFa) < 0, the density

profile does not change significantly during interaction quenches that remain on the

attractive side of the Feshbach resonance. One may choose to additionally employ a

“hybrid” quench protocol, where both the temperature and the critical temperature
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Figure 7.1: Simplified schematic showing a side-view of the DMD projection system
(not to scale). An arbitrary pattern generated on the DMD is directly imaged in a 4-f
configuration onto the middle of the cell, piercing the flat horizontally propagating
sheet beam and allowing for arbitrary transverse confinement potentials.

are ramped simultaneously. This has the effect of boosting the effective quench rate

for a given ramp time, while accomplishing the quench using a less extreme range

of control parameters. It is also worth noting that interaction-based quenches are

completely reversible, making prospects of performing repeated quenches possible.

This could pave the way to experimentally realizing a spontaneous current “pump,”

where a superfluid can be wound up into a high state of circulation using repeated

quenches across the transition.
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In the BCS limit, where the experiment takes place, 1/(kFa) . 0, and the critical

temperature for the superfluid transition can be expressed by Gorkov’s expression

Tc
TF

= α exp

(
− π

2kF |a|

)
(7.3)

with the constant α =
(

2
e

)7/3 eγ

π
≈ 0.277. For a given temperature T/TF , the transi-

tion occurs when 1 = T/Tc = T/TF × TF/Tc, which can be inverted to find

λc ≡
1

kF |ac|
=

2 log
(
αTF
T

)
π

(7.4)

This critical interaction parameter at which the transition occurs acquires a position

dependence via the local density approximation, in which µ(r, T, a) ≡ µ(T, a)−V (r) ≈

µ0[n(r), T, a] where µ is the global chemical potential in the trap and µ0(n, T, a) is

the chemical potential in the homogeneous system of density n, temperature T and

scattering length a. The local critical interaction parameter attains a maximum at

the potential minimum, which in a ring-dimple trap occurs in the ring-shaped region

of highest density. During a quench, the transition occurs simultaneously at all angles

around the ring minimum (in a perfectly smooth ring), but occurs at different later

times for radii excluding the ring radius. Thus, the quench dynamics are mixed-

dimensional. However, as long as causality is obeyed in the radial and axial directions,

transverse excitations are supressed and the dynamics of the order parameter can be

approximated as one-dimensional [118].

The experiment utilizes a fully red-detuned trapping geometry consisting of a

1064 nm horizontally-propagating sheet, and a 780 nm vertically propagating pattern

beam, typically shaped via the DMD and subsequently directly imaged onto the sheet.

We show a simplified schematic of the DMD projection optics in Fig. 7.1. In the

experiment detailed in this chapter, a double ring geometry was utilized, which was
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found empirically to produce interferometric spiral fringes with the largest contrast

(See Chap. 5).

We begin with a roughly equal mixture of 106 6Li atoms in the two lowest energy

hyperfine states at a field of 81.7 mT, just beneath the 83.2 mT Feshbach resonance.

With the double ring beam at full power, we evaporatively cool the ensemble by low-

ering the sheet power from an initial value of 3 W to a final value of around 400 mW,

which is slightly above the point at which the loosely bound molecules begin to con-

dense. The sheet power is ramped according to an exponential profile, with total time

tevap = 2 seconds and time constant 0.3 s, giving an initially rapid evaporation with a

smooth tail near the end of the ramp. By the end of the evaporation the double ring

shaped region is modestly populated, although the majority of the atoms/molecules

still reside in a broad halo in the sheet. Next, we keep the sheet power fixed and adia-

batically ramp in tramp = 100 ms the magnetic field above the Feshbach resonance to

around 98 mT. At this point, the interaction parameter 1/(kF |a|) ≈ 0.7, which was

determined from a numerical model of the full trapping potential [31, 32]. Here a is

the tunable s-wave scattering length and kF is the Fermi wave-vector. The reduced

temperature T/TF is large enough such that T > Tc and the system is in the normal

state above the transition. We confirm this by performing in-situ thermometry (see

Sec.4.3 and [32, 79]) on the atoms in the halo and find that (T/TF )initial ≈ 0.25.

From Gor’kov’s critical temperature prediction Tc/TF = 0.277 exp[−π/(2kF |a|)] [78],

we subsequently find (T/Tc)initial ≈ 3. We show the radial profile of the density dis-

tribution and the corresponding fit using the equation of state in Fig. 7.2. Values of

various relevant thermodynamic quantities extracted from the fit are shown in the

plot at well.

To reliably initialize a static, non-rotating state before the quench, we keep nar-

row barriers in both the inner and outer rings during the state preparation. This is
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Figure 7.2: Radial density profile in a particular spin state (green solid line) and
corresponding fit (black dashed line) to the in-situ density distribution of atoms at
97.6 mT (See Chap. 4.4. From the fit to the broad, dilute halo of atoms we extract
the reduced temperature, chemical potential, and absolute temperature. The Fermi
energy is obtained from a model of the full trapping potential described in Chap. 4.4.
We additionally show the column density obtained from an average of 20 in-situ
images from which the radial profile is obtained. The full field of view of the imaging
system is shown and the halo is clearly visible.

achieved by dynamically updating a digital micromirror device (DMD, Texas Instru-

ments DLP Lightcrafter6500) to display patterns that have barriers of controllable

depth. The barriers themselves, which break rotational symmetry, act to halt flow

in both rings before the quench. Since the inner ring was inherently smoother and

less aberrated than the outer ring, we chose to the inner ring to be the “experiment”

ring, and the outer to be the reference ring for interferometric detection. Thus, just

before the quench, we remove the barrier in the inner ring while keeping the barrier

in the outer ring up to prevent spontaneous currents from forming in it during the

quench. To enhance the probability of forming spontaneous currents, we employ a
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hybrid quench protocol, where both the temperature and the critical temperature

are changed and various rates. The former is controlled by linearly reducing the

sheet power, causing evaporation that lowers the temperature in an approximately

linear fashion. The latter is controlled by tuning the scattering length via Feshbach

resonances, which in turn affects the critical temperature according to the Gor’kov re-

lation [78]. A distinct advantage of such a quench is that one can get an enhancement

of the quench rate using a less extreme range of control parameters. In particular, the

exponential suppression of the critical temperature with interaction strength, coupled

with the relatively small sensitivity of the chemical potential to the interaction param-

eter for 1/(kFa) < 0, means that one can enact a fairly rapid quench while minimally

disturbing the density profile of the ensemble. Additionally, the evaporative cooling

that has been frequently employed to perform thermal quenches can be driven over

a smaller range, again with the motivation of disturbing the atomic density as little

as possible, and to reduce atomic losses during evaporation as much as possible.

To perform this hybrid quench discussed above experimentally, we simultaneously

ramp the magnetic field and the sheet power to the final values 85 mT and 40 mW,

respectively, over times ranging from 50 ms to 4.4 s. We show the in-situ density

profiles of the ring-dimple trap before and after the hybrid quench in Fig. 7.4. Due

to the blow-up of the scattering length near the Feshbach resonance, the transition

is crossed in the middle of the quench but close to unitarity, at a value of 1/(kFa) ≈

−0.3. At the end of the quench, we adiabatically remove the barrier in the outer

ring over 100 ms and then snap off the current in the jump coil while simultaneously

extinguishing the power in the dipole beams. This initiates free ballistic expansion of

tightly bound molecules at around 65 mT, owing to the efficient molecule conversion

during the rapid field jump. After 1.3 ms of time-of-flight, we take an absorption

image on the D2 high-field σ− cycling transition and extract the winding number
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Figure 7.3: Schematic detailing the preparation and hybrid quench procedure. Nei-
ther the vertical axes nor the time axis is to scale with respect to the actual experimen-
tal values. The quench occurs over a variable interval tq, while all of the other time
intervals are fixed, and have self-explanatory labels. The state preparation phase
terminates at the end of tramp, at which point the hybrid quench proceeds. DMD
patterns are shown in inverse for visual clarity (dark regions are intensity maxima).

of the persistent current formed at the end of the quench inteferometrically. The is

repeated at least 40 times for each quench time, and statistics of the spontaneous

current formation process are measured. Example interferograms, showing winding

numbers w = 0, w = −1 and w = 2 are shown in Fig. 7.4. The clear spiral arms the

interferograms allow for unambiguous measurements of the winding numbers.
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Figure 7.4: a) We start with an equal mixture of N = 9.6× 104 total atoms at a field
of 976 G. We don’t include barriers in the DMD potential here. b) After a 50 ms
hybrid quench discussed in the main text, we end up with N = 6.5× 104 total atoms.
The broad, dilute halo can be seen in both images, and is responsible for limiting the
deleterious effects of heating due to various collisions, and for maintaining a roughly
constant peak density in the ring dimple region during the quench. c) Example
interferograms after ballistic expansion for 1.3 ms.

