User Tools

Site Tools


analysis:course-w16:week10

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
analysis:course-w16:week10 [2016/02/16 14:01]
mvdm [Quantifying decoding accuracy]
analysis:course-w16:week10 [2018/07/07 10:19] (current)
Line 266: Line 266:
 In general, from the [[http://​en.wikipedia.org/​wiki/​Poisson_distribution | definition of the Poisson distribution]],​ it follows that In general, from the [[http://​en.wikipedia.org/​wiki/​Poisson_distribution | definition of the Poisson distribution]],​ it follows that
  
-\[P(n_i|\mathbf{x}) = \frac{(\tau f_i(\mathbf{x}))^{n_i}}{n_i!} e^{-\tau f_i (x)}\]+\[P(n_i|\mathbf{x}) = \frac{(\tau f_i(\mathbf{x}))^{n_i}}{n_i!} e^{-\tau f_i (\mathbf{x})}\]
  
 $f_i(\mathbf{x})$ is the average firing rate of neuron $i$ over $x$ (i.e. the tuning curve for position), $n_i$ is the number of spikes emitted by neuron $i$ in the current time window, and $\tau$ is the size of the time window used. Thus, $\tau f_i(\mathbf{x})$ is the mean number of spikes we expect from neuron $i$ in a window of size $\tau$; the Poisson distribution describes how likely it is that we observe the actual number of spikes $n_i$ given this expectation. $f_i(\mathbf{x})$ is the average firing rate of neuron $i$ over $x$ (i.e. the tuning curve for position), $n_i$ is the number of spikes emitted by neuron $i$ in the current time window, and $\tau$ is the size of the time window used. Thus, $\tau f_i(\mathbf{x})$ is the mean number of spikes we expect from neuron $i$ in a window of size $\tau$; the Poisson distribution describes how likely it is that we observe the actual number of spikes $n_i$ given this expectation.
Line 275: Line 275:
  
 \[P(\mathbf{n}|\mathbf{x}) = \prod_{i = 1}^{N} \frac{(\tau f_i(\mathbf{x}))^{n_i}}{n_i!} \[P(\mathbf{n}|\mathbf{x}) = \prod_{i = 1}^{N} \frac{(\tau f_i(\mathbf{x}))^{n_i}}{n_i!}
-e^{-\tau f_i (x)}\]+e^{-\tau f_i (\mathbf{x})}\]
  
 An analogy here is simply to ask: if the probability of a coin coming up heads is $0.5$, what is the probability of two coints, flipped simultaneously,​ coming up heads? If the coins are independent then this is simply $0.5*0.5$. An analogy here is simply to ask: if the probability of a coin coming up heads is $0.5$, what is the probability of two coints, flipped simultaneously,​ coming up heads? If the coins are independent then this is simply $0.5*0.5$.
analysis/course-w16/week10.1455649270.txt.gz ยท Last modified: 2018/07/07 10:19 (external edit)