
NVIDIA Workshop
Brad Palmer, Senior Solutions Architect

• 5 Ways to Accelerate with GPUs

• Important GPU Features and System
Architectures

• Data Center GPUs Overview

• Best Practices for Best Performance
• GPUs in the Public Cloud

First, some GPU basics

4
This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

GPU Accelerator
Optimized for
Parallel Tasks

ACCELERATED COMPUTING

5
This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

5
This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

HOW GPU ACCELERATION WORKS

Application Code

+

GPU CPU
5% of Code

Compute-Intensive Functions

Rest of Sequential
CPU Code

6

GPU ARCHITECTURE

Global memory

Analogous to RAM in a CPU server

Accessible by both GPU and CPU

H100 has 80 GB

Streaming Multiprocessors (SM)

Perform the actual computation

Each SM has its own: Control units, registers, execution pipelines, caches

H100 has 114 SMs

Two Main Components

7

GPU ARCHITECTURE

Many CUDA Cores per SM

Architecture dependent

H100 SM has 128 cores

Special-function units

cos/sin/tan, etc.

Shared mem + L1 cache

Thousands of 32-bit registers

Streaming Multiprocessor (SM) Register File

Scheduler

Dispatch

Scheduler

Dispatch

Load/Store Units x 16

Special Func Units x 4

Interconnect Network

64K Configurable
Cache/Shared Mem

Uniform Cache

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Instruction Cache

H100 PCIe has a total of 14,592 cores

8

PROCESSING FLOW

1. Copy input data from CPU memory to GPU
memory

PCIe Bus

A100 memory bandwidth is 25x PCIe gen4

9

PROCESSING FLOW

1. Copy input data from CPU memory to GPU
memory

2. Load GPU program and execute,
caching data on chip for performance

PCIe Bus

10

PROCESSING FLOW

1. Copy input data from CPU memory to GPU
memory

2. Load GPU program and execute,
caching data on chip for performance

3. Copy results from GPU memory to CPU
memory

PCIe Bus

11

• A parallel computing platform and application programming interface (API) model
created by NVIDIA

• Allows software developers and software engineers to use a CUDA-enabled GPUs
for general purpose processing

• Backwards compatible

• The name CUDA was originally an acronym for Compute Unified Device
Architecture

The Five Ways to Accelerate with GPUs

13

5 WAYS TO ACCELERATE WITH GPUS

Libraries

“Drop-in”
Acceleration

CUDA
Programming

Maximum
Performance

OpenACC
Directives

Easily
Accelerate

Applications

Applications

Get straight to
the science!

Accessibility

Flexibility

Standard
Language

Parallelism

Maximum
Flexibility

14

5 WAYS TO ACCELERATE WITH GPUS

Libraries

“Drop-in”
Acceleration

CUDA
Programming

Maximum
Performance

OpenACC
Directives

Easily
Accelerate

Applications

Applications

Get straight to
the science!

Accessibility

Flexibility

Standard
Language

Parallelism

Maximum
Flexibility

THOUSANDS OF GPU-ACCELERATED APPLICATIONS

MANUFACTURING,
CAD, & CAE

• Ansys Fluent
• Abaqus SIMULIA
• AutoCAD
• CST Studio

Suite

…

MEDICAL IMAGING

• aidoc
• PowerGrid
• RadiAnt

…

DATA SCIENCE
& ANALYTICS

• Anaconda
• H20
• OmniSci

…

ARTIFICIAL
INTELLIGENCE

• PyTorch
• MXNet
• TensorFlow

…

MEDIA &
ENTERTAINMENT

• DaVinci Resolve
• Premiere Pro CC
• Redshift Renderer

…

SUPERCOMPUTING
& HER

• Chroma
• GTC
• MILC
• QUDA
• XGC

…

OIL & GAS

• Echelon
• RTM
• SPECFEM3D

…

LIFE SCIENCES

• Amber
• LAMMPS
• GROMACS
• NAMD
• Relion
• VASP

…

RETAIL

• Everseen
• Deep North
• Third Eye Labs
• AWM
• Malong
• Clarifai
• Antuit

…

FEDERAL DEFENSE
& OTHER

• ArcGIS Pro
• EVNI
• SocetGXP
• Cyllance
• FaceControl

…

CLIMATE &
WEATHER

• Cosmos
• Gales
• WRF

…

COMPUTATIONAL
FINANCE

• O-Quant
Options
Pricing

• MUREX
• MISYS

…

For a comprehensive list of all apps, please refer to GPU application catalog: https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/tesla-product-literature/gpu-applications-catalog.pdf

Transforming Every Industry

Sample GPU Accelerated Applications

• Amber

• GROMACS

• LAMMPS

• NAMD
• Relion

• Chroma

• GTC

• MILC
• SPECFEM3D

• FUN3D

See https://www.nvidia.com/en-us/gpu-accelerated-applications/

Standard Benchmark speedup on single A100 vs dual CPU

• Amber 13x – 39x

• GROMACS 6x – 9x

• LAMMPS 5x – 18x

• NAMD 6x – 8x
• Relion 4x – 5x

• Chroma 32x

• GTC 14x

• MILC 32x
• SPECFEM3D 29x

• FUN3D 13x

https://developer.nvidia.com/hpc-application-performance

More Sample GPU Accelerated Applications

• Ansys Fluent

• ArcGIS Pro

• COMSOL

• MATLAB
• Mathematica

• ParaView

• TensorFlow

• PyTorch

https://www.nvidia.com/en-us/gpu-accelerated-applications/

19

5 WAYS TO ACCELERATE WITH GPUS

Libraries

“Drop-in”
Acceleration

CUDA
Programming

Maximum
Performance

OpenACC
Directives

Easily
Accelerate

Applications

Applications

Get straight to
the science!

Accessibility

Flexibility

Standard
Language

Parallelism

Maximum
Flexibility

20

LIBRARIES: EASY, HIGH-QUALITY ACCELERATION

Using libraries enables GPU acceleration without in-depth
knowledge of GPU programming

Many GPU-accelerated libraries follow standard APIs, thus
enabling acceleration with minimal code changes

Libraries offer high-quality implementations of functions
encountered in a broad range of applications

NVIDIA libraries are tuned by experts

EASE OF USE

“DROP-IN”

QUALITY

PERFORMANCE

NVIDIA HPC SDK
Available at developer.nvidia.com/hpc-sdk, on NGC, via Spack, and in the Cloud

Develop for the NVIDIA Platform: GPU, CPU and Interconnect
Libraries | Accelerated C++ and Fortran | Directives | CUDA

7-8 Releases Per Year | Freely Available

Compilers

nvcc nvc

nvc++

nvfortran

Programming
Models

Standard C++ & Fortran

OpenACC & OpenMP

CUDA

Core
Libraries

libcu++

Thrust

CUB

Math
Libraries

cuBLAS cuTENSOR

cuSPARSE cuSOLVER

cuFFT cuRAND

Communication
Libraries

HPC-X

NVSHMEM

NCCL

DEVELOPMENT

Profilers

Nsight

Systems

Compute

Debugger

cuda-gdb

Host

Device

ANALYSIS

SHARP HCOLL

UCX SHMEM

MPI

22

3 STEPS TO CUDA-ACCELERATED APPLICATION

Step 1: Substitute library calls with equivalent CUDA library calls
saxpy (…) cublasSaxpy (…)

Step 2: Manage data locality
- with CUDA: cudaMalloc(), cudaMemcpy(), etc.
- with CUBLAS: cublasAlloc(), cublasSetVector(), etc.

Step 3: Rebuild and link the CUDA-accelerated library

gcc myobj.o –l cublas

SAXPY is “Single-Precision A times X Plus Y”

GPU Accelerated Libraries (some examples)

CUBLAS – an implementation of BLAS (Basic Linear Algebra Subprograms).

CUFFT – a Fast Fourier Transform library with support for the FFTW API.

CURAND – provides facilities that focus on the simple and efficient generation of high-quality pseudorandom and
quasi-random numbers.

