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Preface

Theoretical analysis and computational modeling are important tools for
characterizing what nervous systems do, determining how they function,
and understanding why they operate in particular ways. Neuroscience
encompasses approaches ranging from molecular and cellular studies to
human psychophysics and psychology. Theoretical neuroscience encour-
ages cross-talk among these sub-disciplines by constructing compact rep-
resentations of what has been learned, building bridges between different
levels of description, and identifying unifying concepts and principles. In
this book, we present the basic methods used for these purposes and dis-
cuss examples in which theoretical approaches have yielded insight into
nervous system function.

The questions what, how, and why are addressed by descriptive, mecha-
nistic, and interpretive models, each of which we discuss in the following
chapters. Descriptive models summarize large amounts of experimental descriptive models
data compactly yet accurately, thereby characterizing what neurons and
neural circuits do. These models may be based loosely on biophysical,
anatomical, and physiological findings, but their primary purpose is to de-
scribe phenomena not to explain them. Mechanistic models, on the other mechanistic models
hand, address the question of how nervous systems operate on the ba-
sis of known anatomy, physiology, and circuitry. Such models often form
a bridge between descriptive models couched at different levels. Inter-
pretive models use computational and information-theoretic principles to interpretive models
explore the behavioral and cognitive significance of various aspects of ner-
vous system function, addressing the question of why nervous system op-
erate as they do.

It is often difficul to identify the appropriate level of modeling for a partic-
ular problem. A frequent mistake is to assume that a more detailed model
is necessarily superior. Because models act as bridges between levels of
understanding, they must be detailed enough to make contact with the
lower level yet simple enough to yield clear results at the higher level.
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Organization and Approach

This book is organized into three parts on the basis of general themes.
Part I (chapters 1-4) is devoted to the coding of information by action
potentials and the represention of information by populations of neurons
with selective responses. Modeling of neurons and neural circuits on the
basis of cellular and synaptic biophysics is presented in part II (chapters
5-7). The role of plasticity in development and learning is discussed in
Part III (chapters 8-10). With the exception of chapters 5 and 6, which
jointly cover neuronal modeling, the chapters are largely independent and
can be selected and ordered in a variety of ways for a one- or two-semester
course at either the undergraduate or graduate level.

Although we provide some background material, readers without previ-
ous exposure to neuroscience should refer to a neuroscience textbook such
as Kandel, Schwartz & Jessell (2000); Nicholls, Martin & Wallace (1992);
Bear, Connors & Paradiso (1996); Shepherd (1997); Zigmond, Bloom, Lan-
dis & Squire (1998); Purves et al (2000).

Theoretical neuroscience is based on the belief that methods of mathemat-
ics, physics, and computer science can elucidate nervous system function.
Unfortunately, mathematics can sometimes seem more of an obstacle than
an aid to understanding. We have not hesitated to employ the level of
analysis needed to be precise and rigorous. At times, this may stretch the
tolerance of some of our readers. We encourage such readers to consult
the mathematical appendix, which provides a brief review of most of the
mathematical methods used in the text, but also to persevere and attempt
to understand the implications and consequences of a difficult derivation
even if its steps are unclear.

Theoretical neuroscience, like any skill, can only be mastered with prac-
tice. We have provided exercises for this purpose on the web site for this
book and urge the reader to do them. In addition, it will be highly in-
structive for the reader to construct the models discussed in the text and
explore their properties beyond what we have been able to do in the avail-
able space.

Referencing

In order to maintain the flow of the text, we have kept citations within
the chapters to a minimum. Each chapter ends with an annotated bib-
liography containing suggestions for further reading (which are denoted
by a bold font), information about work cited within the chapter, and ref-
erences to related studies. We concentrate on introducing the basic tools
of computational neuroscience and discussing applications that we think
best help the reader to understand and appreciate them. This means that
a number of systems where computational approaches have been applied
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with significant success are not discussed. References given in the anno-
tated bibliographies lead the reader toward such applications. In most
of the areas we cover, many people have provided critical insights. The
books and review articles in the further reading category provide more
comprehensive references to work that we apologetically have failed to
cite.
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Chapter 1

Neural Encoding I: Firing
Rates and Spike Statistics

1.1 Introduction

Neurons are remarkable among the cells of the body in their ability to
propagate signals rapidly over large distances. They do this by generat-
ing characteristic electrical pulses called action potentials, or more simply
spikes, that can travel down nerve fibers. Neurons represent and transmit
information by firing sequences of spikes in various temporal patterns.
The study of neural coding, which is the subject of the first four chapters of
this book, involves measuring and characterizing how stimulus attributes,
such as light or sound intensity, or motor actions, such as the direction of
an arm movement, are represented by action potentials.

The link between stimulus and response can be studied from two opposite
points of view. Neural encoding, the subject of chapters 1 and 2, refers to
the map from stimulus to response. For example, we can catalogue how
neurons respond to a wide variety of stimuli, and then construct models
that attempt to predict responses to other stimuli. Neural decoding refers
to the reverse map, from response to stimulus, and the challenge is to re-
construct a stimulus, or certain aspects of that stimulus, from the spike
sequences it evokes. Neural decoding is discussed in chapter 3. In chapter
4, we consider how the amount of information encoded by sequences of
action potentials can be quantified and maximized. Before embarking on
this tour of neural coding, we briefly review how neurons generate their
responses and discuss how neural activity is recorded. The biophysical
mechanisms underlying neural responses and action potential generation
are treated in greater detail in chapters 5 and 6.
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2 Neural Encoding I: Firing Rates and Spike Statistics

Properties of Neurons

Neurons are highly specialized for generating electrical signals in response
to chemical and other inputs, and transmitting them to other cells. Some
important morphological specializations, seen in the drawings of figure
1.1, are the dendrites that receive inputs from other neurons and the axon
that carries the neuronal output to other cells. The elaborate branching
structure of the dendritic tree allows a neuron to receive inputs from many
other neurons through synaptic connections. The cortical pyramidal neu-
ron of figure 1.1A and the cortical interneuron of figure 1.1C each receives
thousands of synaptic inputs, and for the cerebellar Purkinje cell of figure
1.1B the number is over 100,000. Figure 1.1 does not show the full extent ofaxons and

dendrites the axons of these neurons. Axons from single neurons can traverse large
fractions of the brain or, in some cases, of the entire body. In the mouse
brain, it has been estimated that cortical neurons typically send out a total
of about 40 mm of axon and have approximately 4 mm of total dendritic
cable in their branched dendritic trees. The axon makes an average of 180
synaptic connections with other neurons per mm of length while the den-
dritic tree receives, on average, 2 synaptic inputs per µm. The cell body or
soma of a typical cortical neurons ranges in diameter from about 10 to 50
µm.

Along with these morphological features, neurons have physiological
specializations. Most prominent among these are a wide variety of
membrane-spanning ion channels that allow ions, predominantly sodiumion channels
(Na+), potassium (K+), calcium (Ca2+), and chloride (Cl−), to move into
and out of the cell. Ion channels control the flow of ions across the cell
membrane by opening and closing in response to voltage changes and
both internal and external signals.

The electrical signal of relevance to the nervous system is the difference
in electrical potential between the interior of a neuron and the surround-
ing extracellular medium. Under resting conditions, the potential inside
the cell membrane of a neuron is about -70 mV relative to that of the sur-
rounding bath (which is conventionally defined to be 0 mV), and the cell
is said to be polarized. Ion pumps located in the cell membrane maintainmembrane

potential concentration gradients that support this membrane potential difference.
For example, Na+ is much more concentrated outside a neuron than in-
side it, and the concentration of K+ is significantly higher inside the neu-
ron than in the extracellular medium. Ions thus flow into and out of a
cell due to both voltage and concentration gradients. Current, in the form
of positively charged ions flowing out of the cell (or negatively charged
ions flowing into the cell) through open channels makes the membrane
potential more negative, a process called hyperpolarization. Current flow-hyperpolarization

and depolarization ing into the cell changes the membrane potential to less negative or even
positive values. This is called depolarization.

If a neuron is depolarized sufficiently to raise the membrane potential
above a threshold level, a positive feedback process is initiated, and the
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Figure 1.1: Diagrams of three neurons. A) A cortical pyramidal cell. These are
the primary excitatory neurons of the cerebral cortex. Pyramidal cell axons branch
locally, sending axon collaterals to synapse with nearby neurons, and also project
more distally to conduct signals to other parts of the brain and nervous system.
B) A Purkinje cell of the cerebellum. Purkinje cell axons transmit the output of
the cerebellar cortex. C) A stellate cell of the cerebral cortex. Stellate cells are
one of a large class of cells that provide inhibitory input to the neurons of the
cerebral cortex. To give an idea of scale, these figures are magnified about 150 fold.
(Drawings from Cajal, 1911; figure from Dowling, 1992.)

neuron generates an action potential. An action potential is a roughly 100 action potential
mV fluctuation in the electrical potential across the cell membrane that
lasts for about 1 ms (figure 1.2A). Action potential generation also depends
on the recent history of cell firing. For a few milliseconds just after an
action potential has been fired, it may be virtually impossible to initiate
another spike. This is called the absolute refractory period. For a longer
interval known as the relative refractory period, lasting up to tens of mil- refractory period
liseconds after a spike, it is more difficult to evoke an action potential.
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4 Neural Encoding I: Firing Rates and Spike Statistics
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Figure 1.2: A) An action potential recorded intracellularly from a cultured rat
neocortical pyramidal cell. B) Diagram of a synapse. The axon terminal or bou-
ton is at the end of the axonal branch seen entering from the top of the figure.
It is filled with synaptic vesicles containing the neurotransmitter that is released
when an action potential arrives from the presynaptic neuron. Transmitter crosses
the synaptic cleft and binds to receptors on the dendritic spine, a roughly 1 µm
long process extending from the dendrite of the postsynaptic neuron. Excitatory
synapses onto cortical pyramidal cells form on dendritic spines as shown here.
Other synapses form directly on the dendrites, axon, or soma of the postsynaptic
neuron. (A recorded by L. Rutherford in the laboratory of G. Turrigiano. B adapted
from Kandel et al., 1991.)

Action potentials are of great importance because they are the only form
of membrane potential fluctuation that can propagate over large distances.
Subthreshold potential fluctuations are severely attenuated over distances
of 1 mm or less. Action potentials, on the other hand, are regenerated
actively along axon processes and can travel rapidly over large distances
without attenuation.

Axons terminate at synapses where the voltage transient of the action po-synapse
tential opens ion channels producing an influx of Ca2+ that leads to the
release of a neurotransmitter (figure 1.2B). The neurotransmitter binds to
receptors at the signal receiving or postsynaptic side of the synapse caus-
ing ion-conducting channels to open. Depending on the nature of the ion
flow, the synapses can have either an excitatory, depolarizing, or an in-
hibitory, typically hyperpolarizing, effect on the postsynaptic neuron.

Recording Neuronal Responses

Figure 1.3 illustrates intracellular and extracellular methods for recording
neuronal responses electrically (they can also be recorded optically). Mem-
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Figure 1.3: Three simulated recordings from a neuron. The top trace represents
a recording from an intracellular electrode connected to the soma of the neuron.
The height of the action potentials has been clipped to show the subthreshold
membrane potential more clearly. The time scale is such that the action poten-
tial trajectory cannot be resolved. The bottom trace represents a recording from an
intracellular electrode connected to the axon some distance away from the soma.
The full height of the action potentials is indicated in this trace. The middle trace
is a simulated extracellular recording. Action potentials appear as roughly equal
positive and negative potential fluctuations with an amplitude of around 0.1 mV.
This is roughly 1000 times smaller than the approximately 0.1 V amplitude of an
intracellularly recorded action potential. (Neuron drawing is the same as figure
1.1A.)

brane potentials are measured intracellularly by connecting to a neuron a
hollow glass electrode filled with a conducting electrolyte, and comparing
the potential it records to that of a reference electrode placed in the extra-
cellular medium. Intracellular recordings are made either with sharp elec- sharp and patch

electrodestrodes inserted through the membrane into the cell, or patch electrodes
that have broader tips and are sealed tightly to the surface of the mem-
brane. After the patch electrode seals, the membrane beneath its tip is
either broken or perforated providing electrical contact with the interior
of the cell. The top trace in figure 1.3 is a schematic of an intracellular
recording from the soma of a neuron firing a sequence of action potentials.
The recording shows rapid spikes riding on top of a more slowly varying
subthreshold potential. The bottom trace in figure 1.3 is a schematic of an
intracellular recording made some distance out on the axon of the neu-
ron. These traces are drawings, not real recordings, and such intracellular
axon recordings, although possible in some types of cells, are difficult and
rare. Intracellular recordings from the soma are the norm, but intracel-
lular dendritic recordings are increasingly being made as well. The sub-
threshold membrane potential waveform, apparent in the soma record-
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6 Neural Encoding I: Firing Rates and Spike Statistics

ing, is completely absent on the axon due to attenuation, but the action
potential sequence in the two recordings is the same. This illustrates the
important point that spikes, but not subthreshold potentials, propagate
regeneratively down axons.

The middle trace in figure 1.3 illustrates an idealized, noise-free extracel-
lular recording. Here an electrode is placed near a neuron but it does not
penetrate the cell membrane. Such recordings can reveal the action poten-extracellular

electrodes tials fired by a neuron, but not its subthreshold membrane potentials. Ex-
tracellular recordings are typically used for in vivo experiments, especially
those involving behaving animals. Intracellular recordings are sometimes
made in vivo, but are more commonly used for in vitro preparations such
as experiments on slices of neural tissue. The responses studied in this
chapter are action potential sequences that can be recorded either intra- or
extra-cellularly.

From Stimulus to Response

Characterizing the relationship between stimulus and response is difficult
because neuronal responses are complex and variable. Neurons typically
respond by producing complex spike sequences that reflect both the intrin-
sic dynamics of the neuron and the temporal characteristics of the stimu-
lus. Isolating features of the response that encode changes in the stimulus
can be difficult, especially if the time scale for these changes is of the same
order as the average interval between spikes. Neural responses can vary
from trial to trial even when the same stimulus is presented repeatedly.
There are many potential sources of this variability including variable lev-
els of arousal and attention, randomness associated with various biophys-
ical processes that affect neuronal firing, and the effects of other cognitive
processes taking place during a trial. The complexity and trial-to-trial vari-
ability of action potential sequences make it unlikely that we can describe
and predict the timing of each spike deterministically. Instead, we seek a
model that can account for the probabilities that different spike sequences
are evoked by a specific stimulus.

Typically, many neurons respond to a given stimulus, and stimulus fea-
tures are therefore encoded by the activities of large neural populations. In
studying population coding, we must examine not only the firing patterns
of individual neurons, but also the relationships of these firing patterns to
each other across the population of responding cells.

In this chapter, we introduce the firing rate and spike-train correlation
functions, which are basic measures of spiking probability and statistics.
We also discuss spike-triggered averaging, a method for relating action
potentials to the stimulus that evoked them. Finally, we present basic
stochastic descriptions of spike generation, the homogeneous and inho-
mogeneous Poisson models, and discuss a simple model of neural re-
sponses to which they lead. In chapter 2, we continue our discussion of
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1.2 Spike Trains and Firing Rates 7

neural encoding by showing how reverse-correlation methods are used
to construct estimates of firing rates in response to time-varying stimuli.
These methods have been applied extensively to neural responses in the
retina, lateral geniculate nucleus (LGN) of the thalamus, and primary vi-
sual cortex, and we review the resulting models.

1.2 Spike Trains and Firing Rates

Action potentials convey information through their timing. Although ac-
tion potentials can vary somewhat in duration, amplitude, and shape,
they are typically treated in neural encoding studies as identical stereo-
typed events. If we ignore the brief duration of an action potential (about
1 ms), an action potential sequence can be characterized simply by a list
of the times when spikes occurred. For n spikes, we denote these times
by ti with i = 1,2, . . . , n. The trial during which the spikes are recorded
is taken to start at time zero and end at time T, so 0 ≤ ti ≤ T for all i. The
spike sequence can also be represented as a sum of infinitesimally narrow,
idealized spikes in the form of Dirac δ functions (see the Mathematical
Appendix),

ρ(t) =
n∑

i=1

δ(t − ti) . (1.1)

We call ρ(t) the neural response function and use it to re-express sums neural response
function ρ(t)over spikes as integrals over time. For example, for any well-behaved

function h(t), we can write

n∑
i=1

h(t − ti) =
∫ T

0
dτ h(τ)ρ(t − τ) (1.2)

where the integral is over the duration of the trial. The equality follows
from the basic defining equation for a δ function, δ function∫

dτ δ(t − τ)h(τ) = h(t) , (1.3)

provided that the limits of the integral surround the point t (if they do not,
the integral is zero).

Because the sequence of action potentials generated by a given stimulus
typically varies from trial to trial, neuronal responses are typically treated
probabilistically, and characterized, for example, by the probability that a
spike occurs at a particular time during a trial. Spike times are continuous
variables, and, as a result, the probability for a spike to occur at any pre-
cisely specified time is actually zero. To get a nonzero value, we must ask
for the probability that a spike occurs within a specified interval, for exam-
ple the interval between times t and t + 
t. For small 
t, the probability
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8 Neural Encoding I: Firing Rates and Spike Statistics

of a spike falling in this interval is proportional to the size of the interval,

t. A similar relation holds for any continuous stochastic variable z. The
probability that z takes a value between z and z +
z, for small 
z (strictly
speaking, as 
z → 0) is equal to p[z]
z, where p[z] is called a probability
density. Throughout this book, we use the notation P[ ] to denote proba-
bilities and p[ ] to denote probability densities. We use the bracket nota-
tion, P[ ], generically for the probability of something occurring and also
to denote a specific probability function. In the latter case, the notation
P( ) would be more appropriate, but switching between square brackets
and parentheses is confusing, so the reader will have to use the context to
distinguish between these cases.

For the particular case of spike occurrences, we can write the probability
that a spike occurs between times t and t + 
t, for small 
t as p[t]
t,
where p[t] is the single spike probability density. The probability density
for the occurrence of a spike is, by definition, the firing rate of the cell, and
we use the notation p[t] = r(t) for this important quantity.firing rate r(t)

The firing rate at time t, r(t), can be estimated by determining the frac-
tion of trials with a given stimulus on which a spike occurred between the
times t and t + 
t. For sufficiently small 
t and sufficiently large num-
bers of trials, this fraction provides a good estimate of r(t), as guaranteed
by the law of large numbers. The fraction of trials on which a spike oc-
curs can be computed from the neural response function averaged over
trials. We use angle brackets, 〈 〉, to denote averages over trials that usetrial average 〈 〉
the same stimulus, so that 〈z〉 for any quantity z is the sum of the values
of z obtained from many trials involving the same stimulus, divided by
the number of trials. The trial-averaged neural response function is thus
denoted by 〈ρ(t)〉. In any integral expression such as equation 1.2, the
neural response function generates a contribution whenever a spike oc-
curs. If instead, we use the trial-average response function in equation 1.2,
this generates contributions proportional to the fraction of trials on which
a spike occurred. Because of the relationship between this fraction and the
firing rate, we find that

r(t)
t =
∫ t+
t

t
dτ 〈ρ(τ)〉 . (1.4)

Furthermore, within any well-behaved integral, we can replace the trial-
averaged neural response function by the single-spike probability density
or firing rate and write∫

dτ h(τ) 〈ρ(t − τ)〉 =
∫

dτ h(τ)r(t − τ) (1.5)

for any function h. This establishes an important relationship between the
average neural response function and the firing rate; the two are equiva-
lent when used inside integrals.

We call the single-spike probability density, r(t), the firing rate. However,
this term is conventionally applied to more than one quantity. A differ-
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1.2 Spike Trains and Firing Rates 9

ent firing rate, which we call the spike-count rate, is obtained simply by
counting the number of action potentials that appear during a trial and
dividing by the duration of the trial. Unlike r(t), the spike-count rate can
be determined for a single trial. We denote the spike-count rate by r (as spike-count rate r
opposed to r(t) for the single-spike probability density) where

r = n
T

= 1
T

∫ T

0
dτ ρ(τ) . (1.6)

The second equality follows from the fact that
∫

dτ ρ(τ) = n and indicates
that the spike-count rate is the time average of the neural response func-
tion over the duration of the trial.

In the same way that the response function ρ(t) can be averaged across
trials to give the firing rate r(t), the spike-count firing rate can be averaged
over trials yielding a quantity that we refer to as the average firing rate.
This is denoted by 〈r〉 and given by trial average

rate 〈r〉
〈r〉 = 〈n〉

T
= 1

T

∫ T

0
dτ 〈ρ(τ)〉 = 1

T

∫ T

0
dt r(t) . (1.7)

The third equality follows from the equivalence of the firing rate and the
trial averaged neural response function within integrals, equation 1.5. The
average firing rate is equal to both the time average of r(t) and the trial
average of the spike-count rate r. Of course, a spike-count rate and average
firing rate can be defined by counting spikes over any time period, not
necessarily the entire duration of a trial.

The term firing rate is commonly used for all three quantities, r(t), r, and
〈r〉. We use the terms firing rate, spike-count rate, and average firing rate
for r(t), r, and 〈r〉 respectively whenever possible but, when this becomes
too cumbersome, the different mathematical notations serve to distinguish
them. In particular, we distinguish the spike-count rate r from the single-
spike probability density r(t) by using a different font and by including
the time argument in the latter expression (unless r(t) is independent of
time). The difference between the fonts is rather subtle, but the context
should make it clear which rate is being used.