Section 7.3

Results and Discussion

The distribution of measured spontaneous currents is peaked around w = 0 for all

quench times. Although the degree of symmetry of the distribution varies between

quench times, the average of measured winding numbers for all quench times is con-
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sistent with a zero-mean and symmetric distribution. We show several example his-

tograms of measured winding numbers in Fig. 7.5.

It is important to additionally rule out the possibility of post-quench persistent

current decay due to thermally activated phase slips or vortex annihilation events

causing systematic effects on the winding number distribution. To confirm this, we

prepared with ≈ 100% fidelity an ` = 2 persistent current state using a 2-axis acousto-

optic deflector and a blue-detuned “stirring” beam [31], and observed no decay of the

winding number even for hold times exceeding 5 s. As mentioned earlier, the lack of

destructive post-quench dynamics is a unique benefit to performing KZM studies in

ring-shaped traps.

We show in Fig. 7.6 the winding number variance of spontaneous currents formed

after a quench across the BCS transition at various rates, spanning several decades.

Each data point represents at least 40 realizations, and the error bars are obtained

from a bootstrapping technique [119]. We also show the numerically simulated mean-

square winding number evaluated at teval = 3t̂ (See Sec. 6.3). We now highlight

several additional important features of Fig. 7.6.

For the fastest quenches, we see an approximate power law scaling of the form

〈w2〉 ∼ t−σq . Fitting the first nine data points to this power law function gives a scaling

exponent σ = 0.24(2). This exponent can be compared to the KZM prediction,

σKZ =
ν

1 + νz
(7.5)

with the usual equilibrium exponents ν and z describing the correlation length and

relaxation time, respectively. For the mean-field predictions νMF = 1/2 and zMF = 2,

giving σKZ = 1/4, which is in line with our measured σ. The F-model exponents de-

scribing the 3D BEC transition, νF = 2/3 and zF = 3/2 give σKZ = 1/3, larger

than that observed. The slightly lower observed exponent may be significant if one
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Figure 7.5: Observed occurrences of winding numbers for various quench times (blue
histograms). Each histogram contains at least 40 samples. The number of samples
for each displayed histogram is given by the largest number on the y-axis. We also
show a histogram of winding numbers for all quenches (red histogram). The global
average of all winding number measurements 〈w〉all = 0.004, indicating that there are
no biases to the winding number distribution and the spontaneous current formation
is a stochastic process with zero mean.

accounts for the modified interactions with the large fermionic reservoir [120]. In par-

ticular, if one accounts for energy damping collisions with the reservoir, substantial

multiplicative noise may be introduced onto the order parameter during its evolution,

affecting the rate at which it may relax to its equilibrium value. This in turn has

been observed to increase the value of the dynamical exponent by a factor of about

2, while preserving the correlation length exponent. This leads to a prediction of

σ ≈ 0.19, which is also in line with our measured value. The mean-field scaling is

expected to hold when the reduced temperature at the point of freeze-out, ε̂, is large
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Figure 7.6: Plot of measured winding number variance versus quench time (blue
circles). A power-law fit to the measured data for the nine fastest quenches reveals a
scaling exponent σ = 0.24(2). We also show the variances obtained from the simulated
winding number distribution obtained using the 1D LSLG model (red squares). The
simulated distribution is evaluated at a time t = 3t̂ (See text for details). The straight
red dotted line shows a power law with exponent 0.25. The inset shows the power
law fit-extracted exponents σ obtained from fits to various numbers of fastest-quench
data points. The dotted lines show the mean-field and F-model predictions σ = 1/4
and σ = 1/3, respectively.

compared to the Ginzburg number Gi, which is the reduced temperature below which

Gaussian fluctuations of the order parameter dominate over its mean [121, 122]. In

the BCS limit, Gi ∼ (Tc/TF )4 . (0.277)4 ≈ 0.006, where Gor’kov’s critical temper-

ature Tc/TF = 0.277 exp[−π/(2kF |a|)] was used. On the other hand, winding num-

bers observed in the experiment are consistent with the average number of domains

Nd ≈ C/ξ̂KZ . 10 [86]. Using the mean-field scaling relationship ξ̂KZ ≈ ξBCSε̂
−1/2
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with the BCS coherence length ξBCS ≈ 0.5 µm, we estimate ε̂ . 0.01. As ε̂ & Gi for

the faster quenches, we expect a mean-field scaling law to roughly hold. Unambigu-

ous distinction between mean-field and F-model scaling has been elusive due to the

precision required to probe the relatively small scaling exponents.

We note that by varying the number of points used in the fit, we obtain a set

of scaling exponents, which is shown in the inset of Fig. 7.6 (Errorbars are obtained

from the fit covariance matrix). Using the first 5 to 9 points, however, gives a roughly

constant exponent near 0.24, although each exponent is systematically lower than

the mean-field result 0.25. The slightly lower observed exponent may be significant if

one accounts for the modified interactions with the large fermionic reservoir [120]. In

particular, if one accounts for energy damping collisions with the reservoir, substantial

multiplicative noise may be introduced onto the order parameter during its evolution,

affecting the rate at which it may relax to its equilibrium value. This in turn has

been observed to increase the value of the dynamical exponent by a factor of about

2, while preserving the correlation length exponent. This leads to a prediction of

σ ≈ 0.19, which is below our measured value slightly, but still potentially relevant.

For the slower quenches, we observe a clear transition from the KZ regime of fast

quenches into the intermediate-quench regime where the variance falls more rapidly

with the quench time. This scaling laws in this intermediate regime are non-universal,

and depend on the microscopic details of the system as well as system geometry and

finite-size effects. While several theories have been put forth to explain observed

scaling laws in small rings [10, 99, 100], experimental findings are somewhat contra-

dictory, especially in the transition region following the KZ regime. While the data

points to an exponential fall-off in the variance for intermediate quenches, in line with

the predictions from [99] and from our linearized stochastic Landau-Ginzburg model,

importantly we show that the KZ regime is distinct for a significant range of quench
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Figure 7.7: (Left) Plot of measured winding number variance versus quench time
(blue circles). We show the theoretical variance (black dotted line) obtained from the
LSLG model, evaluated at time t = 3t̂. We also show a power-law fit to the fastest
nine quenches, which shows a scaling exponent σ = 0.24(2) in line with the mean-
field KZ prediction σMF = 1/4. (Right) Theoretical prediction from the same LSLG
model showing an expanded range of quench times. We fit a power law function to
the fastest and slowest quenches, which reveals scaling exponents of 1/4 and 1/2,
respectively. The highlighted patch of the curve is where our experiment is believed
to take place, and encloses both the KZ regime and the intermediate crossover regime,
which is of exponential character.

152



7.3 Results and Discussion Spontaneous Currents in Fermionic Rings

times used in our experiment. While a scaling exponent doubling has been predicted

to occur for the slowest quenches, we note that the onset of this scaling regime of

extremely rare occurrences may depend on microscopic properties and finite size ef-

fects within the system. Our data does not appear to capture this regime; Fitting a

power law to the slowest quench data gives an exponent of around unity, although

we do not have the precision to assess whether this is a universal or an non-universal

quench regime with a single well-defined scaling exponent. We show the same mea-

sured mean-square winding numbers in Fig. 7.7, but this time using the analytical

approximation to the winding number distribution described in Sec. 6.3. This plot

highlights the fact that this slow quench regime may exist, but lies within a range of

prohibitively difficult-to-access experimental conditions.