CUSPARSE – contains a set of basic linear algebra subroutines used for handling sparse matrices.

cuSOLVER – GPU-accelerated dense and sparse direct solvers (LAPACK-like features)

CUDA Math Library – GPU-accelerated standard mathematical function library (Available to any CUDA C or CUDA C++
application simply by adding “#include math.h” in your source code)

Thrust – GPU-accelerated library of C++ parallel algorithms and data structures

nvJPEG – High performance GPU-accelerated library for JPEG decoding

ArrayFire – open source library for matrix, signal, and image processing

MAGMA – linear algebra routines for heterogeneous architectures

CHOLMOD – functions for sparse direct solvers

https://developer.nvidia.com/how-to-cuda-libraries

https://github.com/nvidia/cudalibrarysamples

CuPy

• Open-source array library for GPU-
accelerated computing

• Interface is highly compatible with
NumPy and SciPy

• Can be used as a drop-in replacement in
most cases

• Just replace numpy and scipy with
cupy and cupyx.scipy

• Speeds up some operations more than
100X

https://cupy.dev/

RAPIDS

RAPIDS: a suite of open source software libraries and APIs gives you the ability to
execute end-to-end data science and analytics pipelines entirely on GPUs. Licensed
under Apache 2.0

Popular Libraries:

• cuDF – a pandas-like dataframe manipulation library

• cuML – GPU versions of algorithms in scikit-learn

• cuSignal – signal processing library based on SciPy Signal

• cuGraph – Network-X-like accelerated graph analytics library

• cuSpatial – GPU-accelerated GIS and spatiotemporal algorithms

https://rapids.ai/

26

Decision Trees / Random Forests
Linear/Lasso/Ridge/ElasticNet Regression
Logistic Regression
K-Nearest Neighbors
Support Vector Machine Classification and
Regression
Naive Bayes

K-Means
DBSCAN
Spectral Clustering
Principal Components
Singular Value Decomposition
UMAP
Spectral Embedding
T-SNE

Holt-Winters
Seasonal ARIMA / Auto ARIMA

More to come!

Random Forest / GBDT Inference (FIL)

Time Series

Clustering
Decomposition &

Dimensionality Reduction

Preprocessing

Inference

Classification / Regression

Hyper-parameter Tuning

Cross Validation

ALGORITHMS
GPU-accelerated Scikit-Learn

Text vectorization (TF-IDF / Count)
Target Encoding
Cross-validation / splitting

https://github.com/rapidsai/cuml#supported-algorithms

27

5 WAYS TO ACCELERATE WITH GPUS

Libraries

“Drop-in”
Acceleration

CUDA
Programming

Maximum
Performance

OpenACC
Directives

Easily
Accelerate

Applications

Applications

Get straight to
the science!

Accessibility

Flexibility

Standard
Language

Parallelism

Maximum
Flexibility

OpenACC Directives

OpenACC is a user-driven directive-based performance-portable parallel programming model. It is designed for scientists and
engineers interested in porting their codes to a wide-variety of heterogeneous HPC hardware platforms and architectures with
significantly less programming effort than required with a low-level model.

https://www.openacc.org/

• Simple Compiler hints
• Compiler Parallelizes code
• Works on many-core GPUs & multicore CPUs

C
#pragma acc directive [clause [,] clause] …]
Often followed by a structured code block

Fortran
!$acc directive [clause [,] clause] …]
Often paired with a matching end directive surrounding a structured code block
!$acc end directive

https://www.gpuhackathons.org/

29

subroutine saxpy(n, a, x, y)
real :: x(:), y(:), a
integer :: n, i

$!acc kernels
do i=1,n

y(i) = a*x(i)+y(i)
enddo

$!acc end kernels
end subroutine saxpy

...
$ Perform SAXPY on 1M elements
call saxpy(2**20, 2.0, x_d, y_d)
...

void saxpy(int n,

float a,

float *x,

float *restrict y)

{

#pragma acc kernels

for (int i = 0; i < n; ++i)

y[i] = a*x[i] + y[i];

}

...

// Perform SAXPY on 1M elements

saxpy(1<<20, 2.0, x, y);

...

A VERY SIMPLE EXERCISE: SAXPY
SAXPY in C SAXPY in Fortran

30

TOP HPC APPS ADOPTING OPENACC
OpenACC - Performance Portability And Ease of Programming

ANSYS Fluent
VASP

3 of Top 10 Apps

5 CSCS Codes

COSMO
ELEPHANT
RAMSES
ICON
ORB5

GTC
XGC
ACME
FLASH

LSDalton

5 ORNL CAAR
Codes

30000

22500

15000

7500

0
T4 T8 T14 T28

Ti
m

e(
S)

CPU (cores)

CPU: (Haswell EP) Intel(R) Xeon(R) CPU E5-2695 v3 @2.30GHz, 2 sockets, 28 cores
GPU: Tesla K80 12+12 GB, Driver 346.46

Fluent Native Solver

Fluent HTC Solver K80 GPU

ANSYS Fluent R18.0 Radiation SolverGaussian

31

5 WAYS TO ACCELERATE WITH GPUS

Libraries

“Drop-in”
Acceleration

CUDA
Programming

Maximum
Performance

OpenACC
Directives

Easily
Accelerate

Applications

Applications

Get straight to
the science!

Accessibility

Flexibility

Standard
Language

Parallelism

Maximum
Flexibility

CUDA Programming (ultimate control)

CUDA gives you fine-level control over

• thread execution

• use of GPU memory hierarchy

Tune your code for optimal performance
Scale your parallel execution to multiple GPUs and multiple hosts using NCCL and MPI

CUDA API – C, C++, Fortran, Julia, Python

CUDA aware MPI (OpenMPI, MVAPICH, Spectrum MPI, and more)

https://developer.nvidia.com/blog/even-easier-introduction-cuda/

33

void saxpy_serial(int n,
float a,
float *x,
float *y)

{

for (int i = 0; i < n; ++i)
y[i] = a*x[i] + y[i];

}

// Perform SAXPY on 1M elements
saxpy_serial(4096*256, 2.0, x, y);

__global__
void saxpy_parallel(int n,

float a,
float *x,
float *y)

{
int i = blockIdx.x*blockDim.x +

threadIdx.x;
if (i < n) y[i] = a*x[i] + y[i];

}

// Perform SAXPY on 1M elements
saxpy_parallel<<<4096,256>>>(n,2.0,x,y);

CUDA C
Standard C Code Parallel C Code

http://developer.nvidia.com/cuda-toolkit

34

// generate 32M random numbers on host
thrust::host_vector<int> h_vec(32 << 20);
thrust::generate(h_vec.begin(),

h_vec.end(),
` rand);

// transfer data to device (GPU)
thrust::device_vector<int> d_vec = h_vec;
// sort data on device
thrust::sort(d_vec.begin(), d_vec.end());
// transfer data back to host
thrust::copy(d_vec.begin(),

d_vec.end(),
h_vec.begin());

RAPID PARALLEL C++ DEVELOPMENT

• Resembles C++ STL
• High-level interface

• Enhances developer productivity
• Enables performance portability

between GPUs and multicore CPUs
• Flexible

• CUDA, OpenMP, and TBB backends
• Extensible and customizable
• Integrates with existing software

• Open source

http://developer.nvidia.com/thrust or http://thrust.googlecode.com

35

CUDA FORTRAN
• Program GPU using Fortran

• Key language for HPC

• Simple language extensions

• Kernel functions

• Thread / block IDs

• Device & data
management

• Parallel loop directives

• Familiar syntax

• Use allocate, deallocate

• Copy CPU-to-GPU with
assignment (=)

module mymodule contains
attributes(global) subroutine saxpy(n,a,x,y)

real :: x(:), y(:), a,
integer n, i
attributes(value) :: a, n
i = threadIdx%x+(blockIdx%x-1)*blockDim%x
if (i<=n) y(i) = a*x(i) + y(i);

end subroutine saxpy
end module mymodule

program main
use cudafor; use mymodule
real, device :: x_d(2**20), y_d(2**20)
x_d = 1.0; y_d = 2.0
call saxpy<<<4096,256>>>(2**20,3.0,x_d,y_d,)
y = y_d
write(*,*) 'max error=', maxval(abs(y-5.0))

end program main
http://developer.nvidia.com/cuda-fortran

36

COMPUTE DEVELOPER TOOLS

Nsight Systems

System-wide application algorithm
tuning

Nsight Compute

CUDA Kernel Profiling and Debugging

Nsight Graphics

Graphics Shader Profiling and
Debugging

IDE Plugins
Nsight Eclipse Edition/Visual

Studio (Editor, Debugger)

cuda-gdb

CUDA Kernel Debugging

Compute Sanitizer

Memory, Race Checking

//Out-of-bounds Array Access

__global__ void oobAccess(int* in, int* out)
{

int bid = blockIdx.x;
int tid = threadIdx.x;

if (bid == 4)
{

out[tid] = in[dMem[tid]];
}

}

int main()
{

...
// Array of 8 elements, where element 4 causes the OOB
std::array<int, Size> hMem = {0, 1, 2, 10, 4, 5, 6, 7};
cudaMemcpy(d_mem, hMem.data(), size, cudaMemcpyHostToDevice);

oobAccess<<<10, Size>>>(d_in, d_out);
cudaDeviceSynchronize();
...