Measuring Firing Rates

The firing rate r(t), being a probability density, cannot be determined ex-
actly from the limited amounts of data available from a finite number of
trials. In addition, there is no unique way to approximate r(t). A discus-
sion of the different methods allows us to introduce the concept of a linear
filter and kernel that will be used extensively in the following chapters.
We illustrate these methods by extracting firing rates from a single trial,
but more accurate results could be obtained by averaging over multiple
trials.
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10 Neural Encoding I: Firing Rates and Spike Statistics

Figure 1.4 compares a number of ways of approximating r(t) from a spike
sequence. Figure 1.4A shows three seconds of the response of a neuron
in the inferior temporal cortex recorded while a monkey watched a video.
Neurons in the region of cortex where this recording was made are selec-
tive for complex visual images including faces. A simple way of extracting
an estimate of the firing rate from a spike train like this is to divide time
into discrete bins of duration 
t, count the number of spikes within each
bin, and divide by 
t. Figure 1.4B shows the approximate firing rate com-
puted using this procedure with a bin size of 100 ms. Note that, with
this procedure, the quantity being computed is really the spike-count fir-
ing rate over the duration of the bin, and that the firing rate r(t) within a
given bin is approximated by this spike-count rate.
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Figure 1.4: Firing rates approximated by different procedures. A) A spike train
from a neuron in the inferior temporal cortex of a monkey recorded while that
animal watched a video on a monitor under free viewing conditions. B) Discrete-
time firing rate obtained by binning time and counting spikes with 
t = 100 ms.
C) Approximate firing rate determined by sliding a rectangular window function
along the spike train with 
t = 100 ms. D) Approximate firing rate computed
using a Gaussian window function with σt = 100 ms. E) Approximate firing rate
for an α function window with 1/α = 100 ms. (Data from Baddeley et al., 1997.)

The binning and counting procedure illustrated in figure 1.4B generates
an estimate of the firing rate that is a piecewise constant function of time,
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1.2 Spike Trains and Firing Rates 11

resembling a histogram. Because spike counts can only take integer val-
ues, the rates computed by this method will always be integer multiples
of 1/
t, and thus they take discrete values. Decreasing the value of 
t
increases temporal resolution by providing an estimate of the firing rate at
more finely spaced intervals of time, but at the expense of decreasing the
resolution for distinguishing different rates. One way to avoid quantized
firing rates is to vary the bin size so that a fixed number of spikes appears
in each bin. The firing rate is then approximated as that fixed number of
spikes divided by the variable bin width.

Counting spikes in preassigned bins produces a firing-rate estimate that
depends not only on the size of the time bins, but also on their place-
ment. To avoid the arbitrariness in the placement of bins, we can instead
take a single bin or window of duration 
t and slide it along the spike
train, counting the number of spikes within the window at each location.
The jagged curve in figure 1.4C shows the result of sliding a 100 ms wide
window along the spike train. The firing rate approximated in this way
can be expressed as the sum of a window function over the times ti for
i = 1,2, . . . , n when the n spikes in a particular sequence occurred,

rapprox(t) =
n∑

i=1

w(t − ti) (1.8)

the window function

w(t) =
{

1/
t if − 
t/2 ≤ t < 
t/2
0 otherwise .

(1.9)

Use of a sliding window avoids the arbitrariness of bin placement and
produces a rate that might appear to have a better temporal resolution.
However, it must be remembered that the rates obtained at times sepa-
rated by less than one bin width are correlated because they involve some
of the same spikes.

The sum in equation 1.8 can also be written as the integral of the window
function times the neural response function (see equation 1.2),

rapprox(t) =
∫ ∞

−∞
dτ w(τ)ρ(t − τ) . (1.10)

The integral in equation 1.10 is called a linear filter, and the window func- linear filter
and kerneltion w, also called the filter kernel, specifies how the neural response func-

tion evaluated at time t − τ contributes to the firing rate approximated at
time t.

The jagged appearance of the curve in figure 1.4C is caused by the discon-
tinuous shape of the window function used. An approximate firing rate
can be computed using virtually any window function w(τ) that goes to
zero outside a region near τ = 0 provided that its time integral is equal
to one. For example, instead of the rectangular window function used in
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12 Neural Encoding I: Firing Rates and Spike Statistics

figure 1.4C, w(τ) can be a Gaussian

w(τ) = 1√
2πσw

exp
(
− τ2

2σ2
w

)
. (1.11)

In this case, σw controls the temporal resolution of the resulting rate, play-
ing a role analogous to 
t. A continuous window function like the Gaus-
sian used in equation 1.8 generates a firing-rate estimate that is a smooth
function of time (figure 1.4D).

Both the rectangular and Gaussian window functions approximate the fir-
ing rate at any time using spikes fired both before and after that time. A
postsynaptic neuron monitoring the spike train of a presynaptic cell only
has access to spikes that have previously occurred. An approximation of
the firing rate at time t that only depends on spikes fired before t can be
calculated using a window function that vanishes when its argument is
negative. Such a window function or kernel is called causal. One com-
monly used form is the α function

w(τ) = [α2τ exp(−ατ)]+ (1.12)

where 1/α determines the temporal resolution of the resulting firing-rate
estimate. The notation [z]+ for any quantity z stands for the half-wavehalf-wave

rectification [ ]+ rectification operation,

[z]+ =
{

z if z ≥ 0
0 otherwise .

(1.13)

Figure 1.4E shows the firing rate approximated by such a causal scheme.
Note that this rate tends to peak later than the rate computed in figure
1.4D using a temporally symmetric window function.

Tuning Curves

Neuronal responses typically depend on many different properties of a
stimulus. In this chapter, we characterize responses of neurons as func-
tions of just one of the stimulus attributes to which they may be sensitive.stimulus s
The value of this single attribute is denoted by s. In chapter 2, we consider
more complete stimulus characterizations.

A simple way of characterizing the response of a neuron is to count the
number of action potentials fired during the presentation of a stimulus.
This approach is most appropriate if the parameter s characterizing the
stimulus is held constant over the trial. If we average the number of action
potentials fired over (in theory, an infinite number of) trials and divide by
the trial duration, we obtain the average firing rate, 〈r〉 defined in equation
1.7. The average firing rate written as a function of s, 〈r〉 = f (s), is called
the neural response tuning curve. The functional form of a tuning curveresponse tuning

curve f (s) depends on the parameter s used to describe the stimulus. The precise
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1.2 Spike Trains and Firing Rates 13

choice of parameters used as arguments of tuning curve functions is par-
tially a matter of convention. Because tuning curves correspond to firing
rates, they are measured in units of spikes per second or Hz.

Figure 1.5A shows extracellular recordings of a neuron in the primary vi- primary visual
cortex V1sual cortex (V1) of a monkey. While these recordings were being made, a

bar of light was moved at different angles across the region of the visual
field where the cell responded to light. This region is called the recep-
tive field of the neuron. Note that the number of action potentials fired
depends on the angle of orientation of the bar. The same effect is shown
in figure 1.5B in the form of a response tuning curve, which indicates how
the average firing rate depends on the orientation of the light bar stimulus.
The data have been fit by a response tuning curve of the form
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Figure 1.5: A) Recordings from a neuron in the primary visual cortex of a monkey.
A bar of light was moved across the receptive field of the cell at different angles.
The diagrams to the left of each trace show the receptive field as a dashed square
and the light source as a black bar. The bidirectional motion of the light bar is
indicated by the arrows. The angle of the bar indicates the orientation of the light
bar for the corresponding trace. B) Average firing rate of a cat V1 neuron plotted as
a function of the orientation angle of the light bar stimulus. The curve is a fit using
the function 1.14 with parameters rmax = 52.14 Hz, smax = 0◦, and σ f = 14.73◦. (A
from Hubel and Wiesel, 1968; adapted from Wandell, 1995. B data points from
Henry et al., 1974).)

Gaussian
tuning curve

f (s) = rmax exp

(
−1

2

(
s − smax

σ f

)2
)

(1.14)

where s is the orientation angle of the light bar, smax is the orientation angle
evoking the maximum average response rate rmax (with s − smax taken to
lie in the range between -90◦ and +90◦), and σ f determines the width of
the tuning curve. The neuron responds most vigorously when a stimulus
having s = smax is presented, so we call smax the preferred orientation angle
of the neuron.
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14 Neural Encoding I: Firing Rates and Spike Statistics

Response tuning curves can be used to characterize the selectivities of neu-
rons in visual and other sensory areas to a variety of stimulus parameters.
Tuning curves can also be measured for neurons in motor areas, in which
case the average firing rate is expressed as a function of one or more pa-
rameters describing a motor action. Figure 1.6A shows an example of ex-
tracellular recordings from a neuron in primary motor cortex in a monkeyprimary motor

cortex M1 that has been trained to reach in different directions. The stacked traces for
each direction are rasters showing the results of five different trials. The
horizontal axis in these traces represents time, and each mark indicates
an action potential. The firing pattern of the cell, in particular the rate at
which spikes are generated, is correlated with the direction of arm move-
ment and thus encodes information about this aspect of the motor action.
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Figure 1.6: A) Recordings from the primary motor cortex of a monkey performing
an arm reaching task. The hand of the monkey started from a central resting loca-
tion and reaching movements were made in the directions indicated by the arrows.
The rasters for each direction show action potentials fired on five trials. B) Aver-
age firing rate plotted as a function of the direction in which the monkey moved
its arm. The curve is a fit using the function 1.15 with parameters rmax = 54.69
Hz, r0 = 32.34 Hz, and smax = 161.25◦. (A adapted from Georgopoulos et al., 1982
which is also the source of the data points in B.)

Figure 1.6B shows the response tuning curve of an M1 neuron plotted as
a function of the direction of arm movement. Here the data points havecosine

tuning curve been fit by a tuning curve of the form

f (s) = r0 + (rmax − r0) cos(s − smax) (1.15)

where s is the reaching angle of the arm, smax is the reaching angle associ-
ated with the maximum response rmax, and r0 is an offset or background
firing rate that shifts the tuning curve up from the zero axis. The minimum
firing rate predicted by equation 1.15 is 2r0 − rmax. For the neuron of figure
1.6B, this is a positive quantity, but for some M1 neurons 2r0 − rmax < 0,
and the function 1.15 is negative over some range of angles. Because fir-
ing rates cannot be negative, the cosine tuning curve must be half-wave
rectified in these cases (see equation 1.13),

f (s) = [r0 + (rmax − r0) cos(s − smax)]+ . (1.16)
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1.2 Spike Trains and Firing Rates 15

Figure 1.7B shows how the average firing rate of a V1 neuron depends on
retinal disparity and illustrates another important type of tuning curve.
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Figure 1.7: A) Definition of retinal disparity. The grey lines show the location on
each retina of an object located nearer than the fixation point F. The image from
the fixation point falls at the fovea in each eye, the small pit where the black lines
meet the retina. The image from a nearer object falls to the left of the fovea in the
left eye and to the right of the fovea in the right eye. For objects further away than
the fixation point, this would be reversed. The disparity angle s is indicated in
the figure. B) Average firing rate of a cat V1 neuron responding to separate bars
of light illuminating each eye plotted as a function of the disparity. Because this
neuron fires for positive s values it is called a far-tuned cell. The curve is a fit using
the function 1.17 with parameters rmax = 36.03 Hz, s1/2 = 0.036◦, and 
s = 0.029◦.
(A adapted from Wandell, 1995; B data points from Poggio and Talbot, 1981.)

Retinal disparity is a difference in the retinal location of an image between
the two eyes (figure 1.7A). Some neurons in area V1 are sensitive to dispar-
ity, representing an early stage in the representation of viewing distance.
In figure 1.7B, the data points have been fit with a tuning curve called a sigmoidal

tuning curvelogistic or sigmoidal function,

f (s) = rmax

1 + exp
(
(s1/2 − s)/
s

) . (1.17)

In this case, s is the retinal disparity, the parameter s1/2 is the disparity
that produces a firing rate half as big as the maximum value rmax, and 
s

controls how quickly the firing rate increases as a function of s. If 
s is
negative, the firing rate is a monotonically decreasing function of s rather
than a monotonically increasing function as in figure 1.7B.

Spike-Count Variability

Tuning curves allow us to predict the average firing rate, but they do not
describe how the spike-count firing rate r varies about its mean value
〈r〉 = f (s) from trial to trial. While the map from stimulus to average
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16 Neural Encoding I: Firing Rates and Spike Statistics

response may be described deterministically, it is likely that single-trial
responses such as spike-count rates can only be modeled in a probabilis-
tic manner. For example, r values can be generated from a probability
distribution with mean f (s). The trial-to-trial deviation of r from f (s) is
considered to be noise, and such models are often called noise models.
The standard deviation for the noise distribution can either be indepen-
dent of f (s), in which case the variability is called additive noise, or it can
depend on f (s). Multiplicative noise corresponds to having the standard
deviation proportional to f (s).

Response variability extends beyond the level of spike counts to the entire
temporal pattern of action potentials. Later in this chapter, we discuss a
model of the neuronal response that uses a stochastic spike generator to
produce response variability. This approach takes a deterministic estimate
of the firing rate, rest(t), and produces a stochastic spiking pattern from
it. The spike generator produces variable numbers and patterns of action
potentials, even if the same estimated firing rate is used on each trial.

1.3 What Makes a Neuron Fire?

Response tuning curves characterize the average response of a neuron to
a given stimulus. We now consider the complementary procedure of av-
eraging the stimuli that produce a given response. To average stimuli in
this way, we need to specify what fixed response we will use to ‘trigger’
the average. The most obvious choice is the firing of an action potential.
Thus, we ask, “what on average did the stimulus do before an action po-
tential was fired?” The resulting quantity, called the spike-triggered aver-
age stimulus, provides a useful way of characterizing neuronal selectivity.
Spike-triggered averages are computed using stimuli characterized by a
parameter s(t) that varies over time. Before beginning our discussion of
spike triggering, we describe some features of such stimuli.

Describing the Stimulus

Neurons responding to sensory stimuli face the difficult task of encoding
parameters that can vary over an enormous dynamic range. For example,
photoreceptors in the retina can respond to single photons or can oper-
ate in bright light with an influx of millions of photons per second. To
deal with such wide-ranging stimuli, sensory neurons often respond most
strongly to rapid changes in stimulus properties and are relatively insen-
sitive to steady-state levels. Steady-state responses are highly compressed
functions of stimulus intensity, typically with logarithmic or weak power-
law dependences. This compression has an interesting psychophysical
correlate. Weber measured how different the intensity of two stimuli had
to be for them to be reliably discriminated, the ‘just noticeable’ difference
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1.3 What Makes a Neuron Fire? 17


s. He found that, for a given stimulus, 
s was proportional to the magni-
tude of the stimulus s, so that 
s/s was constant. This relationship is called
Weber’s law. Fechner suggested that noticeable differences set the scale for Weber’s law
perceived stimulus intensities. Integrating Weber’s law, this means that
the perceived intensity of a stimulus of absolute intensity s varies as log s,
and this is known as Fechner’s law. Fechner’s law

Sensory systems make numerous adaptations, using a variety of mecha-
nisms, to adjust to the average level of stimulus intensity. When a stimu-
lus generates such adaptation, the relationship between stimulus and re-
sponse is often studied in a potentially simpler regime by describing re-
sponses to fluctuations about a mean stimulus level. In this case, s(t) is
defined so that its time average over the duration of a trial is zero. We

∫ T
0 dt s(t)/T = 0

frequently assume that this condition,
∫ T

0 dt s(t)/T = 0.

Our analysis of neural encoding involves two different types of averages:
averages over repeated trials that employ the same stimulus, which we
denote by angle brackets, and averages over different stimuli. We could
introduce a second notation for averages over stimuli, but this can be
avoided when using time-dependent stimuli. Instead of presenting a num-
ber of different stimuli and averaging over them, we can string together all stimulus and time

averagesof the stimuli we wish to consider into a single time-dependent stimulus
sequence and average over time. Thus, stimulus averages are replaced by
time averages.

Although a response recorded over a trial only depends on the values
taken by s(t) during that trial, some of the mathematical analyses presents
in this chapter and in chapter 2 are simplified if we define the stimulus at
other times as well. It is convenient if integrals involving the stimulus are
time-translationally invariant so that for any function h and time interval
τ ∫ T

0
dt h(s(t + τ)) =

∫ T+τ

τ

dt h(s(t)) =
∫ T

0
dt h(s(t)) . (1.18)

To assure the last equality, we define the stimulus outside the time limits periodic stimulus
of the trial by the relation s(T + τ) = s(τ) for any τ, thereby making the
stimulus periodic.

The Spike-Triggered Average

The spike-triggered average stimulus, C(τ), is the average value of the
stimulus a time interval τ before a spike is fired. In other words, for a
spike occurring at time ti, we determine s(ti − τ), and then we sum over
all n spikes in a trial, i = 1,2, . . . , n and divide the total by n. In addition,
we average over trials. Thus, spike-triggered

average C(τ)

C(τ) =
〈

1
n

n∑
i=1

s(ti − τ)

〉
≈ 1

〈n〉

〈
n∑

i=1

s(ti − τ)

〉
. (1.19)
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18 Neural Encoding I: Firing Rates and Spike Statistics

The approximate equality of the last expression follows from the fact that,
if n is large, the total number of spikes on each trial is well approximated
by the average number of spikes per trial, n ≈ 〈n〉. We make use of this ap-
proximation because it allows us to relate the spike-triggered average to
other quantities commonly used to characterize the relationship between
stimulus and response (see below). Figure 1.8 provides a schematic de-
scription of the computation of the spike-triggered average. Each time
a spike appears, the stimulus in a time window preceding the spike is
recorded. Although the range of τ values in equation 1.19 is unlimited, the
response is typically affected only by the stimulus in a window a few hun-
dred milliseconds wide immediately preceding a spike. More precisely,
we expect C(τ) to approach zero for positive τ values larger than the cor-
relation time between the stimulus and the response. If the stimulus has
no temporal correlations with itself, we also expect for C(τ) to be zero for
τ < 0, because the response of a neuron cannot depend on future stimuli.
In practice, the stimulus is only recorded over a finite time period as indi-
cated by the shaded areas in figure 1.8. The recorded stimuli for all spikes
are then summed and the procedure is repeated over multiple trials.

time

spike-triggered average

s

�

Figure 1.8: Schematic of the procedure for computing the spike-triggered aver-
age stimulus. Each grey rectangle contains the stimulus prior to one of the spikes
shown along the time axis. These are averaged to produce the waveform shown at
the lower right, which is the average stimulus before a spike. The stimulus in this
example is a piecewise constant function of time. (Adapted from Rieke et al. 1997.)

The spike-triggered average stimulus can be expressed as an integral of
the stimulus times the neural response function of equation 1.1. If we re-
place the sum over spikes by an integral, as in equation 1.2, and use the
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1.3 What Makes a Neuron Fire? 19

approximate expression for C(τ) in equation 1.19, we find

C(τ) = 1
〈n〉

∫ T

0
dt 〈ρ(t)〉 s(t − τ) = 1

〈n〉
∫ T

0
dt r(t)s(t − τ) . (1.20)

The second equality is due to the equivalence of 〈ρ(t)〉 and r(t) within
integrals. Equation 1.20 allows us to relate the spike-triggered average to
the correlation function of the firing rate and the stimulus.

Correlation functions are a useful way of determining how two quantities
that vary over time are related to each other. The two quantities being
related are evaluated at different times, one at time t and the other at time firing-rate stimulus

correlation function
Qrs

t + τ. The correlation function is then obtained by averaging their product
over all t values, and it is a function of τ. The correlation function of the
firing rate and the stimulus is

Qrs(τ) = 1
T

∫ T

0
dt r(t)s(t + τ) . (1.21)

By comparing equations 1.20 and 1.21, we find that

C(τ) = 1
〈r〉 Qrs(−τ) (1.22)

where 〈r〉 = 〈n〉/T is the average firing rate over the set of trials. Because
the argument of the correlation function in equation 1.22 is −τ, the spike-
triggered average stimulus is often called the reverse correlation function. reverse correlation

functionIt is proportional to the correlation of the firing rate with the stimulus at
preceding times.

The spike-triggered average stimulus is widely used to study and charac-
terize neural responses. Because C(τ) is the average value of the stimulus
a time τ before a spike, larger values of τ represent times further in the
past relative to the time of the triggering spike. For this reason, we plot
spike-triggered averages with the time axis going backward compared to
the normal convention. This allows the average spike-triggering stimulus
to be read off from the plots in the usual left to right order.

Figure 1.9 shows the spike-triggered average stimulus for a neuron in
the electrosensory lateral-line lobe of the weakly electric fish Eigenmania.
Weakly electric fish generate oscillating electric fields from an internal
electric organ. Distortions in the electric field produced by nearby objects
are detected by sensors spread over the skin of the fish. The lateral-line
lobe acts as a relay station along the processing pathway for electrosensory
signals. Fluctuating electrical potentials, such as that shown in the upper
left trace of figure 1.9 elicit responses from electrosensory lateral-line lobe
neurons, as seen in the lower left trace. The spike-triggered average stim-
ulus, plotted at the right, indicates that, on average, the electric potential
made a positive upswing followed by a large negative deviation prior to a
spike being fired by this neuron.
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Figure 1.9: The spike-triggered average stimulus for a neuron of the electrosen-
sory lateral-line lobe of the weakly electric fish Eigenmania. The upper left trace
is the potential used to generate the electric field to which this neuron is sensi-
tive. The evoked spike train is plotted below the stimulus potential. The plot on
the right is the spike-triggered average stimulus. (Adapted from Gabbiani et al.,
1996.)

The results obtained by spike-triggered averaging depend on the partic-
ular set of stimuli used during an experiment. How should this set be
chosen? In chapter 2, we show that there are certain advantages to using a
stimulus that is uncorrelated from one time to the next, a white-noise stim-
ulus. A heuristic argument supporting the use of such stimuli is that, in
asking what makes a neuron fire, we may want to sample its responses
to stimulus fluctuations at all frequencies with equal weight (i.e. equal
power), and this is one of the properties of white noise stimuli. In prac-
tice, white-noise stimuli can only be generated with equal power up to a
finite frequency cutoff, but neurons only respond to stimulus fluctuations
within a limited frequency range anyway. Figure 1.9 is based on a such an
approximate white-noise stimulus. The power in a signal as a function of
its frequency is called the power spectrum or power spectral density, and
white noise has a flat power spectrum.

