
Chapter 6

The Fourier Transform

Many different fields, including medicine, optics, physics, and electrical engineer-
ing, use the Fourier Transform (FT) as a common analysis tool. In practice, the
standards by compression groups JPEG (Joint Photographic Experts Group) and
MPEG (Motion Picture Experts Group) use a modified form of the Fourier trans-
form. Essentially, it allows us to look at frequency information instead of time
information, which people find more natural for some data. For example, many
stereo systems have rows of little lights that glow according to the strength of fre-
quency bands. The stronger the treble, for example, the more lights along the row
are lit, creating a light bar that rises and falls according to the music. This is the
type of information produced by the Fourier transform.

The Discrete Fourier Transform (DFT) is the version of this transform that
we will concentrate on, since it works on discrete data. Our data are discrete
in time, and we can assume that they are periodic. That is, if we took another
N samples they would just be a repeat of the data we already have, in terms of
the frequencies present. In this case, we use the DFT, which produces discrete
frequency information that we also assume is periodic. Below, in Figure 6.1, we see
the frequency magnitude response graph for the “ee” sound. We got this by applying
the discrete Fourier transform to the sound file. The figure shows the whole range
along the top, and a close-up view on the bottom.

The following graph, Figure 6.2, shows the frequency magnitude response for
another sound file: a brief recording of Adagio from Toccata and Fuge in C, written
by J.S. Bach. The top of this figure shows the entire frequency range, from 0 to
22,050 Hz, while the bottom part shows a close-up view of the first 4500 frequencies.
An interesting thing to notice is that the spikes in magnitude are regularly spaced.
This happens often with real signals, especially music. For example, right before
1000 Hz, we see three spikes increasing in magnitude, corresponding to three different

187

188 DSP Using MATLAB and Wavelets

0 2000 4000 6000 8000 10000
0

20

40

60

80

100

120

140

Frequency Magnitude Response for EE sound

Hz

M
ag

ni
tu

de

0 50 100 150 200 250 300 350 400
0

20

40

60

80

100

120

140

Hz

M
ag

ni
tu

de

Figure 6.1: A person vocalizing the “ee” sound.

The Fourier Transform 189

(but related) frequencies. We call this harmonics. This can be seen even more clearly
in Figure 6.3, where a sustained note from a flute is played. Four frequencies are
very pronounced, while most of the other frequencies are 0.

0 0.5 1 1.5 2

x 104

0

1000

2000

3000

4000

Hz

M
ag

ni
tu

de

0 500 1000 1500 2000 2500 3000 3500 4000
0

1000

2000

3000

4000

Hz

M
ag

ni
tu

de

Figure 6.2: J.S. Bach’s Adagio from Toccata and Fuge in C—frequency magnitude
response.

The frequency range appearing above (0 to 22,050 Hz) was not arbitrarily chosen.
Compact Disks (CDs) store music recorded at 44,100 samples per second, allowing
for sounds in the range of 0 to 22,050 Hz, which is slightly greater than the maximum
frequency that we can hear. It should not be surprising that almost all of the
frequency content in Bach’s music shown in Figure 6.2 is below 4000 Hz. The
organ, for which this music was written, can produce a very wide range of sound.
Some organs can produce infrasound notes (below 20 Hz, which most humans cannot
hear), and also go well beyond 10 kHz. But these high notes are not necessary for
pleasing music. To put this in perspective, consider that most instruments (guitar,
violin, harp, drums, horns, etc.) cannot produce notes with fundamental frequencies
above 4000 Hz, though instruments do produce harmonics that appear above this
frequency [22]. A piano has a range of 27.5 Hz to just over 4186 Hz.

The Fourier transform is a way to map continuous time, nonperiodic data to
continuous frequency, nonperiodic data in the frequency-domain. A variation called
Fourier Series works with periodic data that is continuous in time, and turns it
into a nonperiodic discrete frequency representation. When the data are discrete
in time, and nonperiodic, we can use the discrete time Fourier transform (DTFT)

190 DSP Using MATLAB and Wavelets

0 0.5 1 1.5 2

x 104

0

10

20

30

40

50

60

70

80

90

100

Frequency (Hz)

A
m

pl
itu

de

Flute

Figure 6.3: A sustained note from a flute.

to get a periodic, continuous frequency representation. Finally, when the data are
discrete in time (and we can assume that they are periodic), we use the DFT to get
a discrete frequency, assumed periodic representation.

6.1 Fast Fourier Transform Versus the Discrete Fourier

Transform

The Fast Fourier Transform (FFT) is a clever algorithm to implement the DFT. As
expected, it gives the same results as the DFT, but it arrives at them much faster
due to the efficiency of the algorithm. The FFT was a major breakthrough, since
it allowed researchers to calculate the Fourier transform in a reasonable amount
of time. Figure 6.4 demonstrates this difference. The bottom curve is a plot of
Nlog2(N), while the other is N 2. For example, a late-model Pentium-4 processor
at 2 GHz does on the order of 2 billion calculations per second. An algorithm (such
as the DFT) that performs N 2 operations would take about 5 seconds to complete
for 100,000 data samples. For 100,000,000 data samples, this would take about 2
months to compute! In contrast, an algorithm (such as the FFT) that performs
Nlog2(N) operations for 100,000,000 data samples would need only 1.33 seconds.

MATLAB provides both fft and ifft functions. For optimum speed, the FFT
needs the data size to be a power of 2, though software (such as fft command in
MATLAB) does not require this. For most applications, zeros can be appended to
the data without negatively affecting the results. In fact, zeros are often appended
to get better looking results. It does not add any information, but it changes the

The Fourier Transform 191

0 10 20 30 40 50 60 70 80 90 100
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

parameter size (n)

nu
m

be
r o

f o
pe

ra
tio

ns

Figure 6.4: Comparing Nlog2(N) (line) versus N 2 (asterisks).

analysis frequencies used by the FFT/DFT. This technique is called zero-padding.
We saw in Chapter 3, “Filters,” that filters perform convolution. One can use

the FFT to compute convolution efficiently. Other uses include analyzing the effect
that a filter has on a signal, and designing FIR filters (with the Inverse FFT). Any
time that a problem requires the DFT, the FFT can be used instead.

6.2 The Discrete Fourier Transform

This is the Discrete Fourier Transform (DFT)

X[m] =
N−1
∑

n=0

x[n](cos(2πnm/N) − j sin(2πnm/N))

where m = 0..N − 1. We call this the “rectangular form” of the DFT, and there are
many variations of this transform. For example, one common way to express it uses
the e−j2πnm/N term instead of the sinusoids, which can make analysis by a human
easier.

