
Reproducible Research with
Spatial Data

A part of the Reproducible Research Workshop Series
October 20, 2020

www.dartgo.org/RRADworkshops

http://www.dartgo.org/RRADworkshops

A roadmap for this workshop
- Basics of Reproducible Research, applied to spatial data
- Why Reproducible?
- Some hurdles of reproducible research with spatial data, and some methods

to overcome these hurdles
- Geographic data and spatial analysis
- Tools of the trade for spatial analysis
- Live-coding using R and R Studio with a reproducible spatial analysis
- Questions and assistance: contact us at https://rc.dartmouth.edu and click

"contact us"

https://rc.dartmouth.edu

Basics of Reproducible Research - Spatial Data
To make our research reproducible:

- Provide data, with metadata, and the code and software or software version
used to run the analysis

- Be transparent about the research
- Test that you can generate the same result more than once
- Other researchers can generate the same result, given the data and the

scripts or programs that capture the methodology of the analysis
- Run the same analysis steps, given new data with an identical data structure.

For example, the data is updated with new observations(rows) and the
analysis is re-run.

Why Reproducible?

- Saves time
- Saves money
- Prevents wasted efforts
- Increased scientific credibility
- Often required by granting agencies and organizations
- Allows researchers to innovate at a faster rate with fewer errors

Some hurdles of reproducible research with spatial
data

- Proprietary software
- Point-and-click software
- Large, very large and extremely large datasets
- Messy datasets that require multiple steps to 'tidy' up
- Data passed through various people without proper metadata or

documentation
- Human error & basic forgetfulness
- Project organization and management of project resources

Ways to get past these hurdles

- When possible, use non-proprietary software and libraries
- Reduce or eliminate the use of point-and-click steps that are not easily written

in to scripts or code
- For analyses with large datasets, consider running analysis scripts on a

subset of the data, and make sure that this process is reproducible.
- Stay organized
- Document processes, data gathering techniques, script code
- Have both machine-readable processes and human-readable documentation

Tools of the trade for reproducibility with spatial data
- Proprietary:

- ArcGIS Desktop with Python Scripting
- ArcGIS Pro with Python Scripting
- MapInfo

- Open-Source:
- R Project with spatial libraries
- Python with spatial libraries
- GDAL
- QGIS
- GRASS GIS
- OSGEO https://www.osgeo.org/initiatives/geo-for-all/ or www.geoforall.org
- https://www.osgeo.org/initiatives/geo-for-all/in-your-research/

https://www.osgeo.org/initiatives/geo-for-all/
http://www.geoforall.org
https://www.osgeo.org/initiatives/geo-for-all/in-your-research/

ArcGIS Desktop with Modelbuilder, Python and ArcPY

ArcMap contains a rich
point-and-click interface

ArcMap also has
Modelbuilder and the
"Results" window, useful for
graphical process
development

And ArcMap supports
Python scripting, right in the
interface

R with open-source spatial libraries
- Spatial Overlay
- Spatial analysis
- Geostatistics
- Point pattern

analysis
- Spatial regression

QGIS with Python Console

Data management - Sample folder structure
- Projectname

- rawdata (this folder can be read-only)
- results
- scripts (analysis scripts)
- publication_materials

- Other notes:
- Include 'readme' files describing structure, process, etc
- Use a system like Github to track changes and versions
- Keep a copy of all folders locally and on a server. Where large datasets make this less

practical, keep a small subset of the data with the scripts and results. Subset should be in
exactly the same format as the larger dataset

Process Outline (human-readable/readme format)
Process outline and pseudo code:

- Retrieve two datasets, one is a GIS 'shapefile' containing the boundaries of
the US National Parks, second one is a CSV file of bear sightings with latitude
and longitude locations

- Get the two datasets in to the same map projection and coordinate system, so
that they will overlay properly in a GIS system or in R

- Analyze the data to find out if each bear is inside or outside of a park
- Report the raw percentage of bears in parks, generate a map, and generate a

new CSV file of the bears, with a field indicating the name of the park they
were in, or 'null' if they were outside a park

Reproducible Analysis Example
http://dartgo.org/itcworkshop

- Download and install R and RStudio
- Download both the "Bears Dataset" and "bears-csv" CSV
- Create a new folder on the desktop, call it bears_parks
- Inside this folder, create three folders: data, results, scripts
- Copy the CSV and the zip file to the data folder
- Open R Studio and create a new script (File > New file > R Script)

http://dartgo.org/itcworkshop

Some useful R packages for spatial data
ggplot2
ggmap - map plotting package
osmdata - open street map data, geocode an address, download map tiles
rgdal - R version of geospatial data abstraction library (gdal works in Python also)

- rgdal has tools like spatial overlay
sf - simple features
tidyverse
tmap - thematic maps for R
tmaptools - read and process spatial data
maps
maptools
sp

Reproducible Spatial Analysis using R & R Studio
getwd() # tip, use Control Return key combination to run the line from a script
setwd('~/Desktop/bears_parks/') # tip, always comment your code!

pc users: setwd("C:/Users/f002d69.NAUSET/desktop/bears_parks/data")

create a string variable for our results directory
resultsdir <- paste(getwd(),"/results", sep = "")

built-in "unzip" function
unzip(zipfile = "data/nationalparks.zip", exdir = resultsdir)

built-in read.csv function
bears <- read.csv('data/bear-sightings.csv')