White-Noise Stimuli

The defining characteristic of a white-noise stimulus is that its value at
any one time is uncorrelated with its value at any other time. This con-
dition can be expressed using the stimulus-stimulus correlation function,
also called the stimulus autocorrelation, which is defined by analogy with
equation 1.21 as

Qss(τ) = 1
T

∫ T

0
dt s(t)s(t + τ) . (1.23)

Just as a correlation function provides information about the temporalstimulus
autocorrelation
function Qss

relationship between two quantities, an autocorrelation function tells us
about how a quantity at one time is related to itself, evaluated at another
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1.3 What Makes a Neuron Fire? 21

time. For white-noise, the stimulus autocorrelation function is zero in the
range −T/2 < τ < T/2 except when τ = 0, and over this range

Qss(τ) = σ2
s δ(τ) . (1.24)

The constant σs, which has the units of the stimulus times the square root
of the unit of time, determines the magnitude of the variability of the
white-noise. In appendix A, we show that equation 1.24 is equivalent to
the statement that white-noise has equal power at all frequencies.

No physical system can generate noise that is white to arbitrarily high fre-
quencies. Approximations of white-noise that are missing high-frequency
components can be used provided that the missing frequencies are well
above the sensitivity of the neuron under investigation. To approximate
white-noise, we consider times that are integer multiples of a basic unit of
duration 
t, that is, times t = m
t for m = 1,2, . . . , M where M
t = T.
The function s(t) is then constructed as a discrete sequence of stimulus
values. This produces a step-like stimulus waveform, like the one that
appears in figure 1.8, with a constant stimulus value sm presented during
time bin m. In terms of the discrete-time values sm, the condition that the
stimulus is uncorrelated is

1
M

M∑
m=1

smsm+p =
{

σ2
s /
t if p = 0

0 otherwise .
(1.25)

The factor of 1/
t on the right side of this equation reproduces the δ func-
tion of equation 1.24 in the limit 
t → 0. For approximate white-noise,
the autocorrelation function is zero except for a region around τ = 0 with
width of order 
t. Similarly, the binning of time into discrete intervals of
size 
t means that the noise generated only has a flat power spectrum up
to frequencies of order 1/(2
t).

An approximation to white-noise can be generated by choosing each sm

independently from a probability density with mean zero and variance
σ2

s /
t. Any reasonable probability density function satisfying these two
conditions can be used to generate the stimulus values within each time
bin. A special class of white-noise stimuli, Gaussian white-noise, results
when the probability density used to generate the sm values is a Gaussian
function. The factor of 1/
t in the variance indicates that the variabil-
ity must be increased as the time bins gets smaller. A number of other
schemes for efficiently generating approximately white-noise stimuli are
discussed in the references at the end of this chapter.

Multiple-Spike-Triggered Averages and Spike-Triggered
Correlations

In addition to triggering on single spikes, stimulus averages can be com-
puted by triggering on various combinations of spikes. Figure 1.10 shows
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Figure 1.10: Single- and multiple-spike-triggered average stimuli for a blowfly H1
neuron responding to a moving visual image. A) The average stimulus velocity
triggered on a single spike. B) The average stimulus velocity before two spikes
with a separation of 10 ± 1 ms. C) The average stimulus before two spikes with
a separation of 5 ± 1 ms. (Data from de Ruyter van Steveninck and Bialek, 1988;
figure adapted from Rieke et al., 1997.)

some examples of two-spike triggers. These results come from a study of
the H1 movement-sensitive visual neuron of the blowfly. The H1 neuron
detects the motion of visual images during flight to generate and guide sta-
bilizing motor corrections. It responds to motion of the visual scene. In the
experiments, the fly is held fixed while a visual image with a time-varying
velocity s(t) is presented. Figure 1.10A, showing the spike-triggered aver-
age stimulus, indicates that this neuron responds to positive angular ve-
locities after alatency of about 15 ms. Figure 1.10B is the average stimu-
lus prior to the appearance of two spikes separated by 10 ± 1 ms. This
two-spike average is approximately equal to the sum of two single-spike-
triggered average stimuli displaced from each other by 10 ms. Thus, for
10 ms separations, two spikes occurring together tell us no more as a two-
spike unit than they would individually. This result changes when shorter
separations are considered. Figure 1.10C shows the average stimulus trig-
gered on two spikes separated by 5 ± 1 ms. The average stimulus trig-
gered on a pair of spikes separated by 5 ms is not the same as the sum of
the average stimuli for each spike separately.

Spike-triggered averages of other stimulus-dependent quantities can pro-
vide additional insight into neural encoding, for example spike-triggered
average autocorrelation functions. Obviously spike-triggered averages of
higher-order stimulus combinations can be considered as well.

1.4 Spike Train Statistics

A complete description of the stochastic relationship between a stimulus
and response would require us to know the probabilities corresponding to
every sequence of spikes that can be evoked by the stimulus. The prob-

Peter Dayan and L.F. Abbott Draft: December 17, 2000



1.4 Spike Train Statistics 23

ability of a spike sequence appearing is proportional to the probability
density of spike times, p[t1, t2, . . . , tn]. In other words, the probability
P[t1, t2, . . . , tn] that a sequence of n spikes occurs with spike i falling be-
tween times ti and ti +
t for i = 1,2, . . . , n is given in terms of this density
by the relation P[t1, t2, . . . , tn] = p[t1, t2, . . . , tn](
t)n.

Unfortunately, the number of possible spike sequences is typically so large
that determining or even roughly estimating all of their probabilities of
occurrence is impossible. Instead, we must rely on some statistical model
that allows us to estimate the probability of an arbitrary spike sequence
occurring, given our knowledge of the responses actually recorded. The
firing rate r(t) determines the probability of firing a single spike in a small
interval around the time t, but r(t) is not, in general, sufficient information
to predict the probabilities of spike sequences. For example, the probabil-
ity of two spike occurring together in a sequence is not necessarily equal
to the product of the probabilities that they occur individually, because
the presence of one spike may effect the occurrence of the other. If, how-
ever, the probability of generating an action potential is independent of
the presence or timing of other spikes, i.e. if the spikes are statistically in-
dependent, the firing rate is all that is needed to compute the probabilities
for all possible action potential sequences.

A stochastic process that generates a sequence of events, such as action point process
potentials, is called a point process. In general, the probability of an event
occurring at any given time could depend on the entire history of preced-
ing events. If this dependence extends only to the immediately preceding
event, so that the intervals between successive events are independent,
the point process is called a renewal process. If there is no dependence renewal process
at all on preceding events, so that the events themselves are statistically
independent, we have a Poisson process. The Poisson process provides
an extremely useful approximation of stochastic neuronal firing. To make Poisson proccess
the presentation easier to follow we separate two cases, the homogeneous
Poisson process, for which the firing rate is constant over time, and the
inhomogeneous Poisson process, which involves a time-dependent firing
rate.

The Homogeneous Poisson Process

We denote the firing rate for a homogeneous Poisson process by r(t) = r
because it is independent of time. When the firing rate is constant, the
Poisson process generates every sequence of n spikes with equal probabil-
ity. As a result, the probability P[t1, t2, . . . , tn] can be expressed in terms
of another probability function PT[n] which is the probability that any se-
quence of n spikes occurs within a trial of duration T. Assuming that the
spike times are ordered, so that 0 ≤ t1 ≤ t2 ≤ . . . ≤ tn ≤ T, the relationship
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24 Neural Encoding I: Firing Rates and Spike Statistics

is

P[t1, t2, . . . , tn] = n!PT[n]
(


t
T

)n

. (1.26)

This relationship is a special case of equation 1.37 derived below.

To compute PT[n], we divide the time T into M bins of size 
t = T/M.
We can assume that 
t is small enough so that we never get two spikes
within any one bin because, at the end of the calculation, we take the limit

t → 0. PT[n] is the product of three factors: the probability of generat-
ing n spikes within a specified set of the M bins, the probability of not
generating spikes in the remaining M − n bins, and a combinatorial factor
equal to the number of ways of putting n spikes into M bins. The proba-
bility of a spike occurring in one specific bin is r
t, and the probability of
n spikes appearing in n specific bins is (r
t)n. Similarly the probability of
not having a spike in a given bin is (1 − r
t), so the probability of having
the remaining M − n bins without any spikes in them is (1 − r
t)M−n. Fi-
nally, the number of ways of putting n spikes into M bins is given by the
binomial coefficient M!/(M − n)!n!. Putting all these factors together we
find,

PT[n] = lim

t→0

M!
(M − n)!n!

(r
t)n(1 − r
t)M−n . (1.27)

To take the limit we note that as 
t → 0, M grows without bound because
M
t = T. Because n is fixed, we can write M − n ≈ M = T/
t. Using this
approximation and defining ε = −r
t, we find that

lim

t→0

(1 − r
t)M−n = lim
ε→0

(
(1 + ε)1/ε

)−rT = e−rT = exp(−rT) (1.28)

because limε→0(1 + ε)1/ε is, by definition, e = exp(1). For large M,
M!/(M − n)! ≈ Mn = (T/
t)n so

PT[n] = (rT)n

n!
exp(−rT) . (1.29)

This is called the Poisson distribution. The probabilities PT[n], for a fewPoisson
distribution n values, are plotted as a function of rT in figure 1.11A. Note that, as

n increases, the probability reaches its maximum at larger T values and
that large n values are more likely than small ones for large T. Figure
1.11B shows the probabilities of various numbers of spikes occurring when
the average number of spikes is 10. For large rT, which corresponds to a
large expected number of spikes, the Poisson distribution approaches a
Gaussian distribution with mean and variance equal to rT. Figure 1.11B
shows that this approximation is already quite good for rT = 10.

We can compute the variance of spike counts produced by a Poisson pro-
cess from the probabilities 1.29. For spikes counted over an interval of
duration T, the variance of the spike count (derived in appendix B) is

σ2
n = 〈n2〉 − 〈n〉2 = rT . (1.30)
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Figure 1.11: A) The probability that a homogeneous Poisson process generates n
spikes in a time period of duration T plotted for n = 0, 1, 2, and 5. The probability
is plotted as function of the rate times the duration of the interval, rT, to make the
plot applicable for any rate. B) The probability of finding n spikes during a time
period for which rT = 10 (dots) compared with a Gaussian distribution with mean
and variance equal to 10 (line).

Thus the variance and mean of the spike count are equal. The ratio of these
two quantities, σ2

n/〈n〉, is called the Fano factor and takes the value one forFano factor
a homogeneous Poisson process, independent of the time interval T.

The probability density of time intervals between adjacent spikes is called
the interspike interval distribution, and it is a useful statistic for character- interspike interval

distributionizing spiking patterns. Suppose that a spike occurs at a time ti for some
value of i. The probability of a homogeneous Poisson process generating
the next spike somewhere in the interval ti + τ ≤ ti+1 < ti + τ + 
t, for
small 
t, is the probability that no spike is fired for a time τ, times the
probability, r
t, of generating a spike within the following small interval

t. From equation 1.29, with n = 0, the probability of not firing a spike
for period τ is exp(−rτ), so the probability of an interspike interval falling
between τ and τ + 
t is

P[τ ≤ ti+1 − ti < τ + 
t] = r
t exp(−rτ) . (1.31)

The probability density of interspike intervals is, by definition, this prob-
ability with the factor 
t removed. Thus, the interspike interval distribu-
tion for a homogeneous Poisson spike train is an exponential. The most
likely interspike intervals are short ones, and long intervals have a proba-
bility that falls exponentially as a function of their duration.

From the interspike interval distribution of a homogeneous Poisson spike
train, we can compute the mean interspike interval,

〈τ〉 =
∫ ∞

0
dτ τr exp(−rτ) = 1

r
, (1.32)
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26 Neural Encoding I: Firing Rates and Spike Statistics

and the variance of the interspike intervals,

σ2
τ =

∫ ∞

0
dτ τ2r exp(−rτ) − 〈τ〉2 = 1

r2 . (1.33)

The ratio of the standard deviation to the mean is called the coefficient ofcoefficient of
variation CV variation

CV = στ

〈τ〉 , (1.34)

and it takes the value one for a homogeneous Poisson process. This is
a necessary, though not sufficient, condition to identify a Poisson spike
train. Recall that the Fano factor for a Poisson process is also one. For
any renewal process, the Fano factor evaluated over long time intervals
approaches the value C2

V .

The Spike-Train Autocorrelation Function

The spike interval distribution measures the distribution of times between
successive action potentials in a train. It is useful to generalize this con-
cept and determine the distribution of times between any two spikes in
a train. This is called the spike-train autocorrelation function, and it is
particularly useful for detecting patterns in spike trains, most notably os-
cillations. The spike-train autocorrelation function is the autocorrelation
of the neural response function of equation 1.1 with its average over time
and trials subtracted out. The time average of the neural response func-
tion, from equation 1.6, is the spike-count rate r, and the trial average ofspike-train

autocorrelation
function Qρρ

this quantity is 〈r〉 = 〈n〉/T. Thus, the spike-train autocorrelation function
is

Qρρ(τ) = 1
T

∫ T

0
dt 〈(ρ(t) − 〈r〉) (ρ(t + τ) − 〈r〉)〉 . (1.35)

Because the average is subtracted from the neural response function in this
expression, Qρρ should really be called an autocovariance, not an autocor-
relation, but in practice it isn’t.

The spike-train autocorrelation function is constructed from data in the
form of a histogram by dividing time into bins. The value of the histogram
for a bin labeled by a positive or negative integer m is computed by deter-
mining the number of the times that any two spikes in the train are sepa-
rated by a time interval lying between (m − 1/2)
t and (m + 1/2)
t with

t the bin size. This includes all pairings, even between a spike and it-
self. We call this number Nm. If the intervals between the n2 spike pairs in
the train were uniformly distributed over the range from zero to T, there
would be n2
t/T intervals in each bin. This uniform term is removed
from the autocorrelation histogram by subtracting n2
t/T from Nm for
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all m. The spike-train autocorrelation histogram is then defined by divid-
ing the resulting numbers by T, so the value of the histogram in bin m is
Hm = Nm/T − n2
t/T2. For small bin sizes, the m = 0 term in the his-
togram counts the average number of spikes, that is Nm = 〈n〉 and, in the
limit 
t → 0, H0 = 〈n〉/T is the average firing rate 〈r〉. Because other bins
have Hm of order 
t, the large m = 0 term is often removed from histogram
plots. The spike-train autocorrelation function is defined as Hm/
t in the
limit 
t → 0, and it has the units of a firing rate squared. In this limit, the
m = 0 bin becomes a δ function, H0/
t → 〈r〉δ(τ).

As we have seen, the distribution of interspike intervals for adjacent spikes
in a homogeneous Poisson spike train is exponential (equation 1.31). By
contrast, the intervals between any two spikes (not necessarily adjacent)
in such a train are uniformly distributed. As a result, the subtraction pro-
cedure outlined above gives Hm =0 for all bins except for the m=0 bin that
contains the contribution of the zero intervals between spikes and them-
selves. The autocorrelation function for a Poisson spike train generated at
a constant rate 〈r〉 = r is thus

Qρρ(τ) = rδ(τ) . (1.36)

time (ms)time (ms)

B

0 0 +80+80-80 -80

A

Figure 1.12: Autocorrelation and cross-correlation histograms for neurons in the
primary visual cortex of a cat. A) Autocorrelation histograms for neurons recorded
in the right (upper) and left (lower) hemispheres show a periodic pattern indicat-
ing oscillations at about 40 Hz. The lower diagram indicates stronger oscillations
in the left hemisphere. B) The cross-correlation histogram for these two neurons
shows that their oscillation are synchronized with little time delay. (Adapted from
Engel et al., 1991.)

A cross-correlation function between spike trains from two different neu-
rons can be defined by analogy with the autocorrelation function by de- cross-correlation

functiontermining the distribution of intervals between pairs of spikes, one taken
from each train. The spike-train autocorrelation function is an even func-
tion of τ, Qρρ(τ) = Qρρ(−τ), but the cross-correlation function is not neces-
sarily even. A peak at zero interval in a cross-correlation function signifies
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that the two neurons are firing synchronously. Asymmetric shifts in this
peak away from zero result from fixed delays between the firing of the two
neurons, and they indicate non-synchronous but phase-locked firing. Pe-
riodic structure in either an autocorrelation or cross-correlation function
or histogram indicates that the firing probability oscillates. Such periodic
structure is seen in the histograms of figure 1.12 showing 40 Hz oscillations
in neurons of cat primary visual cortex that are roughly synchronized be-
tween the two cerebral hemispheres.

The Inhomogeneous Poisson Process

When the firing rate depends on time, different sequences of n spikes oc-
cur with different probabilities, and p[t1, t2, . . . , tn] depends on the spike
times. Because spikes are still generated independently by an inhomoge-
neous Poisson process, their times only enter into p[t1, t2, . . . , tn] through
the time-dependent firing rate r(t). Assuming, as before, that the spike
times are ordered, 0 ≤ t1 ≤ t2 ≤ . . . ≤ tn ≤ T, the probability density for n
spike times (derived in appendix C) is

p[t1, t2, . . . , tn] = exp
(
−

∫ T

0
dt r(t)

) n∏
i=1

r(ti) . (1.37)

This result applies if the spike times have been written in temporal order.
If the spike times are not ordered, so that, for example, we are interested
in the probability density for any spike occurring at the time t1, not neces-
sarily the first spike, these expression should be divided by a factor of n!
to account for the number of different possible orderings of spike times.

The Poisson Spike Generator

Spike sequences can be simulated by using some estimate of the firing
rate, rest(t), predicted from knowledge of the stimulus, to drive a Poisson
process. A simple procedure for generating spikes in a computer program
is based on the fact that the estimated probability of firing a spike dur-
ing a short interval of duration 
t is rest(t)
t. The program progresses
through time in small steps of size 
t and generates, at each time step,
a random number xrand chosen uniformly in the range between zero and
one. If rest(t)
t > xrand at that time step, a spike is fired, otherwise it is not.

For a constant firing rate, it is faster to compute spike times ti for i =
1,2, . . . iteratively by generating interspike intervals from an exponential
probability density (equation 1.31). If xrand is uniformly distributed over
the range between zero and one, the negative of its logarithm is exponen-
tially distributed. Thus, we can generate spike times iteratively from the
formula ti+1 = ti − ln(xrand)/r. Unlike, the algorithm discussed in the pre-
vious paragraph, this method only works for constant firing rates. How-
ever, it can be extended to time-dependent rates by using a procedure
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called the rejection sampling or spike thinning. The thinning technique
requires a bound rmax on the estimated firing rate such that rest(t) ≤ rmax at
all times. We first generate a spike sequence corresponding to the constant
rate rmax by iterating the rule ti+1 = ti − ln(xrand)/rmax. The spikes are then
thinned by generating another xrand for each i and removing the spike at
time ti from the train if rest(ti)/rmax < xrand. If rest(ti)/rmax ≥ xrand, spike
i is retained. Thinning corrects for the difference between the estimated
time-dependent rate and the maximum rate.
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Figure 1.13: Model of an orientation selective neuron. The orientation angle (top
panel) was increased from an initial value of -40◦ by 10◦ every 100 ms. The firing
rate (middle panel) was used to generate spikes (bottom panel) using a Poisson
spike generator. The bottom panel shows spike sequences generated on five dif-
ferent trials.

Figure 1.13 shows an example of a model of an orientation selective V1
neuron constructed in this way. In this model, the estimated firing rate is
determined from the response tuning curve of figure 1.5B,

rest(t) = f (s(t)) = rmax exp

(
−1

2

(
s(t) − smax

σ f

)2
)

. (1.38)

This is an extremely simplified model of response dynamics, because the
firing rate at any given time depends only on the value of the stimulus at
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that instant of time and not on its recent history. Models that allow for
a dependence of firing rate on stimulus history are discussed in chapter
2. In figure 1.13, the orientation angle increases in a sequence of steps.
The firing rate follows these changes, and the Poisson process generates
an irregular firing pattern that reflects the underlying rate but varies from
trial to trial.

Certain features of neuronal firing violate the independence assumption
that forms the basis of the Poisson model, at least if a constant firing rate
is used. We have already noted that there are periods of time, the abso-
lute and relative refractory periods, following the generation of an action
potential when the probability of a spike occurring is greatly or somewhat
reduced. Refractory effects can be incorporated into a Poisson model of
spike generation by setting the firing rate to zero immediately after a spike
is fired, and then letting it return to its predicted value according to some
dynamic rule such as an exponential recovery.

Comparison with Data

The Poisson process is simple and useful, but does it match data on neural
response variability? To address this question we examine Fano factors,
interspike interval distributions, and coefficients of variation.
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Figure 1.14: Variability of MT neurons in alert macaque monkeys responding
to moving visual images. A) Variance of the spike counts for a 256 ms counting
period plotted against the mean spike count. The straight line is the prediction of
the Poisson model. Data are from 94 cells recorded under a variety of stimulus
conditions. B) The multiplier A in the relationship between spike-count variance
and mean as a function of the duration of the counting interval. C) The exponent
B in this relation as a function of the duration of the counting interval. (Adapted
from O’Keefe et al., 1997.)

The Fano factor describes the relationship between the mean spike count
over a given interval and the spike-count variance. Mean spike counts 〈n〉
and variances σ2

n from a wide variety of neuronal recordings have been
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fit to the equation σ2
n = A〈n〉B, and the multiplier A and exponent B have

been determined. The values of both A and B typically lie between 1.0 and
1.5. Because the Poisson model predicts A = B = 1, this indicates that the
data show a higher degree of variability than the Poisson model would
predict. However, many of these experiments involve anesthetized ani-
mals, and it is known that response variability is higher in anesthetized
than in alert animals. Figure 1.14 shows their data for spike-count means
and variances extracted from recordings of MT neurons in alert macaque
monkeys using a number of different stimuli. The MT (medial temporal)
area is a visual region of the primate cortex where many neurons are sen- area MT
sitive to image motion. The individual means and variances are scattered
in figure 1.14A, but they cluster around the diagonal which is the Poisson
prediction. Similarly, the results show A and B values close to one, the
Poisson values (figure 1.14B). Of course, many neural responses cannot be
described by Poisson statistics, but it is reassuring to see a case where the
Poisson model seems a reasonable approximation.