X[m] =

N−1
∑

n=0

x[n]e−j2πnm/N

192 DSP Using MATLAB and Wavelets

Here is a MATLAB function that calculates the DFT. Its purpose is to demon-
strate how the DFT can be computed, but it does not have the efficiency of the
fft function built in to MATLAB. It returns a complex array, which stores two
pieces of information per complex number, corresponding to an x and y coordinate.
Normally, we would need the magnitudes and phase angles. Just as we can convert
from Cartesian coordinates to polar coordinates, we can convert from the complex
array information to the magnitude and phase information.

function [X] = dft(x)

%

% Demonstrate DFT

%

Xsize = length(x);

% do DFT (the hard way)

for m=0:Xsize-1

mysumm = 0;

for n=0:Xsize-1

mysumm = mysumm + x(n+1) * (cos(2*pi*n*m/Xsize) ...

- j*sin(2*pi*n*m/Xsize));

end

X(m+1) = mysumm;

end

All that needs to be returned is the vector of complex numbers, or variable X.
The magnitudes and phase angles can be calculated, though this information makes
X redundant. To convert, we can use the abs and angle functions, such as:

Xmag = abs(X);

Xphase = angle(X);

Also notice that the comments are honest. This is not a very efficient way to
obtain the Fourier transform! But it is meant to explain how the DFT can be
calculated.

For the DFT, notice how the arguments of the cosine and sine functions are the
same, yet the arguments are functions of both n and m. In effect, this transform
spreads the original one-dimensional data over a two-dimensional matrix. Let’s
illustrate this with an example. The following code finds the DFT of an example

The Fourier Transform 193

signal (it uses fft, but dft would also work assuming that the above program is
present).

>> fft([6, 4, 9, 0, 1, 5, 2, 7])

ans =

Columns 1 through 4

34.0000 9.2426 - 1.3431i -4.0000 - 2.0000i 0.7574 +12.6569i

Columns 5 through 8

2.0000 0.7574 -12.6569i -4.0000 + 2.0000i 9.2426 + 1.3431i

Table 6.1 shows a matrix where we calculate the Fourier transform of the example
signal. The rows correspond to n and we see the values from the example signal
running down each of the columns (m). Observe how each row has a corresponding
signal sample (time-domain data), while the sum of each column results in the DFT
of the signal (frequency domain data). If we were to find the sum of magnitudes along
each row (i.e., sum(abs(Matrix(r,:)))), we would get the time-domain sample
multiplied by the number of points (N). Every e−jθ value has a magnitude of 1;
these values are complex vectors of unit magnitude. This 2D matrix comes from the
expression for the DFT, e−jθ, where θ = 2πnm/N , and N = 8 (our sample size).
The values of 2πnm/N for a single column run from 0 to 2πm(N−1)/N . Variable m
also runs from 0 to (N − 1). The inverse DFT, which we will cover soon, essentially
multiplies table entries by an e+jθ vector, cancelling out the original complex vectors
and giving us back the time-domain data.

How to add the values of complex exponentials together may not be obvious. We
can always convert these to Cartesian coordinates (of the form a+ jb) first. Table
6.2 shows another way of looking at this data, with the rectangular form of the DFT
equation. We can easily verify that the sum of a column equals the DFT results
given by MATLAB, since we add the real parts and imaginary parts separately.

Each column results in a single frequency-domain point. That is, for each output
X[m], the frequencies used to find X[m] are 2πm(0)/N , 2πm(1)/N , ..., 2πm(N −
1)/N . The number of frequencies used depends entirely upon how many points
we have, which is determined by our sampling frequency. Therefore, the analysis
frequencies are given by the following relation:

194
D

S
P

U
sin

g
M

A
T

L
A

B
a
n
d

W
a
v
elets

Table 6.1: Example DFT calculations.

0 1 2 3 4 5 6 7

0 6e−j2π0 6e−j2π0 6e−j2π0 6e−j2π0 6e−j2π0 6e−j2π0 6e−j2π0 6e−j2π0

1 4e−j2π0 4e−j2π0.125 4e−j2π0.25 4e−j2π0.375 4e−j2π0.5 4e−j2π0.625 4e−j2π0.75 4e−j2π0.875

2 9e−j2π0 9e−j2π0.25 9e−j2π0.5 9e−j2π0.75 9e−j2π 9e−j2π1.25 9e−j2π1.5 9e−j2π1.75

3 0e−j2π0 0e−j2π0.375 0e−j2π0.75 0e−j2π1.125 0e−j2π1.5 0e−j2π1.875 0e−j2π2.25 0e−j2π2.625

4 1e−j2π0 1e−j2π0.5 1e−j2π1 1e−j2π1.5 1e−j2π2 1e−j2π2.5 1e−j2π3 1e−j2π3.5

5 5e−j2π0 5e−j2π0.625 5e−j2π1.25 5e−j2π1.875 5e−j2π2.5 5e−j2π3.125 5e−j2π3.75 5e−j2π4.375

6 2e−j2π0 2e−j2π0.75 2e−j2π1.5 2e−j2π2.25 2e−j2π3 2e−j2π3.75 2e−j2π4.5 2e−j2π5.25

7 7e−j2π0 7e−j2π0.875 7e−j2π1.75 7e−j2π2.625 7e−j2π3.5 7e−j2π4.375 7e−j2π5.25 7e−j2π6.125

Σ 34ej2π0 9.3e−j2π0.023 4.5e−j2π0.426 12.7ej2π0.24 2e−j2π0 12.7e−j2π0.24 4.5ej2π0.4 9.3ej2π0.023

T
h
e

F
o
u
rier

T
ra

n
sfo

rm
195

Table 6.2: Example DFT calculations (rectangular form).

