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• 5 Ways to Accelerate with GPUs

• Important GPU Features and System 
Architectures

• Data Center GPUs Overview

• Best Practices for Best Performance  
• GPUs in the Public Cloud



First, some GPU basics
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GPU Accelerator
Optimized for 
Parallel Tasks

ACCELERATED COMPUTING
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HOW GPU ACCELERATION WORKS

Application Code

+

GPU CPU
5% of Code

Compute-Intensive Functions

Rest of Sequential
CPU Code
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GPU ARCHITECTURE

Global memory

Analogous to RAM in a CPU server

Accessible by both GPU and CPU

H100 has 80 GB

Streaming Multiprocessors (SM)

Perform the actual computation

Each SM has its own: Control units, registers, execution pipelines, caches

H100 has 114 SMs

Two Main Components
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GPU ARCHITECTURE

Many CUDA Cores per SM

Architecture dependent

H100 SM has 128 cores

Special-function units

cos/sin/tan, etc.

Shared mem + L1 cache

Thousands of 32-bit registers

Streaming Multiprocessor (SM) Register File

Scheduler

Dispatch

Scheduler

Dispatch

Load/Store Units x 16

Special Func Units x 4

Interconnect Network

64K Configurable
Cache/Shared Mem

Uniform Cache

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Instruction Cache

H100 PCIe has a total of 14,592 cores
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PROCESSING FLOW

1. Copy input data from CPU memory to GPU 
memory

PCIe Bus

A100 memory bandwidth is 25x PCIe gen4
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PROCESSING FLOW

1. Copy input data from CPU memory to GPU 
memory

2. Load GPU program and execute,
caching data on chip for performance

PCIe Bus
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PROCESSING FLOW

1. Copy input data from CPU memory to GPU 
memory

2. Load GPU program and execute,
caching data on chip for performance

3. Copy results from GPU memory to CPU 
memory

PCIe Bus
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• A parallel computing platform and application programming interface (API) model 
created by NVIDIA 

• Allows software developers and software engineers to use a CUDA-enabled GPUs 
for general purpose processing 

• Backwards compatible

• The name CUDA was originally an acronym for Compute Unified Device 
Architecture



The Five Ways to Accelerate with GPUs
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THOUSANDS OF GPU-ACCELERATED APPLICATIONS

MANUFACTURING,
CAD, & CAE

• Ansys Fluent
• Abaqus SIMULIA
• AutoCAD
• CST Studio 

Suite

…

MEDICAL IMAGING

• aidoc
• PowerGrid
• RadiAnt

…

DATA SCIENCE 
& ANALYTICS

• Anaconda
• H20
• OmniSci

…

ARTIFICIAL 
INTELLIGENCE

• PyTorch
• MXNet
• TensorFlow

…

MEDIA & 
ENTERTAINMENT

• DaVinci Resolve
• Premiere Pro CC
• Redshift Renderer

…

SUPERCOMPUTING 
& HER

• Chroma
• GTC
• MILC
• QUDA
• XGC

…

OIL & GAS

• Echelon
• RTM
• SPECFEM3D

…

LIFE SCIENCES

• Amber
• LAMMPS
• GROMACS
• NAMD
• Relion
• VASP

…

RETAIL

• Everseen
• Deep North 
• Third Eye Labs 
• AWM
• Malong
• Clarifai
• Antuit

…

FEDERAL DEFENSE 
& OTHER

• ArcGIS Pro
• EVNI
• SocetGXP
• Cyllance
• FaceControl

…

CLIMATE & 
WEATHER

• Cosmos
• Gales
• WRF

…

COMPUTATIONAL
FINANCE

• O-Quant 
Options 
Pricing

• MUREX
• MISYS

…

For a comprehensive list of all apps, please refer to GPU application catalog: https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/tesla-product-literature/gpu-applications-catalog.pdf

Transforming Every Industry



Sample GPU Accelerated Applications

• Amber

• GROMACS

• LAMMPS

• NAMD
• Relion

• Chroma

• GTC

• MILC
• SPECFEM3D

• FUN3D

See https://www.nvidia.com/en-us/gpu-accelerated-applications/



Standard Benchmark speedup on single A100 vs dual CPU

• Amber 13x – 39x

• GROMACS 6x – 9x

• LAMMPS 5x – 18x

• NAMD 6x – 8x
• Relion 4x – 5x

• Chroma 32x

• GTC 14x

• MILC 32x
• SPECFEM3D 29x

• FUN3D 13x

https://developer.nvidia.com/hpc-application-performance



More Sample GPU Accelerated Applications

• Ansys Fluent

• ArcGIS Pro

• COMSOL

• MATLAB
• Mathematica

• ParaView

• TensorFlow

• PyTorch

https://www.nvidia.com/en-us/gpu-accelerated-applications/
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LIBRARIES: EASY, HIGH-QUALITY ACCELERATION

Using libraries enables GPU acceleration without in-depth 
knowledge of GPU programming

Many GPU-accelerated libraries follow standard APIs, thus 
enabling acceleration with minimal code changes

Libraries offer high-quality implementations of functions 
encountered in a broad range of applications 

NVIDIA libraries are tuned by experts 

EASE OF USE

“DROP-IN”

QUALITY

PERFORMANCE



NVIDIA HPC SDK
Available at developer.nvidia.com/hpc-sdk, on NGC, via Spack, and in the Cloud

Develop for the NVIDIA Platform: GPU, CPU and Interconnect
Libraries | Accelerated C++ and Fortran | Directives | CUDA

7-8 Releases Per Year | Freely Available

Compilers

nvcc nvc

nvc++

nvfortran

Programming
Models

Standard C++ & Fortran

OpenACC & OpenMP

CUDA

Core 
Libraries

libcu++

Thrust

CUB

Math 
Libraries

cuBLAS cuTENSOR

cuSPARSE cuSOLVER

cuFFT cuRAND

Communication 
Libraries

HPC-X

NVSHMEM

NCCL

DEVELOPMENT

Profilers

Nsight

Systems

Compute

Debugger

cuda-gdb

Host

Device

ANALYSIS

SHARP HCOLL

UCX SHMEM

MPI
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3 STEPS TO CUDA-ACCELERATED APPLICATION

Step 1: Substitute library calls with equivalent CUDA library calls
saxpy ( … )  cublasSaxpy ( … )

Step 2: Manage data locality
- with CUDA: cudaMalloc(), cudaMemcpy(), etc.
- with CUBLAS: cublasAlloc(), cublasSetVector(), etc.

Step 3: Rebuild and link the CUDA-accelerated library

gcc myobj.o –l cublas 

SAXPY is “Single-Precision A times X Plus Y”



GPU Accelerated Libraries (some examples)

CUBLAS – an implementation of BLAS (Basic Linear Algebra Subprograms).

CUFFT – a Fast Fourier Transform library with support for the FFTW API.

CURAND – provides facilities that focus on the simple and efficient generation of high-quality pseudorandom and 
quasi-random numbers.

CUSPARSE – contains a set of basic linear algebra subroutines used for handling sparse matrices.

cuSOLVER – GPU-accelerated dense and sparse direct solvers (LAPACK-like features)

CUDA Math Library – GPU-accelerated standard mathematical function library (Available to any CUDA C or CUDA C++ 
application simply by adding “#include math.h” in your source code)

Thrust – GPU-accelerated library of C++ parallel algorithms and data structures

nvJPEG – High performance GPU-accelerated library for JPEG decoding

ArrayFire – open source library for matrix, signal, and image processing

MAGMA – linear algebra routines for heterogeneous architectures

CHOLMOD – functions for sparse direct solvers

https://developer.nvidia.com/how-to-cuda-libraries

https://github.com/nvidia/cudalibrarysamples



CuPy

• Open-source array library for GPU-
accelerated computing 

• Interface is highly compatible with 
NumPy and SciPy

• Can be used as a drop-in replacement in 
most cases

• Just replace numpy and scipy with 
cupy and cupyx.scipy

• Speeds up some operations more than 
100X

https://cupy.dev/



RAPIDS

RAPIDS: a suite of open source software libraries and APIs gives you the ability to 
execute end-to-end data science and analytics pipelines entirely on GPUs. Licensed 
under Apache 2.0

Popular Libraries:

• cuDF – a pandas-like dataframe manipulation library

• cuML – GPU versions of algorithms in scikit-learn

• cuSignal – signal processing library based on SciPy Signal

• cuGraph – Network-X-like accelerated graph analytics library

• cuSpatial – GPU-accelerated GIS and spatiotemporal algorithms

https://rapids.ai/
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Decision Trees / Random Forests
Linear/Lasso/Ridge/ElasticNet Regression
Logistic Regression
K-Nearest Neighbors
Support Vector Machine Classification and 
Regression
Naive Bayes

K-Means
DBSCAN
Spectral Clustering
Principal Components
Singular Value Decomposition
UMAP
Spectral Embedding
T-SNE

Holt-Winters
Seasonal ARIMA / Auto ARIMA

More to come!