$ /usr/local/cuda-11.0/Sanitizer/compute-sanitizer --destroy-on-device-error kernel --show-backtrace no
basic
========= COMPUTE-SANITIZER
Device: Tesla T4
========= Invalid __global__ read of size 4 bytes
========= at 0x480 in
/tmp/CUDA11.0/ComputeSanitizer/Tests/Memcheck/basic/basic.cu:40:oobAccess(int*,int*)
========= by thread (3,0,0) in block (4,0,0)
========= Address 0x7f551f200028 is out of bounds

37

5 WAYS TO ACCELERATE WITH GPUS

Libraries

“Drop-in”
Acceleration

CUDA
Programming

Maximum
Performance

OpenACC
Directives

Easily
Accelerate

Applications

Applications

Get straight to
the science!

Accessibility

Flexibility

Standard
Language

Parallelism

Maximum
Flexibility

PLATFORM SPECIALIZATION
CUDA

std::transform(par, x, x+n, y,
y,[=](float x, float y){

return y + a*x;
}

);

matrix_product(par, mA, mB,
mC);

__global__
void saxpy(int n, float a,

float *x, float *y) {
int i = blockIdx.x*blockDim.x +

threadIdx.x;
if (i < n) y[i] += a*x[i];

}

int main(void) {
...
cudaMemcpy(d_x, x, ...);
cudaMemcpy(d_y, y, ...);

saxpy<<<(N+255)/256,256>>>(...);

cudaMemcpy(y, d_y, ...);

ACCELERATED STANDARD LANGUAGES PLATFORM SPECIALIZATION

do concurrent (i = 1:n)
y(i) = y(i) + a*x(i)

enddo

C = matmul(A, B)

import cunumeric as np
…
def saxpy(a, x, y):

y[:] += a*x

c = np.matmul(a, b)

ISO C++ ISO Fortran Python CUDA

https://developer.nvidia.com/blog/accelerating-standard-c-with-gpus-using-stdpar/
https://developer.nvidia.com/blog/accelerating-fortran-do-concurrent-with-gpus-and-the-nvidia-hpc-sdk/
https://developer.nvidia.com/cunumeric

STANDARD LANGUAGE PROGRAMMING

HPC PROGRAMMING IN ISO C++

C++20

Scalable Synchronization Library

 Express thread synchronization that is portable
and scalable across CPUs and accelerators

 In libcu++:

 std::atomic<T>

 std::barrier

 std::counting_semaphore

 std::atomic<T>::wait/notify_*

 std::atomic_ref<T>

C++23 and Beyond

Executors / Senders-Recievers

 Simplify launching and managing parallel work
across CPUs and accelerators

std::mdspan/mdarray

 HPC-oriented multi-dimensional array
abstractions.

Range-Based Parallel Algorithms

 Improved multi-dimensional loops

Linear Algebra

 C++ standard algorithms API to linear algebra

 Maps to vendor optimized BLAS libraries

Extended Floating Point Types

 First-class support for formats new and old:
std::float16_t/float64_t

ISO is the place for portable concurrency and parallelism

C++17

Parallel Algorithms

 In NVC++

 Parallel and vector concurrency

Forward Progress Guarantees

 Extend the C++ execution model for accelerators

Memory Model Clarifications

 Extend the C++ memory model for accelerators

Preview support coming to NVC++

C++17 PARALLEL ALGORITHMS
Lulesh Hydrodynamics Mini-app

codesign.llnl.gov/lulesh

 ~9000 lines of C++
 Parallel versions in MPI, OpenMP, OpenACC,

CUDA, RAJA, Kokkos, ISO C++…
 Designed to stress compiler vectorization,

parallel overheads, on-node parallelism

static inline
void CalcHydroConstraintForElems(Domain &domain, Index_t length,

Index_t *regElemlist, Real_t dvovmax, Real_t& dthydro)
{
#if _OPENMP

const Index_t threads = omp_get_max_threads();
Index_t hydro_elem_per_thread[threads];
Real_t dthydro_per_thread[threads];

#else
Index_t threads = 1;
Index_t hydro_elem_per_thread[1];
Real_t dthydro_per_thread[1];

#endif
#pragma omp parallel firstprivate(length, dvovmax)

{
Real_t dthydro_tmp = dthydro ;
Index_t hydro_elem = -1 ;

#if _OPENMP
Index_t thread_num = omp_get_thread_num();

#else
Index_t thread_num = 0;

#endif
#pragma omp for

for (Index_t i = 0 ; i < length ; ++i) {
Index_t indx = regElemlist[i] ;

if (domain.vdov(indx) != Real_t(0.)) {
Real_t dtdvov = dvovmax / (FABS(domain.vdov(indx))+Real_t(1.e-20)) ;

if (dthydro_tmp > dtdvov) {
dthydro_tmp = dtdvov ;
hydro_elem = indx ;

}
}

}
dthydro_per_thread[thread_num] = dthydro_tmp ;
hydro_elem_per_thread[thread_num] = hydro_elem ;

}
for (Index_t i = 1; i < threads; ++i) {

if(dthydro_per_thread[i] < dthydro_per_thread[0]) {
dthydro_per_thread[0] = dthydro_per_thread[i];
hydro_elem_per_thread[0] = hydro_elem_per_thread[i];

}
}
if (hydro_elem_per_thread[0] != -1) {

dthydro = dthydro_per_thread[0] ;
}
return ;

} C++ with OpenMP

STANDARD C++

 Composable, compact and elegant

 Easy to read and maintain

 ISO Standard

 Portable – nvc++, g++, icpc, MSVC, …

static inline
void CalcHydroConstraintForElems(Domain &domain, Index_t length,

Index_t *regElemlist, Real_t dvovmax, Real_t &dthydro)
{
dthydro = std::transform_reduce(

std::execution::par, counting_iterator(0), counting_iterator(length),
dthydro, [](Real_t a, Real_t b) { return a < b ? a : b; },
[=, &domain](Index_t i)

{
Index_t indx = regElemlist[i];
if (domain.vdov(indx) == Real_t(0.0)) {

return std::numeric_limits<Real_t>::max();
} else {

return dvovmax / (std::abs(domain.vdov(indx)) + Real_t(1.e-20));
}

});
}

Standard C++

C++ STANDARD PARALLELISM

Same ISO C++ Code

Lulesh Performance

1 1.03
1.53

2.08

13.57

0

2

4

6

8

10

12

14

16

OpenMP on 64c EPYC
7742

OpenMP on 64c EPYC
7742

Standard C++ on 64c
EPYC 7742

Standard C++ on 64c
EPYC 7742

Standard C++ on A100

NVC++

GCC

ACCELERATED STANDARD LANGUAGES
Parallel performance for wherever your code runs

std::transform(par, x, x+n, y,
y,[=](float x, float y){

return y + a*x;
}

);

import cunumeric as np
…
def saxpy(a, x, y):

y[:] += a*x

do concurrent (i = 1:n)
y(i) = y(i) + a*x(i)

enddo

ISO C++ ISO Fortran Python

CPU GPU

nvc++ -stdpar=multicore
nvfortran –stdpar=multicore

legate –cpus 16 saxpy.py

nvc++ -stdpar=gpu
nvfortran –stdpar=gpu
legate –gpus 1 saxpy.py

44

5 WAYS TO ACCELERATE WITH GPUS

Libraries

“Drop-in”
Acceleration

CUDA
Programming

Maximum
Performance

OpenACC
Directives

Easily
Accelerate

Applications

Applications

Get straight to
the science!