0 1 2 3 4 5 6 7

0 6.0 + 0.0j 6.0 + 0.0j 6.0 + 0.0j 6.0 + 0.0j 6.0 + 0.0j 6.0 + 0.0j 6.0 + 0.0j 6.0 + 0.0j

1 4.0 + 0.0j 2.8 - 2.8j 0.0 - 4.0j -2.8 - 2.8j -4.0 - 0.0j -2.8 + 2.8j -0.0 + 4.0j 2.8 + 2.8j

2 9.0 + 0.0j 0.0 - 9.0j -9.0 - 0.0j -0.0 + 9.0j 9.0 + 0.0j 0.0 - 9.0j -9.0 - 0.0j -0.0 + 9.0j

3 0.0 + 0.0j 0.0 + 0.0j 0.0 + 0.0j 0.0 + 0.0j 0.0 + 0.0j 0.0 + 0.0j 0.0 + 0.0j 0.0 + 0.0j

4 1.0 + 0.0j -1.0 - 0.0j 1.0 + 0.0j -1.0 - 0.0j 1.0 + 0.0j -1.0 - 0.0j 1.0 + 0.0j -1.0 - 0.0j

5 5.0 + 0.0j -3.5 + 3.5j 0.0 - 5.0j 3.5 + 3.5j -5.0 - 0.0j 3.5 - 3.5j -0.0 + 5.0j -3.5 - 3.5j

6 2.0 + 0.0j -0.0 + 2.0j -2.0 - 0.0j 0.0 - 2.0j 2.0 + 0.0j -0.0 + 2.0j -2.0 - 0.0j -0.0 - 2.0j

7 7.0 + 0.0j 4.9 + 4.9j -0.0 + 7.0j -4.9 + 4.9j -7.0 - 0.0j -4.9 - 4.9j -0.0 - 7.0j 4.9 - 4.9j

Σ 34.0 + 0.0j 9.2 - 1.3j -4.0 - 2.0j 0.8 + 12.7j 2.0 - 0.0j 0.8 - 12.7j -4.0 + 2.0j 9.2 + 1.3j

196 DSP Using MATLAB and Wavelets

fanalysis[m] =
mfsampling

N
.

6.3 Plotting the Spectrum

To get a spectral plot, we will start out with an example signal. The following code
sets up a signal, x.

>> % Set up an example signal

>> n = 0:99; % number of points

>> fs = 200; % sampling frequency

>> Ts = 1/fs; % sampling period

>> % x is our example signal

>> x = cos(2*pi*20*n*Ts + pi/4) + ...

3*cos(2*pi*40*n*Ts - 2*pi/5) + ...

2*cos(2*pi*60*n*Ts + pi/8);

>>

Now we need the frequency information from x, which we can get from the
Fourier transform. Also, we will establish the index m.

>> X = fft(x);

>> m = 0:length(X)-1;

It may be helpful to know the frequency resolution; the following code displays
it.

>> disp(sprintf('Freq resolution is every %5.2f Hz',...

fs/length(X)));

Freq resolution is every 2.00 Hz

>>

To see the spectrum, we will show both the frequency magnitude response and
a plot of the phase angles.

>> % Plot magnitudes

>> subplot(2,1,1);

>> stem(m*fs/length(X),abs(X), 'b');

>> ylabel('magnitude');

The Fourier Transform 197

>> xlabel('frequency (Hz)');

>> title('Frequency magnitude response');

>> % Plot phase angles

>> subplot(2,1,2);

>> stem(m*fs/length(X),angle(X), 'b');

>> ylabel('phase angle');

>> xlabel('frequency (Hz)');

>> title('Phase angle plot');

When we run the previous code, we see the graphs as shown in Figure 6.5, and
clearly there is frequency content at 20 Hz, 40 Hz, and 60 Hz, with magnitudes of 50,
150, and 100, corresponding to relative magnitudes of 1, 3, and 2 as in our original
signal. We notice a few annoying things about this figure, though. First, since the
original signal x is real, the frequency magnitude response has a mirror image, so
we only really need the first half of it. For the phases, the pattern is also reflected
around the x-axis, so again we only need half of the plot. The phase plot contains
a lot of information, actually too much. At frequency 80 Hz, for example, we see
that the amplitude approximates zero, while the phase angle is relatively large. (We
expect the phase angles to be between −π and +π.)

To solve the first problem, we will simply plot the first half of both the magni-
tudes and phases. We can set up a variable called half m to give us half the range
of m, and use it in place of m. But when we use it, we must be careful to add 1 to
it before using it as an array offset, since it starts at 0.

half_m = 0:ceil(length(X)/2);

stem(half_m*fs/length(X),abs(X(half_m+1)), 'b');

For the second problem, we need a little more information.

>> X(2)

ans =

-1.6871e-13 - 2.2465e-15i

>> angle(X(2))

ans =

-3.1283

198 DSP Using MATLAB and Wavelets

Figure 6.5: Spectrum for an example signal.

The Fourier Transform 199

>> abs(X(2))

ans =

1.6873e-13

The above commands confirm our suspicion that the phase angles are calculated
and shown for every X value even when they are close to zero. Fixing this requires
the use of a tolerance value. If the magnitude is smaller than the tolerance, then
we should assume a zero phase. After all, the magnitudes correspond to how much
a sinusoid contributes to our signal. If a sinusoid contributes about zero, then it
makes no sense to keep a nonzero phase angle for it.

>> % The next 3 lines allow us to ignore phases

>> % that go with very small magnitudes.

>> tolerance = 0.00001;

>> X2 = ceil(abs(X) - tolerance);

>> X3 = round(X2 ./ (X2+1));

>> % X3 above is a vector of 0s and 1s

The above commands may be a bit confusing, but these lines set up a binary
vector. The subtraction operation separates the magnitudes for us; since all mag-
nitudes are positive, any negative values after the subtraction correspond to phases
that we should ignore, and the ceil function will make them zero. Now the problem
is to map the nonzero values in X2 to 1. Dividing each value of X2 by itself (plus
1) will return values that are either 0 or almost 1, while avoiding a divide-by-zero
error. The round function simply takes care of making the “almost 1” values equal
to 1. The code results in vector X3, consisting of zeros for the phases to ignore, and
ones for the phases we want to see. We can then use it in the stem plot below, to
zero-out any phases with magnitudes close to zero. The following plot does not use
half m as above, but we can put all of this together.

subplot(2,1,2);

stem(m*fs/length(X),angle(X).*X3, 'b');

Now we can put all of this together into a program, to plot the spectrum. When
we run this program, we get the graphs shown in Figure 6.6, with the magnitudes
and phase angles plotted versus the frequencies.

200 DSP Using MATLAB and Wavelets

Figure 6.6: Improved spectrum for an example signal.

The Fourier Transform 201

This program is shown in its entirety, since its pieces are shown above. To
summarize what it does, first it makes an example signal by adding several sinusoids.
Next, it finds the Fourier transform, then prints the frequency resolution. After this,
it plots the magnitudes. It also plots the phases, but first it zeros-out the phases
that have a tiny corresponding magnitude.

% spectrum.m

%

% Show the spectrum of an example signal.

%

% Set up an example signal

n = 0:99; % number of points

fs = 200; % sampling frequency

Ts = 1/fs; % sampling period

% x is our example signal

x = cos(2*pi*20*n*Ts + pi/4) + ...

3*cos(2*pi*40*n*Ts - 2*pi/5) + ...