We see good agreement in the measured and simulated data for the fastest quenches,

bolstering Zurek’s original theoretical argument for winding number scaling in 1D

rings. Additionally, we see a more rapid fall-off for slower quenches, although our

simulated values do not match the measured values in this regime. This can poten-

tially be explained by the effects of dimensionality on spontaneous current formation,

as was observed in numerical simulations in [99]. The sharper fall-off in the mea-

sured data for slow quenches may point to an enhanced role of 2D or 3D effects, and

further investigation into the effects of dimensionality in an experimental setting is

warranted, i.e. by performing quenches into rings of variable widths.

In the fast-quench limit, the critical exponents describing the transition are di-

rectly related to the quench time scaling exponent σ in a straightforward and physi-

cally transparent way; The variance of the winding number is set by the large number

of uncorrelated phase domains according to a random walk description, and finite-

size effects are negligible. To connect the measured scaling laws in this regime to

the adiabatic critical exponents, however, requires more information. In particular,
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a measurement of the mean-square winding number scaling in the KZ regime reveals

only the combination given in (7.5). Additional measurements probing some differ-

ent scaling exponent, that is itself a different combination of the critical exponents ν

and z, would be required to extract simultaneously ν and z. In the absence of such

measurements, one can only relate the observed KZ exponent to predictions for what

the critical exponents should be. On the other hand, if one is confident in the value

of one of the critical exponents, then the other may be estimated from the measured

scaling exponent in the KZ regime. For instance, in both the mean-field and F-model

predictions, the combination νz = 1. This implies that ν = 2σKZ and z = 1/(2σKZ)

for both models. Insofar as a measured exponent σ can be associated with the KZ

exponent σKZ and the above condition νz = 1 holds, ν and z can be independently

estimated.

The findings of this experiment, and the results from [120], raise questions as to

how reservoir interactions can affect the critical exponents of the phase transition.

However, the robust scaling behavior for the fast-quench regime points to a a scaling

regime in line with the Zurek scaling argument. While the measurements in this

experiment were taking in a ring-dimple configuration, where a large background bath

of normal fluid was present during the quench, we note that reservoir interactions are

always present in real systems. The exact details of the reservoir, which vary from

system to system, seem to limit the range of applicability of universal descriptions

of phase transitions. It would be very insightful to study the same scaling laws in

a blue-detuned double ring trap, where the halo atoms could be isolated and the

reservoir is contained entirely in the ring.

An additional relevant point of discussion regards the role of pairing and pseu-

dogap physics in quenches of Fermi gases [123, 124]. It is well-known that there

is a separation between the temperatures at which pairs form, T ∗, and the criti-
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cal temperature marking the onset of condensation Tc, with Tc < T ∗. In the BCS

limit (kFa)−1 → −∞ the two temperatures coincide, but for large negative and fi-

nite (kFa)−1, a narrow band of temperature exists for which Tc < T < T ∗ and

(T ∗ − Tc)/Tc � 1. For quenches in the BCS limit, the correlation length of fluctua-

tions in the Cooper pairing field is essentially zero for all T (t) > T ∗, as Cooper pairs

hardly exist then. Only in the narrow temperature band Tc < T (t) < T ∗ can correla-

tions in fluctuations of the Cooper pair field be established, and the correlations will

attempt to equilibrate with a length scale ξeq ∼ (T ∗ − Tc)−ν . This length scale can

potentially be extremely large, but the fluctuations have not been able to grow on

such a short time scale. We can posit that the correlation length will grow linearly

from zero following the time t∗ in the quench when T (t = t∗) ≡ T ∗, on a time scale

set by the instantaneous relaxation time τ(t∗) ∼ |(T ∗ − Tc)/Tc|−νz ≡ |ε∗|−νz:

ξ(t) ∼ t− t∗

τ(t∗)
. (7.6)

with |ε∗| � 1. The correlations grow until the unfreezing time +t̂ ∼ t
νz/(1+νz)
q is

reached on the other side of the transition and rapid condensate growth can occur.

At this point, the correlation length will have grown to about

ξ(t = +t̂) ∼ t̂− t∗

τ(t∗)
∼ |ε∗|νz

(
t

νz
1+νz
q − c

)
(7.7)

where c ∼ |ε∗| is some small constant. Therefore to leading order in |ε|∗, the corre-

lation length at the unfreezing time scales with the quench time with an exponent

νz/(1+νz), which is z times that of the usual KZ scaling exponent. The Cooper pair-

ing field experiences a brief and sudden “whack” as the pairing critical temperature

T ∗ is crossed, and the small correlation length of these fluctuations can give rise to

an enhancement in the rate of defect formation with an enhanced scaling exponent.
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Importantly, the correlation length setting the domain size should, in the deep BCS

limit, be determined by its growth within the impulse period of the quench below

the transition, t ∈ [0,+t̂], as opposed to its value at the moment when the order

parameter fluctuations are first frozen out as described within the adiabatic-impulse-

adiabatic approximation. In our experiment, as was stated earlier, the transition is

crossed closer to unitarity at (kFa)−1 ≈ −0.3, and where T ∗/Tc ∼ 2. Thus, the role

of pairing in the quench dynamics likely does not play a central role in the outcome

of spontaneous current formation, but it is still a potentially very relevant detail for

quenches taking place in the BCS limit, and a possible direction for future experi-

ments probing different scaling laws with a different combination of adiabatic critical

exponents.

Finally, in order to further distinguish the crossover from the slow-quench to

the fast-quench scaling regimes, we plot the measured mean-square winding number

〈w2〉 versus the mean absolute winding number 〈|w|〉 in Fig. 7.8. This so-called

dispersion law is indicative of the underlying probability distribution describing the

spontaneous current formation, and takes different forms depending on the quench

regime. For slow quenches, by far the most probable winding numbers are w = 0

and |w| = 1, implying that 〈w2〉 ≈ 〈|w|〉. The prediction of W. Zurek in [100] points

to a doubling of the scaling exponent for the mean-square winding numbers in this

limit, relative to that of the fast-quench limit. However, it appears from Figs. 7.8 and

7.7 that the condition 〈w2〉 = 〈|w|〉 is not sufficient to definitively claim the scaling

exponent should be doubled. A further condition, such as 〈|w|〉≪ 1 should perhaps

be appended to describe this universal regime of slowest quenches. It should be

noted that this limit is incredibly difficult to access (experimentally and numerically),

given both the extreme rarity in measuring non-zero winding numbers, and to the

enhanced sensitivity to experimental imperfection in i.e. the trapping potential. The
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Figure 7.8: Measured winding number dispersion relation, 〈w2〉 = f(〈|w|〉). The black
solid line is a fit to the function f(x) = x[1 + (x/x0)a]1/a while the red dashed-dotted
line is a linear function f(x) = x. The random walk regime is accessed when the
scaling becomes quadratic while the slow-quench regime occurs in the linear portion.
Error-bars on the measured data are computed using a bootstrapping approach.

slow-quench asymptotic prediction from our linearized stochastic model provides an

indication that this regime may in fact exist, but further confirmation is needed. In

the opposite limit of fast quenches, the winding number distribution is approximately

Gaussian, implying that 〈w2〉 ∼ 〈|w|〉2. This is suggestive of a random-walk scaling

behavior. In this regime, the critical exponents pertaining to the phase transition
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enter into the scaling law in a straightforward manner, and the frozen-out correlation

length has an obvious physical meaning.

To interpolate between these two limiting regimes, we fit the measured dispersion

law to the functional form f(x) = x[1+(x/x0)a]1/a, where x0 and a are fit parameters.

This function reduces to the discussed scaling laws in the x� x0 and x� x0 limits.

The fit parameter x0 ≈ 1.2, suggesting that the crossover into the random-walk regime

occurs for even faster quenches with 〈|w|〉 & 1.2, which are likely inaccessible to our,

and many other, current experimental capabilities due to the weak scaling exponent

σ = 1/4. Namely, a doubling of 〈|w|〉 would require roughly a factor of 16 enhance-

ment in the fastest available quench rate. However, when looking at the robust scaling

law for the fast-quench regime shown in Fig. 7.7, which is clearly distinct from the

intermediate-to-slow quench regime, it appears as though the KZ scaling argument

may still hold for the data obtained in this experiment, insofar as the mean-square

winding number behaves like the sum of Gaussian random variables. Certainly, the

measured mean-square scaling exponent σ = 0.24(2) agrees with the mean-field pre-

diction σMF = 1/4. This realization implies that the mean-square winding number

scaling exponent can be reliably tied back into the adiabatic critical exponents via

the relation (7.5) even if the true random-walk regime cannot be accessed.