Interspike interval distributions are extracted from data as interspike in-
terval histograms by counting the number of intervals falling in discrete
time bins. Figure 1.15A presents an example, from the responses of a non-
bursting cell in area MT of a monkey in response to images consisting of
randomly moving dots with a variable amount of coherence imposed on
their motion (see chapter 3 for a more detailed description). For interspike
intervals longer than about 10 ms, the shape of this histogram is expo-
nential, in agreement with equation 1.31. However, for shorter intervals
there is a discrepancy. While the homogeneous Poisson distribution 1.31
rises for short interspike intervals, the experimental results show a rapid
decrease. This is the result of refractoriness making short interspike inter-
vals less likely than the Poisson model would predict. Data on interspike gamma

distributionintervals can be fit more accurately by a gamma distribution,

p[τ] = r(rτ)k exp(−rτ)

k!
(1.39)

with k > 0 than by the exponential distribution of the Poisson model,
which has k = 0.

Figure 1.15B shows a theoretical histogram obtained by adding a refrac-
tory period of a variable duration to the Poisson model. Spiking was pro-
hibited during the refractory period, and then was described once again
by a homogeneous Poisson process. The refractory period was randomly
chosen from a Gaussian distribution with a mean of 5 ms and a standard
deviation of 2 ms (only random draws that generated positive refractory
periods were included). The resulting interspike interval distribution of
figure 1.15B agrees quite well with the data.

CV values extracted from the spike trains of neurons recorded in monkeys
from area MT and primary visual cortex (V1) are shown in figure 1.16. The
data have been divided into groups based on the mean interspike interval,
and the coefficient of variation is plotted as a function of this mean inter-
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Figure 1.15: (A) Interspike interval distribution from an MT neuron responding
to a moving random dot image. The probability of interspike intervals falling into
the different bins, expressed as a percentage, is plotted against interspike interval.
B) Interspike interval histogram generated from a Poisson model with a stochastic
refractory period. (Adapted from Bair et al., 1994.)

val, equivalent to 1/〈r〉. Except for short mean interspike intervals, the
values are near one, although they tend to cluster slightly lower than one,
the Poisson value. The small CV values for short interspike intervals are
due to the refractory period. The solid curve is the prediction of a Poisson
model with refractoriness.
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Figure 1.16: Coefficients of variation for a large number of V1 and MT neurons
plotted as a function of mean interspike interval. The solid curve is the result of a
Poisson model with a refractory period. (Adapted from Softky and Koch, 1992.)

The Poisson model with refractoriness provides a reasonably good de-
scription of a significant amount of data, especially considering its sim-
plicity. However, there are cases when the accuracy in the timing and
numbers of spikes fired by a neuron is considerably higher than would
be implied by Poisson statistics. Furthermore, even when it successfully
describes data, the Poisson model does not provide a mechanistic explana-
tion of neuronal response variability. Spike generation, by itself, is highly
reliable in real neurons. Figure 1.17 compares the response of V1 cells to
constant current injection in vivo and in vitro. The in vitro response is a reg-
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ular and reproducible spike train (left panel). The same current injection

in vitro in vivo in vivo

20 mV

100 ms

current injection current injection visual stimulation

Figure 1.17: Intracellular recordings from cat V1 neurons. The left panel is the
response of a neuron in an in vitro slice preparation to constant current injection.
The center and right panels show recordings from neurons in vivo responding to
either injected current (center), or a moving visual image (right). (Adapted from
Holt et al., 1996.)

paradigm applied in vivo produces a highly irregular pattern of firing (cen-
ter panel) similar to the response to a moving bar stimulus (right panel).
Although some of the basic statistical properties of firing variability may
be captured by the Poisson model of spike generation, the spike generating
mechanism itself in real neurons is clearly not responsible for the variabil-
ity. We explore ideas about possible sources of spike-train variability in
chapter 5.

Some neurons fire action potentials in clusters or bursts of spikes that can-
not be described by a Poisson process with a fixed rate. Bursting can be
included in a Poisson model by allowing the firing rate to fluctuate to de-
scribe the high rate of firing during a burst. Sometimes the distribution of
bursts themselves can be described by a Poisson process (such a doubly
stochastic process is called a Cox process).

1.5 The Neural Code

The nature of the neural code is a topic of intense debate within the neuro-
science community. Much of the discussion has focused on whether neu-
rons use rate coding or temporal coding, often without a clear definition
of what these terms mean. We feel that the central issue in neural coding is
whether individual action potentials and individual neurons encode inde-
pendently of each other, or whether correlations between different spikes
and different neurons carry significant amounts of information. We there-
fore contrast independent-spike and independent-neuron codes with cor-
relation codes before addressing the issue of temporal coding.
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Independent-Spike, Independent-Neuron, and Correlation
Codes

The neural response, and its relation to the stimulus, is completely char-
acterized by the probability distribution of spike times as a function of
the stimulus. If spike generation can be described as an inhomogeneous
Poisson process, this probability distribution can be computed from the
time-dependent firing rate r(t) using equation 1.37. In this case, r(t) con-
tains all the information about the stimulus that can be extracted from the
spike train, and the neural code could reasonably be called a rate code.
Unfortunately, this definition does not agree with common usage. In-
stead, we will call a code based solely on the time-dependent firing rateindependent-spike

code an independent-spike code. This refers to the fact that the generation of
each spike is independent of all the other spikes in the train. If individ-
ual spikes do not encode independently of each other, we call the code a
correlation code, because correlations between spike times may carry ad-correlation code
ditional information. In reality, information is likely to be carried both by
individual spikes and through correlations, and some arbitrary dividing
line must be established to characterize the code. Identifying a correlation
code should require that a significant amount of information be carried by
correlations, say as much as is carried by the individual spikes.

A simple example of a correlation code would be if significant amounts
of information about a stimulus were carried by interspike intervals. In
this case, if we considered spike times individually, independently of each
other, we would miss the information carried by the intervals between
them. This is just one example of a correlation code. Information could be
carried by more complex relationships between spikes.

Independent-spike codes are much simpler to analyze than correlation
codes, and most work on neural coding assumes spike independence.
When careful studies have been done, it has been found that some in-
formation is carried by correlations between two or more spikes, but this
information is rarely larger than 10% of the information carried by spikes
considered independently. Of course, it is possible that, due to our igno-
rance of the ‘real’ neural code, we have not yet uncovered or examined the
types of correlations that are most significant for neural coding. Although
this is not impossible, we view it as unlikely and feel that the evidence for
independent-spike coding, at least as a fairly accurate approximation, is
quite convincing.

The discussion to this point has focused on information carried by single
neurons, but information is typically encoded by neuronal populations.
When we study population coding, we must consider whether individ-
ual neurons act independently, or whether correlations between different
neurons carry additional information. The analysis of population coding
is easiest if the response of each neuron is considered statistically inde-
pendent, and such independent-neuron coding is typically assumed inindependent-

neuron
code

the analysis of population codes (chapter 3). The independent-neuron
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hypothesis does not mean that the spike trains of different neurons are
not combined into an ensemble code. Rather it means that they can be
combined without taking correlations into account. To test the validity of
this assumption, we must ask whether correlations between the spiking
of different neurons provide additional information about a stimulus that
cannot be obtained by considering all of their firing patterns individually.

Synchronous firing of two or more neurons is one mechanism for convey- synchrony and
oscillationsing information in a population correlation code. Rhythmic oscillations

of population activity provides another possible mechanism, as discussed
below. Both synchronous firing and oscillations are common features of
the activity of neuronal populations. However, the existence of these fea-
tures is not sufficient for establishing a correlation code, because it is es-
sential to show that a significant amount of information is carried by the
resulting correlations. The assumption of independent-neuron coding is a
useful simplification that is not in gross contradiction with experimental
data, but it is less well established and more likely to be challenged in the
future than the independent-spike hypothesis.
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Figure 1.18: Position versus phase for a hippocampal place cell. Each dot in the
upper figure shows the phase of the theta rhythm plotted against the position of
the animal at the time when a spike was fired. The linear relation shows that infor-
mation about position is contained in the relative phase of firing. The lower plot is
a conventional place field tuning curve of spike count versus position. (Adapted
from O’Keefe and Recce, 1993.)

Place cell coding of spatial location in the rat hippocampus is an example
where at least some additional information appears to be carried by cor- hippocampal

place cellsrelations between the firing patterns of neurons in a population. The hip-
pocampus is a structure located deep inside the temporal lobe that plays
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36 Neural Encoding I: Firing Rates and Spike Statistics

an important role in memory formation and is involved in a variety of spa-
tial tasks. The firing rates of many hippocampal neurons, recorded when
a rat is moving around a familiar environment, depend on the location of
the animal, and are restricted to spatially localized areas called the place
fields of the cells. In addition, when a rat explores an environment, hip-
pocampal neurons fire collectively in a rhythmic pattern with a frequency
in the theta range, 7-12 Hz. The spiking time of an individual place cell
relative to the phase of the population theta rhythm actually gives addi-
tional information about the location of the rat not provided by place cells
considered individually. The relationship between location and phase of
place cell firing shown in figure 1.18 means, for example, that we can dis-
tinguish two locations on opposite sides of the peak of a single neuron’s
tuning curve that correspond to the same firing rate, by knowing when
the spikes occurred relative to the theta rhythm. However, the amount of
additional information carried by correlations between place field firing
and the theta rhythm has not been fully quantified.

Temporal Codes

The concept of temporal coding arises when we consider how precisely
we must measure spike times to extract most of the information from a
neuronal response. This precision determines the temporal resolution of
the neural code. A number of studies have found that this temporal res-
olution is on a millisecond time scale, indicating that precise spike timing
is a significant element in neural encoding. Similarly, we can ask whether
high-frequency firing-rate fluctuations carry significant information about
a stimulus. When precise spike timing or high-frequency firing-rate fluc-
tuations are found to carry information, the neural code is often identified
as a temporal code.

The temporal structure of a spike train or firing rate evoked by a stimulus
is determined both by the dynamics of the stimulus and by the nature of
the neural encoding process. Stimuli that change rapidly tend to generate
precisely timed spikes and rapidly changing firing rates no matter what
neural coding strategy is being used. Temporal coding refers to (or should
refer to) temporal precision in the response that does not arise solely from
the dynamics of the stimulus, but that nevertheless relates to properties
of the stimulus. The interplay between stimulus and encoding dynamics
makes the identification of a temporal code difficult.

The issue of temporal coding is distinct and independent from the issue of
independent-spike coding discussed above. If the independent-spike hy-
pothesis is valid, the temporal character of the neural code is determined
by the behavior of r(t). If r(t) varies slowly with time, the code is typically
called a rate code, and if it varies rapidly, the code is called temporal. Fig-
ure 1.19 provides an example of different firing-rate behaviors for a neuron
in area MT of a monkey recorded over multiple trials with three different
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1.5 The Neural Code 37

stimuli (consisting of moving random dots). The activity in the top panel
would typically be regarded as reflecting rate coding, and the activity in
the bottom panel as reflecting temporal coding. However, the identifica-
tion of rate and temporal coding in this way is ambiguous because it is not
obvious what criterion should be used to characterize the changes in r(t)
as slow or rapid.
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Figure 1.19: Time-dependent firing rates for different stimulus parameters. The
rasters show multiple trials during which an MT neuron responded to the same
moving random dot stimulus. Firing rates, shown above the raster plots, were
constructed from the multiple trials by counting spikes within discrete time bins
and averaging over trials. The three different results are from the same neuron but
using different stimuli. The stimuli were always patterns of moving random dots
but the coherence of the motion was varied (see chapter 3 for more information
about this stimulus). (Adapted from Bair and Koch, 1996.)

One possibility is to use the spikes to distinguish slow from rapid, so that
a temporal code is identified when peaks in the firing rate occur with
roughly the same frequency as the spikes themselves. In this case, each
peak corresponds to the firing of only one, or at most a few action po-
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38 Neural Encoding I: Firing Rates and Spike Statistics

tentials. While this definition makes intuitive sense, it is problematic to
extend it to the case of population coding. When many neurons are in-
volved, any single neuron may fire only a few spikes before its firing rate
changes, but collectively the population may produce a large number of
spikes over the same time period. Thus, a neuron that appears to employ
a temporal code, by this definition, may be part of a population that does
not.

Another proposal is to use the stimulus, rather than the response, to estab-
lish what makes a temporal code. In this case, a temporal code is defined
as one in which information is carried by details of spike timing on a scale
shorter than the fastest time characterizing variations of the stimulus. This
requires that information about the stimulus be carried by Fourier com-
ponents of r(t) at frequencies higher than those present in the stimulus.
Many of the cases where a temporal code has been reported using spikes
to define the nature of the code would be called rate codes if the stimulus
were used instead.

The debate between rate and temporal coding dominates discussions
about the nature of the neural code. Determining the temporal resolution
of the neural code is clearly important, but much of this debate seems un-
informative. We feel that the central challenge is to identify relationships
between the firing patterns of different neurons in a responding popula-
tion and to understand their significance for neural coding.

1.6 Chapter Summary

With this chapter, we have begun our study of the way that neurons en-
code information using spikes. We used a sequence of δ functions, the neu-
ral response function, to represent a spike train and defined three types of
firing rates: the single-spike probability density r(t), the spike-count rate r
and the average firing rate 〈r〉. In the discussion of how the firing rate r(t)
could be extracted from data, we introduced the important concepts of a
linear filter and a kernel acting as a sliding window function. The average
firing rate expressed as a function of a static stimulus parameter is called
the response tuning curve, and we presented examples of Gaussian, co-
sine and sigmoidal tuning curves. Spike-triggered averages of stimuli, or
reverse correlation functions, were introduced to characterize the selectiv-
ity of neurons to dynamic stimuli. The homogeneous and inhomogeneous
Poisson processes were presented as models of stochastic spike sequences.
We defined correlation functions, auto- and cross-correlations, and power
spectra, and used the Fano factor, interspike-interval histogram, and co-
efficient of variation to characterize the stochastic properties of spiking.
We concluded with a discussion of independent-spike and independent-
neuron codes versus correlation codes, and of the temporal precision of
spike timing as addressed in discussion of temporal coding.
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1.7 Appendices

A) The Power Spectrum of White-Noise

The Fourier transform of the stimulus autocorrelation function (see the
Mathematical Appendix),

Q̃ss(ω) = 1
T

∫ T/2

−T/2
dτ Qss(τ)exp(iωτ) , (1.40)

is called the power spectrum. Because we have defined the stimulus as power spectrum
periodic outside the range of the trial T, we have used a finite-time Fourier
transform and ω should be restricted to values that are integer multiples
of 2π/T. We can compute the power spectrum for a white-noise stimulus
using the fact the Qss(τ) = σ2

s δ(τ) for white-noise,

Q̃ss(ω) = σ2
s

T

∫ T/2

−T/2
dτ δ(τ)exp(iωτ) = σ2

s

T
. (1.41)

This is the defining characteristic of white-noise; its power spectrum is
independent of frequency.

Using the definition of the stimulus autocorrelation function, we can also
write

Q̃ss(ω) = 1
T

∫ T

0
dt s(t)

1
T

∫ T/2

−T/2
dτ s(t + τ)exp(iωτ) (1.42)

= 1
T

∫ T

0
dt s(t)exp(−iωt)

1
T

∫ T/2

−T/2
dτ s(t + τ)exp(iω(t + τ)) .

The first integral on the right side of the second equality is the complex
conjugate of the Fourier transform of the stimulus,

s̃(ω) = 1
T

∫ T

0
dτ s(t)exp(iωt) . (1.43)

The second integral, because of the periodicity of the integrand (when ω

is an integer multiple of 2π/T) is equal to s̃(ω). Therefore,

Q̃ss(ω) = |s̃(ω)|2 , (1.44)

which provides another definition of the stimulus power spectrum. It is
the absolute square of the Fourier transform of the stimulus.

Although equations 1.40 and 1.44 are both sound, they do not provide a
statistically efficient method of estimating the power spectrum of discrete
approximations to white-noise sequences generated by the methods de-
scribed in this chapter. That is, the apparently natural procedure of taking
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a white noise sequence s(m
t) for m = 1,2, . . . , T/
t, and computing the
square amplitude of its Fourier transform at frequency ω


T
T

∣∣∣∣∣
T/
t∑
m=1

s(t)exp(−iωm
t)

∣∣∣∣∣
2

is a biased and extremely noisy way of estimating Q̃ss(ω). This estimator
is called the periodogram. The statistical problems with the periodogram,periodogram
and some of the many suggested solutions, are discussed in almost any
textbook on spectral analysis (see, for example, Percival and Waldron,
1993).

B) Moments of the Poisson Distribution

The average number of spikes generated by a Poisson process with con-
stant rate r over a time T is

〈n〉 =
∞∑

n=0

nPT[n] =
∞∑

n=0

n(rT)n

n!
exp(−rT) , (1.45)

and the variance in the spike count is

σ2
n(T) =

∞∑
n=1

n2PT[n] − 〈n〉2 =
∞∑

n=1

n2(rT)n

n!
exp(−rT) − 〈n〉2 . (1.46)

To compute these quantities we need to calculate the two sums appear-
ing in these equations. A good way to do this is to compute the momentmoment

generating
function

generating function

g(α) =
∞∑

n=0

(rT)n exp(αn)

n!
exp(−rT) . (1.47)

The kth derivative of g with respect to α, evaluated at the point α = 0, is

dkg
dαk

∣∣∣∣
α=0

=
∞∑

n=0

nk(rT)n

n!
exp(−rT) , (1.48)

so once we have computed g we only need to calculate its first and second
derivatives to determine the sums we need. Rearranging the terms a bit,
and recalling that exp(z) = ∑

zn/n!, we find

g(α) = exp(−rT)
∞∑

n=0

(
rT exp(α)

)n

n!
= exp(−rT)exp (rTeα) . (1.49)

The derivatives are then

dg
dα

= rTeα exp(−rT)exp(rTeα) (1.50)
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and

d2g
dα2 = (rTeα)2 exp(−rT)exp(rTeα) + rTeα exp(−rT)exp(rTeα) . (1.51)

Evaluating these at α = 0 and putting the results into equation 1.45 and
1.46 gives the results 〈n〉 = rT and σ2

n(T) = (rT)2 + rT − (rT)2 = rT.

C) Inhomogeneous Poisson Statistics

The probability density for a particular spike sequence ti with i = 1,2, . . . , n
is obtained from the corresponding probability distribution by multiply-
ing the probability that the spikes occur when they do by the probability
that no other spikes occur. We begin by computing the probability that no
spikes are generated during the time interval from ti to ti+1 between two
adjacent spikes. We determine this by dividing the interval into M bins of
size 
t assuming that M
t = ti+1 − ti. We will ultimately take the limit

t → 0. The firing rate during bin m within this interval is r(ti + m
t).
Because the probability of firing a spike in this bin is r(ti + m
t)
t, the
probability of not firing a spike is 1 − r(ti + m
t)
t. To have no spikes
during the entire interval, we must string together M such bins, and the
probability of this occurring is the product of the individual probabilities,

P[no spikes] =
M∏

m=1

(1 − r(ti + m
t)
t) . (1.52)

We evaluate this expression by taking its logarithm,

ln P[no spikes] =
M∑

m=1

ln (1 − r(ti + m
t)
t) , (1.53)

using the fact that the logarithm of a product is the sum of the logarithms
of the multiplied terms. Using the approximation ln(1 − r(ti + m
t)
t) ≈
−r(ti + m
t)
t, valid for small 
t, we can simplify this to

ln P[no spikes] = −
M∑

m=1

r(ti + m
t)
t . (1.54)

In the limit 
t → 0, the approximation becomes exact and this sum be-
comes the integral of r(t) from ti to ti+1,

ln P[no spikes] = −
∫ ti+1

ti

dt r(t) . (1.55)

Exponentiating this equation gives the result we need

P[no spikes] = exp
(
−

∫ ti+1

ti

dt r(t)
)

. (1.56)
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The probability density p[t1, t2, . . . , tn] is the product of the densities for
the individual spikes and the probabilities of not generating spikes during
the interspike intervals, between time 0 and the first spike, and between
the time of the last spike and the end of the trial period,

p[t1, t2, . . . , tn] = exp
(
−

∫ t1

0
dt r(t)

)
exp

(
−

∫ T

tn

dt r(t)
)

×

r(tn)
n−1∏
i=1

r(ti)exp
(
−

∫ ti+1

ti

dt r(t)
)

. (1.57)

The exponentials in this expression all combine because the product of
exponentials is the exponential of the sum, so the different integrals in this
sum add up to form a single integral,

exp
(
−

∫ t1

0
dt r(t)

)
exp

(
−

∫ T

tn

dt r(t)
) n−1∏

i=1

exp
(
−

∫ ti+1

ti

dt r(t)
)

= exp

(
−

(∫ t1

0
dt r(t) +

n−1∑
i=1

∫ ti+1

ti

dt r(t) +
∫ T

tn

dt r(t)

))

= exp
(
−

∫ T

0
dt r(t)

)
. (1.58)

Substituting this into 1.57 gives the result 1.37.

1.8 Annotated Bibliography

Braitenberg & Schuz (1991) provide some of the quantitative measures of
neuroanatomical properties of cortex that we quote. Rieke et al. (1997)
describe the analysis of spikes and the relationships between neural re-
sponses and stimuli and is a general reference for material we present in
chapters 1-4. Gabbiani & Koch (1998) provide another account of some
of this material. The mathematics underlying point processes, the natural
statistical model for spike sequences, can be found in Cox (1962) and Cox
& Isham (1980), including the relationship between the Fano factor and
the coefficient of variation. A general analysis of histogram representa-
tions can be found in Scott (1992), and white-noise and filtering techniques
(our analysis of which continues in chapter 2) are described in de Boer &
Kuyper (1968), Marmarelis & Marmarelis (1978), and Wiener (1958).