2*cos(2*pi*60*n*Ts + pi/8);

% Find the spectrum

X = fft(x);

%m = 0:length(X)-1;

half_m = 0:ceil(length(X)/2);

disp(sprintf('Freq resolution is every %5.2f Hz',...

fs/length(X)));

% Plot magnitudes

subplot(2,1,1);

%stem(m*fs/length(X),abs(X), 'b');

stem(half_m*fs/length(X),abs(X(half_m+1)), 'b');

ylabel('magnitude');

xlabel('frequency (Hz)');

title('Frequency magnitude response');

% Plot phase angles

subplot(2,1,2);

% The next 3 lines allow us to ignore phases

% that go with very small magnitudes.

tolerance = 0.00001;

202 DSP Using MATLAB and Wavelets

X2 = ceil(abs(X) - tolerance);

X3 = round(X2 ./ (X2+1));

% X3 above is a vector of 0s and 1s

%stem(m*fs/length(X),angle(X).*X3, 'b');

stem(half_m*fs/length(X), ...

angle(X(half_m+1)).*X3(half_m+1), 'b');

ylabel('phase angle');

xlabel('frequency (Hz)');

title('Phase angle plot');

6.4 Zero Padding

When we zero-pad a signal in the time-domain, we get a smoother-looking fre-
quency resolution. Why does this happen? Actually, the length of the sampled
signal determines the frequency resolution, and zero-padding does not add any new
information. Though the zero-padded signal results in a more visually appealing
frequency-domain representation, it does not add to the resolution of the transform.

Why can we zero-pad our time-domain signal? Part of the explanation has
to do with the continuous Fourier transform. For convenience, we use the radian
frequency, ω = 2πf . Using ω also allows us to use f(t) for our function’s name,
without confusing it with frequency.

F (ω) =

∫ ∞

−∞
f(t)e−jωtdt

Suppose f(t) is a signal that has zero value outside the interval [a, b], and assume
a < b < c. We can, therefore, replace the previous equation with the following:

F (ω) =

∫ c

a
f(t)e−jωtdt

=

∫ b

a
f(t)e−jωtdt+

∫ c

b
f(t)e−jωtdt.

Since f(t) = 0 outside the interval [a, b] by definition, the second integral evalu-
ates to 0. We can add 0 to the righthand side of the equation,

F (ω) = 0 +

∫ b

a
f(t)e−jωtdt.

Therefore, for continuous signals, F (ω) is the same whether or not we consider

The Fourier Transform 203

f(t) outside of its support. For a discrete signal, the number of points for the
frequency-domain signal equals the number of points in the time-domain signal, so
adding zeros means that there will be more frequency-domain points. The analysis
frequencies, as a result, become finer since they are closer together.

6.5 DFT Shifting Theory

There is a DFT shifting theory, stating that sampling a signal will give the same
results (in terms of frequency magnitude response), even when the samples are
shifted, such as removing the first k samples and appending them to the end of
the sample sequence. This is an important theory, since it tells us that there is no
critical time to start recording samples. The program below demonstrates this idea.
Notice how the plot command puts two signals on the graph at the same time, one
in blue (’b’) and the other in green (’g’). Try other colors like red (’r’) and black
(’k’).

% Demonstrate DFT Shifting theory

%

% parameters to modify

number_of_samples = 16;

shift = 3; % Must be less than number_of_samples

fs = 2000; % sampling frequency

% Make our example signal

Ts = 1/fs;

range = 1:number_of_samples;

x(range) = 2*cos(2*pi*400*(range-1)*Ts) ...

+ cos(2*pi*700*(range-1)*Ts);

% Make y a shifted version of x

y = [x(shift:number_of_samples), x(1:shift-1)];

% Get fft of each signal

X = fft(x);

Y = fft(y);

% Find magnitudes

204 DSP Using MATLAB and Wavelets

Xmag = abs(X);

Ymag = abs(Y);

% Find phase angles

Xphase = angle(X);

Yphase = angle(Y);

% Show results in a graph

subplot(3,1,1), plot(range, x,'bd', range, y,'g*');

mystr = strcat('original (blue diamond) and shifted', ...

'(green *) versions of the sampled signal');

title(mystr);

subplot(3,1,2), plot(range, Xmag,'bd', range, Ymag,'k*');

title('Xmagnitude = diamond, Ymagnitude = *');

subplot(3,1,3), plot(range, Xphase,'bd', range, Yphase,'k*');

title('Xphase = diamond, Yphase = *');

Figure 6.7 shows what the output for this program looks like. Though the phase
angles are different, the frequency magnitudes are the same for the original as well
as the shifted signal. We should expect the phase angles to be different, since
these values determine how a composite signal “lines up” with with the samples.
Otherwise, we would not be able to get the original signals back via the inverse
transform.

6.6 The Inverse Discrete Fourier Transform

This is the Inverse Discrete Fourier Transform (IDFT):

x[n] =
1

N

N−1
∑

m=0

X[m](cos(2πnm/N) + j sin(2πnm/N))

where n = 0..N − 1. Notice how similar it is to the DFT, the main differences
being the 1/N term, and the plus sign in front of the complex part. The plus sign
is no coincidence, the inverse transform works by using what we call the complex
conjugate of the forward transform. A complex conjugate, stated simply, occurs
when the complex part has a negated sign. For example, 4 − j2 and 4 + j2 are
complex conjugates. A superscripted asterisk denotes complex conjugation. If we
say a = 3 + j7 and b = 3 − j7, then we could also say a = b∗ or b = a∗.

An alternate form of the IDFT follows, using Euler’s formula to replace the
sinusoids with exponentials.

The Fourier Transform 205

0 2 4 6 8 10 12 14 16
−4

−2

0

2

4
original (diamond) and shifted(*) versions of the sampled signal

0 2 4 6 8 10 12 14 16
0

5

10

15

20
Xmagnitude = diamond, Ymagnitude = *

0 2 4 6 8 10 12 14 16
−4

−2

0

2

4
Xphase = diamond, Yphase = *

Figure 6.7: Example output of DFT-shift program.

x[n] =
1

N

N−1
∑

m=0

X[m]ej2πnm/N

Below is a MATLAB function that calculates the Inverse Discrete Fourier Trans-
form (IDFT). Like the DFT program above, this program intends only to demon-
strate how the IDFT can be calculated. MATLAB has an ifft function that gives
the same results, only faster.

function [x] = idft(X)

% Find the 1D Inverse DFT of an input signal.

% It returns the IDFT of the signal as a

% vector of complex numbers.

%

% Usage:

% [x] = idft(X);

%

% This function is NOT very efficient,

206 DSP Using MATLAB and Wavelets

% but it demonstrates how the IDFT is done.