7.3.1. Conclusion

We have studied the statistics of spontaneous current formation in a thermally-

quenched ring of ultracold fermions. We observe a fast-quench regime with a measured

scaling law in line with predictions from mean-field KZ theory, and a slow-quench

regime governed by an exponential suppression of spontaneous currents. It is im-

portant to mention, however, that our data may not be sufficient enough to discern

the underlying critical exponents and their association to the mean-field or F-model

predictions. Including several additional points into our fit to the fastest quenches,
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we obtain a scaling exponent closer to the F-model prediction σF = 1/3. The goal of

future experiments would be to probe the fast-quench limit in finer detail, and over

a greater range, by boosting the effective quench rate. With improvements to the

slew rates of our magnet coils, this regime can be better explored, and the scaling

exponents measured with a higher degree of confidence.
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Chapter 8

Future Experiments

Section 8.1

Spontaneous Currents with a Rotational Bias

In this section we extend the phenomenological spontaneous current theory discussed

in Sec.6.3 to scenarios where a non-zero rotation of the normal fluid component is

present. We show that this rotational “bias” preserves some essential predictions of

the KZ argument in certain limits, but also opens the possibility to utilize a known

bias to make predictions about the underlying static critical exponents pertaining to

the phase transition. In particular, the finite kinetic energy of the normal component

causes a potentially measurable shift in the critical temperature, and onset of rapid

condensate growth, associated to the transition, in accordance to the Little-Parks

effect.

The linearized stochastic LG equation can be modified to include a rotational bias

by introducing a uniform rotational “gauge” field that couples to the single particle

angular momentum operator i~d/dθ. In particular in Fourier space, we make the

replacement ` → ` − `Ω in equation (6.33) and write the dynamical evolution of the
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Fourier components as

ċ` =

[
t

tq
− (`− `Ω)2

]
c` + ζ` (8.1)

Here `Ω ≡ Ω/Ω0 (Ω0 = ~/2mR2) is the important additional gauge term used to

account for the finite rotation of the normal (background) fluid, which acts as an

angular momentum “reservoir”. Technically, Ω is the Lagrange multiplier that fixes

the average (conserved) angular momentum 〈Lz〉 of the system. In a narrow ring-

shaped trap, the normal component rotates as a rigid body with Ω = 〈Lz〉/(mNR2).

Here R the ring radius, m the atomic mass and N is the total atom number.

Formally integrating (8.1), we have

c`(t) =

∫ t

−∞
dt′ζl(t

′)e
−(`−`Ω)2(t−t′)+ t2−t′2

2tq (8.2)

We find an exact expression for the mean-square fluctuations of each Fourier compo-

nent by complex squaring and averaging (8.2)

〈|c`(t)|2〉 ≡ σ2
` (t) =

√
πDt̂ F

(
t−∆t(`− `Ω)2

t̂

)
(8.3)

where t̂ ≡ √tq and ∆t ≡ t̂2 = tq. The dimensionless function F (x) ≡ 1
2
ex

2
[1+erf(x)] =

erfcx(−x)/2 where erfcx is the complimentary scaled error function. Importantly, for

x→ −∞, F (x) ∼ 1/(2
√
πx) while for x & 1, F (x) ∼ exp(x2). The meanings of t̂ and

∆t will become clear shortly.

For any time t, σ2
` (t) is maximal at ` = round(`Ω) ≡ `∗. Additionally, the growth

dynamics of the σ2
` depend only on the variable

x`(t) ≡
t−∆t(`− `Ω)2

t̂
(8.4)

Due to the exponentially-increasing nature of F (x) near x = 1, the fluctuations in
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mode `∗ experience a brief period of rapid growth, before any other mode, following

the transition at times when x`∗(t) ≈ 1. This condition defines the “blow-up” time

for the biased quench

t∗ ≡ t̂+ ∆t(`∗ − `Ω)2, (8.5)

after which non-linear effects kick in and the condensate begins to relax toward its

instantaneous, non-zero equilibrium value value [108]. Thus, in some short interval

of time following t∗, the condensate becomes robust with respect to fluctuations large

enough to cause any persistent current to decay; The winding number becomes a

topologically protected quantity at times t ≥ teval ≡ ft∗. Here f is an O(1) “fudge”

factor that scales the blow-up time to the so-called evaluation time where the winding

number is stabilized [110]. We note that although f is non-universal, it depends only

logarithmically on the microscopic parameters and quench details and is thus roughly

constant across many decades of quench times.

The non-rotating `Ω = 0 case was discussed in detail in Sec. 6.3, and in that case

t∗ = t̂. For the case of `Ω /∈ Z, expression (8.5) shows that the condensate growth

is delayed by an amount proportional to ∆t. This makes sense when considering the

pairing gap relative to (twice) the atomic kinetic energy, which is non-zero in the

presence of a normal-component flow and can cause pairs to fragment. We can also

interpret this delay in condensate growth as being due to a reduction in the critical

temperature due to the bias flow. This is the essence of the Little-Parks effect applied

to a system quenched through its critical point [125, 126].

It is potentially an interesting feature of the quench dynamics that the condensate

growth is delayed by an amount given by tdelay ≡ ∆t(`∗ − `Ω)2. If a known bias flow

`Ω is introduced, this delay, if measurable, can give insight into ∆t, which itself

is predicted to depend on the combination of critical exponents b ≡ νz/(1 + νz).

By measuring tdelay for various `Ω, ∆t and therefore b can perhaps be measured, in
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addition to the usual KZ scaling exponent σ = ν/(1 + νz).

8.1.1. Estimating the Winding Number Distribution

To make progress analytically, we employ the same approximation to the probability

distribution as discussed in Sec. 6.3. Namely, we take the probability distribution to

be described by the infinite product

Pw ≈ Prob(|cw| > |c0| ∩ |cw| > |c1| ∩ ...)/Z

=
1

Z

∏
`

σ2
w

σ2
w + σ2

`

(8.6)

When evaluated at teval, the probability distribution depends only on the parameters

t̂ ∼ √tq/R2 and `Ω. Notably the phenomenological diffusion constant D drops out

of the equation as long as the winding number assumes its final value at the blow-up

time and non-linear effects can be neglected. Small values of t̂ correspond to either

rapid quenches or large ring radii. The latter corresponds to the thermodynamic

(infinite size) limit, but in either case, it describes the regime initially envisioned

by Kibble and Zurek (many small, uncorrelated domains with uniform phase locked

within). Conversely, large values of t̂ (slow quenches and small temperatures) or

small radius rings give rise to sharper distributions of persistent currents, centered

at winding number l∗, which agrees with the predictions of Hess and Fairbank in

their studies of superfluid Helium [127]. Importantly, the phase coherence extends

across the circumference of the ring, and the details of the phase profile along the

circumference, as well as periodic boundary conditions, become important. Thus,

there is always a small but finite probability to generate persistent currents even

when Nd ≤ 2 domains are formed. For intermediate values of t̂, equation (8.6)

gives an interpolation between the two regimes discussed previously, where standard

treatments of spontaneous current formation become inaccurate, and simple scaling
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8.1 Biased KZM Future Experiments

Figure 8.1: Plot of the scaling exponent γ ≡ −d log var[w]
d log tq

versus quench time for several

values of the bias flow parameter `Ω. The two horizontal blue dashed lines at γ =
1/4 and γ = 1/2 show the mean-field KZ scaling exponent and slow-quench scaling
exponent, respectively. At the frustration point `Ω = 1/2, there is no preference to
choosing a winding number w = 0 or w = 1 for slow quenches, although for rapid
quenches the KZ argument seems to hold for all bias values.

laws describing the rate of defect formation break down. This is the first time that

we know of that an approximate analytic treatment of the intermediate quench rate

regime has been put forth, although it is still unclear exactly what role microscopic,

non-universal details play.