Accessibility

Flexibility

Standard
Language

Parallelism

Maximum
Flexibility

Important GPU Features and System Architecture

Tensor Cores and Mixed Precision
Tensor Cores are programmable matrix-multiply-and-accumulate units

cuBLAS uses Tensor Cores to speed up GEMM computations
Tensor Cores enable mixed-precision computing, dynamically adapting calculations to accelerate throughput

while preserving accuracy

4848

TF32 TENSOR CORES

 Range of FP32 and Precision of FP16

 Input in FP32 and Accumulation in FP32

 No Code Change Speed-up for Training

 Up to 8x more throughput compared to
FP32 on A100

 Up to 10x compared to FP32 on V100

(TF32)

FP32

FP16

BFLOAT16

8 BITS 23 BITS

8 BITS 10 BITS

5 BITS 10 BITS

8 BITS 7 BITS

Range PrecisionSign

TF32
Range

TF32
Precision

Format to TF32
and multiply

FP32 accumulate

FP32
Matrix

FP32
Matrix

FP32
Matrix

Mode not a type

INSIDE 8-BIT FLOATING POINT (FP8)

FP32

Range
exponent

Precision
mantissa

e8 m23
s

FP16

BF16
e8 m7

e5 m10
s

s

si
g

n

FP8
(E5M2)

FP8
(E4M3)

e4 m3

e5 m2
s

s

2x throughput & half footprint of FP16/BF16

Allocate 1 bit to either
range or precision

Support for multiple accumulator
and output types

TC

FP32|FP16|BF16|FP8
matrix

FP8
matrix

FP8
matrix

multiply

accumulate into
FP32 or FP16

bias/act/
…

convert

SM

Scaling to Multiple GPUs
GPU to GPU communication

51

GPU TOPOLOGY
nvidia-smi topo -m

NUMA AffinityCPU AffinityGPU3GPU2GPU1GPU0

N/A0-39PHBPHBPIXXGPU0

N/A0-39PHBPHBXPIXGPU1

N/A0-39PIXXPHBPHBGPU2

N/A0-39XPIXPHBPHBGPU3

Legend:

X = Self
SYS = Connection traversing PCIe as well as the SMP interconnect between NUMA nodes (e.g., QPI/UPI)
NODE = Connection traversing PCIe as well as the interconnect between PCIe Host Bridges within a NUMA node
PHB = Connection traversing PCIe as well as a PCIe Host Bridge (typically the CPU)
PXB = Connection traversing multiple PCIe bridges (without traversing the PCIe Host Bridge)
PIX = Connection traversing at most a single PCIe bridge
NV# = Connection traversing a bonded set of # NVLinks

lstopo

52

WHY DOES GPU TOPOLOGY MATTER?
nvidia-smi topo -m

lstopo

GPU0 GPU1 GPU2 GPU3

07:00.0 08:00.0 0E:00.0 0F:00.0

• No penalty for single GPU applications
• Latency impact on multi-GPU applications

APP1GPU0 GPU1 APP1GPU0 GPU2

Faster Slower

53

WHY DOES GPU TOPOLOGY MATTER?
nvidia-smi topo -m

NUMA NODE 0 CPU0

GPU0 GPU1

NUMA NODE 1CPU1

GPU2 GPU3

QPI/UPI
GPU2 assigned to a VM
on CPU0

P2P, h2d, d2d and d2h
bandwidth
inconsistencies if the
devices are not set

What can go wrong?

Tinker with

$export CUDA_VISIBLE_DEVICES=0,1
$export CUDA_VISIBLE_DEVICES=0,2

NVIDIA GPUDirect RDMA
10X Higher Performance

Full Copy Operations

PCIe Transactions

GPU Utilization

CPU Usage

Latency

No GPUDirect

Network Handled by CPU and CPU-Memory

GPUDirect

Network Goes Directly to GPU Memory

2

2

1

0

NVIDIA GPUDirect RDMA

NVIDIA GPUDirect Storage

Faster GPU to GPU
communication

58

NVLINK

2-way all-to-all connection
25 GB/s per link in each direction
12 links per H100
4 links per bridge
600 GB/s GPU-to-GPU

H100 80GB PCIE
With NVLINK bridges

59

NVLINK

4-way all-to-all connection
25 GB/s per link in each direction
18 links per H100
900 GB/s GPU-to-GPU

Scale-Up – Mixed AI & HPC

4 H100s, Fully Connected w/
shared NVLinks

HGX H100 4-GPU

60

NVSWITCH

8-way all-to-all connection
25 GB/s per link in each direction
18 links per H100
900 GB/s GPU-to-GPU

HGX H100 8-GPU

Data Center GPUs

62

NVIDIA HOPPER & ADA LOVELACE
DATA CENTER GPUS

H100 L40S L40

Fastest Compute, FP64
Up to 7 MIG instances

350W & 700W | 80G
2-slot FHFL | NVLINK

Highest Perf Compute
AI, HPC, Data Processing

AI and Graphics Performance

AI & High Performance
Graphics Visual

Computing

350W | 48GB
2-slot FHFL

Fastest RT Graphics
Largest render models

Highest Perf Graphics
Visual Computing

300W | 48GB
2-slot FHFL

Compute Graphics

NVIDIA L40NVIDIA L40SNVIDIA H100

L4

4K Cloud Gaming
Graphics, Video with AI

Mainstream Graphics &
Video with AI

72W | 24GB
1-slot FHFL

NVIDIA L4

NVIDIA H100 SXM5
Unprecedented Performance, Scalability, and

Security for Every Data Center

FP8, FP16, TF32 performance include sparsity. X-factor compared to A100

HIGHEST AI AND HPC PERFORMANCE
4PF FP8 (6X)| 2PF FP16 (3X)| 1PF TF32 (3X)| 60TF FP64 (3X)

3TB/s (1.5X), 80GB HBM3 memory

TRANSFORMER MODEL OPTIMIZATIONS
6X faster on largest transformer models

HIGHEST UTILIZATION EFFICIENCY AND
SECURITY

7 Fully isolated & secured instances, guaranteed QoS
2nd Gen MIG | Confidential Computing

FASTEST, SCALABLE INTERCONNECT
900 GB/s GPU-2-GPU connectivity (1.5X)

up to 256 GPUs with NVLink Switch | 128GB/s PCI Gen5

NVIDIA H100 NVL
Supercharge Real-Time Large Language Model Inference

LLM Inference: GPT3-175B 700 ms | x8 H100 NVL FP8 | HGX A100 FP16 | Iso-power 20MW Data Center.

NVLinked HBM3

Super GPU

188GB

H100 NVL

H100 NVLH100 PCIe

2.6X3,958 TFLOPS*1,513 TFLOPS*FP16 Tensor Core

2.6X7,916 TFLOPS*3,026 TFLOPS*FP8 Tensor Core

2.4X188GB HBM380GB HBM2eGPU Memory

3.8X7.6TB/s2TB/sGPU Memory Bandwidth

NVLink Bridge 600GB/s
PCIe Gen5 128GB/s

NVLink 600GB/s
PCIe Gen5 128GB/sInterconnect

GPT3-175B Inference

More Throughput vs HGX A100

12XDeploy
Everywhere

PCIe-Based

Mainstream

65NVIDIA CONFIDENTIAL. DO NOT DISTRIBUTE.