In chapters 1 and 3, we discuss two systems associated with studies of
spike encoding; the H1 neuron in the visual system of flies, reviewed by
Rieke et al. (1997), and area MT of monkeys, discussed by Parker & New-
some (1998). Wandell (1995) introduces orientation and disparity tuning,
relevant to examples presented in this chapter.
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Chapter 2

Neural Encoding II: Reverse
Correlation and Visual
Receptive Fields

2.1 Introduction

The spike-triggered average stimulus introduced in chapter 1 is a stan-
dard way of characterizing the selectivity of a neuron. In this chapter,
we show how spike-triggered averages and reverse-correlation techniques
can be used to construct estimates of firing rates evoked by arbitrary
time-dependent stimuli. Firing rates calculated directly from reverse-
correlation functions provide only a linear estimate of the response of a
neuron, but we also present in this chapter various methods for including
nonlinear effects such as firing thresholds.

Spike-triggered averages and reverse-correlation techniques have been retina
LGN

V1, area 17
used extensively to study properties of visually responsive neurons in the
retina (retinal ganglion cells), lateral geniculate nucleus (LGN), and pri-
mary visual cortex (V1, or area 17 in the cat). At these early stages of
visual processing, the responses of some neurons (simple cells in primary
visual cortex, for example) can be described quite accurately using this
approach. Other neurons (complex cells in primary visual cortex, for ex-
ample) can be described by extending the formalism. Reverse-correlation
techniques have also been applied to responses of neurons in visual areas
V2, area 18, and MT, but they generally fail to capture the more complex
and nonlinear features typical of responses at later stages of the visual
system. Descriptions of visual responses based on reverse correlation are
approximate, and they do not explain how visual responses arise from
the synaptic, cellular, and network properties of retinal, LGN, and cortical
circuits. Nevertheless, they provide a important framework for character-
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izing response selectivities, a reference point for identifying and charac-
terizing novel effects, and a basis for building mechanistic models, some
of which are discussed at the end of this chapter and in chapter 7.

2.2 Estimating Firing Rates

In chapter 1, we discussed a simple model in which firing rates were esti-
mated as instantaneous functions of the stimulus, using response tuning
curves. The activity of a neuron at time t typically depends on the be-
havior of the stimulus over a period of time starting a few hundred mil-
liseconds prior to t and ending perhaps tens of milliseconds before t. Re-
verse correlation methods can be used to construct a more accurate model
that includes the effects of the stimulus over such an extended period of
time. The basic problem is to construct an estimate rest(t) of the firing rate
r(t) evoked by a stimulus s(t). The simplest way to construct an estimate
is to assume that the firing rate at any given time can be expressed as a
weighted sum of the values taken by the stimulus at earlier times. Since
time is a continuous variable this ‘sum’ actually takes the form of an inte-firing rate

estimate rest(t) gral, and we write

rest(t) = r0 +
∫ ∞

0
dτ D(τ)s(t − τ) . (2.1)

The term r0 accounts for any background firing that may occur when s = 0.
D(τ) is a weighting factor that determines how strongly, and with what
sign, the value of the stimulus at time t − τ affects the firing rate at time t.
Note that the integral in equation 2.1 is a linear filter of the same form as
the expressions used to compute rapprox(t) in chapter 1.

As discussed in chapter 1, sensory systems tend to adapt to the absolute
intensity of a stimulus. It is easier to account for the responses to fluctu-
ations of a stimulus around some mean background level than it is is to
account for adaptation processes. We therefore assume throughout this
chapter that the stimulus parameter s(t) has been defined with its mean
value subtracted out. This means that the time integral of s(t) over the
duration of a trial is zero.

We have provided a heuristic justification for the terms in equation 2.1
but, more formally, they correspond to the first two terms in a systematic
expansion of the response in powers of the stimulus. Such an expansion
is the functional equivalent of the Taylor series expansion used to gener-
ate power series approximations of functions, and it is called the Volterra
expansion. For the case we are considering, it takes the formVolterra expansion

rest(t) = r0 +
∫

dτ D(τ)s(t − τ) +
∫

dτ1dτ2 D2(τ1, τ2)s(t − τ1)s(t − τ2) +∫
dτ1dτ2dτ3 D3(τ1, τ2, τ3)s(t − τ1)s(t − τ2)s(t − τ3) + . . . . (2.2)
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2.2 Estimating Firing Rates 3

This series was rearranged by Wiener to make the terms easier to compute.
The first two terms of the Volterra and Wiener expansions are identical Wiener expansion
and are given by the two expressions on the right side of equation 2.1. For
this reason, D is called the first Wiener kernel, the linear kernel, or, when Wiener kernel
higher-order terms (terms involving more than one factor of the stimulus)
are not being considered, simply the kernel.

To construct an estimate of the firing rate based on an expression of the
form 2.1, we choose the kernel D to minimize the squared difference be-
tween the estimated response to a stimulus and the actual measured re-
sponse averaged over time,

E = 1
T

∫ T

0
dt (rest(t) − r(t))2 . (2.3)

This expression can be minimized by setting its derivative with respect
to the function D to zero (see appendix A). The result is that D satisfies
an equation involving two quantities introduced in chapter 1, the firing
rate-stimulus correlation function, Qrs(τ) = ∫

dt r(t) s(t + τ)/T, and the
stimulus autocorrelation function, Qss(τ) = ∫

dt s(t) s(t + τ)/T, optimal kernel∫ ∞

0
dτ′ Qss(τ − τ′)D(τ′) = Qrs(−τ) . (2.4)

The method we are describing is called reverse correlation because the fir-
ing rate–stimulus correlation function is evaluated at −τ in this equation.

Equation 2.4 can be solved most easily if the stimulus is white noise, al-
though it can be solved in the general case as well (see appendix A). For
a white-noise stimulus Qss(τ) = σ2

s δ(τ) (see chapter 1), so the left side of
equation 2.4 is

σ2
s

∫ ∞

0
dτ′ δ(τ − τ′)D(τ′) = σ2

s D(τ) . (2.5)

As a result, the kernel that provides the best linear estimate of the firing
rate is white-noise kernel

D(τ) = Qrs(−τ)

σ2
s

= 〈r〉C(τ)

σ2
s

(2.6)

where C(τ) is the spike-triggered average stimulus, and 〈r〉 is the aver-
age firing rate of the neuron. For the second equality, we have used the
relation Qrs(−τ)=〈r〉C(τ) from chapter 1. Based on this result, the stan-
dard method used to determine the optimal kernel is to measure the spike-
triggered average stimulus in response to a white-noise stimulus.

In chapter 1, we introduce the H1 neuron of the fly visual system, which
responds to moving images. Figure 2.1 shows a prediction of the firing
rate of this neuron obtained from a linear filter. The velocity of the mov-
ing image is plotted in 2.1A, and two typical responses are shown in 2.1B.
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4 Neural Encoding II: Reverse Correlation and Visual Receptive Fields

The firing rate predicted from a linear estimator, as discussed above, and
the firing rate computed from the data by binning and counting spikes
are compared in Figure 2.1C. The agreement is good in regions where
the measured rate varies slowly but the estimate fails to capture high-
frequency fluctuations of the firing rate, presumably because of nonlin-
ear effects not captured by the linear kernel. Some such effects can be
described by a static nonlinear function, as discussed below. Others may
require including higher-order terms in a Volterra or Wiener expansion.
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Figure 2.1: Prediction of the firing rate for an H1 neuron responding to a moving
visual image. A) The velocity of the image used to stimulate the neuron. B) Two of
the 100 spike sequences used in this experiment. C) Comparison of the measured
and computed firing rates. The dashed line is the firing rate extracted directly
from the spike trains. The solid line is an estimate of the firing rate constructed by
linearly filtering the stimulus with an optimal kernel. (Adapted from Rieke et al.,
1997.)

The Most Effective Stimulus

Neuronal selectivity is often characterized by describing stimuli that evoke
maximal responses. The reverse-correlation approach provides a justifica-
tion for this procedure by relating the optimal kernel for firing rate estima-
tion to the stimulus predicted to evoke the maximum firing rate, subject
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2.2 Estimating Firing Rates 5

to a constraint. A constraint is essential because the linear estimate 2.1 is
unbounded. The constraint we use is that the time integral of the square of
the stimulus over the duration of the trial is held fixed. We call this integral
the stimulus energy. The stimulus for which equation 2.1 predicts the max-
imum response at some fixed time subject to this constraint, is computed
in appendix B. The result is that the stimulus producing the maximum re-
sponse is proportional to the optimal linear kernel, or equivalently to the
white-noise spike-triggered average stimulus. This is an important result
because in cases where a white-noise analysis has not been done, we may
still have some idea what stimulus produces the maximum response.

The maximum stimulus analysis provides an intuitive interpretation of
the linear estimate of equation 2.1. At fixed stimulus energy, the integral
in 2.1 measures the overlap between the actual stimulus and the most ef-
fective stimulus. In other words, it indicates how well the actual stimulus
matches the most effective stimulus. Mismatches between these two re-
duce the value of the integral and result in lower predictions for the firing
rate.

Static Nonlinearities

The optimal kernel produces an estimate of the firing rate that is a linear
function of the stimulus. Neurons and nervous systems are nonlinear, so
a linear estimate is only an approximation, albeit a useful one. The lin-
ear prediction has two obvious problems: there is nothing to prevent the
predicted firing rate from becoming negative, and the predicted rate does
not saturate, but instead increases without bound as the magnitude of the
stimulus increases. One way to deal with these and some of the other de-
ficiencies of a linear prediction is to write the firing rate as a background
rate plus a nonlinear function of the linearly filtered stimulus. We use L to
represent the linear term we have been discussing thus far,

L(t) =
∫ ∞

0
dτD(τ)s(t − τ) . (2.7)

The modification is to replace the linear prediction rest(t) = r0 + L(t) by the rest(t) with static
nonlinearitygeneralization

rest(t) = r0 + F(L(t)) (2.8)

where F is an arbitrary function. F is called a static nonlinearity to stress
that it is a function of the linear filter value evaluated instantaneously at
the time of the rate estimation. If F is appropriately bounded from above
and below, the estimated firing rate will never be negative or unrealisti-
cally large.

F can be extracted from data by means of the graphical procedure illus-
trated in figure 2.2A. First, a linear estimate of the firing rate is computed
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6 Neural Encoding II: Reverse Correlation and Visual Receptive Fields

using the optimal kernel defined by equation 2.4. Next a plot is made
of the pairs of points (L(t), r(t)) at various times and for various stimuli,
where r(t) is the actual rate extracted from the data. There will be a certain
amount of scatter in this plot due to the inaccuracy of the estimation. If
the scatter is not too large, however, the points should fall along a curve,
and this curve is a plot of the function F(L). It can be extracted by fitting
a function to the points on the scatter plot. The function F typically con-
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Figure 2.2: A) A graphical procedure for determining static nonlinearities. The
linear estimate L and the actual firing rate r are plotted (solid points) and fit by
the function F(L) (solid line). B) Different static nonlinearities used in estimating
neural responses. L is dimensionless, and equations 2.9, 2.10, and 2.10 have been
used with G = 25 Hz, L0 = 1, L1/2 = 3, rmax = 100 Hz, g1 = 2, and g2 = 1/2.

tains constants used to set the firing rate to realistic values. These give us
the freedom to normalize D(τ) in some convenient way, correcting for the
arbitrary normalization by adjusting the parameters within F.

Static nonlinearities are used to introduce both firing thresholds and satu-
ration into estimates of neural responses. Thresholds can be described bythreshold function
writing

F(L) = G[L − L0]+ (2.9)

where L0 is the threshold value that L must attain before firing begins.
Above the threshold, the firing rate is a linear function of L, with G acting
as the constant of proportionality. Half-wave rectification is a special caserectification
of this with L0 =0. That this function does not saturate is not a problem if
large stimulus values are avoided. If needed, a saturating nonlinearity can
be included in F, and a sigmoidal function is often used for this purpose,sigmoid function

F(L) = rmax

1 + exp
(
g1(L1/2 − L)

) . (2.10)

Here rmax is the maximum possible firing rate, L1/2 is the value of L for
which F achieves half of this maximal value, and g1 determines how
rapidly the firing rate increases as a function of L. Another choice that
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2.2 Estimating Firing Rates 7

combines a hard threshold with saturation uses a rectified hyperbolic tan-
gent function,

F(L) = rmax[tanh
(
g2(L − L0)

)
]+ (2.11)

where rmax and g2 play similar roles as in equation 2.10, and L0 is the
threshold. Figure 2.2B shows the different nonlinear functions that we
have discussed.

Although the static nonlinearity can be any function, the estimate of equa-
tion 2.8 is still restrictive because it allows for no dependence on weighted
autocorrelations of the stimulus or other higher-order terms in the Volterra
series. Furthermore, once the static nonlinearity is introduced, the linear
kernel derived from equation 2.4 is no longer optimal because it was cho-
sen to minimize the squared error of the linear estimate rest(t) = L(t), not
the estimate with the static nonlinearity rest(t) = F(L(t)). A theorem due
to Bussgang (see appendix C) suggests that equation 2.6 will provide a
reasonable kernel, even in the presence of a static nonlinearity, if the white
noise stimulus used is Gaussian.

In some cases, the linear term of the Volterra series fails to predict the re-
sponse even when static nonlinearities are included. Systematic improve-
ments can be attempted by including more terms in the Volterra or Wiener
series, but in practice it is quite difficult to go beyond the first few terms.
The accuracy with which the first term, or first few terms, in a Volterra
series can predict the responses of a neuron can sometimes be improved
by replacing the parameter s in equation 2.7 by an appropriately chosen
function of s, so that

L(t) =
∫ ∞

0
dτD(τ) f (s(t − τ)) . (2.12)

A reasonable choice for this function is the response tuning curve. With
this choice, the linear prediction is equal to the response tuning curve,
L = f (s), for static stimuli provided that the integral of the kernel D is
equal to one. For time-dependent stimuli, we can think of equation 2.12 as
a dynamic extension of the response tuning curve.

stimulus

Linear Filter Static Nonlinearity Spike Generator

response

L=
R
d�Ds rest= r0+F (L) rest�t

?

> xrand

Figure 2.3: Simulating spiking responses to stimuli. The integral of the stimulus
s times the optimal kernel D is first computed. The estimated firing rate is the
background rate r0 plus a nonlinear function of the output of the linear filter cal-
culation. Finally, the estimated firing rate is used to drive a Poisson process that
generates spikes.
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8 Neural Encoding II: Reverse Correlation and Visual Receptive Fields

A model of the spike trains evoked by a stimulus can be constructed by
using the firing rate estimate of equation 2.8 to drive a Poisson spike gen-
erator (see chapter 1). Figure 2.3 shows the structure of such a model with
a linear filter, a static nonlinearity, and a stochastic spike-generator. In the
figure, spikes are shown being generated by comparing the spiking prob-
ability r(t)
t to a random number, although the other methods discussed
in chapter 1 could be used instead. Also, the linear filter acts directly on
the stimulus s in figure 2.3, but it could act instead on some function f (s)
such as the response tuning curve.

2.3 Introduction to the Early Visual System

Before discussing how reverse correlation methods are applied to visually
responsive neurons, we review the basic anatomy and physiology of the
early stages of the visual system. The conversion of a light stimulus into
an electrical signal and ultimately an action potential sequence occurs in
the retina. Figure 2.4A is an anatomical diagram showing the five prin-
cipal cell types of the retina, and figure 2.4B is a rough circuit diagram.
In the retina, light is first converted into an electrical signal by a photo-
transduction cascade within rod and cone photoreceptor cells. Figure 2.4B
shows intracellular recordings made in neurons of the retina of a mud-
puppy (an amphibian). The stimulus used for these recordings was a flash
of light falling primarily in the region of the photoreceptor at the left of
figure 2.4B. The rod cells, especially the one on the left side of figure 2.4B,
are hyperpolarized by the light flash. This electrical signal is passed along
to bipolar and horizontal cells through synaptic connections. Note that in
one of the bipolar cells, the signal has been inverted leading to depolar-
ization. These smoothly changing membrane potentials provide a graded
representation of the light intensity during the flash. This form of cod-
ing is adequate for signaling within the retina, where distances are small.
However, it is inadequate for the task of conveying information from the
retina to the brain.

The output neurons of the retina are the retinal ganglion cells whose axonsretinal ganglion
cells form the optic nerve. As seen in figure 2.4B, the subthreshold potentials

of the two retinal ganglion cells shown are similar to those of the bipolar
cells immediately above them in the figure, but now with superimposed
action potentials. The two retinal ganglion cells shown in the figure have
different responses and transmit different sequences of action potentials.
G2 fires while the light is on, and G1 fires when it turns off. These are calledON and OFF

responses ON and OFF responses, respectively. The optic nerve conducts the output
spike trains of retinal ganglion cells to the lateral geniculate nucleus of the
thalamus, which acts as a relay station between the retina and primary
visual cortex (figure 2.5). Prior to arriving at the LGN, some retinal gan-
glion cell axons cross the midline at the optic chiasm. This allow the left
and right sides of the visual fields from both eyes to be represented on the
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2.3 Introduction to the Early Visual System 9
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Figure 2.4: A) An anatomical diagram of the circuitry of the retina of a dog. Cell
types are identified at right. In the intact eye, illumination is, counter-intuitively,
from the bottom of this figure. B) Intracellular recordings from retinal neurons of
the mudpuppy responding to flash of light lasting for one second. In the column
of cells on the left side of the diagram, the resulting hyperpolarizations are about
4 mV in the rod and retinal ganglion cells, and 8 mV in the bipolar cell. Pluses
and minuses represent excitatory and inhibitory synapses respectively. (A adapted
from Nicholls et al., 1992; drawing from Cajal, 1911. B data from Werblin and
Dowling 1969; figure adapted from Dowling, 1992.)

right and left sides of the brain respectively (figure 2.5).

Neurons in the retina, LGN, and primary visual cortex respond to light
stimuli in restricted regions of the visual field called their receptive fields.
Patterns of illumination outside the receptive field of a given neuron can-
not generate a response directly, although they can significantly affect re-
sponses to stimuli within the receptive field. We do not consider such ef-
fects, although they are a current focus of experimental and theoretical in-
terest. In the monkey, cortical receptive fields range in size from around a
tenth of a degree near the fovea to several degrees in the periphery. Within
the receptive fields, there are regions where illumination higher than the
background light intensity enhances firing, and other regions where lower
illumination enhances firing. The spatial arrangement of these regions de-
termines the selectivity of the neuron to different inputs. The term recep-
tive field is often generalized to refer not only to the overall region where
light affects neuronal firing, but also to the spatial and temporal structure
within this region.

Visually responsive neurons in the retina, LGN, and primary visual cortex
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10 Neural Encoding II: Reverse Correlation and Visual Receptive Fields
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Figure 2.5: Pathway from the retina through the lateral geniculate nucleus (LGN)
of the thalamus to the primary visual cortex in the human brain. (Adapted from
Nicholls et al., 1992.)

are divided into two classes depending on whether or not the contribu-
tions from different locations within the visual field sum linearly, as as-
sumed in equation 2.24. X-cells in the cat retina and LGN, P-cells in the
monkey retina and LGN, and simple cells in primary visual cortex appear
to satisfy this assumption. Other neurons, such as Y cells in the cat retinasimple and

complex cells and LGN, M cells in the monkey retina and LGN, and complex cells in
primary visual cortex, do not show linear summation across the spatial
receptive field and nonlinearities must be included in descriptions of their
responses. We do this for complex cells later in this chapter.

A first step in studying the selectivity of any neuron is to identify the
types of stimuli that evoke strong responses. Retinal ganglion cells and
LGN neurons have similar selectivities and respond best to circular spots
of light surrounded by darkness or dark spots surrounded by light. In pri-
mary visual cortex, many neurons respond best to elongated light or dark
bars or to boundaries between light and dark regions. Gratings with alter-
nating light and dark bands are effective and frequently used stimuli for
these neurons.

Many visually responsive neurons react strongly to sudden transitions in
the level of image illumination, a temporal analog of their responsiveness
to light-dark spatial boundaries. Static images are not very effective at
evoking visual responses. In awake animals, images are constantly kept
in motion across the retina by eye movements. In experiments in which the
eyes are fixed, moving light bars and gratings, or gratings undergoing pe-
riodic light-dark reversals (called counterphase gratings) are used as more
effective stimuli than static images. Some neurons in primary visual cortex
are directionally selective; they respond more strongly to stimuli moving
in one direction than in the other.
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2.3 Introduction to the Early Visual System 11

To streamline the discussion in this chapter, we consider only greyscale
images, although the methods presented can be extended to include color.
We also restrict the discussion to two-dimensional visual images, ignor-
ing how visual responses depend on viewing distance and encode depth.
In discussing the response properties of retinal, LGN, and V1 neurons,
we do not follow the path of the visual signal, nor the historical order of
experimentation, but, instead, begin with primary visual cortex and then
move back to the LGN and retina. The emphasis is on properties of indi-
vidual neurons, so we do not discuss encoding by populations of visually
responsive neurons. For V1, this has been analyzed in terms of wavelets,
a scheme for decomposing images into component pieces, as discussed in
chapter 10.

The Retinotopic Map

A striking feature of most visual areas in the brain, including primary vi-
sual cortex, is that the visual world is mapped onto the cortical surface in
a topographic manner. This means that neighboring points in a visual im-
age evoke activity in neighboring regions of visual cortex. The retinotopic
map refers to the transformation from the coordinates of the visual world
to the corresponding locations on the cortical surface.

Objects located a fixed distance from one eye lie on a sphere. Locations
on this sphere can be represented using the same longitude and latitude
angles used for the surface of the earth. Typically, the ‘north pole’ for
this spherical coordinate system is located at the fixation point, the image
point that focuses onto the fovea or center of the retina. In this system of
coordinates (figure 2.6), the latitude coordinate is called the eccentricity,
ε, and the longitude coordinate, measured from the horizontal meridian, eccentricity ε

azimuth ais called the azimuth a. In primary visual cortex, the visual world is split
in half, with the region −90◦ ≤ a ≤ +90◦ for ε from 0◦ to about 70◦ (for
both eyes) represented on the left side of the brain, and the reflection of
this region about the vertical meridian represented on the right side of the
brain.