Analyzing the Distribution. With the probability distribution, one may readily

compute the various relevant moments of the distribution as functions of t̂ and `Ω,
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Figure 8.2: Various moments of the winding number distribution, computed from
(8.6), as a function of the bias flow `Ω and several different quench times tq. The
skewness Skew[w] ≡ E[(w−E[w])3]/Var[w]3/2 describes the asymmetry in the winding
distribution about the mean.

which we show in Fig. 8.2. For simplicity, we take teval = t∗. As the Kibble-Zurek

mechanism predicts the scaling of the defect density, and thus the variance of the

winding number distribution, with the quench rate, it is informative to define the

quench-rate-dependent scaling exponent γ ≈ −d log var[w]
d log tq

, which we plot in Fig. 8.1.

The plot of the scaling exponent highlights three main regimes of stochastic per-

sistent formation. The small t̂ regime is the KZ regime of Gaussian probabilities.
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8.1 Biased KZM Future Experiments

Notably, the scaling becomes independent of `Ω, the background flow. For large t̂,

the scaling exponent is seen to double. This doubling has been suggested to be a

result of Gaussianity in the winding number density. Furthermore, the scaling is

again independent of `Ω as long as `Ω 6= 1/2. This scaling is likely difficult to observe

experimentally with great precision, as the probability to generate non-zero persistent

currents becomes quite small for large t̂. However, it is clear from the variance plot in

figure 8.2 that tuning the background flow near (but not on) the “frustration point”

`Ω = 1/2 should boost the variance substantially, perhaps enough to observe this

universal scaling behavior. For intermediate values of t̂, the winding number statis-

tics become non-universal and `Ω-dependent as indicated in figure 8.1. Furthermore,

the functional dependence of the variance on the quench time becomes dependent on

the blow-up time in a way that depends on the non-linear interaction term that was

neglected. However, it should still be possible to define the notion of a “defect”, given

that the correlation length is still smaller that the ring circumference at intermediate

quench times.

It is interesting to note that an exact expression for the expected winding number

〈w〉 exists, and is due to a result from the study of roots of random polynomials [128].

The expected density of roots of a random polynomial of the form ψ(z) =
∑2`c

`=0 c`−`cz
`

is given simply by

ρ(z) =
1

π

∂2

∂z∂z∗
log〈ψ(z)ψ(z∗)〉 (8.7)

where angle brackets denote averaging over the random polynomials ψ(z). As the c`

are drawn from the complex Gaussian random distribution CN (0, σ`), on can readily

show that (8.7) can be written as

ρ(s) =
1

π

d

ds

(
s
d

ds
log

2`c∑
`=0

σ2
`−`cs

`

)
(8.8)
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where s = |z|2. As the winding number w is related to the number of roots of ψ(z)

lying within the complex unit disk (see Sec. 2.3), we find 〈w〉 by integrating the root

density (8.8) over the region |z| < 1:

〈w〉 =

∫ 1

0

ρ(s)ds− `c

=

(
d

ds
log

`c∑
`=−`c

σ2
` s
`

)∣∣∣∣
s=1

=

∑`c
`=−`c `σ

2
`∑`c

`=−`c σ
2
`

(8.9)

which has a nice intuitive form. Since 〈w〉 =
∑

w wPw, it is tempting to associate

with the winding number distribution Pw = σ2
w/
∑`c

`=−`c σ
2
` . This cannot be true,

however, as the algebraic decay 1/`2 decay of the σ2
` for large |`| would result in di-

verging higher-order moments. While there exist formulae for describing higher order

correlation functions between the random roots of ψ(z), which in turn can be used

to find expressions for the higher order moments of the winding number distribution,

they are very unwieldy and approximations or numerics become necessary.

It is also interesting to note the connection between the normalized correlation

function as defined in Sec. 6.3.3

g(θ) ≡
∑

` σ
2
` e
i`θ∑

` σ
2
`

(8.10)

and the average winding number (8.9). On inspection, we find several equivalent

relations:

〈w〉 = −ig′(0) = Im[g′(0)] = −i d
dθ

log g(θ)|θ=0. (8.11)

These relations are reminiscent of the optical theorem in scattering theory.

167



8.1 Biased KZM Future Experiments

The KZ Regime. We now show that the probability distribution (8.6) successfully

reproduces the KZ scaling laws for rapid quenches, but also sheds light onto the scaling

laws in the biased `Ω 6= 0 case. In this regime, t̂ is small, and we can approximate

the scaling function in (8.3) at t = t∗ as

F{1− t̂[(`− `Ω)2 − (`∗ − `Ω)2]} ∼ exp
[
−2t̂(`− `Ω)2

]
(8.12)

where the term in the exponential of O(t̂2) was neglected. Then from (8.6) we have

logPw ∼ −
∑
`

log
[
1 + zwe

−2t̂(`−`Ω)2
]

∼ − 1√
t̂

∫ ∞
−∞

dx log
(

1 + zwe
−x2
)

∼ − 1√
t̂
Li3/2(−zw)

(8.13)

where zw ≡ exp
[
−2t̂(w − `Ω)2

]
and the sum was approximated by an integral. A

small t̂ expansion of the polylogarithm Li3/2 about zw = 1 then yields

Pw ∼ t̂−1/4 exp

−
√

t̂

t̂0
(w − `Ω)2

 (8.14)

where t̂0 is a number. Since t̂ is small, the distribution Pw is very broad, and its

discrete nature is blurred out. w is then approximately a continuous variable. Then,

we compute the lowest order cumulants

E[w] ≈
∫ ∞
−∞

dwwPw = `Ω (8.15)

and

Var[w] ≈
∫ ∞
−∞

dw(w − `Ω)2Pw ∼ t̂−1/2 ∼ t−1/4
q (8.16)
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the result predicted by the KZ argument. This variance scaling is independent of the

bias flow `Ω and retains the same scaling exponent σ = 1/4, suggesting that the KZ

argument can be extended to a larger class that includes rotating/biased systems.

Section 8.2

KZM in a Spatially-Modulated Ring

The speed at which fluctuations in the superfluid propagate, relative to the speed at

which the phase transitional front propagates during the quench, determines the re-

gion in which causally disconnected domains may form during the quench [118]. It is

interesting to study this inhomogeneous scenario in a ring-shaped geometry. In partic-

ular, we expect a suppression of spontaneous current formation when fluctuations are

allowed to propagate the circumference of the ring by the time the entire ring crosses

the phase transition. In certain limits, the rate at which fluctuations propagate obeys

a simple scaling relation, with a different combination of exponents ν and z governing

the size of correlated patches in the usual Kibble-Zurek scenario. In theory, if one

can measure the scaling governing this propagation velocity, in addition to that gov-

erning the defect density after a quench, one may be able to simultaneously extract

both critical exponents pertaining to the KZM. This is in constrast to the usual ho-

mogeneous KZ scenario, where typically only the combination a(ν, z) = ν/(1 + νz) is

measurable. We now propose an experiment to extract the exponent, b(ν, z), relating

to the propagation speed at the freeze-out time, by utilizing a known inhomogeneity

around a ring shaped optical potential.

We focus on a particular form of azimuthal inhomogeneity, namely a triangular

modulation described by V (θ) = V0|θ|/π, with θ ∈ [−π, π) (see Fig. 8.3). While this

potential can be engineered in multiple ways, we simply project this optical potential

using the DMD. The potential has a minimum at θ = 0, where the phase transition
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is first crossed during the quench, and a maximum at θ = π. In the limit that

the potential amplitude V0 is small, the local critical temperature can be linearized as

Tc(θ) = Tc[V (θ)] ≈ Tc(0)+V0T
′
c(0)|θ|/π ≡ Tc(0)(1−δ|θ|), where δ = |V0T

′
c(0)/[πTc(0)]|

is a small dimensionless number characterizing the relative variation in the critical

temperature around the ring. We note that in the BCS limit, δ ∼ V0/EF , with EF

the Fermi energy at the peak density point. Assuming the reduced temperature, at

θ = 0, is quenched linearly (at least within some small window about the transition)

as ε(θ = 0, t) ≡ t/tq, then the local reduced temperature can be written as

ε(θ, t) = 1− T (t)

Tc(θ, t)
≡ t− tF (θ)

tq(θ)
(8.17)

where we have defined tF (θ) = tqδ|θ| and tq(θ) = tq(1− δ|θ|)

In this approximation, the local quench time tq(θ) varies in a triangular fashion

around the ring. Causality arguments discussed above suggest defects can only nu-

cleate locally when the condensation front velocity vF (θ) exceeds the speed at which

fluctuations in the order parameter can propagate, approximated as v̂(θ) = ξ̂(θ)/τ̂(θ).