Xsize = length(X);

% Do reconstruction

for n=0:Xsize-1

for m=0:Xsize-1

arra(n+1,m+1) = X(m+1) * (cos(2*pi*m*n/Xsize) + ...

j*sin(2*pi*m*n/Xsize));

end

end

for n=0:Xsize-1

mysumm = 0;

for m=0:Xsize-1

mysumm = mysumm + arra(n+1,m+1);

end

% Keep only the real part

%x(n+1) = real(mysumm) / Xsize;

x(n+1) = mysumm / Xsize;

end

Below is shown a MATLAB session that demonstrates the DFT and IDFT func-
tions. First, the signal mysignal is given some example values. Next, the “dft”
function is called. Notice that the “dft” function will return three values, but here
we only use the first.

After the DFT values are stored in variable M, the inverse discrete Fourier trans-
form is computed, and stored in mysignal 2. This signal should have the same
information as mysignal, and this is shown to be true. The round function gets rid
of the part beyond the decimal point, and the real function ignores the imaginary
part (which is zero).

To get started, select "MATLAB Help" from the Help menu.

>> mysignal = [7 4 3 9 0 1 5 2];

>> M = dft(mysignal)

M =

Columns 1 through 6

The Fourier Transform 207

31.0000 4.1716 - 5.0711i -1.0000 + 6.0000i

9.8284 - 9.0711i -1.0000 - 0.0000i 9.8284 + 9.0711i

Columns 7 through 8

-1.0000 - 6.0000i 4.1716 + 5.0711i

>> mysignal_2 = idft(M)

mysignal_2 =

Columns 1 through 6

7.0000 + 0.0000i 4.0000 + 0.0000i 3.0000 - 0.0000i

9.0000 - 0.0000i 0.0000 - 0.0000i 1.0000 + 0.0000i

Columns 7 through 8

5.0000 + 0.0000i 2.0000 + 0.0000i

>> real(round(mysignal_2))

ans =

7 4 3 9 0 1 5 2

>> mysignal

mysignal =

7 4 3 9 0 1 5 2

6.7 Forward and Inverse DFT

This section shows that when we take a signal, perform the DFT on it, and then
perform the IDFT on the result, we will end up with the same values that we started
with. We will begin by remembering the formulas.

208 DSP Using MATLAB and Wavelets

Discrete Fourier Transform (DFT):

X[m] =

N−1
∑

n=0

x[n]e−j2πnm/N

where m = 0..N − 1.
Inverse Discrete Fourier Transform (IDFT):

x[n] =
1

N

N−1
∑

m=0

X[m]ej2πnm/N

where n = 0..N − 1.
Let’s start with an example signal, x = {x0, x1, x2, x3}. We can find the DFT of

x using the general formulas above, and since we know that N = 4, we can replace
it in the formula.

X[m] =

3
∑

n=0

x[n]e−j2πnm/4

X[m] = x0e
−j2π0m/4 + x1e

−j2π1m/4 + x2e
−j2π2m/4 + x3e

−j2π3m/4

We can then find the inverse transform...

x[n] =
1

4

3
∑

m=0

X[m]ej2πnm/4

x[n] =
1

4
(X[0]ej2πn0/4 +X[1]ej2πn1/4 +X[2]ej2πn2/4 +X[3]ej2πn3/4)

...and replace the X[m] terms with their equivalents.

x[n] =
1

4
((x0e

−j2π0×0/4 + x1e
−j2π1×0/4 + x2e

−j2π2×0/4 + x3e
−j2π3×0/4)ej2πn0/4+

(x0e
−j2π0×1/4 + x1e

−j2π1×1/4 + x2e
−j2π2×1/4 + x3e

−j2π3×1/4)ej2πn1/4+

(x0e
−j2π0×2/4 + x1e

−j2π1×2/4 + x2e
−j2π2×2/4 + x3e

−j2π3×2/4)ej2πn2/4+

(x0e
−j2π0×3/4 + x1e

−j2π1×3/4 + x2e
−j2π2×3/4 + x3e

−j2π3×3/4)ej2πn3/4)

The Fourier Transform 209

Combining the exponents:

x[n] =
1

4
((x0e

−j2π0×0/4+j2πn0/4 + x1e
−j2π1×0/4+j2πn0/4+

x2e
−j2π2×0/4+j2πn0/4 + x3e

−j2π3×0/4+j2πn0/4)+

(x0e
−j2π0×1/4+j2πn1/4 + x1e

−j2π1×1/4+j2πn1/4+

x2e
−j2π2×1/4+j2πn1/4 + x3e

−j2π3×1/4+j2πn1/4)+

(x0e
−j2π0×2/4+j2πn2/4 + x1e

−j2π1×2/4+j2πn2/4+

x2e
−j2π2×2/4+j2πn2/4 + x3e

−j2π3×2/4+j2πn2/4)+

(x0e
−j2π0×3/4+j2πn3/4 + x1e

−j2π1×3/4+j2πn3/4+

x2e
−j2π2×3/4+j2πn3/4 + x3e

−j2π3×3/4+j2πn3/4)).

Multiplying out the terms:

x[n] =
1

4
((x0e

j2π(−0×0+n0)/4 + x1e
j2π(−1×0+n0)/4+

x2e
j2π(−2×0+n0)/4 + x3e

j2π(−3×0+n0)/4)+

(x0e
j2π(−0×1+n1)/4 + x1e

j2π(−1×1+n1)/4+

x2e
j2π(−2×1+n1)/4 + x3e

j2π(−3×1+n1)/4)+

(x0e
j2π(−0×2+n2)/4 + x1e

j2π(−1×2+n2)/4+

x2e
j2π(−2×2+n2)/4 + x3e

j2π(−3×2+n2)/4)+

(x0e
j2π(−0×3+n3)/4 + x1e

j2π(−1×3+n3)/4+

x2e
j2π(−2×3+n3)/4 + x3e

j2π(−3×3+n3)/4)).

Simplifying:

x[n] =
1

4
((x0e

j2π0/4 + x1e
j2π0/4 + x2e

j2π0/4 + x3e
j2π0/4)+

(x0e
j2π(n)/4 + x1e

j2π(n−1)/4 + x2e
j2π(n−2)/4 + x3e

j2π(n−3)/4)+

(x0e
j2π(2n)/4 + x1e

j2π(2n−2)/4 + x2e
j2π(2n−4)/4 + x3e

j2π(2n−6)/4)+

(x0e
j2π(3n)/4 + x1e

j2π(3n−3)/4 + x2e
j2π(3n−6)/4 + x3e

j2π(3n−9)/4)).