In most experiments, images are displayed on a flat screen (called a tan-
gent screen) that does not coincide exactly with the sphere discussed in the
previous paragraph. However, if the screen is not too large the difference
is negligible, and the eccentricity and azimuth angles approximately coin-
cide with polar coordinates on the screen (figure 2.6A). Ordinary Cartesian
coordinates can also be used to identify points on the screen (figure 2.6).
The eccentricity ε and the x and y coordinates of the Cartesian system are
based on measuring distances on the screen. However, it is customary
to divide these measured distances by the distance from the eye to the
screen and to multiply the result by 180◦/π so that these coordinates are
ultimately expressed in units of degrees. This makes sense because it is
the angular not the absolute size and location of an image that is typically
relevant for studies of the visual system.
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12 Neural Encoding II: Reverse Correlation and Visual Receptive Fields
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Figure 2.6: A) Two coordinate systems used to parameterize image location. Each
rectangle represents a tangent screen, and the filled circle is the location of a par-
ticular image point on the screen. The upper panel shows polar coordinates. The
origin of the coordinate system is the fixation point F, the eccentricity ε is propor-
tional to the radial distance from the fixation point to the image point, and a is the
angle between the radial line from F to the image point and the horizontal axis.
The lower panel shows Cartesian coordinates. The location of the origin for these
coordinates and the orientation of the axes are arbitrary. They are usual chosen to
center and align the coordinate system with respect to a particular receptive field
being studied. B) A bullseye pattern of radial lines of constant azimuth, and circles
of constant eccentricity. The center of this pattern at zero eccentricity is the fixation
point F. Such a pattern was used to generated the image in figure 2.7A.

Figure 2.7A shows a dramatic illustration of the retinotopic map in the
primary visual cortex of a monkey. The pattern on the cortex seen in fig-
ure 2.7A was produced by imaging a radioactive analog of glucose that
was taken up by active neurons while a monkey viewed a visual image
consisting of concentric circles and radial lines, similar to the pattern in
figure 2.6B. The vertical lines correspond to the circles in the image, and
the roughly horizontal lines are due to the activity evoked by the radial
lines. The fovea is represented at the left-most pole of this piece of cortex
and eccentricity increases toward the right. Azimuthal angles are positive
in the lower half of the piece of cortex shown, and negative in the upper
half.

Figure 2.7B is an approximate mathematical description of the map illus-
trated in figure 2.7A. To construct this map we assume that eccentricity
is mapped onto the horizontal coordinate X of the cortical sheet, and a is
mapped onto its Y coordinate. The equations for X and Y as functions
of ε and a can be obtained through knowledge of a quantity called the
cortical magnification factor, M(ε). This determines the distance acrosscortical

magnification
factor

a flattened sheet of cortex separating the activity evoked by two nearby
image points. Suppose that the two image points in question have eccen-
tricities ε and ε+
ε but the same value of the azimuthal coordinate a. The
angular distance between these two points is 
ε. The distance separating
the activity evoked by these two image points on the cortex is 
X. By the
definition of the cortical magnification factor, these two quantities satisfy
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Figure 2.7: A) An autoradiograph of the posterior region of the primary visual
cortex from the left side of a macaque monkey brain. The pattern is a radioactive
trace of the activity evoked by an image like that in figure 2.6B. The vertical lines
correspond to circles at eccentricities of 1◦, 2.3◦, and 5.4◦, and the horizontal lines
(from top to bottom) represent radial lines in the visual image at a values of −90◦,
−45◦, 0◦, 45◦, and 90◦. Only the part of cortex corresponding to the central region
of the visual field on one side is shown. B) The mathematical map from the visual
coordinates ε and a to the cortical coordinates X and Y described by equations 2.15
and 2.17. (A adapted from Tootell et al., 1982.)


X = M(ε)
ε or, taking the limit as 
X and 
ε go to zero,

dX
dε

= M(ε) . (2.13)

The cortical magnification factor for the macaque monkey, obtained from
results such as figure 2.7A is approximately

M(ε) = λ

ε0 + ε
. (2.14)

with λ ≈ 12 mm and ε0 ≈ 1◦. Integrating equation 2.13 and defining X = 0
to be the point representing ε = 0, we find

X = λ ln(1 + ε/ε0) . (2.15)

We can apply the same cortical amplification factor to points with the
same eccentricity but different a values. The angular distance between
two points at eccentricity ε with an azimuthal angle difference of 
a is

aεπ/180◦. In this expression, the factor of ε corrects for the increase of
arc length as a function of eccentricity, and the factor of π/180◦ converts ε

from degrees to radians. The separation on the cortex, 
Y, corresponding
to these points has a magnitude given by the cortical amplification times
this distance. Taking the limit 
a → 0, we find that we find that

dY
da

= − επ

180◦ M(ε) . (2.16)
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14 Neural Encoding II: Reverse Correlation and Visual Receptive Fields

The minus sign in this relationship appears because the visual field is in-
verted on the cortex. Solving equation 2.16 gives

Y = − λεaπ
(ε0 + ε)180◦ . (2.17)

Figure 2.7B shows that these coordinates agree fairly well with the map in
figure 2.7A.

For eccentricities appreciably greater than 1◦, equations 2.15 and 2.17 re-
duce to X ≈ λ ln(ε/ε0) and Y ≈ −λπa/180◦. These two formulae can be
combined by defining the complex numbers Z = X + iY and z = (ε/ε0)

exp(−iπa/180◦) (with i equal to the square root of -1) and writing Z =
λ ln(z). For this reason, the cortical map is sometimes called a complex
logarithmic map (see Schwartz, 1977). For an image scaled radially by acomplex

logarithmic map factor γ, eccentricities change according to ε → γε while a is unaffected.
Scaling of the eccentricity produces a shift X → X + λ ln(γ) over the range
of values where the simple logarithmic form of the map is valid. The log-
arithmic transformation thus causes images that are scaled radially out-
ward on the retina to be represented at locations on the cortex translated in
the X direction. For smaller eccentricities, the map we have derived is only
approximate even in the complete form given by equations 2.15 and 2.17.
This is because the cortical magnification factor is not really isotropic as
we have assumed in this derivation, and a complete description requires
accounting for the curvature of the cortical surface.

Visual Stimuli

Earlier in this chapter, we used the function s(t) to characterize a time-
dependent stimulus. The description of visual stimuli is more complex.
Greyscale images appearing on a two-dimensional surface, such as a video
monitor, can be described by giving the luminance, or light intensity, at
each point on the screen. These pixel locations are parameterized by Carte-
sian coordinates x and y, as in the lower panel of figure 2.6A. However,
pixel-by-pixel light intensities are not a useful way of parameterizing a vi-
sual image for the purposes of characterizing neuronal responses. This is
because visually responsive neurons, like many sensory neurons, adapt to
the overall level of screen illumination. To avoid dealing with adaptation
effects, we describe the stimulus by a function s(x, y, t) that is propor-
tional to the difference between the luminance at the point (x, y) at time t
and the average or background level of luminance. Often s(x, y, t) is also
divided by the background luminance level, making it dimensionless. The
resulting quantity is called the contrast.

During recordings, visual neurons are usually stimulated by images that
vary over both space and time. A commonly used stimulus, the counter-
phase sinusoidal grating, is described bycounterphase

sinusoidal grating
s(x, y, t) = A cos

(
Kx cos� + Ky sin� − �

)
cos(ωt) . (2.18)

Peter Dayan and L.F. Abbott Draft: December 17, 2000



2.3 Introduction to the Early Visual System 15

Figure 2.8 shows a cartoon of a similar grating (a spatial square-wave is
drawn rather than a sinusoid) and illustrates the significance of the pa-
rameters K, �, �, and ω. K and ω are the spatial and temporal frequencies spatial frequency K

frequency ω

orientation �

spatial phase �

amplitude A

of the grating (these are angular frequencies), � is its orientation, � its spa-
tial phase, and A its contrast amplitude. This stimulus oscillates in both
space and time. At any fixed time, it oscillates in the direction perpendic-
ular to the orientation angle � as a function of position, with wavelength
2π/K (figure 2.8A). At any fixed position, it oscillates in time with period
2π/ω (figure 2.8B). For convenience, � is measured relative to the y axis
rather than the x axis so that a stimulus with � = 0, varies in the x, but not
in the y, direction. � determines the spatial location of the light and dark
stripes of the grating. Changing � by an amount 
� shifts the grating
in the direction perpendicular to its orientation by a fraction 
�/2π of its
wavelength. The contrast amplitude A controls the maximum degree of
difference between light and dark areas. Because x and y are measured in
degrees, K has the rather unusual units of radians per degree and K/2π is
typically reported in units of cycles per degree. � has units of radians, ω

is in radians per s, and ω/2π is in Hz.

Θ

s

t

0

x

y

A B

2�=K

2�=!

Figure 2.8: A counterphase grating. A) A portion of a square-wave grating anal-
ogous to the sinusoidal grating of equation 2.18. The lighter stripes are regions
where s > 0, and s < 0 within the darker stripes. K determines the wavelength
of the grating and � its orientation. Changing its spatial phase � shifts the entire
light-dark pattern in the direction perpendicular to the stripes. B) The light-dark
intensity at any point of the spatial grating oscillates sinusoidally in time with pe-
riod 2π/ω.

Experiments that consider reverse correlation and spike-triggered aver-
ages use various types of random and white-noise stimuli in addition to
bars and gratings. A white-noise stimulus, in this case, is one that is un- white-noise image
correlated in both space and time so that

1
T

∫ T

0
dt s(x, y, t)s(x′, y′, t + τ) = σ2

s δ(τ)δ(x − x′)δ(y − y′) . (2.19)

Of course, in practice a discrete approximation of such a stimulus must be
used by dividing the image space into pixels and time into small bins. In
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16 Neural Encoding II: Reverse Correlation and Visual Receptive Fields

addition, more structured random sets of images (randomly oriented bars,
for example) are sometime used to enhance the responses obtained during
stimulation.

The Nyquist Frequency

Many factors limit the maximal spatial frequency that can be resolved by
the visual system, but one interesting effect arises from the size and spac-
ing of individual photoreceptors on the retina. The region of the retina
with the highest resolution is the fovea at the center of the visual field.
Within the macaque or human fovea, cone photoreceptors are densely
packed in a regular array. Along any direction in the visual field, a reg-
ular array of tightly packed photoreceptors of size 
x samples points at
locations m
x for m = 1,2, . . . . The (angular) frequency that defines the
resolution of such an array is called the Nyquist frequency and is given byNyquist frequency

Knyq = π


x
. (2.20)

To understand the significance of the Nyquist frequency, consider sam-
pling two cosine gratings with spatial frequencies of K and 2Knyq − K, with
K < Knyq. These are described by s = cos(Kx) and s = cos((2Knyq − K)x).
At the sampled points, these functions are identical because cos((2Knyq −
K)m
x) = cos(2πm − Km
x) = cos(−Km
x) = cos(Km
x) by the peri-
odicity and evenness of the cosine function (see figure 2.9). As a result,
these two gratings cannot be distinguished by examining them only at the
sampled points. Any two spatial frequenices K < Knyq and 2Knyq − K can
be confused with each other in this way, a phenomenon known as aliasing.
Conversely, if an image is constructed solely of frequencies less than Knyq,
it can be reconstructed perfectly from the finite set of samples provided
by the array. There are 120 cones per degree at the fovea of the macaque
retina which makes Knyq/(2π) = 1/(2
x) = 60 cycles per degree. In this
result, we have divided the right side of equation 2.20, which gives Knyq
in units of radians per degree, by 2π to convert the answer to cycles per
degree.

2.4 Reverse Correlation Methods - Simple Cells

The spike-triggered average for visual stimuli is defined, as in chapter 1,
as the average over trials of stimuli evaluated at times ti − τ, where ti for
i = 1,2, . . . , n are the spike times. Because the light intensity of a visual
image depends on location as well as time, the spike-triggered average
stimulus is a function of three variables,

C(x, y, τ) = 1
〈n〉

〈
n∑

i=1

s(x, y, ti − τ)

〉
. (2.21)
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Figure 2.9: Aliasing and the Nyquist frequency. The two curves are the functions
cos(πx/6) and cos(πx/2) plotted against x, and the dots show points sampled with
a spacing of 
x = 3. The Nyquist frequency in this case is π/3, and the two cosine
curves match at the sampled points because their spatial frequencies satisfy 2π/3 −
π/6 = π/2.

Here, as in chapter 1, the brackets denote trial averaging, and we have
used the approximation 1/n ≈ 1/〈n〉. C(x, y, τ) is the average value of
the visual stimulus at the point (x, y) a time τ before a spike was fired.
Similarly, we can define the correlation function between the firing rate at
time t and the stimulus at time t + τ, for trials of duration T, as

Qrs(x, y, τ) = 1
T

∫ T

0
dt r(t)s(x, y, t + τ) . (2.22)

The spike-triggered average is related to the reverse correlation function,
as discussed in chapter 1, by

C(x, y, τ) = Qrs(x, y,−τ)

〈r〉 , (2.23)

where 〈r〉 is, as usual, the average firing rate over the entire trial, 〈r〉 =
〈n〉/T.

To estimate the firing rate of a neuron in response to a particular image,
we add a function of the output of a linear filter of the stimulus to the
background firing rate r0, as in equation 2.8, rest(t) = r0 + F (L(t)). As in
equation 2.7, the linear estimate L(t) is obtained by integrating over the
past history of the stimulus with a kernel acting as the weighting func-
tion. Because visual stimuli depend on spatial location, we must decide
how contributions from different image locations are to be combined to
determine L(t). The simplest assumption is that the contributions from linear response

estimatedifferent spatial points add linearly so that L(t) is obtained by integrating
over all x and y values,

L(t) =
∫ ∞

0
dτ

∫
dxdy D(x, y, τ)s(x, y, t − τ) . (2.24)

The kernel D(x, y, τ) determines how strongly, and with what sign, the
visual stimulus at the point (x, y) and at time t − τ affects the firing
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18 Neural Encoding II: Reverse Correlation and Visual Receptive Fields

rate of the neuron at time t. As in equation 2.6, the optimal kernel is
given in terms of the firing rate-stimulus correlation function, or the spike-
triggered average, for a white-noise stimulus with variance parameter σ2

s
by

D(x, y, τ) = Qrs(x, y,−τ)

σ2
s

= 〈r〉C(x, y, τ)

σ2
s

. (2.25)

The kernel D(x, y, τ) defines the space-time receptive field of a neuron.space-time
receptive field Because D(x, y, τ) is a function of three variables, it can be difficult to

measure and visualize. For some neurons, the kernel can be written as
a product of two functions, one that describes the spatial receptive field
and the other the temporal receptive field,

D(x, y, τ) = Ds(x, y)Dt(τ) . (2.26)

Such neurons are said to have separable space-time receptive fields. Sep-separable
receptive field arability requires that the spatial structure of the receptive field does

not change over time except by an overall multiplicative factor. When
D(x, y, τ) cannot be written as the product of two terms, the neuron is
said to have a nonseparable space-time receptive field. Given the freedomnonseparable

receptive field in equation 2.8 to set the scale of D (by suitably adjusting the function F),
we typically normalize Ds so that its integral is one, and use a similar rule
for the components from which Dt is constructed. We begin our analysis
by studying first the spatial and then the temporal components of a sepa-
rable space-time receptive field and then proceed to the nonseparable case.
For simplicity, we ignore the possibility that cells can have slightly differ-
ent receptive fields for the two eyes, which underlies the disparity tuning
considered in chapter 1.

Spatial Receptive Fields

Figures 2.10A and C show the spatial structure of spike-triggered average
stimuli for two simple cells in the primary visual cortex of a cat (area 17)
with approximately separable space-time receptive fields. These receptive
fields are elongated in one direction, and there are some regions within the
receptive field where Ds is positive, called ON regions, and others where
it is negative, called OFF regions. The integral of the linear kernel times
the stimulus can be visualized by noting how the OFF (black) and ON
(white) regions overlap the image (see figure 2.11) . The response of a neu-
ron is enhanced if ON regions are illuminated (s > 0) or if OFF regions
are darkened (s < 0) relative to the background level of illumination. Con-
versely, they are suppressed by darkening ON regions or illuminating OFF
regions. As a result, the neurons of figures 2.10A and C respond most vig-
orously to light-dark edges positioned along the border between the ON
and OFF regions and oriented parallel to this border and to the elongated
direction of the receptive fields (figure 2.11). Figures 2.10 and 2.11 show
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Figure 2.10: Spatial receptive field structure of simple cells. A) and C) Spatial
structure of the receptive fields of two neurons in cat primary visual cortex deter-
mined by averaging stimuli between 50 ms and 100 ms prior to an action potential.
The upper plots are three-dimensional representations, with the horizontal dimen-
sions acting as the x-y plane and the vertical dimension indicating the magnitude
and sign of Ds(x, y). The lower contour plots represent the x-y plane. Regions with
solid contour curves are ON areas where Ds(x, y) > 0 and regions with dashed
contours show OFF areas where Ds(x, y) < 0. B) and D) Gabor functions of the
form 2.27 with σx = 1◦, σy = 2◦, 1/k = 0.56◦, and φ = 1 − π/2 (B) or φ = 1 − π (D)
chosen to match the receptive fields in A and C. (A and C adapted from Jones and
Palmer, 1987a.)
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20 Neural Encoding II: Reverse Correlation and Visual Receptive Fields

receptive fields with two major subregions. Simple cells are found with
from one to five subregions. Along with the ON-OFF patterns we have
seen, another typical arrangement is a three-lobed receptive field with an
OFF-ON-OFF or ON-OFF-ON subregions, as seen in figure 2.17B.

B CA

x

y

Figure 2.11: Grating stimuli superimposed on spatial receptive fields similar to
those shown in figure 2.10. The receptive field is shown as two oval regions, one
dark to represent an OFF area where Ds < 0 and one white to denote an ON region
where Ds > 0. A) A grating with the spatial wavelength, orientation, and spatial
phase shown produces a high firing rate because a dark band completely overlaps
the OFF area of the receptive field and a light band overlaps the ON area. B)
The grating shown is non-optimal due to a mismatch in both the spatial phase
and frequency, so that the ON and OFF regions each overlap both light and dark
stripes. C) The grating shown is at a non-optimal orientation because each region
of the receptive field overlaps both light and dark stripes.

A mathematical approximation of the spatial receptive field of a simple
cell is provided by a Gabor function, which is a product of a GaussianGabor function
function and a sinusoidal function. Gabor functions are by no means the
only functions used to fit spatial receptive fields of simple cells. For exam-
ple, gradients of Gaussians are sometimes used. However, we will stick to
Gabor functions, and to simplify the notation, we choose the coordinates
x and y so that the borders between the ON and OFF regions are parallel
to the y axis. We also place the origin of the coordinates at the center of
the receptive field. With these choices, we can approximate the observed
receptive field structures using the Gabor function

Ds(x, y) = 1
2πσxσy

exp

(
− x2

2σ2
x

− y2

2σ2
y

)
cos(kx − φ) . (2.27)

The parameters in this function determine the properties of the spatial re-
ceptive field: σx and σy determine its extent in the x and y directions re-rf size σx, σy

preferred spatial
frequency k
preferred spatial
phase φ

spectively; k, the preferred spatial frequency, determines the spacing of
light and dark bars that produce the maximum response (the preferred
spatial wavelength is 2π/k); and φ is the preferred spatial phase which
determines where the ON-OFF boundaries fall within the receptive field.
For this spatial receptive field, the sinusoidal grating of the form 2.18 that
produces the maximum response for a fixed value of A has K = k, � = φ,
and � = 0.
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2.4 Reverse Correlation Methods - Simple Cells 21

Figures 2.10B and D, show Gabor functions chosen specifically to match
the data in figures 2.10A and C. Figure 2.12 shows x and y plots of a vari-
ety of Gabor functions with different parameter values. As seen in figure
2.12, Gabor functions can have various types of symmetry, and variable
numbers of significant oscillations (or subregions) within the Gaussian en-
velope. The number of subregions within the receptive field is determined
by the product kσx and is typically expressed in terms of a quantity known
as the bandwidth b. The bandwidth is defined as b = log2(K+/K−) where bandwidth
K+ > k and K− < k are the spatial frequencies of gratings that produce one
half the response amplitude of a grating with K = k. High bandwidths
correspond to low values of kσx, meaning that the receptive field has few
subregions and poor spatial frequency selectivity. Neurons with more sub-
fields are more selective to spatial frequency, and they have smaller band-
widths and larger values of kσx.

The bandwidth is the width of the spatial frequency tuning curve mea-
sured in octaves. The spatial frequency tuning curve as a function of K for
a Gabor receptive field with preferred spatial frequency k and receptive
field width σx is proportional to exp(−σ2

x(k − K)2/2) (see equation 2.34
below). The values of K+ and K− needed to compute the bandwidth are
thus determined by the condition exp(−σ2

x(k − K±)2/2) = 1/2. Solving
this equation gives K± = k ± (2 ln(2))1/2/σx from which we obtain

b = log2

(
kσx + √

2 ln(2)

kσx − √
2 ln(2)

)
or kσx =

√
2 ln(2)

2b + 1
2b − 1

. (2.28)

Bandwidth is only defined if kσx >
√

2 ln(2), but this is usually the case
for V1 neurons. For V1 neurons, bandwidths range from about 0.5 to 2.5
corresponding to kσx between 1.7 and 6.9.