Random Forest / GBDT Inference (FIL)

Time Series

Clustering
Decomposition &

Dimensionality Reduction

Preprocessing

Inference

Classification / Regression

Hyper-parameter Tuning

Cross Validation

ALGORITHMS
GPU-accelerated Scikit-Learn

Text vectorization (TF-IDF / Count)
Target Encoding
Cross-validation / splitting

https://github.com/rapidsai/cuml#supported-algorithms
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OpenACC Directives

OpenACC is a user-driven directive-based performance-portable parallel programming model. It is designed for scientists and 
engineers interested in porting their codes to a wide-variety of heterogeneous HPC hardware platforms and architectures with 
significantly less programming effort than required with a low-level model.

https://www.openacc.org/

• Simple Compiler hints
• Compiler Parallelizes code
• Works on many-core GPUs & multicore CPUs

C
#pragma acc directive [clause [,] clause] …]
Often followed by a structured code block

Fortran
!$acc directive [clause [,] clause] …]
Often paired with a matching end directive surrounding a structured  code block
!$acc end directive

https://www.gpuhackathons.org/



29

subroutine saxpy(n, a, x, y)
real :: x(:), y(:), a
integer :: n, i

$!acc kernels
do i=1,n

y(i) = a*x(i)+y(i)
enddo

$!acc end kernels
end subroutine saxpy

...
$ Perform SAXPY on 1M elements
call saxpy(2**20, 2.0, x_d, y_d)
...

void saxpy(int n, 

float a, 

float *x, 

float *restrict y)

{

#pragma acc kernels

for (int i = 0; i < n; ++i)

y[i] = a*x[i] + y[i];

}

...

// Perform SAXPY on 1M elements

saxpy(1<<20, 2.0, x, y);

...

A VERY SIMPLE EXERCISE: SAXPY
SAXPY in C SAXPY in Fortran
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TOP HPC APPS ADOPTING OPENACC
OpenACC - Performance Portability And Ease of Programming

ANSYS Fluent
VASP

3 of Top 10 Apps

5 CSCS Codes

COSMO
ELEPHANT
RAMSES
ICON
ORB5

GTC
XGC
ACME
FLASH

LSDalton

5 ORNL CAAR 
Codes

30000

22500

15000

7500

0
T4 T8 T14 T28

Ti
m

e(
S)

CPU (cores)

CPU: (Haswell EP) Intel(R) Xeon(R) CPU E5-2695 v3 @2.30GHz, 2 sockets, 28 cores
GPU: Tesla K80 12+12 GB, Driver 346.46

Fluent Native Solver

Fluent HTC Solver K80 GPU

ANSYS Fluent R18.0 Radiation SolverGaussian
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CUDA Programming (ultimate control)

CUDA gives you fine-level control over 

• thread execution

• use of GPU memory hierarchy 

Tune your code for optimal performance
Scale your parallel execution to multiple GPUs and multiple hosts using NCCL and MPI

CUDA API – C, C++, Fortran, Julia, Python 

CUDA aware MPI (OpenMPI, MVAPICH, Spectrum MPI, and more)

https://developer.nvidia.com/blog/even-easier-introduction-cuda/
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void saxpy_serial(int n, 
float a, 
float *x, 
float *y)

{

for (int i = 0; i < n; ++i)
y[i] = a*x[i] + y[i];

}

// Perform SAXPY on 1M elements
saxpy_serial(4096*256, 2.0, x, y);

__global__ 
void saxpy_parallel(int n, 

float a, 
float *x, 
float *y)

{
int i = blockIdx.x*blockDim.x +

threadIdx.x;
if (i < n) y[i] = a*x[i] + y[i];

}

// Perform SAXPY on 1M elements
saxpy_parallel<<<4096,256>>>(n,2.0,x,y);

CUDA C
Standard C Code Parallel C Code

http://developer.nvidia.com/cuda-toolkit
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// generate 32M random numbers on host
thrust::host_vector<int> h_vec(32 << 20);
thrust::generate(h_vec.begin(),

h_vec.end(), 
` rand);

// transfer data to device (GPU)
thrust::device_vector<int> d_vec = h_vec;
// sort data on device 
thrust::sort(d_vec.begin(), d_vec.end());
// transfer data back to host
thrust::copy(d_vec.begin(), 

d_vec.end(), 
h_vec.begin());

RAPID PARALLEL C++ DEVELOPMENT

• Resembles C++ STL
• High-level interface

• Enhances developer productivity
• Enables performance portability 

between GPUs and multicore CPUs
• Flexible

• CUDA, OpenMP, and TBB backends
• Extensible and customizable
• Integrates with existing software

• Open source

http://developer.nvidia.com/thrust   or  http://thrust.googlecode.com
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CUDA FORTRAN
• Program GPU using Fortran

• Key language for HPC

• Simple language extensions

• Kernel functions

• Thread / block IDs

• Device & data 
management 

• Parallel loop directives

• Familiar syntax

• Use allocate, deallocate

• Copy CPU-to-GPU with 
assignment (=)

module mymodule contains
attributes(global) subroutine saxpy(n,a,x,y)

real :: x(:), y(:), a, 
integer n, i
attributes(value) :: a, n
i = threadIdx%x+(blockIdx%x-1)*blockDim%x
if (i<=n) y(i) = a*x(i) + y(i);

end subroutine saxpy
end module mymodule

program main
use cudafor; use mymodule
real, device :: x_d(2**20), y_d(2**20)
x_d = 1.0; y_d = 2.0
call saxpy<<<4096,256>>>(2**20,3.0,x_d,y_d,)
y = y_d
write(*,*) 'max error=', maxval(abs(y-5.0))

end program main
http://developer.nvidia.com/cuda-fortran
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COMPUTE DEVELOPER TOOLS

Nsight Systems

System-wide application algorithm 
tuning

Nsight Compute

CUDA Kernel Profiling and Debugging

Nsight Graphics

Graphics Shader Profiling and 
Debugging

IDE Plugins
Nsight Eclipse Edition/Visual 

Studio (Editor, Debugger)

cuda-gdb

CUDA Kernel Debugging

Compute Sanitizer

Memory, Race Checking

//Out-of-bounds Array Access

__global__ void oobAccess(int* in, int* out)
{

int bid = blockIdx.x;
int tid = threadIdx.x;

if (bid == 4)
{

out[tid] = in[dMem[tid]];
}

}

int main()
{

...
// Array of 8 elements, where element 4 causes the OOB
std::array<int, Size> hMem = {0, 1, 2, 10, 4, 5, 6, 7};
cudaMemcpy(d_mem, hMem.data(), size, cudaMemcpyHostToDevice);

oobAccess<<<10, Size>>>(d_in, d_out);
cudaDeviceSynchronize();
... 