H100 IN VOLUME SERVERS

SPECIALIZED GPU SERVERS
ULTIMATE COMPUTE

Ultimate Performance and Scaling

Fastest Time to Solution

Multi-GPU, Multi Node Scaling

Supercomputing HPC+AI

MAINSTREAM SERVERS
HIGHEST COMPUTE

Wide selection of standard 2U servers

Flexibility, modularity, and ease of deployment

H100 NVLHGX H100 8-GPU HGX H100 4-GPU H100 80GB PCIE4 –16x H100 PCIE

 8x NVIDIA H100 GPUs With 640 Gigabytes of Total GPU Memory

 18x NVIDIA NVLink connections per GPU, 900 gigabytes per second
of bidirectional GPU-to-GPU bandwidth

 24 TB/s memory bandwidth

 4x NVIDIA NVSwitches

 7.2 terabytes per second of bidirectional GPU-to-GPU bandwidth,
1.5X more than previous generation

 10x NVIDIA ConnectX-7 400 Gigabits-Per-Second Network Interface

 1 terabyte per second of peak bidirectional network bandwidth

 Dual 56-core 4th Gen Intel® Xeon® Scalable Processors and 2 TB
System Memory

 Powerful CPUs and massive system memory for the most intensive AI
jobs

 30 Terabytes NVMe SSD

 High speed storage for maximum performance

 32 petaFLOPS AI performance

NVIDIA DGX H100
The world’s first AI system with the NVIDIA H100 Tensor Core GPU

NVIDIA DGX H100: The Proven Choice for Enterprise AI
The gold standard for AI infrastructure

Introducing NVIDIA L40S
• Unparalleled AI and Graphics Performance for the Data Center

New Ada Architecture Features
• New Streaming Multiprocessor
• 4th-Gen Tensor Cores
• 3rd-Gen RT Cores
• 91.6 teraFLOPS FP32

Gen-AI, LLM Training, & Inference
• Transformer Engine - FP8
• 1.5 petaFLOPS Tensor Performance*
• Large L2 Cache

3D Graphics & Rendering
• 212 teraFLOPS RT Core Performance
• DLSS 3.0, AI Frame Generation
• Shader Execution Reordering

Media Acceleration
• 3 Encode & Decode Engines
• 4 JPEG Decoders
• AV1 Encode & Decode Support

*Peak teraFLOPS, sparsity enabled

Dual-Slot I FHFL I 350W

*Peak teraFLOPS, sparsity enabled

NVIDIA L40S - Fine Tune in Hours, Train Small Models in Days
Reserve HGX H100 Capacity for Large Scale Foundational Model Training

HGX H100L40S# of GPUsModel Parameters

1.9 hours5.5 hours8Llama 2-7B SFT (1B tokens)

1.8 hours5.2 hours16Llama 2-13B SFT (1B tokens)

2 hours6 hours32Llama-33B SFT (1B tokens)

2.3 hours8.2 hours64Llama 2-70B SFT (1B tokens)

2.5 hours9.3 hours128GPT 3-175B SFT (1B tokens)

HGX H100L40S# of GPUsModel Parameters

1 day2.9 days64Llama 2-7B (100B tokens)

1 day2.6 days128Llama 2-13B (100B tokens)

6 days19.8 days1024Llama 2-70B (1T tokens)

Fine Tuning Time to Train

Small Model Training Time to Train

Preliminary performance projections, subject to change
1. Fine Tuning Llama2-7B/13B/33B/70B SFT GBS=64/128/128/128, SL=4096, FP8.
2. Fine-Tuning GPT-175B SFT; GBS=128, SL=4096, FP8.
3. Small LLM Training Llama 2-7B/13B/70B, GBS=512/512/2048, SL=4096, FP8.

Popular LLM Models

LLM Model Size

Small Model
Training

Fine Tuning

L40S

Stable Diffusion XL

GPT-20B

GPT-175B

GPT-40B

GPT 530B

GPT>1T

Llama-2 7B

Llama-2 13B

Llama-2 70B

GPT-5B

Falcon 180B

GPTJ-6B

BLOOM 176B

Stable Diffusion

L40S system: PCIE 2-4-3 or 2-8-5 GPU system with 200Gbps IB NIC / GPU
H100 system: HGX H100 8-GPU with 400Gbps IB NIC/ GPU

HGX H100L40S# of GPUsModel Parameters

28 days-16,000GPT 3-530B (10T tokens)

Foundation Model Training Time to Train

NVIDIA L40
Accelerated graphics, AI, and compute
performance

Specifications
• Up to 90.5 TFLOPs Single Precision (FP32) Performance
• Up to 724 TFLOPs Tensor Operation Performance*
• Up to 209 TFLOPs Rendering Performance
• 48GB GDDR6 GPU Memory with ECC
• 4 DisplayPort 1.4 Display Outputs
• 3 Encode / 3 Decode Engines

• Including AV1 Encode & Decode
• 4 JPEG Decode Engines

• 300W, Dual Slot, FHFL

Data Center Ready
• NVIDIA vGPU Support
• Secure Boot with Root of Trust
• NEBS Level 3 Ready
• Passive Cooling
• In and Out of Band Management
• Lifetime 24/7 Reliability

* Using FP8 data format with structural sparsity enabled.

NVIDIA L4
Universal Accelerator for Efficient Video, AI, and
Graphics

AI Video

More Performance

120X
Graphics

Faster Graphics with
3rd Gen RT Cores

4X

Generative AI

Better Performance
with 4th Generation

Tensor Core

Single Slot, Low Profile
Fits Any Server

2.5X

Measured Performance:
AI Video: 8x L4 vs 2S Intel 8380 CPU server performance comparison : end-to-end video pipeline with CV-CUDA pre-post processing, decode, inference (SegFormer), encode, TRT 8.6 vs CPU only pipeline using OpenCV 4.7
Graphics: Real-time Rendering: NVIDIA Omniverse performance for real-time rendering at 1080p and 4K with DLSS 3
Generative AI: L4 vs T4: image generation performance, 512x512 Stable Diffusion, FP16

1.
2. All Tensor Core numbers with sparsity. Without sparsity is ½ the value.

Data Center GPU Comparison
L40L40SH100

Powerful Graphics +
AI

Highest Perf
Universal

Highest Perf AI,
Big NLP, HPC, DADesign

x16 PCIe Gen4
2 Slot FHFL

x16 PCIe Gen4
2 Slot FHFL

X16 PCIe Gen5
Dual 2 Slot FHFL
using 3 NVLink

Bridges

x16 PCIe Gen5
2 Slot FHFL

3 NVlink Bridge
SXM5Form Factor

300W350W2x 400W350W700WMax Power

NA | 90.5NA | 91.6134 | 13451 | 5167 | 67FP64 TC | FP32 TFLOPS2

181 | 362366 | 7331979 | 3958756 | 1513989 | 1979TF32 TC | FP16 TC TFLOPS2

724 | 7241466 | 14667916 | 79163026 | 30263958 | 3958FP8 TC | INT8 TC TFLOPS/TOPS2

48GB GDDR6188GB HBM380GB HBM2e80GB HBM3GPU Memory

-UP to 14Up to 7Multi-Instance GPU (MIG)

3 Video Encoder
3 Video Decoder
4 JPEG Decoder

14 JPED Decoder
14 Video Decoder

7 JPEG Decoder
7 Video DecoderMedia Acceleration

Yes--Ray Tracing

YesYesYesTransformer Engine

-YesYesDPX Instructions

Top-of-LineFor in-situ visualization
(no NVIDIA vPC or RTX vWS)Graphics

YesYesvGPU

InternalInternal and ExternalHardware Root of Trust

-YesConfidential Computing

Add-onAdd-onIncludedAdd-onNVIDIA AI Enterprise

Other GPUs

NVIDIA RTX in Every Form Factor
Solutions to Do Your Best Work Anywhere

Data CenterLaptop

RTX 5000 Ada Laptop GPU (16GB)
RTX 4000 Ada Laptop GPU (12GB)
RTX 3500 Ada Laptop GPU (12GB)
RTX 3000 Ada Laptop GPU (8GB)
RTX 2000 Ada Laptop GPU (8GB)

Desktop

NVIDIA L40S (48GB)
NVIDIA L40 (48GB)
NVIDIA L4 (24GB)

RTX 6000 Ada Generation (48GB)
RTX 5000 Ada Generation (32GB)
RTX 4500 Ada Generation (24GB)
RTX 4000 Ada Generation (20GB)

RTX 4000 SFF Ada Generation (20GB)

NVIDIA JETSON
Software-Defined AI Platform

Sensor Fusion & Compute Performance Expertise, Time to Market

JETSON COMPUTER

ECOSYSTEMSOFTWARE DEFINED

Jetpack SDK ∙ CUDA ∙ TensorRT ∙ Triton ∙ ONNX ∙ ROS

Artificial Intelligence Computer Vision

Accelerated Computing Multimedia

Gesture rec

Obj detectPath planningDepth est

Pose est Speech rec

SDK, Design Tools, Libs, GEMs

Act

Sense

Reason

AI at the Edge

Jetson Ecosystem | NVIDIA DeveloperJetson Software | NVIDIA DeveloperAutonomous Machines: The Future of AI | NVIDIA