The response characterized by equation 2.27 is maximal if light-dark edges
are parallel to the y axis, so the preferred orientation angle is zero. An
arbitrary preferred orientation θ can be generated by rotating the coordi-
nates, making the substitutions x → x cos(θ)+ y sin(θ) and y → y cos(θ)− preferred

orientation θx sin(θ) in equation 2.27. This produces a spatial receptive field that is
maximally responsive to a grating with � = θ. Similarly, a receptive field
centered at the point (x0, y0) rather than at the origin can be constructed
by making the substitutions x → x − x0 and y → y − y0. rf center x0, y0

Temporal Receptive Fields

Figure 2.13 reveals the temporal development of the space-time receptive
field of a neuron in the cat primary visual cortex through a series of snap
shots of its spatial receptive field. More than 300 ms prior to a spike, there
is little correlation between the visual stimulus and the upcoming spike.
Around 210 ms before the spike (τ = 210 ms), a two-lobed OFF-ON re-
ceptive field, similar to the ones in figures 2.10, is evident. As τ decreases
(recall that τ measures time in a reversed sense), this structure first fades
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Figure 2.12: Gabor functions of the form given by equation 2.27. For convenience
we plot the dimensionless function 2πσxσy Ds. A) A Gabor function with σx =
1◦, 1/k = 0.5◦, and φ = 0 plotted as a function of x for y = 0. This function is
symmetric about x = 0. B) A Gabor function with σx = 1◦, 1/k = 0.5◦, and φ = π/2
plotted as a function of x for y = 0. This function is antisymmetric about x = 0
and corresponds to using a sine instead of a cosine function in equation 2.27. C)
A Gabor function with σx = 1◦, 1/k = 0.33◦, and φ = π/4 plotted as a function of
x for y = 0. This function has no particular symmetry properties with respect to
x = 0. D) The Gabor function of equation 2.27 with σy = 2◦ plotted as a function of
y for x = 0. This function is simply a Gaussian.

away and then reverses, so that the receptive field 75 ms before a spike has
the opposite sign from what appeared at τ = 210 ms. Due to latency ef-
fects, the spatial structure of the receptive field is less significant for τ < 75
ms. The stimulus preferred by this cell is thus an appropriately aligned
dark-light boundary that reverses to a light-dark boundary over time.

30 ms75 ms120 ms165 ms210 msτ = 255 ms

y 
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)
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0 5
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Figure 2.13: Temporal evolution of a spatial receptive field. Each panel is a plot
of D(x, y, τ) for a different value of τ. As in figure 2.10, regions with solid con-
tour curves are areas where D(x, y, τ) > 0 and regions with dashed contours have
D(x, y, τ) < 0. The curves below the contour diagrams are one-dimension plots of
the receptive field as a function of x alone. The receptive field is maximally differ-
ent from zero for τ = 75 ms with the spatial receptive field reversed from what it
was at τ = 210 ms. (Adapted from DeAngelis et al., 1995.)

Reversal effects like those seen in figure 2.13 are a common feature of
space-time receptive fields. Although the magnitudes and signs of the
different spatial regions in figure 2.13 vary over time, their locations and
shapes remain fairly constant. This indicates that the neuron has, to a good
approximation, a separable space-time receptive field. When a space-time
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2.4 Reverse Correlation Methods - Simple Cells 23

receptive field is separable, the reversal can be described by a function
Dt(τ) that rises from zero, becomes positive, then negative, and ultimately
goes to zero as τ increases. Adelson and Bergen (1985) proposed the func-
tion shown in Figure 2.14,

Dt(τ) = α exp(−ατ)

(
(ατ)5

5!
− (ατ)7

7!

)
(2.29)

for τ ≥ 0, and Dt(τ) = 0 for τ < 0. Here, α is a constant that sets the scale for
the temporal development of the function. Single phase responses are also
seen for V1 neurons and these can be described by eliminating the second
term in equation 2.29. Three-phase responses, which are sometimes seen,
must be described by a more complicated function.
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Figure 2.14: Temporal structure of a receptive field. The function Dt(τ) of equa-
tion 2.29 with α = 1/(15 ms).

Response of a Simple Cell to a Counterphase Grating

The response of a simple cell to a counterphase grating stimulus (equation
2.18) can be estimated by computing the function L(t). For the separable
receptive field given by the product of the spatial factor in equation 2.27
and the temporal factor in 2.29, the linear estimate of the response can be
written a product of two terms,

L(t) = LsLt(t) , (2.30)

where

Ls =
∫

dxdy Ds(x, y)A cos
(
Kx cos(�) + Ky sin(�) − �

)
. (2.31)

and

Lt(t) =
∫ ∞

0
dτ Dt(τ) cos (ω(t − τ)) . (2.32)

The reader is invited to compute these integrals for the case σx = σy = σ.
To show the selectivity of the resulting spatial receptive fields, we plot (in
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24 Neural Encoding II: Reverse Correlation and Visual Receptive Fields

figure 2.15) Ls as functions of the parameters �, K, and � that determine
the orientation, spatial frequency, and spatial phase of the stimulus. It is
also instructive to write out Ls for various special parameter values. First,
if the spatial phase of the stimulus and the preferred spatial phase of the
receptive field are zero (� = φ = 0), we find that

Ls = A exp
(
−σ2(k2 + K2)

2

)
cosh

(
σ2kK cos(�)

)
, (2.33)

which determines the orientation and spatial frequency tuning for an
optimal spatial phase. Second, for a grating with the preferred orien-
tation � = 0 and a spatial frequency that is not too small, the full ex-
pression for Ls can be simplified by noting that exp(−σ2kK) ≈ 0 for the
values of kσ normally encountered (for example, if K = k and kσ = 2,
exp(−σ2kK) = 0.02). Using this approximation, we find

Ls = A
2

exp
(
−σ2(k − K)2

2

)
cos(φ − �) (2.34)

which reveals a Gaussian dependence on spatial frequency and a cosine
dependence on spatial phase.
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Figure 2.15: Selectivity of a Gabor filter with θ = φ = 0, σx = σy = σ and kσ = 2
acting on a cosine grating with A = 1. A) Ls as a function of stimulus orientation �

for a grating with the preferred spatial frequency and phase, K = k and � = 0. B)
Ls as a function of the ratio of the stimulus spatial frequency to its preferred value,
K/k, for a grating oriented in the preferred direction � = 0 and with the preferred
phase � = 0. C) Ls as a function of stimulus spatial phase � for a grating with the
preferred spatial frequency and orientation, K = k and � = 0.

The temporal frequency dependence of the amplitude of the linear re-
sponse estimate is plotted as a function of the temporal frequency of the
stimulus (ω/2π rather than the angular frequency ω) in figure 2.16. The
peak value around 4 Hz and roll off above 10 Hz are typical for V1 neu-
rons and for cortical neurons in other primary sensory areas as well.

Space-Time Receptive Fields

It is instructive to display the function D(x, y, τ) in a space-time plot rather
than as a sequence of spatial plots (as in figure 2.13). To do this, we sup-
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Figure 2.16: Frequency response of a model simple cell based on the temporal
kernel of equation 2.29. The amplitude of the sinusoidal oscillations of Lt(t) pro-
duced by a counterphase grating is plotted as a function of the temporal oscillation
frequency, ω/2π.

press the y dependence and plot x-τ projections of the space-time kernel.
Space-time plots of receptive fields from two simple cells of the cat pri-
mary visual cortex are shown in figure 2.17. The receptive field in figure
2.17A is approximately separable, and it has OFF and ON subregions that
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Figure 2.17: A separable space-time receptive field. A) An x-τ plot of an approx-
imately separable space-time receptive field from cat primary visual cortex. OFF
regions are shown with dashed contour lines and ON regions with solid contour
lines. The receptive field has side-by-side OFF and ON regions that reverse as a
function of τ. B) Mathematical descriptions of the space-time receptive field in A
constructed by multiplying a Gabor function (evaluated at y = 0) with σx = 1◦,
1/k = 0.56◦, and φ = π/2 by the temporal kernel of equation 2.29 with 1/α = 15
ms. (A adapted from DeAngelis et al., 1995.)

reverse to ON and OFF subregions as a function of τ, similar to the re-
versal seen in figure 2.13. Figure 2.17B shows an x-τ contour plot of a
separable space-time kernel, similar to the one in figure 2.17A, generated
by multiplying a Gabor function by the temporal kernel of equation 2.29.

We can also plot the visual stimulus in a space-time diagram, suppressing
the y coordinate by assuming that the image does not vary as a function of
y. For example, figure 2.18A shows a grating of vertically oriented stripes
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26 Neural Encoding II: Reverse Correlation and Visual Receptive Fields

moving to the left on an x-y plot. In the x-t plot of figure 2.18B, this image
appears as a series of sloped dark and light bands. These represent the
projection of the image in figure 2.18A onto the x axis evolving as a func-
tion of time. The leftward slope of the bands corresponds to the leftward
movement of the image.

x

t

x

y

A B

Figure 2.18: Space and space-time diagrams of a moving grating. A) A vertically
oriented grating moves to the left on a two-dimensional screen. B) The space-time
diagram of the image in A. The x location of the dark and light bands moves to the
left as time progresses upward, representing the motion of the grating.

Most neurons in primary visual cortex do not respond strongly to static
images, but respond vigorously to flashed and moving bars and gratings.
The receptive field structure of figure 2.17 reveals why this is the case, as
is shown in figures 2.19 and 2.20. The image in figures 2.19A-C is a dark
bar that is flashed on for a brief period of time. To describe the linear
response estimate at different times we show a cartoon of a space-time
receptive field similar to the one in figure 2.17A. The receptive field is
positioned at three different times in figures 2.19A, B, and C. The height of
the horizontal axis of the receptive field diagram indicates the time when
the estimation is being made. Figure 2.19A corresponds to an estimate of
L(t) at the moment when the image first appears. At this time, L(t) = 0.
As time progresses, the receptive field diagram moves upward. Figure
2.19B generates an estimate at the moment of maximum response when
the dark image overlaps the OFF area of the space-time receptive field,
producing a positive contribution to L(t). Figure 2.19C shows a later time
when the dark image overlaps an ON region, generating a negative L(t).
The response for this flashed image is thus transient firing followed by
suppression, as shown in Figure 2.19D.

Figures 2.19E and F show why a static dark bar is an ineffective stimulus.
The static bar overlaps both the OFF region for small τ and the reversed
ON region for large τ, generating opposing positive and negative contri-
butions to L(t). The flashed dark bar of figures 2.19A-C is a more effective
stimulus because there is a time when it overlaps only the OFF region.

Figure 2.20 shows why a moving grating is a particularly effective stimu-
lus. The grating moves to the left in 2.20A-C. At the time corresponding to
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Figure 2.19: Responses to dark bars estimated from a separable space-time recep-
tive field. Dark ovals in the receptive field diagrams are OFF regions and light cir-
cles are ON regions. The linear estimate of the response at any time is determined
by positioning the receptive field diagram so that its horizontal axis matches the
time of response estimation and noting how the OFF and ON regions overlap with
the image. A-C) The image is a dark bar that is flashed on for a short interval of
time. There is no response (A) until the dark image overlaps the OFF region (B)
when L(t) > 0. The response is later suppressed when the dark bar overlaps the
ON region (C) and L(t) < 0. D) A plot of L(t) versus time corresponding to the
responses generated in A-C. Time runs vertically in this plot, and L(t) is plotted
horizontally with the dashed line indicating the zero axis and positive values plot-
ted to the left. E) The image is a static dark bar. The bar overlaps both an OFF and
an ON region generating opposing positive and negative contributions to L(t). F)
The weak response corresponding to E, plotted as in D.

the positioning of the receptive field diagram in 2.20A, a dark band stim-
ulus overlaps both OFF regions and light bands overlap both ON regions.
Thus, all four regions contribute positive amounts to L(t). As time pro-
gresses and the receptive field moves upward in the figure, the alignment
will sometimes be optimal, as in 2.20A, and sometimes non-optimal, as in
2.20B. This produces an L(t) that oscillates as a function of time between
positive and negative values (2.20C). Figures 2.20D-F show that a neuron
with this receptive field responds equally to a grating moving to the right.
Like the left-moving grating in figures 2.20A-C, the right-moving grating
can overlap the receptive field in an optimal manner (2.20D) producing
a strong response, or in a maximally negative manner (2.20E) producing
strong suppression of response, again resulting in an oscillating response
(2.20F). Separable space-time receptive fields can produce responses that
are maximal for certain speeds of grating motion, but they are not sensitive
to the direction of motion.
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Figure 2.20: Responses to moving gratings estimated from a separable space-time
receptive field. The receptive field is the same as in figure 2.19. A-C) The stimulus
is a grating moving to the left. At the time corresponding to A, OFF regions overlap
with dark bands and ON regions with light bands generating a strong response.
At the time of the estimate in B, the alignment is reversed, and L(t) is negative. C)
A plot of L(t) versus time corresponding to the responses generated in A-B. Time
runs vertically in this plot and L(t) is plotted horizontally with the dashed line
indicating the zero axis and positive values plotted to the left. D-F) The stimulus
is a grating moving to the right. The responses are identical to those in A-C.

Nonseparable Receptive Fields

Many neurons in primary visual cortex are selective for the direction of
motion of an image. Accounting for direction selectivity requires nonsepa-
rable space-time receptive fields. An example of a nonseparable receptive
field is shown in figure 2.21A. This neuron has a three-lobed OFF-ON-
OFF spatial receptive field, and these subregions shift to the left as time
moves forward (and τ decreases). This means that the optimal stimulus
for this neuron has light and dark areas that move toward the left. One
way to describe a nonseparable receptive field structure is to use a sepa-
rable function constructed from a product of a Gabor function for Ds and
equation 2.29 for Dt, but express these as functions of a mixture or rotation
of the x and τ variables. The rotation of the space-time receptive field, as
seen in figure 2.21B, is achieved by mixing the space and time coordinates
using the transformation

D(x, y, τ) = Ds(x′, y)Dt(τ
′) (2.35)
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Figure 2.21: A nonseparable space-time receptive field. A) An x-τ plot of the
space-time receptive field of a neuron from cat primary visual cortex. OFF regions
are shown with dashed contour lines and ON regions with solid contour lines. The
receptive field has a central ON region and two flanking OFF regions that shift to
the left over time. B) Mathematical description of the space-time receptive field in
A constructed from equations 2.35 - 2.37. The Gabor function used (evaluated at
y = 0) had σx = 1◦, 1/k = 0.5◦, and φ = 0. Dt is given by the expression in equation
2.29 with α = 20 ms except that the second term, with the seventh power function,
was omitted because the receptive field does not reverse sign in this example. The
x-τ rotation angle used was ψ = π/9 and the conversion factor was c = 0.02 ◦/ms.
(A adapted from DeAngelis et al., 1995.)

with

x′ = x cos(ψ) − cτ sin(ψ) (2.36)

and

τ′ = τ cos(ψ) + x
c

sin(ψ) . (2.37)

The factor c converts between the units of time (ms) and space (degrees)
and ψ is the space-time rotation angle. The rotation operation is not the
only way to generate nonseparable space-time receptive fields. They are
often constructed by adding together two or more separable space-time
receptive fields with different spatial and temporal characteristics.

Figure 2.22 shows how a nonseparable space-time receptive field can pro-
duce a response that is sensitive to the direction of motion of a grating.
Figures 2.22A-C show a left-moving grating and, in 2.22A, the cartoon of
the receptive field is positioned at a time when a light area of the image
overlaps the central ON region and dark areas overlap the flanking OFF
regions. This produces a large positive L(t). At other times, the align-
ment is non-optimal (2.22B), and over time, L(t) oscillates between fairly
large positive and negative values (2.22C). The nonseparable space-time
receptive field does not overlap optimally with the right-moving grating
of figures 2.22D-F at any time and the response is correspondingly weaker
(2.22F). Thus, a neuron with a nonseparable space-time receptive field can
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Figure 2.22: Responses to moving gratings estimated from a nonseparable space-
time receptive field. Dark areas in the receptive field diagrams represent OFF re-
gions and light areas ON regions. A-C) The stimulus is a grating moving to the
left. At the time corresponding to A, OFF regions overlap with dark bands and
the ON region overlaps a light band generating a strong response. At the time of
the estimate in B, the alignment is reversed, and L(t) is negative. C) A plot of L(t)
versus time corresponding to the responses generated in A-B. Time runs vertically
in this plot and L(t) is plotted horizontally with the dashed line indicating the zero
axis. D-F) The stimulus is a grating moving to the right. Because of the tilt of the
space-time receptive field, the alignment with the right-moving grating is never
optimal and the response is weak (F).

be selective for the direction of motion of a grating and for its velocity, direction selectivity
preferred velocityresponding most vigorously to an optimally spaced grating moving at a

velocity given, in terms of the parameters in equation 2.36, by c tan(ψ).

Static Nonlinearities - Simple Cells

Once the linear response estimate L(t) has been computed, the firing rate
of a visually responsive neuron can be approximated by using equation
2.8, rest(t) = r0 + F(L(t)) where F is an appropriately chosen static non-
linearity. The simplest choice for F consistent with the positive nature of
firing rates, is rectification, F = G[L]+, with G set to fit the magnitude of
the measured firing rates. However, this choice makes the firing rate a lin-
ear function of the contrast amplitude, which does not match the data on
the contrast dependence of visual responses. Neural responses saturate ascontrast saturation
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the contrast of the image increases and are more accurately described by
r ∝ An/(An

1/2 + An) where n is near two, and A1/2 is a parameter equal to
the contrast amplitude that produces a half-maximal response. This led
Heeger (1992) to propose that an appropriate static nonlinearity to use is

F(L) = G[L]2+
A2

1/2 + G[L]2+
(2.38)

because this reproduces the observed contrast dependence. A number of
variants and extensions of this idea have also been considered, including,
for example, that the denominator of this expression should include L fac-
tors for additional neurons with nearby receptive fields. This can account
for the effects of visual stimuli outside the ‘classical’ receptive field. Dis-
cussion of these effects is beyond the scope of this chapter.

2.5 Static Nonlinearities - Complex Cells

Recall that a large proportion of the neurons in primary visual cortex is
separated into classes of simple and complex cells. While linear methods,
such as spike-triggered averages, are useful for revealing the properties
of simple cells, at least to a first approximation, complex cells display fea-
tures that are fundamentally incompatible with a linear description. The
spatial receptive fields of complex cells cannot be divided into separate
ON and OFF regions that sum linearly to generate the response. Areas
where light and dark images excite the neuron overlap making it difficult
to measure and interpret spike-triggered average stimuli. Nevertheless,
like simple cells, complex cells are selective to the spatial frequency and
orientation of a grating. However, unlike simple cells, complex cells re-
spond to bars of light or dark no matter where they are placed within the
overall receptive field. Likewise, the responses of complex cells to grating
stimuli show little dependence on spatial phase. Thus, a complex cell is spatial phase

invarianceselective for a particular type of image independent of its exact spatial po-
sition within the receptive field. This may represent an early stage in the
visual processing that ultimately leads to position-invariant object recog-
nition.

Complex cells also have temporal response characteristics that distinguish
them from simple cells. Complex cell responses to moving gratings are
approximately constant, not oscillatory as in figures 2.20 and 2.22. The
firing rate of a complex cell responding to a counterphase grating oscil-
lating with frequency ω has both a constant component and an oscillatory
component with a frequency of 2ω, a phenomenon known as frequency frequency doubling
doubling.

Even though spike-triggered average stimuli and reverse correlation func-
tions fail to capture the response properties of complex cells, complex-
cell responses can be described, to a first approximation, by a relatively
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straightforward extension of the reverse correlation approach. The key ob-
servation comes from equation 2.34, which shows how the linear response
estimate of a simple cell depends on spatial phase for an optimally ori-
ented grating with K not too small. Consider two such responses, labeled
L1 and L2, with preferred spatial phases φ and φ − π/2. Including both the
spatial and temporal response factors, we find, for preferred spatial phase
φ,

L1 = AB(ω, K) cos(φ − �) cos(ωt − δ) (2.39)

where B(ω, K) is a temporal and spatial frequency-dependent amplitude
factor. We do not need the explicit form of B(ω, K) here, but the reader is
urged to derive it. For preferred spatial phase φ − π/2,

L2 = AB(ω, K) sin(φ − �) cos(ωt − δ) (2.40)

because cos(φ − π/2 − �) = sin(φ − �). If we square and add these two
terms, we obtain a result that does not depend on �,

L2
1 + L2

2 = A2B2(ω, K) cos2(ωt − δ) , (2.41)

because cos2(φ − �) + sin2(φ − �) = 1. Thus, we can describe the re-
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Figure 2.23: Selectivity of a complex cell model in response to a sinusoidal grat-
ing. The width and preferred spatial frequency of the Gabor functions underlying
the estimated firing rate satisfy kσ = 2. A) The complex cell response estimate,
L2

1 + L2
2, as a function of stimulus orientation � for a grating with the preferred

spatial frequency K = k. B) L2
1 + L2

2 as a function of the ratio of the stimulus spatial
frequency to its preferred value, K/k, for a grating oriented in the preferred direc-
tion � = 0. C) L2

1 + L2
2 as a function of stimulus spatial phase � for a grating with

the preferred spatial frequency and orientation K = k and � = 0.

sponse of a complex cell by writing

r(t) = r0 + G
(
L2

1 + L2
2

)
. (2.42)

The selectivities of such a response estimate to grating orientation, spatial
frequency, and spatial phase are shown in figure 2.23. The response of the
model complex cell is tuned to orientation and spatial frequency, but the
spatial phase dependence, illustrated for a simple cell in figure 2.15C, is
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absent. In computing the curve for figure 2.23C, we used the exact expres-
sions for L1 and L2 from the integrals in equations 2.31 and 2.32, not the
approximation 2.34 used to simplify the discussion above. Although it is
not visible in the figure, there is a weak dependence on � when the exact
expressions are used.

The complex cell response given by equations 2.42 and 2.41 reproduces
the frequency doubling effect seen in complex cell responses because the
factor cos2(ωt − δ) oscillates with frequency 2ω. This follows from the
identity

cos2(ωt − δ) = 1
2

cos (2(ωt − δ)) + 1
2

. (2.43)

In addition, the last term on the right side of this equation generates the
constant component of the complex cell response to a counterphase grat-
ing. Figure 2.24 shows a comparison of model simple and complex cell
responses to a counterphase grating and illustrates this phenomenon.
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Figure 2.24: Temporal responses of model simple and complex cells to a coun-
terphase grating. A) The stimulus s(x, y, t) at a given point (x, y) plotted as a
function of time. B) The rectified linear response estimate of a model simple cell to
this grating with a temporal kernel given by equation 2.29 with α = 1/(15 ms). C)
The frequency doubled response of a model complex cell with the same temporal
kernel but with the estimated rate given by a squaring operation rather than recti-
fication. The background firing rate is r0 = 5 Hz. Note the temporal phase shift of
both B and C relative to A.