We find vF (θ) by differentiating the condition t ≡ tF (θF (t), t), defining the conden-

sation front ε[θF (t), t] = 0, with respect to time. Using tF (θ) = tqδ|θ|, we find

|vF | =
R

tqδ
(8.18)

with vF = RdθF/dt. Next, the fluctuation propagation speed v̂(θ) can be found using

the (local) scaling laws discussed previously:

v̂(θ) =
ξ0

τ0

[
tq(θ)

τ0

]− ν(z−1)
1+νz

(8.19)

170
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Figure 8.3: Optical potential for a triangular-wave modulated ring. The modulation
depth shown here is 50% between the minimum and maximum intensity points. This
is a potential setting for probing the speed at which fluctuations can propagate in
a quenched ultracold atomic superfluid. The inset shows the normalized azimuthal
intensity profile measured along the ring radius R.

Then, the condition for local defect nucleation becomes

ξ0

τ0

{
tq(1− δ|θ|)

τ0

}− ν(z−1)
1+νz

≈ ξ0

τ0

(
tq
τ0

)− ν(z−1)
1+νz

.
R

tqδ

(8.20)

to lowest non-vanishing order in δ. Globally, i.e. across the ring, domains of inter-

nally well-defined but separately uncorrelated phase form when the inequality (8.20)

is obeyed. If we imagine increasing the quench time tq from some small initial value,

where (8.20) holds globally and the Kibble-Zurek mechanism proceeds as usual, even-
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Figure 8.4: Qualitative plot showing the two velocity scales vF and v̂. The blue
shaded region corresponds to the causally disconnected regime, within which the
KZM proceeds as usual. For quench times large than t∗q (green circle), the tilted ring
becomes causally connected and spontaneous current formation is suppressed

tually there will be some critical quench time t∗q such that equality of (8.20) is met.

For quench times larger than t∗q, the ring becomes causally connected within the two

regions around θ = 0. As a result, the defect formation rate should fall abruptly after

this point, as existing condensate has time to communicate its phase to neighboring

points as they cross the transition. A qualitative picture of this effect is shown in

Fig. 8.4

We can solve for equality in (8.20) to find

t∗q ≈ τ0

(
R

ξ0δ

) 1+νz
1+ν

∼ δ−
1+νz
1+ν (8.21)

suggesting a measurable scaling of the critical quench time, marking the onset of

causal connectedness in the ring, with the (small) modulation amplitude. The com-

bination of critical exponents b ≡ (1 + νz)/(1 + ν) in (8.21) is different than the
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one governing the homogeneous defect extent predicted by Kibble-Zurek scaling ar-

guments, a ≡ ν/(1 + νz). Introducing a known inhomogeneity and observing the

scaling in (8.21), in addition to the known techniques used to measure the usual

KZM exponent a, would allow one to extract simultaneously the two fundamental

exponents ν and z that distinguish the second order transition. While the goal of

such an experiment would be to measure ν and z directly, assuming the mean-field

values νMF = 1/2 and zMF = 2, we can estimate aMF = 1/4 and bMF = 4/3. Such

super-linear scaling in the causality exponent bMF suggests that this scaling (8.20)

should be detectable, even if δ is limited to small values. Furthermore, we found

that the winding numbers were still easily recorded for the case of quenching in tilted

rings, without modification to the optical potential at the end of the quench.

To extract the scaling of the critical quench time t∗q with the tilt amplitude δ, one

would repeat the full set of measurements for various tilts, and from the log-log plot

of 〈|w|〉 vs tq, identify a knee in the data where 〈|w|〉 drops noticeably. This point

corresponds to the point at which the ring becomes causally connected on either side

of θ = 0 and defect formation is suppressed.
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Chapter 9

Conclusion and Outlook

In this thesis, we studied ensembles of fermionic 6Li confined in ring-shaped traps.

More specifically, we highlighted findings from two distinct, yet related, experiments.

We first gained insight into the effects of hole-induced heating on degenerate fermion

samples due to collisions with background particles, and found a means of mitigating

this heating by preserving a large, dilute halo of non-degenerate fermions in contact

with the ring-shaped degenerate component. The long system lifetime, coupled with

the ability to maintain low temperatures for long periods of time due to the halo,

opens the possibility to perform seconds-long experiments on weakly interacting BCS

superfluids that require low temperatures due to the fragility of pairing in this limit.

More than just a technical result, we hope to utilize this feature in future experiments

where extreme low-temperature conditions are required for extended periods of time.

For instance, efforts to find signatures of uncoventionally-paired superfluids in spin-

polarized samples, such as the elusive FFLO state [2, 3], will most certainly require

achieving and maintaining extremely low temperatures, which further motivates the

use of our heat mitigation technique.

The second main experimental result revolved around the investigation of spon-

taneous currents formed following a quench through a BCS phase transition. By
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exploiting the long lifetimes and heat-mitigation features offered by our choice of

trapping potential, we were able to measure a KZ-like scaling law for fast quenches

and showed that this regime was distinct from the slow-quench regime characterized

by a rapid suppression in spontaneous current formation. The findings of this exper-

iment were supported by a theoretical model of spontaneous current formation and

correlation functions. This model operated entirely in a linear regime, but a more

complete picture of the quench dynamics should be obtained by including non-linear

corrections to the numerics, as well as specific microscopic parameters associated to

the sample. This experimental investigation was not exhaustive; Further probing of

the fast-quench limit is still desired, and with technical improvements to the magnetic

coil switching speeds should be possible. With these modifications, one could imagine

gathering enough statistics with sufficient precision to be able to distinguish clearly

between mean-field and F-model predictions, and perhaps engineer a configuration

that allows one to transition from one model to another.

While the all red-detuned traps used in these experiments had distinct advantages,

transitioning to blue-detuned ring traps for KZM studies may help isolate any effects

the halo may have on the quench statistics. In a blue-detuned ring, in particular,

atoms are entirely confined to the ring region and can be completely isolated from

the background halo of non-degenerate atoms. While the quench quality will perhaps

be degraded due to the enhanced loss of atoms from a bare ring, the decoupling from

the halo may aid in studies within the fast-quench limit. Certainly, blue-detuned ring

traps have other advantages when it comes to manipulating the state of the system in

the ring. For the biased KZM experiment discussed in the previous chapter, having

the ability to stir up the normal component to a controlled and well-characterized

rotational state without unwanted impact from the halo is desirable. As of 2023, we

again have the ability to perform stirring using a blue-detuned 2-axis acousto-optic
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deflector. Combined with a blue-detuned ring, the biased KZM scenario should be

readily studied.

As with the experiments performed in this work, there are likely to be unexpected

observations and complications in future experiments that may deviate strongly from

initial expectations. This was certainly true for the KZM studies performed in this

work. While incredibly elegant, the KZM can in some cases be an oversimplifica-

tion of the rich physics surrounding the phase transition, and system-dependent and

non-universal details will always play a profound and non-negligible role in the ex-

perimental dynamics.