H200

Announcing NVIDIA HGX H200
The World’s Leading AI Computing Platform

Highest Performance for AI and HPC
8-way or 4-way H200 GPUs

Up to 32 PetaFLOPs FP8

Up to 1.1TB High Bandwidth Memory

Fastest, Scalable Interconnect

4th Gen NVLINK with 2X faster All-Reduce communications

3.6 TB/s bisection bandwidth

Fully Compatible with Partner H100
Systems

Supported by Leading Major OEMs and CSPs

Coming to Leading OEM and CSP Partners
Starting Q2 2024

Announcing NVIDIA H200
Tensor Core GPUs
Supercharging the Highest Performing Generative AI
and HPC Platforms

1.9X
Llama 2 70B Inference

Performance vs H100

110X
MILC HPC Simulation

Performance vs x86 CPUs

1.4X
GPT-3 175B Inference

Performance vs H100

4.8 TB/s
Memory Bandwidth

HBM3e

141GB
Memory

HBM3e

Grace CPU

GRACE IS A COMPUTE & DATA MOVEMENT ARCHITECTURE
NVIDIA Scalable Coherency Fabric and distributed cache design

• 3,225.6 GB/s Bi-section BW

• 117MB of L3 cache

• Scalable to 72+ cores per die

• Local caching of remote die memory

• Supports up to 4-die coherency over

Coherent NVLINK

• Background data movement via Cache

Switch Network

Example possible fabric topology for illustrative purposes

GRACE HOPPER SUPERCHIP
CPU+GPU Designed for Giant Scale AI and HPC

600GB Memory GPU for Giant Models

New 900 GB/s Coherent Interface

30X Higher System Memory B/W to GPU In A Server

Runs Nvidia Computing Stacks

All standard Linux Memory Management APIs can be used
for both CPUs and GPUs

Explicit Copy
Application explicitly moves data between
CPU & GPU as needed

PCIE: ~60 GB/s PCIE transfers (H2D/D2H)

Grace: Faster transfers; up to 450 GB/s C2C
transfers

Managed Memory
CPU and GPU can access memory on-
demand and data migrated locally for higher
BW access

PCIE: Requires migration to GPU

Grace: Migrations not required and faster
migrations when they happen

Grace-Hopper Memory Model
Full CUDA support with additional Grace memory extensions

System Allocated
GPU can access memory allocated from
malloc(), mmap(), etc.

PCIE: Access possible with explicit call to
cudaHostRegister() at PCIe speeds

Grace: cudaHostRegister() not needed;
access at NVLink C2C speeds

cudaMemcpyH2D()

cudaMemcpyD2H()

CPU Memory

App Data

Results

GPU Memory

App Data

Results

GPU access to malloc()
memory

CPU Memory

App Data

GPU Memory

App Data

CPU Memory

Page 1

Page 2

GPU Memory

Page 1

Page 2

Page
Migration GPU

page
fault

C2C Path
(Grace)

NVIDIA Grace CPU Superchip
2X Performance at the Same Power for the Modern Data Center

High Performance Power Efficient Cores
144 flagship Arm Neoverse V2 Cores with

SVE2 4x128b SIMD per core

Fast On-Chip Fabric
3.2 TB/s of bi-section bandwidth connects

CPU cores, NVLink-C2C, memory, and system IO

High-Bandwidth Low-Power Memory
Up to 960GB of data center enhanced LPDDR5X Memory that

delivers up to1TB/s of memory bandwidth

Fast and Flexible CPU IO
Up to 8x PCIe Gen5 x16 interface. PCIe Gen 5 up to 128GB/s

2X more bandwidth compared to PCIe Gen 4

Full NVIDIA Software Stack
AI, Omniverse

NVIDIA AI - One Architecture | Train and Deploy Everywhere
One –Year Rhythm

20242023

CPU + GPU

GH200

GB200

H100

H200

Quantum

Spectrum

GPU

B100

x100

Gx200

2025

L40S

B40
X40

GH200NVL

GB200NVL
Gx200NVL

x86 Training &
Inference
x86 Enterprise & Inference

InfiniBand AI
infrastructure
Ethernet-X Enterprise &
Hyperscale AI
Infrastructure

400G

800G

1,600G
400G

800G

1,600G

Arm Training &
Inference
Arm Inference

Best Practices for Best Performance

87

BUILD FASTER WITH NVIDIA CONTAINERS

PERFORMANCE OPTIMIZED DEPLOY ANYWHERE

Scalable

Updated Monthly

Better performance on the same system

Docker | cri-o | containerd | Singularity

Bare metal, VMs, Kubernetes

Multi-cloud, on-prem, hybrid, edge

ENTERPRISE READY SOFTWARE

Container scanning reports for CVEs,
malware

Tested for reliability

Backed by Enterprise support

https://ngc.nvidia.com

219 Containers

690 Models

NVIDIA HPC SDK
Available at developer.nvidia.com/hpc-sdk, on NGC, via Spack, and in the Cloud

Develop for the NVIDIA Platform: GPU, CPU and Interconnect
Libraries | Accelerated C++ and Fortran | Directives | CUDA

X86_64 | Arm | OpenPOWER
7-8 Releases Per Year | Freely Available

Compilers

nvcc nvc

nvc++

nvfortran

Programming
Models

Standard C++ & Fortran

OpenACC & OpenMP

CUDA

Core
Libraries

libcu++

Thrust

CUB

Math
Libraries

cuBLAS cuTENSOR

cuSPARSE cuSOLVER

cuFFT cuRAND

Communication
Libraries

HPC-X

NVSHMEM

NCCL

DEVELOPMENT

Profilers

Nsight

Systems

Compute

Debugger

cuda-gdb

Host

Device

ANALYSIS

SHARP HCOLL

UCX SHMEM

MPI

Performance Portability Productivity

RAPIDS Accelerates Popular Data Science Tools
Delivering enterprise-grade data science solutions

Pre-
Processing

cuDF

Data Preparation VisualizationModel Training

Machine
Learning

cuML

Graph
Analytics
cuGRAPH

Deep Learning
TensorFlow, PyTorch

Visualization
CuXFILTER <> pyViz

Spark or Dask

GPU Memory

The RAPIDS suite of open-source
software libraries gives you the
freedom to execute end-to-end data
science and analytics pipelines entirely
on GPUs.

RAPIDS utilizes NVIDIA
CUDA primitives for low-level compute
optimization and exposes GPU
parallelism and high-bandwidth
memory speed through user-friendly
interfaces like Apache Spark or Dask.

With Spark or Dask, RAPIDS can scale
out to multi-node, multi-GPU cluster
to power through big data processes.

RAPIDS puts the power of GPUs in the hands of all Data Scientists

Dask

NVIDIA TAO Toolkit
Create custom, production-ready AI models in hours rather than months

CUSTOMIZE FASTER
Fine tune NVIDIA

pretrained models with
fraction of the data

TRAIN EASILY
Built on TensorFlow and

PyTorch that abstracts away
the AI framework complexity

OPTIMIZE FOR DEPLOYMENT
Optimize for inference and

integrate with Riva or
DeepStream

SUPPORTED BY EXPERTS*

Supported by NVIDIA experts
to help resolve issues from

development to deployment

* Requires NVIDIA AI ENTERPRISE SUBSCRIPTION. Learn more here: https://www.nvidia.com/en-us/data-center/products/ai-enterprise/

NVIDIA TensorRT

Optimize & deploy all networks, including CNNs, RNNs, and
Transformers.

Maximize throughput for latency-critical apps with compiler and
runtime.