$ /usr/local/cuda-11.0/Sanitizer/compute-sanitizer --destroy-on-device-error kernel --show-backtrace no 
basic
========= COMPUTE-SANITIZER
Device: Tesla T4
========= Invalid __global__ read of size 4 bytes
=========     at 0x480 in 
/tmp/CUDA11.0/ComputeSanitizer/Tests/Memcheck/basic/basic.cu:40:oobAccess(int*,int*)
=========     by thread (3,0,0) in block (4,0,0)
=========     Address 0x7f551f200028 is out of bounds
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PLATFORM SPECIALIZATION
CUDA

std::transform(par, x, x+n, y,
y,[=](float x, float y){

return y + a*x; 
}

);

matrix_product(par, mA, mB, 
mC);

__global__ 
void saxpy(int n, float a, 

float *x, float *y) { 
int i = blockIdx.x*blockDim.x +

threadIdx.x; 
if (i < n) y[i] += a*x[i]; 

} 

int main(void) { 
...
cudaMemcpy(d_x, x, ...);
cudaMemcpy(d_y, y, ...);

saxpy<<<(N+255)/256,256>>>(...); 

cudaMemcpy(y, d_y, ...);

ACCELERATED STANDARD LANGUAGES PLATFORM SPECIALIZATION

do concurrent (i = 1:n)
y(i) = y(i) + a*x(i)

enddo

C = matmul(A, B)

import cunumeric as np
…
def saxpy(a, x, y):

y[:] += a*x

c = np.matmul(a, b)

ISO C++ ISO Fortran Python CUDA

https://developer.nvidia.com/blog/accelerating-standard-c-with-gpus-using-stdpar/
https://developer.nvidia.com/blog/accelerating-fortran-do-concurrent-with-gpus-and-the-nvidia-hpc-sdk/
https://developer.nvidia.com/cunumeric

STANDARD LANGUAGE PROGRAMMING



HPC PROGRAMMING IN ISO C++

C++20

Scalable Synchronization Library

 Express thread synchronization that is portable 
and scalable across CPUs and accelerators

 In libcu++:

 std::atomic<T>

 std::barrier

 std::counting_semaphore

 std::atomic<T>::wait/notify_*

 std::atomic_ref<T>

C++23 and Beyond

Executors / Senders-Recievers

 Simplify launching and managing parallel work 
across CPUs and accelerators

std::mdspan/mdarray

 HPC-oriented multi-dimensional array 
abstractions.

Range-Based Parallel Algorithms

 Improved multi-dimensional loops

Linear Algebra

 C++ standard algorithms API to linear algebra

 Maps to vendor optimized BLAS libraries

Extended Floating Point Types

 First-class support for formats new and old: 
std::float16_t/float64_t

ISO is the place for portable concurrency and parallelism

C++17

Parallel Algorithms

 In NVC++

 Parallel and vector concurrency 

Forward Progress Guarantees

 Extend the C++ execution model for accelerators

Memory Model Clarifications

 Extend the C++ memory model for accelerators

Preview support coming to NVC++



C++17 PARALLEL ALGORITHMS
Lulesh Hydrodynamics Mini-app 

codesign.llnl.gov/lulesh

 ~9000 lines of C++
 Parallel versions in MPI, OpenMP, OpenACC, 

CUDA, RAJA, Kokkos, ISO C++…
 Designed to stress compiler vectorization, 

parallel overheads, on-node parallelism



static inline
void CalcHydroConstraintForElems(Domain &domain, Index_t length,

Index_t *regElemlist, Real_t dvovmax, Real_t& dthydro)
{
#if _OPENMP

const Index_t threads = omp_get_max_threads();
Index_t hydro_elem_per_thread[threads];
Real_t dthydro_per_thread[threads];

#else
Index_t threads = 1;
Index_t hydro_elem_per_thread[1];
Real_t dthydro_per_thread[1];

#endif
#pragma omp parallel firstprivate(length, dvovmax)

{
Real_t dthydro_tmp = dthydro ;
Index_t hydro_elem = -1 ;

#if _OPENMP
Index_t thread_num = omp_get_thread_num();

#else
Index_t thread_num = 0;

#endif
#pragma omp for

for (Index_t i = 0 ; i < length ; ++i) {
Index_t indx = regElemlist[i] ;

if (domain.vdov(indx) != Real_t(0.)) {
Real_t dtdvov = dvovmax / (FABS(domain.vdov(indx))+Real_t(1.e-20)) ;

if ( dthydro_tmp > dtdvov ) {
dthydro_tmp = dtdvov ;
hydro_elem = indx ;

}
}

}
dthydro_per_thread[thread_num] = dthydro_tmp ;
hydro_elem_per_thread[thread_num] = hydro_elem ;

}
for (Index_t i = 1; i < threads; ++i) {

if(dthydro_per_thread[i] < dthydro_per_thread[0]) {
dthydro_per_thread[0] = dthydro_per_thread[i];
hydro_elem_per_thread[0] = hydro_elem_per_thread[i];

}
}
if (hydro_elem_per_thread[0] != -1) {

dthydro = dthydro_per_thread[0] ;
}
return ;

} C++ with OpenMP

STANDARD C++

 Composable, compact and elegant

 Easy to read and maintain

 ISO Standard

 Portable – nvc++, g++, icpc, MSVC, …

static inline
void CalcHydroConstraintForElems(Domain &domain, Index_t length,

Index_t *regElemlist, Real_t dvovmax, Real_t &dthydro)
{
dthydro = std::transform_reduce(

std::execution::par, counting_iterator(0), counting_iterator(length),
dthydro, [](Real_t a, Real_t b) { return a < b ? a : b; },
[=, &domain](Index_t i)

{
Index_t indx = regElemlist[i];
if (domain.vdov(indx) == Real_t(0.0)) {

return std::numeric_limits<Real_t>::max();
} else {

return dvovmax / (std::abs(domain.vdov(indx)) + Real_t(1.e-20));
}

});
}

Standard C++



C++ STANDARD PARALLELISM

Same ISO C++ Code

Lulesh Performance

1 1.03
1.53

2.08

13.57

0
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10

12

14

16

OpenMP on 64c EPYC
7742

OpenMP on 64c EPYC
7742

Standard C++ on 64c
EPYC 7742

Standard C++ on 64c
EPYC 7742

Standard C++ on A100

NVC++

GCC



ACCELERATED STANDARD LANGUAGES
Parallel performance for wherever your code runs 

std::transform(par, x, x+n, y, 
y,[=](float x, float y){

return y + a*x; 
}

);

import cunumeric as np
…
def saxpy(a, x, y):

y[:] += a*x

do concurrent (i = 1:n)
y(i) = y(i) + a*x(i)

enddo

ISO C++ ISO Fortran Python

CPU GPU

nvc++ -stdpar=multicore
nvfortran –stdpar=multicore

legate –cpus 16 saxpy.py

nvc++ -stdpar=gpu
nvfortran –stdpar=gpu
legate –gpus 1 saxpy.py
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Important GPU Features and System Architecture



Tensor Cores and Mixed Precision
Tensor Cores are programmable matrix-multiply-and-accumulate units

cuBLAS uses Tensor Cores to speed up GEMM computations
Tensor Cores enable mixed-precision computing, dynamically adapting calculations to accelerate throughput 

while preserving accuracy
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TF32 TENSOR CORES

 Range of FP32 and Precision of FP16

 Input in FP32 and Accumulation in FP32

 No Code Change Speed-up for Training

 Up to 8x more throughput compared to 
FP32 on A100

 Up to 10x compared to FP32 on V100

(TF32)

FP32

FP16

BFLOAT16

8 BITS 23 BITS

8 BITS 10 BITS

5 BITS 10 BITS

8 BITS 7 BITS

Range PrecisionSign

TF32 
Range

TF32 
Precision

Format to TF32 
and multiply

FP32 accumulate

FP32 
Matrix

FP32 
Matrix

FP32 
Matrix

Mode not a type



INSIDE 8-BIT FLOATING POINT (FP8)

FP32

Range
exponent

Precision
mantissa

e8 m23
s

FP16

BF16
e8 m7

e5 m10
s

s

si
g

n

FP8
(E5M2)