Our experimental apparatus in its current state has the capability of allowing

explorations of a vast number of interesting and relevant experiments. While KZM

studies were at the fore-front of the work in this thesis, leveraging our experimen-

tal capabilities utilizing ring-shaped traps, we hope to someday explore topics that

include but are certainly not limited to

• Superfluids with exotic pairing mechanisms/spin-imbalanced Fermi gases

• Quasi-1D superfluids

• Josephson junction and barrier physics, SQUIDS, and atomtronic circuits

• Normal fluid dynamics and Normal-Superfluid interactions

• Ring lattice physics

The degree of control of our system can allow for further variations on and additional

investigations into experiments that have been performed prior on i.e. Bose gases

or condensed matter and real materials systems. This is certainly an exciting time

for our lab, and with time, effort and a bit of luck, the doors of novel and exciting

experiments on ultracold quantum systems can be opened further.
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Appendix A

Tables of Important Values

Section A.1

Typical Experimental Trap Parameters

Ring beam Radius r0 1/e2 Half-Width wr Ring beam power Pring

12 µm 2.2 µm 2 mW
Sheet beam Vertical width wz Horizontal width ws Sheet power Psheet

7 µm 290 µm 50 mW

Related quantities derivable from the trap parameters include the trap frequencies

ωj =
√

4Vj/(mw2
j ) and quantum harmonic oscillator length aj =

√
~/(mωj) where

j ∈ {r, z, s} refers to the trap component of interest and Vj are the trap depths.

Section A.2

2D and 3D Density

We show the typical column densities n2(x, y) =
∫
dzn3(x, y, z) in the ring-dimple

region and halo, which can be related to the measurable optical depth. Although

not directly measurable itself, the 3D density at z = 0, n3(x, y, 0) can be related

to n2(x, y) by assuming a harmonic vertical confinement and using the local density

177



A.3 Length and Energy Scales Tables of Values

approximation to estimate the vertical distribution of the density distribution (See

Chap. 2). The result is n3(x, y, 0) ≈
(

512
81π5

)1/4
[
n2(x,y)
a2
z

]3/4

.

Density Scales

Density (2D/3D) Ring Halo

2D (Column): n2 15 µm−2 5 µm−2

3D: n3 3 µm−3 1 µm−3

Section A.3

Length and Energy Scales

We show typical values of important length and energy scales at the 100 mT B-fields

utilized typically in this work. The zero temperature pairing gap ∆0 = πe−γkBTc with

γ the Euler-Mascheroni constant. The typical critical temperature Tc ∼ O(TF/20).

The BCS coherence length is ξBCS = ~vF/(π∆0) with vF =
√

2EF/m the Fermi

velocity. The Fermi wavelength λF = 2π~/
√

2mEF = 2π/kF . Finally the elastic

collision rate can be upper bounded in the BCS limit by Γ0 = 4πn3vFa
2/[1 + (kFa)2].

Pauli blocking suppresses this rate somewhat at this magnetic field, however.

Local length Scales at B = 100 mT

Length Ring Halo

Interparticle spacing: n
−1/3
3 0.7 µm 1 µm

Fermi wavelength: λF 1.5 µm 1.9 µm

BCS coherence length: ξBCS 1.7 µm 3.8 µm

s-wave scattering length: a 0.2 µm 0.2 µm

Halo extent: Rhalo N/A 100 µm
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Local energy and rate scales at B = 100 mT

Energy/Rate Ring Halo

Fermi energy: EF/h 15 kHz 9 kHz

Zero-temperature gap: ∆0/h 1.3 kHz 0.5 kHz

Elastic Collision rate: Γ0 40 kHz 16 kHz
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Appendix B

Asymptotic Analysis of Correlation

Functions

Section B.1

Small t̂ Expansion

In the limit of rapid quenches, the correlation function can be written as an integral

g(θ, t) =

∫ ∞
−∞

dkF

(
t

t̂
− t̂k2

)
eikθ

=
1√
t̂

∫ ∞
−∞

dxF

(
t

t̂
− x2

)
eixθ/

√
t̂

≡ 1√
t̂
I(τ, z)

(B.1)

where the substitutions z ≡ θ/
√
t̂ and τ = t/t̂ have been made, and

I(τ, z) ≡
∫ ∞
−∞

dxF
(
τ − x2

)
eixz (B.2)

The asymptotic behavior of the correlation function for |θ| �
√
t̂ can be therefore be

determined by studying the |z| → ∞ limit of I(z, τ).
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B.1 Small t̂ Expansion Asymptotics of Correlation Function

Using the properties ∂
∂τ
F (τ−x2) = 2(τ−x2)F (τ−x2)+1/

√
π and ∂

∂x
F (τ−x2) =

−2x[2(τ − x2)F (τ − x2) + 1/
√
π] we can integrate (B.2) by parts to obtain

I(τ, z) =
2

iz

∫ ∞
−∞

dxx[2(τ − x2)F (τ − x2) + 1/
√
π]eixz

= −2

z

∫ ∞
−∞

dx
∂

∂τ
[F (τ − x2)]

∂

∂z
eixz

= −2

z

∂2I

∂τ∂z

(B.3)

Thus, I(τ, z) obeys a simple second order partial differential equation, which we can

use to examine the asymptotic behavior. Using separation of variables we define

Is(τ, z) = T (τ)Z(z), from which we derive the ordinary differential equations

dT

dτ
=
T

α
→ T (τ) ∝ eτ/α (B.4)

and

dZ

dz
= −α

2
zZ → Z(z) ∝ e−αz

2/4 (B.5)

where α > 0 is the separation constant, chosen such that the solution decays to zero

as τ → −∞. Thus, we have

Is(τ, z) ∝ eτ/αe−αz
2/4 (B.6)

We find the general solution as a linear combination of the separable solutions:

I(τ, z) = I0

∫ ∞
0

dαA(α)eτ/αe−αz
2/4 (B.7)

We can determine the amplitude A(α) via the initial condition

I(0, z) =

∫ ∞
−∞

dxF (−x2)eixz = I0

∫ ∞
0

dαA(α)e−αz
2/4 (B.8)
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B.1 Small t̂ Expansion Asymptotics of Correlation Function

Using the Fourier representation of the gaussian function,

e−αz
2/4 ∝ 1√

α

∫ ∞
−∞

dxeixze−x
2/α (B.9)

we can identify

F (−x) =

∫ ∞
0

dα
1√
α
A(α)e−x/α

=

∫ ∞
0

du
1

u3/2
A(1/u)e−ux

= L
[
A(1/u)

u3/2

]
(x)

(B.10)

where the substitution u = 1/α was made. We now use the Laplace transform of

erf(u/2):

L[erf(u/2)](x) ≡
∫ ∞

0

du erf(u/2)e−ux =
2

x
ex

2

[1− erf(x)]

=
1

x
F (−x)

(B.11)

Combining (B.10) and (B.11), we can write

F (−x) = L
[
A(1/u)

u3/2

]
(x)

= xL[erf(u/2)](x)

= L[δ′(u)](x)L[erf(u/2)](x)

= L[δ′(u) ~ erf(u/2)](x)

(B.12)

where the convolution theorem for Laplace transforms was used. We can then identify

A(1/u)

u3/2
= δ′(u) ~ erf(u/2) =

1√
π
e−u

2/4 (B.13)
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from which we finally find

A(u) ∝ 1

u3/2
e−

1
4u2 (B.14)

Substituting this expression into the definition of I(τ, z) gives

I(τ, z) = I0

∫ ∞
0

dα
1

α3/2
e−

1
4α2 + τ

α
−αz

2

4

= I0

∫ ∞
0

du
1√
u
e−

u2

4
+τu− z

2

4u

(B.15)

One may check that this solution indeed satisfies the original partial differential equa-

tion (B.3). Additionally, the numerical prefactor I0 can be determined by normal-

izing the correlation function to unity at z = 0. For the case τ = 1, this prefactor

I0 ≈ 0.132.

B.1.1. |z| → ∞ limit

We are now in a position to study the |z| → ∞ limit via Laplace’s asymptotic method.

For τ = 1 we find, to leading order in 1/|z|,

I(τ = 1, z) ∼ 0.3

|z|1/3
e
− 3

4

(
z2

2

)2/3
+
(
z2

2

)1/3

(B.16)

where the numerical prefactor combines I0 and the prefactors associated to the

Laplace asymptotic expansion. The corresponding correlation function, at distances

|θ| &
√
t̂, therefore behaves as

g(θ, t̂) ∼ 0.3

|θ|1/3
e
− 3

4

(
θ2

2t̂

)2/3
+
(
θ2

2t̂

)1/3

(B.17)

which preserves the same scaling of the correlation length as the simple Gaussian

approximation, but has quite a different functional form. This example highlights the

ambiguity in choosing the “correct” correlation length to describe the uncorrelated
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phase domains; There are many different, yet equally valid ways, of associating a

single length scale to the correlations.