210 DSP Using MATLAB and Wavelets

Simplifying even more (ej0 = 1):

x[n] =
1

4
((x0 + x1 + x2 + x3)+

(x0e
j2π(n)/4 + x1e

j2π(n−1)/4 + x2e
j2π(n−2)/4 + x3e

j2π(n−3)/4)+

(x0e
j2π(2n)/4 + x1e

j2π(2n−2)/4 + x2e
j2π(2n−4)/4 + x3e

j2π(2n−6)/4)+

(x0e
j2π(3n)/4 + x1e

j2π(3n−3)/4 + x2e
j2π(3n−6)/4 + x3e

j2π(3n−9)/4)).

Let’s see what we get when n = 1:

x[1] =
1

4
((x0 + x1 + x2 + x3)+

(x0e
j2π(1)/4 + x1e

j2π(0)/4 + x2e
j2π(−1)/4 + x3e

j2π(−2)/4)+

(x0e
j2π(2)/4 + x1e

j2π(0)/4 + x2e
j2π(−2)/4 + x3e

j2π(−4)/4)+

(x0e
j2π(3)/4 + x1e

j2π(0)/4 + x2e
j2π(−3)/4 + x3e

j2π(−6)/4)).

Remember that these exponential values, such as 2π(−6)/4, correspond to angles,
and any angle greater than 2π can have an integer multiple of 2π removed from it.
For example, ej2π(−6)/4 = e−j12π/4 = e−j3π = e−j(2π+π) = e−jπ.

x[1] =
1

4
((x0 + x1 + x2 + x3)+

(x0e
jπ/2 + x1 + x2e

−jπ/2 + x3e
−jπ)+

(x0e
jπ + x1 + x2e

−jπ + x3e
−j2π)+

(x0e
jπ3/2 + x1 + x2e

−jπ3/2 + x3e
−jπ))

Next, we will replace the exponentials with sinusoids, using Euler’s formula.

x[1] =
1

4
((x0 + x1 + x2 + x3)+

(x0(cos(π/2)+ j sin(π/2))+x1 +x2(cos(π/2)− j sin(π/2))+x3(cos(π)− j sin(π)))+

(x0(cos(π) + j sin(π)) + x1 + x2(cos(π) − j sin(π)) + x3(cos(2π) − j sin(2π)))+

(x0(cos(3π/2)+j sin(3π/2))+x1+x2(cos(3π/2)−j sin(3π/2))+x3(cos(π)−j sin(π))))

Now, we can calculate the sinusoids (Table 6.3), and plug in the values.

The Fourier Transform 211

Table 6.3: Sinusoids that simplify things for us.

cos(π/2) = 0, sin(π/2) = 1
cos(π) = −1, sin(π) = 0
cos(2π) = 1, sin(2π) = 0
cos(3π/2) = 0, sin(3π/2) = −1

x[1] =
1

4
((x0 + x1 + x2 + x3)+

(x0(j) + x1 + x2(−j) + x3(−1 − j0))+

(x0(−1 + j0) + x1 + x2(−1 − j0) + x3(1 − j0))+

(x0(j(−1)) + x1 + x2(−j(−1)) + x3(−1 − j0)))

Simplifying:

x[1] =
1

4
((x0 + x1 + x2 + x3)+

(x0(j) + x1 + x2(−j) + x3(−1))+

(x0(−1) + x1 + x2(−1) + x3(1))+

(x0(−j) + x1 + x2(j) + x3(−1))).

Grouping terms:

x[1] =
1

4
(x0(1 + j− 1− j) +x1(1 +1 +1 +1) +x2(1− j − 1 + j) + x3(1− 1 +1− 1))

x[1] =
1

4
(x0(0) + x1(4) + x2(0) + x3(0))

x[1] = x1.

Thus, the inverse transform gives us back the data that we had before the forward
transform. The 1

N term appears in the inverse transform to scale the outputs back
to the original magnitude of the inputs. We only show this for one of the original
values, but the interested reader should be able to verify that this works for all four
of the original values.

212 DSP Using MATLAB and Wavelets

6.8 Leakage

The DFT does not have infinite resolution. A consequence of this is that sometimes
frequencies that are present in a signal are not sharply defined in the DFT, and
the frequency’s magnitude response appears to be spread out over several analysis
frequencies. This is called DFT leakage. The following code demonstrates this. In
the code below, we simulate two sampled signals: x1 and x2. If you look closely,
you will see that the equations defining these two signals are the same. What we
change are the parameters; the sampling frequencies (fs1 and fs2), which alter the
sampling periods (Ts1 and Ts2), and the number of samples to read (given by the
lengths of n1 and n2).

fs1 = 1000; fs2 = 1013;

Ts1 = 1/fs1; Ts2 = 1/fs2;

n1 = 0:99; n2 = 0:98;

x1 = 3*cos(2*pi*200*n1*Ts1 - 7*pi/8) + 2*cos(2*pi*300*n1*Ts1) ...

+ cos(2*pi*400*n1*Ts1 + pi/4);

x2 = 3*cos(2*pi*200*n2*Ts2 - 7*pi/8) + 2*cos(2*pi*300*n2*Ts2) ...

+ cos(2*pi*400*n2*Ts2 + pi/4);

mag1 = abs(fft(x1));

mag2 = abs(fft(x2));

The results are shown in the following graphs. When we take 100 samples of
signal x at 1000 samples per second, we get the spectral plot shown in Figure 6.8.

x(t) = 3 cos(2π200t − 7π/8) + cos(2π300t) + 2 cos(2π400t + π/4)

It shows what happens when the analysis frequencies happen to match up nicely
with the frequencies present in the signal. The second figure represents the same
signal, only with the number of samples N , and the sampling frequency fs changed
to 99 samples at 1013 samples per second, Figure 6.9. Since

fanalysis[m] = mfs/N,

changing either (or both) of these parameters affects the analysis frequencies used
in the DFT. For the second figure, the analysis frequencies do not match up with
the frequencies of the signal, so we see the spectral content spread across ALL
frequencies. The signal has not changed, but our view of the frequency information

The Fourier Transform 213

has. A trained individual would interpret the second figure as if it were the first
figure, however.

0 10 20 30 40 50 60 70 80 90 100
0

50

100

150

200

frequency spectrum (m), freqs = m*1000/100

DFT leakage: 3cos(2pi200t − 7pi/8) + 2cos(2pi300t) + cos(2pi400t + pi/4)

Figure 6.8: Frequency content appears at exact analysis frequencies.

0 10 20 30 40 50 60 70 80 90 100
0

20

40

60

80

100

120

frequency spectrum (m), freqs = m*1013/99

Figure 6.9: Frequency content appears spread out over analysis frequencies.