FP8
(E4M3)

e4 m3

e5 m2
s

s

2x throughput & half footprint of FP16/BF16

Allocate 1 bit to either 
range or precision

Support for multiple accumulator 
and output types

TC

FP32|FP16|BF16|FP8
matrix

FP8
matrix

FP8
matrix

multiply

accumulate into
FP32 or FP16

bias/act/
…

convert

SM



Scaling to Multiple GPUs
GPU to GPU communication
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GPU TOPOLOGY
nvidia-smi topo -m

NUMA AffinityCPU AffinityGPU3GPU2GPU1GPU0

N/A0-39PHBPHBPIXXGPU0

N/A0-39PHBPHBXPIXGPU1

N/A0-39PIXXPHBPHBGPU2

N/A0-39XPIXPHBPHBGPU3

Legend:

X = Self
SYS = Connection traversing PCIe as well as the SMP interconnect between NUMA nodes (e.g., QPI/UPI)
NODE = Connection traversing PCIe as well as the interconnect between PCIe Host Bridges within a NUMA node
PHB = Connection traversing PCIe as well as a PCIe Host Bridge (typically the CPU)
PXB = Connection traversing multiple PCIe bridges (without traversing the PCIe Host Bridge)
PIX = Connection traversing at most a single PCIe bridge
NV# = Connection traversing a bonded set of # NVLinks

lstopo
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WHY DOES GPU TOPOLOGY MATTER?
nvidia-smi topo -m

lstopo

GPU0 GPU1 GPU2 GPU3

07:00.0 08:00.0 0E:00.0 0F:00.0

• No penalty for single GPU applications
• Latency impact on multi-GPU applications

APP1GPU0 GPU1 APP1GPU0 GPU2

Faster Slower
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WHY DOES GPU TOPOLOGY MATTER?
nvidia-smi topo -m

NUMA NODE 0 CPU0

GPU0 GPU1

NUMA NODE 1CPU1

GPU2 GPU3

QPI/UPI
GPU2 assigned to a VM 
on CPU0 

P2P, h2d, d2d and d2h 
bandwidth 
inconsistencies if the 
devices are not set

What can go wrong?

Tinker with

$export CUDA_VISIBLE_DEVICES=0,1
$export CUDA_VISIBLE_DEVICES=0,2



NVIDIA GPUDirect RDMA
10X Higher Performance

Full Copy Operations

PCIe Transactions

GPU Utilization

CPU Usage

Latency

No GPUDirect

Network Handled by CPU and CPU-Memory

GPUDirect

Network Goes Directly to GPU Memory

2

2

1

0



NVIDIA GPUDirect RDMA



NVIDIA GPUDirect Storage



Faster GPU to GPU 
communication
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NVLINK

2-way all-to-all connection 
25 GB/s per link in each direction
12 links per H100
4 links per bridge
600 GB/s GPU-to-GPU 

H100 80GB PCIE
With NVLINK bridges
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NVLINK

4-way all-to-all connection 
25 GB/s per link in each direction
18 links per H100
900 GB/s GPU-to-GPU 

Scale-Up – Mixed AI & HPC

4 H100s, Fully Connected w/ 
shared NVLinks

HGX H100 4-GPU
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NVSWITCH

8-way all-to-all connection 
25 GB/s per link in each direction
18 links per H100
900 GB/s GPU-to-GPU

HGX H100 8-GPU



Data Center GPUs
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NVIDIA HOPPER & ADA LOVELACE
DATA CENTER GPUS

H100 L40S L40

Fastest Compute, FP64
Up to 7 MIG instances

350W & 700W | 80G
2-slot FHFL |  NVLINK

Highest Perf Compute
AI, HPC, Data Processing

AI and Graphics Performance

AI & High Performance 
Graphics Visual 

Computing

350W | 48GB
2-slot FHFL

Fastest RT Graphics
Largest render models

Highest Perf Graphics
Visual Computing

300W | 48GB
2-slot FHFL

Compute Graphics

NVIDIA L40NVIDIA L40SNVIDIA H100

L4

4K Cloud Gaming
Graphics, Video with AI

Mainstream Graphics & 
Video with AI

72W   |   24GB
1-slot FHFL 

NVIDIA L4



NVIDIA H100 SXM5
Unprecedented Performance, Scalability, and 

Security for Every Data Center

FP8, FP16, TF32 performance include sparsity. X-factor compared to A100

HIGHEST AI AND HPC PERFORMANCE 
4PF FP8 (6X)| 2PF FP16 (3X)| 1PF TF32 (3X)| 60TF FP64 (3X)

3TB/s (1.5X), 80GB HBM3 memory 
 

TRANSFORMER MODEL OPTIMIZATIONS
6X faster on largest transformer models 

 

HIGHEST UTILIZATION EFFICIENCY AND 
SECURITY

7 Fully isolated & secured instances, guaranteed QoS 
2nd Gen MIG | Confidential Computing

 

FASTEST, SCALABLE INTERCONNECT 
900 GB/s GPU-2-GPU connectivity (1.5X)

up to 256 GPUs with NVLink Switch | 128GB/s PCI Gen5 
 



NVIDIA H100 NVL
Supercharge Real-Time Large Language Model Inference

LLM Inference: GPT3-175B 700 ms | x8 H100 NVL FP8 | HGX A100 FP16 | Iso-power 20MW Data Center.

NVLinked HBM3

Super GPU

188GB

H100 NVL

H100 NVLH100 PCIe 

2.6X3,958 TFLOPS*1,513 TFLOPS*FP16  Tensor Core

2.6X7,916 TFLOPS*3,026 TFLOPS*FP8 Tensor Core

2.4X188GB HBM380GB HBM2eGPU Memory

3.8X7.6TB/s2TB/sGPU Memory Bandwidth

NVLink Bridge 600GB/s
PCIe Gen5 128GB/s

NVLink 600GB/s
PCIe Gen5 128GB/sInterconnect

GPT3-175B Inference

More Throughput vs HGX A100

12XDeploy
Everywhere

PCIe-Based

Mainstream
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H100 IN VOLUME SERVERS 

SPECIALIZED GPU SERVERS
ULTIMATE COMPUTE

Ultimate Performance and Scaling

Fastest Time to Solution

Multi-GPU, Multi Node Scaling

Supercomputing HPC+AI

MAINSTREAM SERVERS  
HIGHEST COMPUTE

Wide selection of standard 2U servers

Flexibility, modularity, and ease of deployment

H100 NVLHGX H100 8-GPU HGX H100 4-GPU H100 80GB PCIE4 –16x H100 PCIE



 8x NVIDIA H100 GPUs With 640 Gigabytes of Total GPU Memory 

 18x NVIDIA NVLink connections per GPU, 900 gigabytes per second 
of bidirectional GPU-to-GPU bandwidth

 24 TB/s memory bandwidth

 4x NVIDIA NVSwitches

 7.2 terabytes per second of bidirectional GPU-to-GPU bandwidth, 
1.5X more than previous generation

 10x NVIDIA ConnectX-7 400 Gigabits-Per-Second Network Interface

 1 terabyte per second of peak bidirectional network bandwidth

 Dual 56-core 4th Gen Intel® Xeon® Scalable Processors and 2 TB 
System Memory

 Powerful CPUs and massive system memory for the most intensive AI 
jobs

 30 Terabytes NVMe SSD 

 High speed storage for maximum performance

 32 petaFLOPS AI performance

NVIDIA DGX H100
The world’s first AI system with the NVIDIA H100 Tensor Core GPU

NVIDIA DGX H100: The Proven Choice for Enterprise AI
The gold standard for AI infrastructure



Introducing NVIDIA L40S
• Unparalleled AI and Graphics Performance for the Data Center

New Ada Architecture Features
• New Streaming Multiprocessor
• 4th-Gen Tensor Cores
• 3rd-Gen RT Cores
• 91.6 teraFLOPS FP32

Gen-AI, LLM Training, & Inference
• Transformer Engine - FP8
• 1.5 petaFLOPS Tensor Performance*
• Large L2 Cache 