Figure B.1: Exact asymptotic behavior of the correlation function for a rapid quench.
The functional form is quite different from the simple Gaussian approximation to the
correlation function, and even captures intermediate range behavior quite well.
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Appendix C

Zero-Noise Extrapolation of

Temperature

We outline and give results from a potentially novel procedure to increase the accuracy

of in-situ thermometry on degenerate Fermi gases. This technique was stumbled upon

when I decided to study the effects of adding random noise to the measured in-situ

density profiles of degenerate Fermi gases. We note that zero-noise extrapolation

(ZNE) techniques are commonly used for quantum error-mitigation [129], but in this

subsection we demonstrate its potential use in improving the accuracy of degenerate

fermion thermometry.

To account for temperature estimation errors due to low SNR at large radii, one

may perform a “zero-noise extrapolation” by linearly fitting temperatures extracted

from in-situ density profile fits with varying amounts of added simulated random

noise, and extrapolating to the zero-noise limit. We found empirically that the effect

of added simulated noise is to increase the apparent temperature of the system by an

amount proportional to the noise amplitude. To outline the procedure algorithmically:

• Obtain a base noise amplitude A0 from unperturbed data as the mean of the

absolute value of the fit residuals at each radius
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• Add random noise to data with some small fixed amplitude A1, perform fit

to data to extract temperature, and repeat at least 10 times. Average these

temperatures and store value T1

• Repeat above step N times for different noise amplitudes Ai to obtain temper-

atures Ti, i = 2, 3, ..., N

• Fit ({Ai + A0}, {Ti})i=1,2,...,N to straight line, extract noise-free temperature

TNF as the y-intercept.

We found empirically that the largest source of temperature estimation uncer-

tainty is uncertainty in the weak radial trap frequency of the sheet beam. This

uncertainty puts about 3 nK of uncertainty onto the temperature. Measurement

noise introduces a much smaller uncertainty, and uncertainty in the axial trap fre-

quency introduces a similar amount. Uncertainty in imaging beam parameters such

as saturation intensity and polarization impurity will introduce systematic errors onto

the temperature estimate. For the dilute halo atoms, error due to saturation effects

may be neglected. Finally, we empirically determined that the uncertainty in back-

ground offset of the atomic density profile contributed sub-nK uncertainty to the

temperature.
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Figure C.1: Extrapolation of noise-augmented, fit-extracted temperatures to the zero-
noise limit, using the algorithm defined above. Each black point is the average of 100
fits at fixed noise amplitude, while the red dash-dotted line is the linear fit, which
extrapolates the measured TBCS = 25 nK to the noise free limit TNF = 21.2(5) nK.
Uncertainty is estimated as half the difference in y-intercepts between the extremal fits
to the data, assuming measurement noise is the main source of error. We empirically
find that the largest contribution to the error in temperature is uncertainty in the
weak radial trap frequency. This alone introduces several nK of uncertainty into
TBCS.

187



Bibliography

[1] F. Steglich, J. Aarts, C. D. Bredl, W. Lieke, D. Meschede, W. Franz, and H.
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[122] C. A. R. Sá de Melo, M. Randeria, and J. R. Engelbrecht, “Crossover from

BCS to Bose superconductivity: Transition temperature and time-dependent

Ginzburg-Landau theory”, Phys. Rev. Lett. 71, 3202–3205 (1993) (page 150).

[123] X.-P. Liu, X.-C. Yao, Y. Deng, Y.-X. Wang, X.-Q. Wang, X. Li, Q. Chen, Y.-A.

Chen, and J.-W. Pan, “Dynamic formation of quasicondensate and sponta-

201

https://doi.org/10.1038/s41567-019-0650-1
https://doi.org/10.1103/PhysRevLett.128.135701
https://doi.org/10.1088/1367-2630/13/8/083022
https://doi.org/10.1088/1367-2630/13/8/083022
https://doi.org/10.1103/PhysRevA.92.033616
https://doi.org/10.1103/PhysRevLett.71.3202


BIBLIOGRAPHY

neous vortices in a strongly interacting Fermi gas”, Phys. Rev. Res. 3, 043115

(2021) (page 154).

[124] P. Dyke, A. Hogan, I. Herrera, C. C. N. Kuhn, S. Hoinka, and C. J. Vale,

“Dynamics of a Fermi Gas Quenched to Unitarity”, Phys. Rev. Lett. 127,

100405 (2021) (page 154).

[125] W. A. Little and R. D. Parks, “Observation of quantum periodicity in the

transition temperature of a superconducting cylinder”, Phys. Rev. Lett. 9, 9–

12 (1962) (page 162).

[126] Z.-H. Li and H.-Q. Zhang, “Periodicities in a multiply connected geometry

from quenched dynamics”, Phys. Rev. Res. 4, 023201 (2022) (page 162).

[127] G. B. Hess and W. M. Fairbank, “Measurements of Angular Momentum in

Superfluid Helium”, Phys. Rev. Lett. 19, 216–218 (1967) (page 163).

[128] P. J. Forrester and G. Honner, “Exact statistical properties of the zeros of com-

plex random polynomials”, Journal of Physics A: Mathematical and General

32, 2961 (1999) (page 166).

[129] V. R. Pascuzzi, A. He, C. W. Bauer, W. A. de Jong, and B. Nachman, “Compu-

tationally efficient zero-noise extrapolation for quantum-gate-error mitigation”,

Phys. Rev. A 105, 042406 (2022) (page 185).

202

https://doi.org/10.1103/PhysRevResearch.3.043115
https://doi.org/10.1103/PhysRevResearch.3.043115
https://doi.org/10.1103/PhysRevLett.127.100405
https://doi.org/10.1103/PhysRevLett.127.100405
https://doi.org/10.1103/PhysRevLett.9.9
https://doi.org/10.1103/PhysRevLett.9.9
https://doi.org/10.1103/PhysRevResearch.4.023201
https://doi.org/10.1103/PhysRevLett.19.216
https://doi.org/10.1103/PhysRevA.105.042406

	Preface
	Introduction
	In This Thesis

	Ultracold Fermi Gases
	Equilibrium Thermodynamics
	The Non-Interacting Fermi Gas
	Ring-Shaped Traps

	BEC-BCS Crossover and Superfluids
	Feshbach Resonances
	BEC-BCS Crossover

	The Superfluid Transition
	Order Parameter
	Winding Numbers on Ring-Shaped Contours


	The Experimental Apparatus for 6Li
	Microscope Objectives
	Objective Design
	Objective Assembly and Optimization

	Digital Micromirror Device
	Grey-Scale Projection
	Floyd-Steinberg Dithering
	Optical Potential Feedback
	DMD Flicker and Clock-Thief

	Loading the Ring Trap

	Fermi Hole Heating
	Introduction
	Fermions in a Ring-Dimple Trap
	Temperature Measurement
	Fermi hole heating
	Theory
	Experiment

	Thermalization and Loss
	Adiabatic Cooling/Heating
	Conclusion

	Detection of Persistent Currents
	Mapping Momentum onto Density
	Techniques
	Interferometric Detection
	Experimental protocols for interferometric detection


	The Kibble-Zurek Mechanism
	Homogeneous KZM
	Correlation Functions
	KZM Basics
	Computing the KZ Scaling Laws

	Landau-Ginzburg Theory
	Spontaneous Currents
	Stochastic LG Model
	Estimating the Winding Number Distribution
	Connection to the KZM: Correlation functions


	Spontaneous Currents in Fermionic Rings
	Introduction
	Experimental Details
	Results and Discussion
	Conclusion


	Future Experiments
	Biased KZM
	Estimating the Winding Number Distribution

	KZM in a Spatially-Modulated Ring

	Conclusion and Outlook
	Tables of Values
	Typical Experimental Trap Parameters
	2D and 3D Density
	Length and Energy Scales

	Asymptotics of Correlation Function
	Small  Expansion
	|z| limit


	Zero-Noise Extrapolation