1. Reduced mixed precision: FP32, TF32, FP16, and INT8.

2. Layer and tensor fusion: Optimizes use of GPU memory &
bandwidth.

3. Kernel auto-tuning: Select best data layer & algorithm on target
GPU.

4. Dynamic tensor memory: Deploy memory-efficient models.

5. Multi-stream execution: Scalable design to process multiple
streams.

6. Time fusion: Optimizes RNN over time steps.

SDK for high-performance deep learning inference

https://developer.nvidia.com/tensorrt

TensorRT
Optimizer

TensorRT
Runtime

Trained
DNN

Embedded Automotive Data Center

Jetson Drive Data Center
GPUs

NVIDIA AI Enterprise
End to end AI software

Accelerated
Infrastructure

AI Platform Software

AI Foundation Models &
Services

NVIDIA AI

AI Development

AI Use Cases and WorkflowsWorkload and
Infra Management

Model Deployment
Triton Management Service

Cloud Native Management
and Orchestration

GPU Operator/Network Operator

Cluster Management
Base Command

Manager Essentials

Infra Acceleration Libraries
Magnum IO, vGPU, CUDA

Data Prep
RAPIDS

Model Training
TAO,

PyTorch/TensorFlow

Deploy at Scale
Triton Inference

Server

Simulate and Test
TensorRT

Cloud | Data Center | Workstations | Edge

NVIDIA AI Enterprise

MLOps AI Applications

Speech AI RecommendersLLM Cybersecurity

MoreVideo
Analytics

Route
Optimization

Medical
Imaging

NVIDIA End-to-End AI Software Suite
Deep Learning Streamlined From Conception to Production at Scale

TRAIN AT SCALE OPTIMIZED FOR INFERENCE DEPLOY AT SCALEDATA PREP

• Reduces data science processes
from hours to seconds

• 70x faster performance than
similar CPU configuration

• 20x more cost-effective than
similar CPU configuration

• Maximize throughput for
latency-critical apps w/ compiler
& runtime

• Optimize every network (CNNs,
RNNs, & Transformers)

• Optimizes use of GPU memory
bandwidth

• Fast & scalable AI to applications

• Diverse query types – real time,
offline batch, ensembles

• Up to 266x performance increase
over CPU-only

• Triton with FIL backend delivers
best inference performance for
tree-based models on GPUs

• Train, Adapt, Optimize Models in
hours vs. months

• Open-source ML frameworks
optimized for GPU

• Integrated w/ NVIDIA RAPIDS to
simplify development

TAO TOOLKIT

Building Generative AI Applications for the Enterprise
Build, customize and deploy generative AI models with NVIDIA NeMo

Data
Curation

Distributed
Training

Model
Customization

Accelerated
Inference Guardrails

…

Retrieval Augmented
Generation

NeMo Curator Megatron Core NeMo Aligner Triton & TensorRT-LLM NeMo Retriever NeMo Guardrails

NVIDIA NeMo

NVIDIA AI Enterprise

In-domain,
secure, cited

responses

In-domain
queries

Model Development Enterprise Application Deployment

NVIDIA DGX Cloud

NVIDIA AI Workbench
Enables anyone with access to a GPU to be a generative AI creator

CLOUDSDATA CENTERSPCs &
WORKSTATIONS

• Create projects for tuning and deployment of

generative AI and LLMs

• Move projects between PCs and workstations,

data centers, public clouds, and NVIDIA DGX

Cloud

• Easily start with pre-built project examples

Multi-Process Service (MPS)

CUDA MPS allows multiple processes to share a given
GPU instance

Doesn’t the GPU do this anyway?

Yes, with Time-Sliced Context Switching

100

Pre-emptive scheduling
Processes share GPU through time-slicing

Scheduling managed by system

$ nvidia-smi compute-policy
--set-timeslice={default, short, medium,

long}

Time-slice configurable via nvidia-smi

Concurrent scheduling
Processes run on GPU simultaneously

User creates & manages scheduling streams

cudaStreamCreateWithPriority(pStream, flags, priority);

cudaDeviceGetStreamPriorityRange(leastPriority, greatestPriority);

CUDA 11.0 adds a new stream priority level

C

B

A

time

EXECUTION SCHEDULING & MANAGEMENT

A B C A B

time

time-
slice

102

PROCESSES SHARING GPU WITHOUT MPS
No Overlap

Process A Process B

Context A Context B

Process A Process B

GPU

103

PROCESSES SHARING GPU WITHOUT MPS
Additional small overhead arising from pre-emptive context switch

Context
Switch

Overhead

104

PROCESSES SHARING GPU WITH MPS
Maximum Overlap

Process A Process B

Context A Context B

GPU
Kernels from

Process A
Kernels from

Process B

MPS

105

PROCESSES SHARING GPU WITH MPS
No Context Switch Overhead

106

USING MPS

No application modifications necessary

Not limited to MPI applications

MPS control daemon spawns MPS server
upon CUDA application startup

CUDA tools (debugger & profiler) are
MPS-aware

#Manually

nvidia-smi -c EXCLUSIVE_PROCESS

nvidia-cuda-mps-control –d

Compute modes

• PROHIBITED (cannot set device)

• EXCLUSIVE_PROCESS (single shared device)

• DEFAULT (per-process device)

Recommended to use EXCLUSIVE_PROCESS mode to ensure
that only a single MPS server is using the GPU

107

EXECUTION RESOURCE PROVISIONING WITH MPS

$ setenv CUDA_MPS_ACTIVE_THREAD_PERCENTAGE=percentage

• Environment variable: configures maximum fraction of a GPU available to an MPS-attached process

• Guarantees a process will use at most percentage execution resources (SMs)

• Over-provisioning is permitted: sum across all MPS processes may exceed 100%

• Provisions only execution resources (SMs) – does not provision memory bandwidth or capacity

• Before CUDA 11.2, all processes be set to the same percentage

• Since CUDA 11.2, percentage may be different for each process

Using MPS, applications can assign fractions of a GPU to each process

Full details at: https://docs.nvidia.com/deploy/mps/index.html#topic_5_2_5

108

GPU PROVISIONING WITH MPS
Using MPS, applications can assign fractions of a GPU to each process

A=33%, B=33%, C=33% A=33%, B=33%, C=100%

Fractional Provisioning

Process C could use more, but is
limited to just 33% of execution
resources

Process B is guaranteed space if needed

Using Oversubscription

Process B is not using all of its allocation

Process C may grow to fill available space

Additional B work may have to wait for
resources

A B C 3 concurrent MPS processes

109

Best Practices for Highest Performance
Summary

• Use optimized containers from NGC

• Use the optimized HPC SDK

• Take advantage of Mixed Precision

• Exploit sharing with MPS

• For multi-GPU workloads, use systems that support NVLink and GPUDirect

NVIDIA in the Cloud

Cloud Consumption Models

Data Center

Network & Storage

Physical Servers

Virtualization

Operating System

Scaling

Application Code

Data & Configuration

Traditional On-
Premises

Data Center

Network & Storage

Physical Servers

Virtualization

Operating System

Scaling

Application Code

Data & Configuration

Infrastructure as a
Service (IaaS)

Data Center

Network & Storage

Physical Servers

Virtualization

Operating System

Scaling

Application Code

Data & Configuration

Platform as a Service
(PaaS)

Data Center

Network & Storage

Physical Servers

Virtualization

Operating System

Scaling

Application Code

Data & Configuration

Software as a Service
(SaaS)

Customer Manages Cloud Provider Manages

H100 in the Cloud

H100 in the Cloud
See https://cloud-gpus.com/

Ada LovelaceHopperAmpere

L40S*L4*GH200*H200*H100A10A100 80GBA100 40GB

Generative AI, AI-
powered Video,

Graphics

Generative AI, AI-
powered Video,

Graphics

AI Training
(LLMs), AI

Inference (LLMs)
HPC

AI Training
(LLMs), AI

Inference (LLMs)
HPC

AI Training
(LLMs), AI

Inference (LLMs)
HPC

Graphics, Gaming,
AI Inference

AI Training
Inference,, HPC

AI Training
Inference,, HPCWorkloads

⬤⬤⬤⬤⬤⬤⬤⬤AWS

⬤⬤⬤⬤⬤Microsoft
Azure

⬤⬤⬤⬤⬤Google Cloud

⬤⬤⬤⬤⬤⬤⬤Oracle Cloud

⬤⬤⬤Alibaba Cloud

⬤⬤Tencent Cloud

⬤Baidu Cloud

⬤⬤⬤⬤⬤⬤CoreWeave

⬤⬤⬤Cirrascale

⬤⬤⬤⬤⬤Vultr Cloud

⬤⬤⬤Paperspace

⬤⬤⬤⬤⬤⬤Lambda Labs

Broad Portfolio of NVIDIA GPUs for AI Workloads in the Cloud
NVIDIA’s Latest Platforms Globally Available for Enterprises Using the Cloud

* Several CSP H200, GH200, L4, and L40S instances are pre-announcements/private preview/EA/GA. Please refer to each individual CSP’s product pages for further details.