3D Graphics & Rendering
• 212 teraFLOPS RT Core Performance
• DLSS 3.0, AI Frame Generation
• Shader Execution Reordering

Media Acceleration
• 3 Encode & Decode Engines
• 4 JPEG Decoders
• AV1 Encode & Decode Support

*Peak teraFLOPS, sparsity enabled

Dual-Slot I FHFL I 350W

*Peak teraFLOPS, sparsity enabled



NVIDIA L40S - Fine Tune in Hours, Train Small Models in Days
Reserve HGX H100 Capacity for Large Scale Foundational Model Training

HGX H100L40S# of GPUsModel Parameters

1.9 hours5.5 hours8Llama 2-7B SFT (1B tokens)

1.8 hours5.2 hours16Llama 2-13B SFT (1B tokens)

2 hours6 hours32Llama-33B SFT (1B tokens)

2.3 hours8.2 hours64Llama 2-70B SFT (1B tokens)

2.5 hours9.3 hours128GPT 3-175B SFT (1B tokens)

HGX H100L40S# of GPUsModel Parameters

1 day2.9 days64Llama 2-7B (100B tokens)

1 day2.6 days128Llama 2-13B (100B tokens)

6 days19.8 days1024Llama 2-70B (1T tokens)

Fine Tuning Time to Train

Small Model Training Time to Train

Preliminary performance projections, subject to change
1. Fine Tuning Llama2-7B/13B/33B/70B SFT GBS=64/128/128/128, SL=4096, FP8.
2. Fine-Tuning GPT-175B SFT; GBS=128, SL=4096, FP8.
3. Small LLM Training Llama 2-7B/13B/70B, GBS=512/512/2048, SL=4096, FP8.

Popular LLM Models

LLM Model Size

Small Model
Training

Fine Tuning

L40S

Stable Diffusion XL

GPT-20B

GPT-175B

GPT-40B

GPT 530B

GPT>1T

Llama-2 7B 

Llama-2 13B 

Llama-2 70B 

GPT-5B

Falcon 180B

GPTJ-6B

BLOOM 176B

Stable Diffusion

L40S system: PCIE 2-4-3 or 2-8-5 GPU system with 200Gbps IB NIC / GPU
H100 system: HGX H100 8-GPU with 400Gbps IB NIC/ GPU

HGX H100L40S# of GPUsModel Parameters

28 days-16,000GPT 3-530B (10T tokens)

Foundation Model Training Time to Train



NVIDIA L40
Accelerated graphics, AI, and compute 
performance

Specifications
• Up to 90.5 TFLOPs Single Precision (FP32) Performance
• Up to 724 TFLOPs Tensor Operation Performance*
• Up to 209 TFLOPs Rendering Performance
• 48GB GDDR6 GPU Memory with ECC
• 4 DisplayPort 1.4 Display Outputs
• 3 Encode / 3 Decode Engines

• Including AV1 Encode & Decode
• 4 JPEG Decode Engines

• 300W, Dual Slot, FHFL

Data Center Ready
• NVIDIA vGPU Support
• Secure Boot with Root of Trust
• NEBS Level 3 Ready
• Passive Cooling
• In and Out of Band Management
• Lifetime 24/7 Reliability

* Using FP8 data format with structural sparsity enabled.



NVIDIA L4
Universal Accelerator for Efficient Video, AI, and 
Graphics

AI Video

More Performance

120X
Graphics

Faster Graphics with
3rd Gen RT Cores

4X

Generative AI

Better Performance 
with 4th Generation 

Tensor Core

Single Slot, Low Profile
Fits Any Server

2.5X

Measured Performance: 
AI Video: 8x L4 vs 2S Intel 8380 CPU server performance comparison : end-to-end video pipeline with CV-CUDA pre-post processing, decode, inference (SegFormer), encode, TRT 8.6 vs CPU only pipeline using OpenCV 4.7
Graphics: Real-time Rendering: NVIDIA Omniverse performance for real-time rendering at 1080p and 4K with DLSS 3
Generative AI: L4 vs T4: image generation performance, 512x512 Stable Diffusion, FP16



1.
2. All Tensor Core numbers with sparsity. Without sparsity is ½ the value.

Data Center GPU Comparison
L40L40SH100

Powerful Graphics + 
AI

Highest Perf 
Universal

Highest Perf AI,
Big NLP, HPC, DADesign

x16 PCIe Gen4
2 Slot FHFL

x16 PCIe Gen4
2 Slot FHFL

X16 PCIe Gen5
Dual 2 Slot FHFL 
using 3 NVLink 

Bridges

x16 PCIe Gen5
2 Slot FHFL

3 NVlink Bridge
SXM5Form Factor

300W350W2x 400W350W700WMax Power

NA | 90.5NA | 91.6134 | 13451 | 5167 | 67FP64 TC | FP32 TFLOPS2

181 | 362366 | 7331979 | 3958756 | 1513989 | 1979TF32 TC | FP16 TC TFLOPS2

724 | 7241466 | 14667916 | 79163026 | 30263958 | 3958FP8 TC | INT8 TC TFLOPS/TOPS2

48GB GDDR6188GB HBM380GB HBM2e80GB HBM3GPU Memory

-UP to 14Up to 7Multi-Instance GPU (MIG)

3 Video Encoder
3 Video Decoder
4 JPEG Decoder

14 JPED Decoder
14 Video Decoder

7 JPEG Decoder
7 Video DecoderMedia Acceleration

Yes--Ray Tracing

YesYesYesTransformer Engine

-YesYesDPX Instructions

Top-of-LineFor in-situ visualization 
(no NVIDIA vPC or RTX vWS)Graphics

YesYesvGPU

InternalInternal and ExternalHardware Root of Trust

-YesConfidential Computing

Add-onAdd-onIncludedAdd-onNVIDIA AI Enterprise



Other GPUs



NVIDIA RTX in Every Form Factor
Solutions to Do Your Best Work Anywhere

Data CenterLaptop

RTX 5000 Ada Laptop GPU (16GB)
RTX 4000 Ada Laptop GPU (12GB)
RTX 3500 Ada Laptop GPU (12GB)
RTX 3000 Ada Laptop GPU (8GB)
RTX 2000 Ada Laptop GPU (8GB)

Desktop

NVIDIA L40S (48GB)
NVIDIA L40 (48GB)
NVIDIA L4 (24GB)

RTX 6000 Ada Generation (48GB)
RTX 5000 Ada Generation (32GB)
RTX 4500 Ada Generation (24GB)
RTX 4000 Ada Generation (20GB)

RTX 4000 SFF Ada Generation (20GB)



NVIDIA JETSON
Software-Defined AI Platform

Sensor Fusion & Compute Performance Expertise, Time to Market

JETSON COMPUTER

ECOSYSTEMSOFTWARE DEFINED

Jetpack SDK ∙ CUDA ∙ TensorRT ∙ Triton ∙ ONNX ∙ ROS

Artificial Intelligence Computer Vision

Accelerated Computing Multimedia

Gesture rec

Obj detectPath planningDepth est

Pose est Speech rec

SDK, Design Tools, Libs, GEMs

Act

Sense

Reason

AI at the Edge

Jetson Ecosystem | NVIDIA DeveloperJetson Software | NVIDIA DeveloperAutonomous Machines: The Future of AI | NVIDIA



H200



Announcing NVIDIA HGX H200
The World’s Leading AI Computing Platform

Highest Performance for AI and HPC
8-way or 4-way H200 GPUs 

Up to 32 PetaFLOPs FP8

Up to 1.1TB High Bandwidth Memory

 
Fastest, Scalable Interconnect

4th Gen NVLINK with 2X faster All-Reduce communications

3.6 TB/s bisection bandwidth 

Fully Compatible with Partner H100 
Systems

Supported by Leading Major OEMs and CSPs

Coming to Leading OEM and CSP Partners 
Starting Q2 2024



Announcing NVIDIA H200 
Tensor Core GPUs
Supercharging the Highest Performing Generative AI 
and HPC Platforms