Reproducible Spatial Analysis using R & R Studio
use sp package's coordinates function to set the
coordinates for the bears csv, and convert it in
to a "formal class spatialpointsdataframe

install.packages("sp")
or, to avoid installing each time the script is run, install if needed:
if(!require("sp")) install.packages("sp")

library(sp)

coordinates" function from the "sp" package
coordinates(bears) <- c('longitude','latitude')

Using R with Spatial Data
let's see if the "bear-sightings" csv has valid coordinates in it - do the coordinates land in Alaska?
this line checks to see if a package is installed already
"maps" %in% rownames(installed.packages()) == TRUE

if(!require("maps")) install.packages("maps")
library(maps)
plot the coordinates of the bears
plot(coordinates(bears))
use the "maps" package to add a coarsely-drawn map layer for context

map("world", region="usa", add=TRUE) # from the "maps" package

Making a map in R, display spatial data
If everything went well, the Plots
window in R should now look like
this, a map of Alaska with a bunch of
point locations on it!

A little more than ten lines of code,
and we have spatial data displayed
in R Studio

Saving an R Script
We've done some good preliminary work, lets
save the script

File > Save >

save the file in desktop > bears_parks >
scripts > bearsspatial_20201020.R

This could also be a point where you push a
version out to a version-control system like
GitLab, Github, SVN, etc

Spatial Analysis - I
"rgdal" %in% rownames(installed.packages()) == TRUE
library(rgdal)
GDAL = geospatial data abstraction library. Open source!
Check out their website at https://www.osgeo.org/ and https://www.gdal.org/

getwd()
setwd("/Users/stevegaughan/Desktop/bears_parks/results")
OGR stands for Open Geographic Reference
parks <- readOGR('.', '10m_us_parks_area')
ourprojection <- proj4string(parks)
print(ourprojection)

Spatial Analysis - II
use the sp package's proj4string to set the projection of

the new "bears" spatial data frame to the same projection as the parks dataset

proj4string(bears) <- proj4string(parks)

the 'over' function

insidePark <- !is.na(over(bears, as(parks, "SpatialPolygons")))

Spatial analysis goal #1 - get the fraction of bears inside a park!

mean(insidePark)

Generating Traditional Results - Sending Output to the
Console

use 'cat' to concatenate a string and send it to our console
did we all get the same result?

cat("Percent inside parks: ", 100*mean(insidePark), ' percent ')

let's create a visualization for output:

slices <- c(mean(insidePark), 1-mean(insidePark))

lbls <- c("Bears in the parks", "Bears outside the parks")

pct <- round(slices/sum(slices)*100,2)

Generating Traditional Results - Creating a Chart, Saving Output
Documents
lbls <- paste(lbls, pct) # add percents to labels

lbls <- paste(lbls,"%",sep="") # add % to labels

pie(slices,labels = lbls, col=rainbow(length(lbls)),

 main="Bear Sightings")

let's save a copy of this great plot in to our 'results' folder

dev.copy(jpeg,'../results/myplot.jpg')

dev.off() # dev.off tells R Studio to send the plot out rather than plot it

Generating Traditional Results - Save to CSV

use 'over' again, this time with parks as a SpatialPolygonsDataFrame

store the park name as an attribute of the bears data

bears$park <- over(bears, parks)$Unit_Name

write a csv file with bear names and the name of the park (if found)

write.csv(bears, "../results/bears-by-park.csv", row.names=FALSE)

Check on the Resulting CSV Output:

Generating Geographic Output
hang in there, almost done!

library(maps)

plot(coordinates(bears))

map("world", region="usa", add=TRUE) # from the "maps" package

plot(parks, border="green", add=TRUE)

Saving Geographic Output to a Document
set the colors for the points inside and outside the park

points(bears[insidePark,],pch=16,col="red")

points(bears[!insidePark,], pch=1,col="green")

send the plot to our results folder

dev.copy(jpeg,'../results/mymap.jpg')

dev.off()

Spatial Analysis Visualization - Geographic Results
If all went well, map should look like this

Our analysis layer is shown

Our original datasets are still intact

Our research results are in a separate
folder

Optional, Add Legend and Title to Map
legend("topright", cex=0.85,

 c("Bear in park", "Bear not in park", "Park boundary"),

 pch=c(16, 1, NA), lty=c(NA, NA, 1),

 col=c("red", "grey", "green"), bty="n")

title(expression(paste(italic("Ursus arctos"),

 " sightings with respect to national parks")))

use sp package's coordinates function to set the

Dataset overlay in ArcMap
ArcMap

R > R Studio > R Markdown > HTML
R Studio, along with R Markdown, can generate an HTML page with code,
comments, tables of data, graphs, charts and even maps. Here is an example
using some built in R datasets, and our "bears and parks" analysis

R Markdown

Markdown Document

Comparison of Results - Did it work?
Comparison and guts of the analysis

In R, we see the first row (bear row number) and the second row, park row
number. So, R tells us that the bear row #3 is inside the park row #42

Review
Spatial Analysis Reproducibility Tools:

- R with open source libraries

- GDAL

- ArcGIS Desktop with Modelbuilder, ArcTooolbox, Python, ArcPy

- Python with proprietary ArcPy library

- Python with open source libraries, GDAL, PySal

Resources
- R spatial view: https://cran.r-project.org/web/views/Spatial.html
- Spatial data science: https://rspatial.org/

https://cran.r-project.org/web/views/Spatial.html
https://rspatial.org/

Questions?
Thanks for attending our workshop!