A window is a way of modifying the input signal so that there are no sudden
jumps (discontinuities) in it. Even if you do not use a window function, when you
sample a signal, you impose a rectangular window function on it [11]. In other
words, the input is considered 0 for all values before you start sampling and all
values after you stop. The sudden jumps (discontinuities) show up in the frequency
response as the sinc function. Leakage occurs when the analysis frequencies do not

214 DSP Using MATLAB and Wavelets

land on the actual frequencies present. This means that the actual information
“leaks” into other DFT output bins; it shows up as other frequencies. Windowing
reduces the sidelobes of the sinc function (of the Continuous Fourier Transform, or
CFT for short), which in turn decreases the effect of leakage, since the DFT is a
sampled version of the continuous Fourier transform [11].

In other words, looking at the CFT of a signal component (i.e., a single sinusoid),
we see the sinc function. Looking at the CFT of a windowed version of the same
signal, we see a sinc function with lower sidelobe levels (though a wider main lobe).
If we sample the CFT, we might be lucky and sample it right at the point between
sidelobes, so we have many zeros and a single spike. Realistically, our samples
will land where we have one or two spikes, and several nonzero values, due to the
sidelobes. The lower these sidelobes, the better our DFT indicates the frequencies
that are actually present.

6.9 Harmonics and Fourier Transform

Harmonics and the Fourier transform are closely linked. Harmonics refers to the
use of sinusoids related by a fundamental frequency f0, that is, adding sinusoids of
frequencies f0, 2f0, 3f0, etc.

The following program demonstrates harmonics. Its objective is to approximate
a triangle wave with a sum of sinusoids. When we run it, we see that the approxi-
mation gets better and better as more sinusoids are added. We use a fundamental
frequency of 1 Hz. After creating signal x as a triangle wave, the program finds
the DFT of it using the fft command in MATLAB. Next, it finds the magnitudes
and phases for all of the sinusoids corresponding to the DFT results. Finally, the
program shows the sum of the sinusoids, pausing briefly between iterations of the
loop to show the progress. Essentially, this performs the inverse DFT. Figure 6.10
shows what the progress looks like about one-sixth of the way through (the solid line
is the original signal, and the sum of sinusoids is shown as a dash-dot line). Running
the program to completion shows that the final approximation appears directly over
top of the original signal.

%

% Show how the DFT function can represent a triangle wave

%

% first, make a triangle wave

for i=1:20

x(i) = i;

The Fourier Transform 215

0 10 20 30 40 50 60 70 80 90
0

2

4

6

8

10

12

14

16

18

20

Figure 6.10: Approximating a triangle wave with sinusoids.

end

k=20;

for i=21:40

k=k-1;

x(i) = k;

end

for i=41:60

x(i) = i-40;

end

k=20;

for i=61:80

k=k-1;

x(i) = k;

end

% OK, now we have the triangle wave as signal x

% Find the DFT of it, and scale the result.

% In other words, represent signal x as a sum of sinusoids

[y] = fft(x);

% Scale the result, so that it is the same size as original

y = y / length(x);

% Convert to polar coordinates (magnitudes and phases)

mag = abs(y);

phi = angle(y);

216 DSP Using MATLAB and Wavelets

% Now, reconstruct it.

% This shows what the "sum of sinusoids" version looks like

t=0:(1/length(mag)):1;

f = 1; % Our fundamental frequency is 1, since time t=n*m/N

a = 0;

% Show it, adding another sinusoid each time

for k=0:length(mag)-1

a=a+mag(k+1)*(cos(2*pi*f*k*t+phi(k+1)) ...

+ j*sin(2*pi*f*k*t+phi(k+1)));

plot(1:length(x), x, 'r', 1:length(a), real(a), 'b-.')

pause(0.1);

end

The first thing this program does is create a signal to work with; a triangle
wave. Below, we show how the program works with a square wave. Note the final
for loop, enclosing plot and pause commands. We could use the “plotharmonic”
function instead, but this program shows the reconstruction of the original signal as
a step-by-step process.

Try the above program again, replacing the triangle wave above (program lines
5–22) with the following signals. It is a good idea to type clear all between them.

% Make a saw-tooth wave

for i=1:40

x(i) = i;

end

for i=41:80

x(i) = i-40;

end

% Now we have the saw-tooth wave as signal x

The progress of the approximation (one-sixth of the way) appears in Figure 6.11.
This figure also shows the result when all terms are used. Notice that the biggest
difference between the original and the approximation is the final point. The sinusoid
approximation anticipates that the pattern will repeat.

% Make a square wave

for i=1:20

x(i) = 0;

end

for i=21:40

The Fourier Transform 217

0 10 20 30 40 50 60 70 80 90
0

10

20

30

40
Adding the first one−sixth of sinusoids

0 10 20 30 40 50 60 70 80 90
0

10

20

30

40

50
Approximating with all sinusoids

Figure 6.11: Approximating a saw-tooth wave with sinusoids.

x(i) = 1;

end

for i=41:60

x(i) = 0;

end

for i=61:80

x(i) = 1;

end

% Now we have the square wave as signal x

Figure 6.12 shows the approximation of the previous square wave for one-sixth
of sinusoids as well as all sinusoids.

% Make a combination saw-tooth square wave

for i=1:40

x(i) = i;

end

for i=41:80

x(i) = 40; %i-40;

end

% repeat

for i=81:120

x(i) = i-80;

end

for i=121:160

218 DSP Using MATLAB and Wavelets

0 10 20 30 40 50 60 70 80 90
0

0.2

0.4

0.6

0.8

1
Adding the first one−sixth of sinusoids

0 10 20 30 40 50 60 70 80 90
−0.2

0

0.2

0.4

0.6

0.8

1

1.2
Approximating with all sinusoids

Figure 6.12: Approximating a square wave with sinusoids.

x(i) = 40; %40;

end

Figure 6.13 shows the approximation of a combined sawtooth-square wave for
use of one-sixth of the terms as well as all terms.

0 20 40 60 80 100 120 140 160 180
0

10

20

30

40
Adding the first one−sixth of sinusoids

0 20 40 60 80 100 120 140 160 180
0

10

20

30

40

50
Approximating with all sinusoids

Figure 6.13: Approximating a saw-tooth square wave with sinusoids.

The DFT versions of the signals are good, but they are not perfect. Discontinu-
ities in signals, such as the quick rise and quick fall of the square wave, are difficult
to represent in the frequency-domain. The simple impulse function demonstrates
this. It is very easy to represent in the time-domain:

The Fourier Transform 219

x(t) = 1, t = 0

x(t) = 0, otherwise.

But to represent this in the frequency-domain, we need an infinite number of
sinusoids.