1.9X
Llama 2 70B Inference

Performance vs H100

110X
MILC HPC Simulation

Performance vs x86 CPUs

1.4X
GPT-3 175B Inference

Performance vs H100

4.8 TB/s
Memory Bandwidth

HBM3e

141GB
Memory

HBM3e



Grace CPU



GRACE IS A COMPUTE & DATA MOVEMENT ARCHITECTURE
NVIDIA Scalable Coherency Fabric and distributed cache design

• 3,225.6 GB/s Bi-section BW

• 117MB of L3 cache

• Scalable to 72+ cores per die

• Local caching of remote die memory

• Supports up to 4-die coherency over 

Coherent NVLINK

• Background data movement via Cache 

Switch Network

Example possible fabric topology for illustrative purposes



GRACE HOPPER SUPERCHIP
CPU+GPU Designed for Giant Scale AI and HPC

600GB Memory GPU for Giant Models

New 900 GB/s Coherent Interface

30X Higher System Memory B/W to GPU In A Server

Runs Nvidia Computing Stacks



All standard Linux Memory Management APIs can be used 
for  both CPUs and GPUs



Explicit Copy
Application explicitly moves data between 
CPU & GPU as needed

PCIE: ~60 GB/s PCIE transfers (H2D/D2H)

Grace: Faster transfers; up to 450 GB/s C2C 
transfers

Managed Memory
CPU and GPU can access memory on-
demand and data migrated locally for higher 
BW access

PCIE: Requires migration to GPU

Grace: Migrations not required and faster 
migrations when they happen

Grace-Hopper Memory Model
Full CUDA support with additional Grace memory extensions

System Allocated
GPU can access memory allocated from 
malloc(), mmap(), etc.

PCIE: Access possible with explicit call to 
cudaHostRegister() at PCIe speeds

Grace: cudaHostRegister() not needed; 
access at NVLink C2C speeds

cudaMemcpyH2D()

cudaMemcpyD2H()

CPU Memory

App Data

Results

GPU Memory

App Data

Results

GPU access to malloc() 
memory

CPU Memory

App Data

GPU Memory

App Data

CPU Memory

Page 1

Page 2

GPU Memory

Page 1

Page 2

Page
Migration GPU

page
fault

C2C Path 
(Grace)



NVIDIA Grace CPU Superchip
2X Performance at the Same Power for the Modern Data Center

High Performance Power Efficient Cores
144 flagship Arm Neoverse V2 Cores with 

SVE2 4x128b SIMD per core

Fast On-Chip Fabric
3.2 TB/s of bi-section bandwidth connects 

CPU cores, NVLink-C2C, memory, and system IO

High-Bandwidth Low-Power Memory
Up to 960GB of data center enhanced LPDDR5X Memory that 

delivers up to1TB/s of memory bandwidth
 

Fast and Flexible CPU IO
Up to 8x PCIe Gen5 x16 interface. PCIe Gen 5 up to 128GB/s 

2X more bandwidth compared to PCIe Gen 4

Full NVIDIA Software Stack
AI, Omniverse



NVIDIA AI - One Architecture | Train and Deploy Everywhere 
One –Year Rhythm

20242023

CPU + GPU

GH200

GB200

H100

H200

Quantum 

Spectrum

GPU

B100

x100

Gx200

2025

L40S

B40
X40

GH200NVL

GB200NVL
Gx200NVL

x86 Training & 
Inference
x86 Enterprise & Inference

InfiniBand AI 
infrastructure
Ethernet-X Enterprise &
Hyperscale AI 
Infrastructure

400G 

800G

1,600G
400G

800G

1,600G

Arm Training & 
Inference
Arm Inference





Best Practices for Best Performance
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BUILD FASTER WITH NVIDIA CONTAINERS

PERFORMANCE OPTIMIZED DEPLOY ANYWHERE

Scalable

Updated Monthly

Better performance on the same system

Docker | cri-o | containerd | Singularity

Bare metal, VMs, Kubernetes

Multi-cloud, on-prem, hybrid, edge

ENTERPRISE READY SOFTWARE

Container scanning reports for CVEs, 
malware

Tested for reliability

Backed by Enterprise support

https://ngc.nvidia.com

219 Containers

690 Models



NVIDIA HPC SDK
Available at developer.nvidia.com/hpc-sdk, on NGC, via Spack, and in the Cloud

Develop for the NVIDIA Platform: GPU, CPU and Interconnect
Libraries | Accelerated C++ and Fortran | Directives | CUDA

X86_64 | Arm | OpenPOWER
7-8 Releases Per Year | Freely Available

Compilers

nvcc nvc

nvc++

nvfortran

Programming
Models

Standard C++ & Fortran

OpenACC & OpenMP

CUDA

Core 
Libraries

libcu++

Thrust

CUB

Math 
Libraries

cuBLAS cuTENSOR

cuSPARSE cuSOLVER

cuFFT cuRAND

Communication 
Libraries

HPC-X

NVSHMEM

NCCL

DEVELOPMENT

Profilers

Nsight

Systems

Compute

Debugger

cuda-gdb

Host

Device

ANALYSIS

SHARP HCOLL

UCX SHMEM

MPI

Performance Portability Productivity



RAPIDS Accelerates Popular Data Science Tools
Delivering enterprise-grade data science solutions

Pre-
Processing

cuDF

Data Preparation VisualizationModel Training

Machine 
Learning

cuML

Graph 
Analytics
cuGRAPH

Deep Learning
TensorFlow, PyTorch

Visualization
CuXFILTER <> pyViz

Spark or Dask

GPU Memory

The RAPIDS suite of open-source 
software libraries gives you the 
freedom to execute end-to-end data 
science and analytics pipelines entirely 
on GPUs.

RAPIDS utilizes NVIDIA 
CUDA primitives for low-level compute 
optimization and exposes GPU 
parallelism and high-bandwidth 
memory speed through user-friendly 
interfaces like Apache Spark or Dask.

With Spark or Dask, RAPIDS can scale 
out to multi-node, multi-GPU cluster 
to power through big data processes.

RAPIDS puts the power of GPUs in the hands of all Data Scientists

Dask



NVIDIA TAO Toolkit
Create custom, production-ready AI models in hours rather than months

CUSTOMIZE FASTER
Fine tune NVIDIA 

pretrained models with 
fraction of the data

TRAIN EASILY
Built on TensorFlow and 

PyTorch that abstracts away 
the AI framework complexity

OPTIMIZE FOR DEPLOYMENT
Optimize for inference and 

integrate with Riva or 
DeepStream

SUPPORTED BY EXPERTS*

Supported by NVIDIA experts 
to help resolve issues from 

development to deployment

* Requires NVIDIA AI ENTERPRISE SUBSCRIPTION. Learn more here: https://www.nvidia.com/en-us/data-center/products/ai-enterprise/ 



NVIDIA TensorRT

Optimize & deploy all networks, including CNNs, RNNs, and 
Transformers.

Maximize throughput for latency-critical apps with compiler and 
runtime.