Consuming the NVIDIA AI Platform in the Cloud
Multiple Entry Points offering Customers Choice and Flexibility to Build and Deploy AI

NVIDIA AI Foundations (SaaS)
NVIDIA DGX Cloud (PaaS)

Accelerated Infrastructure (Cloud-based Instances, VMs)

NCP CSPs

NVIDIA AI Enterprise Software
(IaaS)

NVIDIA NGC NVIDIA GPU-Optimized VMI

NVIDIA AI Enterprise Suite
Available on CSP Marketplaces

NVIDIA AI Integrations in CSP Solutions
(PaaS)

NVIDIA AI Foundry

AI Foundation
Models

NeMo
Framework

NVIDIA DGX Cloud

100+ frameworks, pretrained models and
development tools to streamline and support
every stage of the AI journey, from data prep

and model training through inference, and
deployment at scale

Amazon
Bedrock

NVIDIA AI Enterprise Platform in the Public Cloud
Ubiquitous End-to-end Open Platform for Production AI for Everyone, Everywhere

Available on CSP Marketplaces

Accelerated Infrastructure spanning the Public Cloud

NCP CSPs

RB0

Slide 116

RB0 Updated. Added a note up top regarding marketplace availability, and changed "NPN" to "NCP"
Rohil Bhargava, 2023-12-07T05:51:40.929

Leverage NVIDIA AI in CSP Managed On-Prem and Edge Solutions
Extending the Public Cloud Services to On-Prem, Edge or Disconnected Environments

Amazon Web Services

AWS Wavelength
Brings AWS services to edge of
5G networks with NVIDIA GPUs,
for ultra-low latency applications

AWS Panorama
Edge appliance with support for NVIDIA
Jetson AGX Xavier to bring computer-

vision to on-premise cameras

AWS Outposts
Extend AWS services on-prem with

support for NVIDIA GPUs for applications
with data locality and low-latency

requirements

Microsoft Azure Oracle Cloud Infrastructure

Oracle Roving Edge Infrastructure
Deploy AI at remote edge locations with

OCI Services, NVIDIA Software and
NVIDIA GPUs

Oracle Dedicated Region Cloud
Support for NVIDIA GPUs in fully
managed on-prem infrastructure

applications with low-latency, data
residency requirements

Azure Stack Hub
Support for NVIDIA GPUs and Networking
in Azure Stack Hub integrated systems to

deploy AI anywhere

Azure IoT Edge
Support for NVIDIA DeepStream, NVIDIA

Fleet Command and NVIDIA GPUs for
real-time AI applications at the edge

Azure Stack HCI
Accelerate AI workloads across a hybrid
infrastructure with support for NVIDIA

GPUs and Networking in Azure Stack HCI
managed clusters

Azure Percept
Build and Deploy Edge AI solutions using
NVIDIA DeepStream on Azure Stack HCI

powered by NVIDIA GPUs

Google Cloud

Google Distributed Cloud Hosted
Accelerate sensitive workloads requiring

digital sovereignty in a fully-managed on-
prem infrastructure with NVIDIA GPUs

Google Distributed Cloud Edge
Accelerate mission-critical AI use-cases
with NVIDIA GPUs at Google Edge, Telco

Edge or Customer Edge locations

GDC Edge Appliance
Accelerate data processing, analytics

& processing with NVIDIA GPUs at
remote edge locations

Anthos on BareMetal, VMware
Create and manage Kubernetes clusters

with NVIDIA GPUs on existing infrastructure
with VMware or BareMetal Servers

Broad Integrations across Cloud Solution Stack (PaaS)
Choose the Level of Abstraction You Need | Accelerate End-to-End Workflows | Reduce Operational Costs

Amazon Web Services

Amazon SageMaker
Accelerate each step of the end-to-end
ML workflow with support for NVIDIA

GPUs and NVIDIA NGC software

Amazon Elastic Kubernetes
Service

Automatically provision, manage and
scale K8s clusters with NVIDIA GPU-

powered EC2 Instances

Microsoft Azure

Azure VM Scale Sets
Create, manage and scale up to

thousands of NVIDIA GPU-
powered VMs and NGC

containers

Azure CycleCloud
Support to create, manage and

orchestrate NVIDIA GPU-based HPC
clusters at any scale. Support to deploy

NVIDIA NGC containers

Azure Kubernetes Service (AKS)
Support to automatically provision,

manage and scale K8s clusters with
NVIDIA GPUs and NVIDIA NGC

containers

Google Cloud

Vertex AI
Access latest NVIDIA AI software like
Triton, Merlin, MONAI within a unified
MLOps platform to build, deploy and

scale ML models in production

Dataflow
Leverage NVIDIA TensorRT and GPUs to
accelerate inference within end-to-end

pipelines on streaming data;

Dataproc
Leverage RAPIDS Accelerator for Apache

Spark to accelerate Spark SQL/DF based data
pipelines with no code changes

Google Kubernetes Engine (GKE)
Automatically create, manage and scale
K8s clusters with NVIDIA GPUs. Support
for GPU-sharing capabilities and NVIDIA

NGC containers

Oracle Cloud Infrastructure

OCI AI Services
Deploy pre-trained ML models or

customize them with NVIDIA GPUs on
OCI for vision, speech, forecasting and

anomaly detection

Oracle Kubernetes Engine (OKE)
Automatically provision, manage and

scale K8s clusters with NVIDIA GPUs on
OCI. Support to deploy NVIDIA NGC

containers

Oracle Data Science Platform
Support for NVIDIA GPUs and RAPIDS
to accelerate end-to-end data science

and analytics pipelines

Azure Machine Learning
Leverage NVIDIA GPUs and NVIDIA AI

software to accelerate end-to-end ML
development and deployments

Amazon ECS
Deploy, manage and scale containerized

applications on NVIDIA GPU-powered
instances including NVIDIA NGC

containers

Amazon EMR
Accelerate large-scale distributed data

science pipelines with NVIDIA GPU
instances and NVIDIA RAPIDS Accelerator

for Apache Spark

NVIDIA DGX Cloud
AI Training-as-a-Service Platform for the Era of Generative AI

Organizations doubling-down
on generative AI need:

Software that unleashes
developer productivity

Multi-node training
performance + easy scale

Access AI practitioners who
help maximize performance

Predictable pricing that
includes everything

Hosted in
leading clouds

NVIDIA DGX
Cloud

NVIDIA AI Enterprise
Base Command Platform

DGX Cloud Instance
(8) A100 80GB GPUs

with multi-node scale

10TB storage / instance
10TB egress

NVIDIA AI Expertise

One price
with no surprises

Traditional AI
development

DIY tools + open source

Inconsistent access to multi-
node scale across regions

Community forums
and “sweat equity”

Escalating costs, add-on fees
for reserved instances,

storage, etc.

Traditional
AI clouds

120

NVIDIA LaunchPad
Instantly experience end-to-end workflows for AI, data science, 3D design collaboration, and more

Take the Next Step with NVIDIA AI in CloudExperience, Evaluate and Test NVIDIA AI

Public Cloud

https://www.nvidia.com/en-us/launchpad/

122

Resource

Resources
Where to find all things NVIDIA

• Open a developer account https://developer.nvidia.com/
• Find documentation https://docs.nvidia.com/
• Open software and tutorials https://github.com/NVIDIA
• Replay GTC sessions https://www.nvidia.com/en-us/on-demand/
• Free and fee-based training https://www.nvidia.com/en-us/training/
• NGC for containers, trained models, workflows https://ngc.nvidia.com/
• Try out new technology with LaunchPad https://www.nvidia.com/en-us/launchpad/
• Register for GTC (March 17-21) https://www.nvidia.com/gtc/