Looking at this problem the other way, consider a simple sinusoid. In the
frequency-domain, it is easily represented as a spike of half-amplitude at the pos-
itive and negative frequencies (recall the inverse Euler’s formula). For all other
frequencies, it is zero. If we want to represent this same signal in time, we have
amplitude × cos(2πft + φ), which gives us a function value for any value of time.
Recording this signal’s value for every value of time would require writing down an
infinite number of terms.

This leads us to the observation that what is well-defined in the time-domain
is poorly represented in the frequency-domain. Also, what is easy to represent in
the frequency domain is difficult to represent in the time-domain. In effect, this is
Werner Heisenberg’s uncertainty principle [23].

6.10 Sampling Frequency and the Spectrum

As we saw with the DFT, when we sample a real signal at a rate of fs sam-
ples/second, the frequency magnitude plot from fs/2 to fs looks like a mirror image
of 0 to fs/2.

A real signal is made up of components such as cos(θ), or can be put in this form.
If it were a complex signal, there would be a j sin(θ) component, or something that

can be put in that form (such as a j cos(θ) component). Since cos(θ) = ejθ

2 + e−jθ

2 , a
real signal always has a positive and negative frequency component on the spectrum
plot.

Given cos(θ) = ejθ

2 + e−jθ

2 , and given Euler’s law:

ejθ = cos(θ) + j sin(θ)

ejθ =
ejθ

2
+
e−jθ

2
+ j sin(θ)

ejθ

2
=
e−jθ

2
+ j sin(θ)

220 DSP Using MATLAB and Wavelets

j sin(θ) =
ejθ

2
− e−jθ

2
.

This means that a complex signal has two frequency components as well. Of course,
if we had a signal such as cos(θ) + j sin(φ), we would have:

cos(θ) + j sin(φ) =
ejθ

2
+
e−jθ

2
+
ejφ

2
− e−jφ

2
.

If θ equals φ, then
cos(θ) + j sin(θ) = ejθ.

For this reason, we concern ourselves with only the first half of the frequency
response. When it looks like Figure 6.14, we say it is a lowpass filter. This means
that any low-frequency (slowly changing) components will remain after the signal
is operated on by the system. High-frequency components will be attenuated, or
“filtered out.” When it looks like Figure 6.15, we say it is a highpass filter. This
means that any high-frequency (quickly changing) components will remain after the
signal is operated on by the system.

fs
2

1

Figure 6.14: Frequency response of a lowpass filter.

The frequency response can be found by performing the DFT on a system’s
output when the impulse function is given as the input. This is also called the
“impulse response” of the system. To get a smoother view of the frequency response,
the impulse function can be padded with zeros.

fs
2

1

Figure 6.15: Frequency response of a highpass filter.

The more samples that are in the input function to the DFT, the better the
resolution of the output will be.

The Fourier Transform 221

Exercise:
w[n] = x[n] + x[n− 1]

y[n] = x[n] − x[n− 1]

Find and plot the frequency response for w and y.

First, assume x is a unit impulse function, and find w[n] and y[n]. Pad these
signals, say up to 128 values, so that the result will appear smooth. Next, find the
DFT (or FFT) of w and y, and plot the magnitudes of the result. The plots should
go to only half of the magnitudes, since the other half will be a mirror image.

6.11 Summary

This chapter covers the Fourier transform, inverse Fourier transform, and related
topics. The Fourier transform gives frequency (spectral) content of a signal. Given
any series of samples, we can create a sum of sinusoids that approximate it, if not
represent it exactly.

6.12 Review Questions

1. Suppose we were to sample a signal at fs = 5000 samples per second, and we
were to take 250 samples. After performing the DFT, we find that the first
10 results are as follows. What does this say about the frequencies that are
present in our input signal? (Assume that the other values for X[m] up to
m = 125 are 0.)

X[m] = 10, 0, 0, 2 + j4, 0, 1, 0, 0, 0, 2 − j4

2. An input sequence, x[n], has the Fourier transform performed on it. The result
is:
X[m] = {3, 2+j4, 1, 5-j3, 0, 0, 0, 5+j3, 1, 2-j4}.

a. Find (and plot) the magnitudes and phase angles.

b. You should notice some symmetry in your answer for the first part. What

222 DSP Using MATLAB and Wavelets

kind of symmetry do you expect (for the magnitudes), and why?

3. An input sequence, x[n], has the Fourier transform performed on it. The result
is:
X[m] = {3, 2+j4, 1, 5-j3, 0, 0, 0, 5+j3, 1, 2-j4}.
Given that x[n] was sampled at fs = 100 samples per second,

a. What is the DC component for this signal?
b. What frequencies are present in the input? Rank them in order according
to amplitude.
c. Using MATLAB, find x[n].

4. Given x2 = [0.4786,−1.0821,−0.5214,−0.5821,−0.2286, 1.3321, 0.7714, 0.8321];
find (using MATLAB) the FFT values Xmagnitude[m] and Xphase[m] for m =
0..7. Show all of your work. Also, graph your results.

5. Try a 5-tap FIR filter using the following random data. Note that this com-
mand will return different values every time.

x = round(rand(1, 20)*100)

Use h1[k] = {0.5, 0.5, 0.5, 0.5, 0.5}, and compare it to h2[k] = {0.1, 0.3, 0.5,
0.3, 0.1}, and h3[k] = {0.9, 0.7, 0.5, 0.7, 0.9}. Graph the filter’s output, and
its frequency magnitude response. Be sure to use the same x values. Make
one graph with the filters’ outputs, and another graph with the frequency
responses. Judging each set of filter coefficients as a lowpass filter, which is
best? Which is worst? Why?

6. Try an 8-tap FIR filter using the following random data. Note that this
command will return different values every time.

x = round(rand(1, 20)*100)

Use h1[k] = {0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5}, and compare it to h2[k] =
{0.1, 0.2, 0.3, 0.5, 0.5, 0.3, 0.2, 0.1}, and h3[k] = {0.9, 0.7, 0.6, 0.5, 0.5, 0.6,
0.7, 0.1}. Graph the filter’s output and its frequency magnitude response.
Be sure to use the same x values. Make one graph with the filters’ outputs,
and another graph with the frequency responses. Judging each set of filter
coefficients as a lowpass filter, which is best? Which is worst? Why?

The Fourier Transform 223

7. What is 3e−j2π0.2 in complex Cartesian coordinates? (That is, in the form
a+ jb.) Hint: use Euler’s formula.

8. What is 1.7 − j3.2 in complex polar coordinates? (That is, in the form rejφ.)
Hint: use the magnitude and angle calculations from Chapter 1, “Introduc-
tion.”