1. Reduced mixed precision: FP32, TF32, FP16, and INT8.

2. Layer and tensor fusion: Optimizes use of GPU memory & 
bandwidth.

3. Kernel auto-tuning: Select best data layer & algorithm on target 
GPU.

4. Dynamic tensor memory: Deploy memory-efficient models.

5. Multi-stream execution: Scalable design to process multiple 
streams.

6. Time fusion: Optimizes RNN over time steps.

SDK for high-performance deep learning inference

https://developer.nvidia.com/tensorrt

TensorRT
Optimizer

TensorRT
Runtime

Trained 
DNN

Embedded Automotive Data Center

Jetson Drive Data Center 
GPUs



NVIDIA AI Enterprise
End to end AI software

Accelerated 
Infrastructure

AI Platform Software

AI Foundation Models & 
Services

NVIDIA AI

AI Development

AI Use Cases and WorkflowsWorkload and 
Infra Management

Model Deployment
Triton Management Service

Cloud Native Management
and Orchestration

GPU Operator/Network Operator

Cluster Management
Base Command

Manager Essentials

Infra Acceleration Libraries
Magnum IO, vGPU, CUDA

Data Prep
RAPIDS

Model Training
TAO, 

PyTorch/TensorFlow

Deploy at Scale
Triton Inference 

Server

Simulate and Test
TensorRT

Cloud     |     Data Center     |     Workstations     |     Edge

NVIDIA AI Enterprise

MLOps AI Applications

Speech AI RecommendersLLM Cybersecurity

MoreVideo
Analytics

Route
Optimization

Medical
Imaging



NVIDIA End-to-End AI Software Suite
Deep Learning Streamlined From Conception to Production at Scale

TRAIN AT SCALE OPTIMIZED FOR INFERENCE DEPLOY AT SCALEDATA PREP

• Reduces data science processes 
from hours to seconds

• 70x faster performance than 
similar CPU configuration

• 20x more cost-effective than 
similar CPU configuration

• Maximize throughput for 
latency-critical apps w/ compiler 
& runtime

• Optimize every network (CNNs, 
RNNs, & Transformers)

• Optimizes use of GPU memory 
bandwidth

• Fast & scalable AI to applications

• Diverse query types – real time, 
offline batch, ensembles

• Up to 266x performance increase 
over CPU-only

• Triton with FIL backend delivers 
best inference performance for 
tree-based models on GPUs

• Train, Adapt, Optimize Models in 
hours vs. months

• Open-source ML frameworks 
optimized for GPU

• Integrated w/ NVIDIA RAPIDS to 
simplify development 

TAO TOOLKIT



Building Generative AI Applications for the Enterprise
Build, customize and deploy generative AI models with NVIDIA NeMo

Data 
Curation

Distributed
Training

Model 
Customization

Accelerated 
Inference Guardrails

…

Retrieval Augmented 
Generation

NeMo Curator Megatron Core NeMo Aligner Triton & TensorRT-LLM NeMo Retriever NeMo Guardrails

NVIDIA NeMo

NVIDIA AI Enterprise

In-domain, 
secure, cited 

responses

In-domain 
queries

Model Development Enterprise Application Deployment

NVIDIA DGX Cloud



NVIDIA AI Workbench
Enables anyone with access to a GPU to be a generative AI creator

CLOUDSDATA CENTERSPCs & 
WORKSTATIONS

• Create projects for tuning and deployment of 

generative AI and LLMs

• Move projects between PCs and workstations, 

data centers, public clouds, and NVIDIA DGX 

Cloud

• Easily start with pre-built project examples



Multi-Process Service (MPS)





CUDA MPS allows multiple processes to share a given 
GPU instance

Doesn’t the GPU do this anyway?

Yes, with Time-Sliced Context Switching
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Pre-emptive scheduling
Processes share GPU through time-slicing

Scheduling managed by system

$ nvidia-smi compute-policy
--set-timeslice={default, short, medium, 

long}

Time-slice configurable via nvidia-smi

Concurrent scheduling
Processes run on GPU simultaneously

User creates & manages scheduling streams

cudaStreamCreateWithPriority(pStream, flags, priority);

cudaDeviceGetStreamPriorityRange(leastPriority, greatestPriority);

CUDA 11.0 adds a new stream priority level

C

B

A

time

EXECUTION SCHEDULING & MANAGEMENT

A B C A B

time

time-
slice
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PROCESSES SHARING GPU WITHOUT MPS
No Overlap

Process A Process B

Context A Context B

Process A Process B

GPU
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PROCESSES SHARING GPU WITHOUT MPS
Additional small overhead arising from pre-emptive context switch

Context 
Switch

Overhead
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PROCESSES SHARING GPU WITH MPS
Maximum Overlap

Process A Process B

Context A Context B

GPU
Kernels from 

Process A
Kernels from 

Process B

MPS
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PROCESSES SHARING GPU WITH MPS
No Context Switch Overhead
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USING MPS

No application modifications necessary

Not limited to MPI applications

MPS control daemon spawns MPS server 
upon CUDA application startup

CUDA tools (debugger & profiler) are
MPS-aware

#Manually

nvidia-smi -c EXCLUSIVE_PROCESS 

nvidia-cuda-mps-control –d

Compute modes

• PROHIBITED (cannot set device)

• EXCLUSIVE_PROCESS (single shared device)

• DEFAULT (per-process device)

Recommended to use EXCLUSIVE_PROCESS mode to ensure
that only a single MPS server is using the GPU
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EXECUTION RESOURCE PROVISIONING WITH MPS

$ setenv CUDA_MPS_ACTIVE_THREAD_PERCENTAGE=percentage

• Environment variable: configures maximum fraction of a GPU available to an MPS-attached process

• Guarantees a process will use at most percentage execution resources (SMs)

• Over-provisioning is permitted: sum across all MPS processes may exceed 100%

• Provisions only execution resources (SMs) – does not provision memory bandwidth or capacity

• Before CUDA 11.2, all processes be set to the same percentage

• Since CUDA 11.2, percentage may be different for each process

Using MPS, applications can assign fractions of a GPU to each process 

Full details at: https://docs.nvidia.com/deploy/mps/index.html#topic_5_2_5 
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GPU PROVISIONING WITH MPS
Using MPS, applications can assign fractions of a GPU to each process 

A=33%, B=33%, C=33% A=33%, B=33%, C=100%

Fractional Provisioning

Process C could use more, but is 
limited to just 33% of execution 
resources

Process B is guaranteed space if needed

Using Oversubscription

Process B is not using all of its allocation

Process C may grow to fill available space

Additional B work may have to wait for 
resources

A B C  3 concurrent MPS processes
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Best Practices for Highest Performance
Summary

• Use optimized containers from NGC

• Use the optimized HPC SDK

• Take advantage of Mixed Precision

• Exploit sharing with MPS

• For multi-GPU workloads, use systems that support NVLink and GPUDirect



NVIDIA in the Cloud



Cloud Consumption Models  

Data Center

Network & Storage

Physical Servers

Virtualization

Operating System

Scaling

Application Code

Data & Configuration

Traditional On-
Premises

Data Center

Network & Storage

Physical Servers

Virtualization

Operating System

Scaling

Application Code

Data & Configuration

Infrastructure as a 
Service ( IaaS )

Data Center

Network & Storage

Physical Servers

Virtualization

Operating System

Scaling

Application Code

Data & Configuration

Platform as a Service        
( PaaS )

Data Center

Network & Storage

Physical Servers

Virtualization

Operating System

Scaling

Application Code

Data & Configuration

Software as a Service        
( SaaS )

Customer Manages Cloud Provider Manages
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H100 in the Cloud
See https://cloud-gpus.com/



Ada LovelaceHopperAmpere

L40S*L4*GH200*H200*H100A10A100 80GBA100 40GB

Generative AI, AI-
powered Video, 

Graphics

Generative AI, AI-
powered Video, 

Graphics

AI Training 
(LLMs), AI 

Inference (LLMs)
HPC

AI Training 
(LLMs), AI 

Inference (LLMs)
HPC

AI Training 
(LLMs), AI 

Inference (LLMs)
HPC

Graphics, Gaming, 
AI Inference

AI Training
Inference,, HPC

AI Training
Inference,, HPCWorkloads

⬤⬤⬤⬤⬤⬤⬤⬤AWS

⬤⬤⬤⬤⬤Microsoft 
Azure

⬤⬤⬤⬤⬤Google Cloud

⬤⬤⬤⬤⬤⬤⬤Oracle Cloud

⬤⬤⬤Alibaba Cloud

⬤⬤Tencent Cloud

⬤Baidu Cloud

⬤⬤⬤⬤⬤⬤CoreWeave

⬤⬤⬤Cirrascale

⬤⬤⬤⬤⬤Vultr Cloud

⬤⬤⬤Paperspace

⬤⬤⬤⬤⬤⬤Lambda Labs

Broad Portfolio of NVIDIA GPUs for AI Workloads in the Cloud
NVIDIA’s Latest Platforms Globally Available for Enterprises Using the Cloud

* Several CSP H200, GH200, L4, and L40S instances are pre-announcements/private preview/EA/GA. Please refer to each individual CSP’s product pages for further details.



Consuming the NVIDIA AI Platform in the Cloud
Multiple Entry Points offering Customers Choice and Flexibility to Build and Deploy AI

NVIDIA AI Foundations (SaaS)
NVIDIA DGX Cloud (PaaS)

Accelerated Infrastructure (Cloud-based Instances, VMs)

NCP CSPs

NVIDIA AI Enterprise Software 
(IaaS)

NVIDIA NGC NVIDIA GPU-Optimized VMI

NVIDIA AI Enterprise Suite
Available on CSP Marketplaces

NVIDIA AI Integrations in CSP Solutions
(PaaS)

NVIDIA AI Foundry

AI Foundation 
Models

NeMo 
Framework

NVIDIA DGX Cloud

100+ frameworks, pretrained models and 
development tools to streamline and support 
every stage of the AI journey, from data prep 

and model training through inference, and 
deployment at scale

Amazon 
Bedrock



NVIDIA AI Enterprise Platform in the Public Cloud
Ubiquitous End-to-end Open Platform for Production AI for Everyone, Everywhere

Available on CSP Marketplaces

Accelerated Infrastructure spanning the Public Cloud

NCP CSPs

RB0
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RB0 Updated. Added a note up top regarding marketplace availability, and changed "NPN" to "NCP"
Rohil Bhargava, 2023-12-07T05:51:40.929



Leverage NVIDIA AI in CSP Managed On-Prem and Edge Solutions
Extending the Public Cloud Services to On-Prem, Edge or Disconnected Environments  

Amazon Web Services

AWS Wavelength
Brings AWS services to edge of 
5G networks with NVIDIA GPUs, 
for ultra-low latency applications

AWS Panorama
Edge appliance with support for NVIDIA 
Jetson AGX Xavier to bring computer-

vision to on-premise cameras 

AWS Outposts
Extend AWS services on-prem with 

support for NVIDIA GPUs for applications 
with data locality and low-latency 

requirements 

Microsoft Azure Oracle Cloud Infrastructure

Oracle Roving Edge Infrastructure
Deploy AI at remote edge locations with 

OCI Services, NVIDIA Software and 
NVIDIA GPUs

Oracle Dedicated Region Cloud
Support for NVIDIA GPUs in fully 
managed on-prem infrastructure 

applications with low-latency, data 
residency requirements

Azure Stack Hub
Support for NVIDIA GPUs and Networking 
in Azure Stack Hub integrated systems to 

deploy AI anywhere

Azure IoT Edge
Support for NVIDIA DeepStream, NVIDIA 

Fleet Command and NVIDIA GPUs for 
real-time AI applications at the edge

Azure Stack HCI
Accelerate AI workloads across a hybrid 
infrastructure with support for NVIDIA 

GPUs and Networking in Azure Stack HCI 
managed clusters

Azure Percept
Build and Deploy Edge AI solutions using 
NVIDIA DeepStream on Azure Stack HCI 

powered by NVIDIA GPUs

Google Cloud

Google Distributed Cloud Hosted
Accelerate sensitive workloads requiring 

digital sovereignty in a fully-managed on-
prem infrastructure with NVIDIA GPUs

Google Distributed Cloud Edge
Accelerate mission-critical AI use-cases 
with NVIDIA GPUs at Google Edge, Telco 

Edge or Customer Edge locations

GDC Edge Appliance 
Accelerate data processing, analytics 

& processing with NVIDIA GPUs at 
remote edge locations 

Anthos on BareMetal, VMware
Create and manage Kubernetes clusters 

with NVIDIA GPUs on existing infrastructure 
with VMware or BareMetal Servers 



Broad Integrations across Cloud Solution Stack (PaaS)
Choose the Level of Abstraction You Need | Accelerate End-to-End Workflows | Reduce Operational Costs

Amazon Web Services

Amazon SageMaker
Accelerate each step of the end-to-end 
ML workflow with support for NVIDIA 

GPUs and NVIDIA NGC software

Amazon Elastic Kubernetes 
Service

Automatically provision, manage and 
scale K8s clusters with NVIDIA GPU-

powered EC2 Instances

Microsoft Azure 

Azure VM Scale Sets
Create, manage and scale up to 

thousands of NVIDIA GPU-
powered VMs and NGC 

containers

Azure CycleCloud
Support to create, manage and 

orchestrate NVIDIA GPU-based HPC 
clusters at any scale. Support to deploy 

NVIDIA NGC containers

Azure Kubernetes Service (AKS)
Support to automatically provision, 

manage and scale K8s clusters with 
NVIDIA GPUs and NVIDIA NGC 

containers

Google Cloud

Vertex AI
Access latest NVIDIA AI software like 
Triton, Merlin, MONAI within a unified 
MLOps platform to build, deploy and 

scale ML models in production

Dataflow
Leverage NVIDIA TensorRT and GPUs to 
accelerate inference within end-to-end 

pipelines on streaming data; 

Dataproc
Leverage RAPIDS Accelerator for Apache 

Spark to accelerate Spark SQL/DF based data 
pipelines with no code changes

Google Kubernetes Engine (GKE)
Automatically create, manage and scale 
K8s clusters with NVIDIA GPUs. Support 
for GPU-sharing capabilities and NVIDIA 

NGC containers

Oracle Cloud Infrastructure

OCI AI Services
Deploy pre-trained ML models or 

customize them with NVIDIA GPUs on 
OCI for vision, speech, forecasting and 

anomaly detection

Oracle Kubernetes Engine (OKE)
Automatically provision, manage and 

scale K8s clusters with NVIDIA GPUs on 
OCI. Support to deploy NVIDIA NGC 

containers

Oracle Data Science Platform
Support for NVIDIA GPUs and RAPIDS 
to accelerate end-to-end data science 

and analytics pipelines 

Azure Machine Learning
Leverage NVIDIA GPUs and NVIDIA AI 

software to accelerate end-to-end ML 
development and deployments

Amazon ECS
Deploy, manage and scale containerized 

applications on NVIDIA GPU-powered 
instances including NVIDIA NGC 

containers

Amazon EMR
Accelerate large-scale distributed data 

science pipelines with NVIDIA GPU 
instances and NVIDIA RAPIDS Accelerator 

for Apache Spark



NVIDIA DGX Cloud
AI Training-as-a-Service Platform for the Era of Generative AI

Organizations doubling-down 
on generative AI need:

Software that unleashes
developer productivity

Multi-node training 
performance + easy scale

Access AI practitioners who 
help maximize performance

Predictable pricing that 
includes everything

Hosted in
leading clouds

NVIDIA DGX 
Cloud

NVIDIA AI Enterprise
Base Command Platform

DGX Cloud Instance
(8) A100 80GB GPUs

with multi-node scale

10TB storage / instance
10TB egress

NVIDIA AI Expertise

One price
with no surprises

Traditional AI 
development

DIY tools + open source

Inconsistent access to multi-
node scale across regions

Community forums
and “sweat equity”

Escalating costs, add-on fees 
for reserved instances,

storage, etc.

Traditional
AI clouds
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NVIDIA LaunchPad
Instantly experience end-to-end workflows for AI, data science, 3D design collaboration, and more

Take the Next Step with NVIDIA AI in CloudExperience, Evaluate and Test NVIDIA AI

Public Cloud

https://www.nvidia.com/en-us/launchpad/
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Resource



Resources
Where to find all things NVIDIA

• Open a developer account https://developer.nvidia.com/
• Find documentation https://docs.nvidia.com/
• Open software and tutorials https://github.com/NVIDIA
• Replay GTC sessions https://www.nvidia.com/en-us/on-demand/
• Free and fee-based training https://www.nvidia.com/en-us/training/
• NGC for containers, trained models, workflows https://ngc.nvidia.com/
• Try out new technology with LaunchPad https://www.nvidia.com/en-us/launchpad/
• Register for GTC (March 17-21) https://www.nvidia.com/gtc/