The description of a complex cell response that we have presented is called
an ‘energy’ model because of its resemblance to the equation for the energy energy model
of a simple harmonic oscillator. The pair of linear filters used, with pre-
ferred spatial phases separated by π/2 is called a quadrature pair. Because
of rectification, the terms L2

1 and L2
2 cannot be constructed by squaring the
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outputs of single simple cells. However, they can each be constructed by
summing the squares of rectified outputs from two simple cells with pre-
ferred spatial phases separated by π. Thus, we can write the complex cell
response as the sum of the squares of four rectified simple cell responses,

r(t) = r0 + G
(
[L1]2

+ + [L2]2
+ + [L3]2

+ + [L4]2
+
)
, (2.44)

where the different [L]+ terms represent the responses of simple cells with
preferred spatial phases φ, φ + π/2, φ + π, and φ + 3π/2. While such a
construction is possible, it should not be interpreted too literally because
complex cells receive input from many sources including the LGN and
other complex cells. Rather, this model should be viewed as purely de-
scriptive. Mechanistic models of complex cells are described at the end of
this chapter and in chapter 7.

2.6 Receptive Fields in the Retina and LGN

We end this discussion of the visual system by returning to the initial
stages of the visual pathway and briefly describing the receptive field
properties of neurons in the retina and LGN. Retinal ganglion cells dis-
play a wide variety of response characteristics, including nonlinear and
direction-selective responses. However, a class of retinal ganglion cells (X
cells in the cat or P cells in the monkey retina and LGN) can be described
by a linear model built using reverse correlation methods. The receptive
fields of this class of retinal ganglion cells and an analogous type of LGN
relay neurons are similar, so we do not treat them separately. The spa-
tial structure of the receptive fields of these neurons has a center-surround
structure consisting either of a circular central ON region surrounded by
an annular OFF region, or the opposite arrangement of a central OFF re-
gion surrounded by an ON region. Such receptive fields are called ON-
center or OFF-center respectively. Figure 2.25A shows the spatial receptive
fields of an ON-center cat LGN neuron.

The spatial structure of retinal ganglion and LGN receptive fields is well-
captured by a difference-of-Gaussians model in which the spatial receptivedifference of

Gaussians field is expressed as

Ds(x, y) = ±
(

1
2πσ2

cen
exp

(
−x2 + y2

2σ2
cen

)
− B

2πσ2
sur

exp
(
−x2 + y2

2σ2
sur

))
.

(2.45)

Here the center of the receptive field has been placed at x = y = 0. The first
Gaussian function in equation 2.45 describes the center and the second the
surround. The size of the central region is determined by the parameter
σcen, while σsur, which is greater than σcen, determines the size of the sur-
round. B controls the balance between center and surround contributions.
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Figure 2.25: Receptive fields of LGN neurons. A) The center-surround spatial
structure of the receptive field of a cat LGN X cell. This has a central ON region
(solid contours) and a surrounding OFF region (dashed contours). B) A fit of the
receptive field shown in A using a difference of Gaussian function (equation 2.45)
with σcen = 0.3◦, σsur = 1.5◦, and B = 5. C) The space-time receptive field of a
cat LGN X cell. Note that both the center and surround regions reverse sign as
a function of τ and that the temporal evolution is slower for the surround than
for the center. D) A fit of the space-time receptive field in C using 2.46 with the
same parameters for the Gaussian functions as in B, and temporal factors given by
equation 2.47 with 1/αcen = 16 ms for the center, 1/αsur = 32 ms for the surround,
and 1/βcen = 1/βsur = 64 ms. (A and C adapted from DeAngelis et al., 1995.)

The ± sign allows both ON-center (+) and OFF-center (−) cases to be rep-
resented. Figure 2.25B shows a spatial receptive field formed from the dif-
ference of two Gaussians that approximates the receptive field structure in
figure 2.25A.

Figure 2.25C shows that the spatial structure of the receptive field reverses
over time with, in this case, a central ON region reversing to an OFF region
as τ increases. Similarly, the OFF surround region changes to an ON re-
gion with increasing τ, although the reversal and the onset are slower for
the surround than for the central region. Because of the difference between
the time course of the center and surround regions, the space-time recep-
tive field is not separable, although the center and surround components
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are individually separable. The basic features of LGN neuron space-time
receptive fields are captured by the mathematical caricature

D(x, y, τ) = ±
(

Dcen
t (τ)

2πσ2
cen

exp
(
−x2 + y2

2σ2
cen

)
− BDsur

t (τ)

2πσ2
sur

exp
(
−x2 + y2

2σ2
sur

))
.

(2.46)

Separate functions of time multiply the center and surround, but they can
both be described by the same functions using two sets of parameters,

Dcen,sur
t (τ) = α2

cen,surτ exp(−αcen,surτ) − β2
cen,surτ exp(−βcen,surτ) . (2.47)

The parameters αcen and αsur control the latency of the response in the cen-
ter and surround regions respectively, and βcen and βsur affect the time of
the reversal. This function has characteristics similar to the function 2.29,
but the latency effect is less pronounced. Figure 2.25D shows the space-
time receptive field of equation 2.46 with parameters chosen to match fig-
ure 2.25C.
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Figure 2.26: Comparison of predicted and measured firing rates for a cat LGN
neuron responding to a video movie. The top panel is the rate predicted by inte-
grating the product of the video image intensity and a linear filter obtained for this
neuron from a spike-triggered average of a white-noise stimulus. The resulting
linear prediction was rectified. The middle and lower panels are measured firing
rates extracted from two different sets of trials. (From Dan et al., 1996.)

Figure 2.26 shows the results of a direct test of a reverse correlation model
of an LGN neuron. The kernel needed to describe a particular LGN cell
was first extracted using a white-noise stimulus. This, together with a rec-
tifying static nonlinearity, was used to predict the firing rate of the neuron

Peter Dayan and L.F. Abbott Draft: December 17, 2000



2.7 Constructing V1 Receptive Fields 37

in response to a video movie. The top panel in figure 2.26 shows the result-
ing prediction while the middle and lower panels show the actual firing
rates extracted from two different groups of trials. The correlation coef-
ficient between the predicted and actual firing rates was 0.5, which was
very close to the correlation coefficient between firing rates extracted from
different groups of trials. This means that the error of the prediction was
no worse than the variability of the neural response itself.

2.7 Constructing V1 Receptive Fields

The models of visual receptive fields we have been discussing are purely
descriptive, but they provide an important framework for studying how
the circuits of the retina, LGN, and primary visual cortex generate neural
responses. In an example of a more mechanistic model, Hubel and Wiesel
(1962) showed how the oriented receptive fields of cortical neurons could
be generated by summing the input from appropriately selected LGN neu-
rons. Their construction, shown in figure 2.27A, consists of alternating Hubel-Wiesel

simple cell modelrows of ON-center and OFF-center LGN cells providing convergent input
to a cortical simple cell. The left side of figure 2.27A shows the spatial ar-
rangement of LGN receptive fields that, when summed, form bands of ON
and OFF regions resembling the receptive field of an oriented simple cell.
This model accounts for the selectivity of a simple cell purely on the basis
of feedforward input from the LGN. We leave the study of this model as
an exercise for the reader. Other models, which we discuss in chapter 7,
include the effects of recurrent intracortical connections as well.

In a previous section, we showed how the properties of complex cell re-
sponses could be accounted for using a squaring static nonlinearity. While
this provides a good description of complex cells, there is little indication
that complex cells actually square their inputs. Models of complex cells
can be constructed without introducing a squaring nonlinearity. One such
example is another model proposed by Hubel and Wiesel (1962), which
is depicted in figure 2.27B. Here the phase-invariant response of a com- Hubel-Wiesel

complex cell modelplex cell is produced by summing together the responses of several simple
cells with similar orientation and spatial frequency tuning, but different
preferred spatial phases. In this model, the complex cell inherits its orien-
tation and spatial frequency preference from the simple cells that drive it,
but spatial phase selectivity is reduced because the outputs of simple cells
with a variety of spatial phases selectivities are summed linearly. Analysis
of this model is left as an exercise. While the model generates complex cell
responses, there are indications that complex cells in primary visual cor-
tex are not exclusively driven by simple cell input. An alternative model
is considered in chapter 7.
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Figure 2.27: A) The Hubel-Wiesel model of orientation selectivity. The spatial
arrangement of the receptive fields of nine LGN neurons are shown, with a row
of three ON-center fields flanked on either side by rows of three OFF-center fields.
White areas denote ON fields and grey areas OFF fields. In the model, the con-
verging LGN inputs are summed linearly by the simple cell. This arrangement
produces a receptive field oriented in the vertical direction. B) The Hubel-Wiesel
model of a complex cell. Inputs from a number of simple cells with similar ori-
entation and spatial frequency preferences (θ and k), but different spatial phase
preferences (φ1, φ2, φ3, and φ4), converge on a complex cell and are summed lin-
early. This produces a complex cell output that is selective for orientation and
spatial frequency, but not for spatial phase. The figure shows four simple cells
converging on a complex cell, but additional simple cells can be included to give a
more complete coverage of spatial phase.

2.8 Chapter Summary

We continued from chapter 1 our study of the ways that neurons encode
information, focusing on reverse-correlation analysis, particularly as ap-
plied to neurons in the retina, visual thalamus (LGN), and primary vi-
sual cortex. We used the tools of systems identification, especially the
linear filter, Wiener kernel, and static nonlinearity to build descriptive lin-
ear and nonlinear models of the transformation from dynamic stimuli to
time-dependent firing rates. We discussed the complex logarithmic map
governing the way that neighborhood relationships in the retina are trans-
formed into cortex, Nyquist sampling in the retina, and Gabor functions as
descriptive models of separable and nonseparable receptive fields. Models
based on Gabor filters and static nonlinearities were shown to account for
the basic response properties of simple and complex cells in primary visual
cortex, including selectivity for orientation, spatial frequency and phase,
velocity, and direction. Retinal ganglion cell and LGN responses were
modeled using a difference-of-Gaussians kernel. We briefly described sim-
ple circuit models of simple and complex cells.
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2.9 Appendices

A) The Optimal Kernel

Using equation 2.1 for the estimated firing rate, the expression 2.3 to be
minimized is

E = 1
T

∫ T

0
dt

(
r0 +

∫ ∞

0
dτ D(τ)s(t − τ) − r(t)

)2

. (2.48)

The minimum is obtained by setting the derivative of E with respect to functional
derivativethe function D to zero. A quantity, such as E, that depends on a func-

tion, D in this case, is called a functional, and the derivative we need is a
functional derivative. Finding the extrema of functionals is the subject of
a branch of mathematics called the calculus of variations. A simple way to
define a functional derivative is to introduce a small time interval 
t and
evaluate all functions at integer multiples of 
t. We define ri = r(i
t),
Dk = D(k
t), and si−k = s((i − k)
t). If 
t is small enough, the integrals
in equation 2.48 can be approximated by sums, and we can write

E = 
t
T

T/
t∑
i=0

(
r0 + 
t

∞∑
k=0

Dksi−k − ri

)2

. (2.49)

E is minimized by setting its derivative with respect to Dj for all values of
j to zero,

∂E
∂Dj

= 0 = 2
t
T

T/
t∑
i=0

(
r0 + 
t

∞∑
k=0

Dksi−k − ri

)
si− j
t . (2.50)

Rearranging and simplifying this expression gives the condition


t
∞∑

k=0

Dk

(

t
T

T/
t∑
i=0

si−ksi− j

)
= 
t

T

T/
t∑
i=0

(ri − r0) si− j . (2.51)

If we take the limit 
t → 0 and make the replacements i
t → t, j
t →
τ, and k
t → τ′, the sums in equation 2.51 turn back into integrals, the
indexed variables become functions, and we find∫ ∞

0
dτ′ D(τ′)

(
1
T

∫ T

0
dt s(t − τ′)s(t − τ)

)
= 1

T

∫ T

0
dt (r(t) − r0) s(t − τ) .

(2.52)

The term proportional to r0 on the right side of this equation can be
dropped because the time integral of s is zero. The remaining term is the
firing rate-stimulus correlation function evaluated at −τ, Qrs(−τ). The
term in large parentheses on the left side of 2.52 is the stimulus autocorre-
lation function. By shifting the integration variable t → t + τ, we find that
it is Qss(τ − τ′), so 2.52 can be re-expressed in the form of equation 2.4.
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40 Neural Encoding II: Reverse Correlation and Visual Receptive Fields

Equation 2.6 provides the solution to equation 2.4 only for a white noise
stimulus. For an arbitrary stimulus, equation 2.4 can be solved easily by
the method of Fourier transforms if we ignore causality and allow the es-
timated rate at time t to depend on the stimulus at times later than t, so
that

rest(t) = r0 +
∫ ∞

−∞
dτ D(τ)s(t − τ) . (2.53)

The estimate written in this acausal form, satisfies a slightly modified ver-
sion of equation 2.4,∫ ∞

−∞
dτ′ Qss(τ − τ′)D(τ′) = Qrs(−τ) . (2.54)

We define the Fourier transforms (see the Mathematical Appendix)

D̃(ω) =
∫ ∞

−∞
dt D(t)exp(iωt) and Q̃ss(ω) =

∫ ∞

−∞
dτ Qss(τ)exp(iωτ)

(2.55)

as well as Q̃rs(ω) defined analogously to Q̃ss(ω).

Equation 2.54 is solved by taking the Fourier transform of both sides and
using the convolution identity (Mathematical Appendix)∫ ∞

−∞
dt exp(iωt)

∫ ∞

−∞
dτ′ Qss(τ − τ′)D(τ′) = D̃(ω)Q̃ss(ω) (2.56)

In terms of the Fourier transforms, equation 2.54 then becomes

D̃(ω)Q̃ss(ω) = Q̃rs(−ω) (2.57)

which can be solved directly to obtain D̃(ω) = Q̃rs(−ω)/Q̃ss(ω). The in-
verse Fourier transform from which D(τ) is recovered is (Mathematical
Appendix)

D(τ) = 1
2π

∫ ∞

−∞
dω D̃(ω)exp(−iωτ) , (2.58)

so the optimal acausal kernel when the stimulus is temporally correlated
is given by

D(τ) = 1
2π

∫ ∞

−∞
dω

Q̃rs(−ω)

Q̃ss(ω)
exp(−iωτ) . (2.59)

B) The Most Effective Stimulus

We seek the stimulus that produces the maximum predicted responses at
time t subject to the fixed energy constraint∫ T

0
dt′

(
s(t′)

)2 = constant . (2.60)
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We impose this constraint by the method of Lagrange multipliers (see
the Mathematical Appendix), which means that we must find the uncon-
strained maximum value with respect to s of

rest(t) + λ

∫ T

0
dt′ s2(t′) = r0 +

∫ ∞

0
dτ D(τ)s(t − τ) + λ

∫ T

0
dt′

(
s(t′)

)2 (2.61)

where λ is the Lagrange multiplier. Setting the derivative of this expres-
sion with respect to the function s to zero (using the same methods used
in appendix A) gives

D(τ) = −2λs(t − τ) . (2.62)

The value of λ (which is less than zero) is determined by requiring that
condition 2.60 is satisfied, but the precise value is not important for our
purposes. The essential result is the proportionality between the optimal
stimulus and D(τ).

C) Bussgang’s Theorem

Bussgang (1952 & 1975) proved that an estimate based on the optimal ker-
nel for linear estimation can still be self-consistent (although not necessar-
ily optimal) when nonlinearities are present. The self-consistency condi-
tion is that when the nonlinear estimate rest = r0 + F(L(t)) is substituted
into equation 2.6, the relationship between the linear kernel and the firing
rate-stimulus correlation function should still hold. In other words, we
require that

D(τ) = 1
σ2

s T

∫ T

0
dt rest(t)s(τ − t) = 1

σ2
s T

∫ T

0
dt F(L(t))s(τ − t) . (2.63)

We have dropped the r0 term because the time integral of s is zero. In
general, equation 2.63 does not hold, but if the stimulus used to extract D
is Gaussian white noise, equation 2.63 reduces to a simple normalization
condition on the function F. This result is based on the identity, valid for a
Gaussian white-noise stimulus,

1
σ2

s T

∫ T

0
dt F(L(t))s(τ − t) = D(τ)

T

∫ T

0
dt

dF(L(t))
dL

. (2.64)

For the right side of this equation to be D(τ), the remaining expression,
involving the integral of the derivative of F, must be equal to one. This can
be achieved by appropriate scaling of F. The critical identity 2.64 is based
on integration by parts for a Gaussian weighted integral. A simplified
proof is left as an exercise.
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2.10 Annotated Bibliography

Marmarelis & Marmarelis (1978), Rieke et al. (1997) and Gabbiani &
Koch (1998) provide general discussions of reverse correlation methods.
A useful reference relevant to our presentation of their application to the
visual system is Carandini et al. (1996). Volterra and Wiener functional
expansions are discussed in Wiener (1958) and Marmarelis & Marmarelis
(1978).

General introductions to the visual system include Hubel & Wiesel (1962,
1977), Orban (1984), Hubel (1988), Wandell (1995), and De Valois & De
Valois (1990). Our treatment follows Dowling (1987) on processing in the
retina, and Schwartz (1977), Van Essen et al. (1984), and Rovamo & Virsu
(1984) on aspects of the retinotopic map from the eye to the brain. Prop-
erties of this map are used to account for aspects of visual hallucinations
in Ermentrout & Cowan (1979). We also follow Movshon et al. (1978a &
b) for definitions of simple and complex cells; Daugman (1985) and Jones
& Palmer (1987b) on the use of Gabor functions (Gabor, 1946) to describe
visual receptive fields; and DeAngelis et al. (1995) on space-time recep-
tive fields. Our description of the energy model of complex cells is based
on Adelson & Bergen (1985), which is related to work by Pollen & Ronner
(1982), Van Santen & Sperling (1984), and Watson & Ahumada (1985), and
to earlier ideas of Reichardt (1961) and Barlow & Levick (1965). Heeger’s
(1992; 1993) model of contrast saturation is reviewed in Carandini et al.
(1996) and has been applied in a approach more closely related to the
representational learning models of chapter 10 by Simoncelli & Schwartz
(1999). The difference-of-Gaussians model for retinal and LGN receptive
fields is due to Rodieck (1965) and Enroth-Cugell and Robson (1966). A
useful reference to modeling of the early visual system is Wörgötter &
Koch (1991). The issue of linearity and non-linearity in early visual pro-
cessing is reviewed by Ferster (1994).
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Chapter 3

Neural Decoding

3.1 Encoding and Decoding

In chapters 1 and 2, we considered the problem of predicting neural re-
sponses to known stimuli. The nervous system faces the reverse problem,
determining what is going on in the real world from neuronal spiking pat-
terns. It is interesting to attempt such computations ourselves, using the
responses of one or more neurons to identify a particular stimulus or to ex-
tract the value of a stimulus parameter. We will assess the accuracy with
which this can be done primarily by using optimal decoding techniques,
regardless of whether the computations involved seem biologically plausi-
ble. Some biophysically realistic implementations are discussed in chapter
7. Optimal decoding allows us to determine limits on the accuracy and re-
liability of neuronal encoding. In addition, it is useful for estimating the
information content of neuronal spike trains, an issue addressed in chapter
4.

As we discuss in chapter 1, neural responses, even to a single repeated
stimulus, are typically described by stochastic models due to their inher-
ent variability. In addition, the stimuli themselves are often described
stochastically. For example, the stimuli used in an experiment might be
drawn randomly from a specified probability distribution. Natural stim-
uli can also be modeled stochastically as a way of capturing the statistical
properties of complex environments.

Given this two-fold stochastic model, encoding and decoding are re-
lated through a basic identity of probability theory called Bayes theo-
rem. Let r represent the response of a neuron or a population of neurons
to a stimulus characterized by a parameter s. Throughout this chapter,
r = (r1, r2, . . . , rN) for N neurons is a list of spike-count firing rates, al-
though, for the present discussion, it could be any other set of parameters
describing the neuronal response. Several different probabilities and con-
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2 Neural Decoding

ditional probabilities enter into our discussion. A conditional probabilityconditional
probability is just an ordinary probability of an event occurring except that its occur-

rence is subject to an additional condition. The conditional probability of
an event A occurring subject to the condition B is denoted by P[A|B]. The
probabilities we need are:

• P[s], the probability of stimulus s being presented. This is often
called the prior probability,prior probability

• P[r], the probability of response r being recorded,

• P[r, s], the probability of stimulus s being presented and response r
being recorded,

• P[r|s], the conditional probability of evoking response r given that
stimulus s was presented, and

• P[s|r], the conditional probability that stimulus s was presented
given that the response r was recorded.

Note that P[r|s] is the probability of observing the rates r given that the
stimulus took the value s, while P[r] is the probability of the rates taking
the values r independent of what stimulus was used. P[r] can be com-
puted from P[r|s] by summing over all stimulus values weighted by their
probabilities,

P[r] =
∑

s

P[r|s]P[s] and similarly P[s] =
∑

r

P[s|r]P[r] . (3.1)

An additional relationship between the probabilities listed above can be
derived by noticing that P[r, s] can be expressed as either the conditional
probability P[r|s] times the probability of the stimulus, or as P[s|r] times
the probability of the response,

P[r, s] = P[r|s]P[s] = P[s|r]P[r] . (3.2)

This is the basis of Bayes theorem relating P[s|r] to P[r|s],Bayes theorem

P[s|r] = P[r|s]P[s]
P[r]

, (3.3)

assuming that P[r] �= 0. Encoding is characterized by the set of probabili-
ties P[r|s] for all stimuli and responses. Decoding a response, on the other
hand, amounts to determining the probabilities P[s|r]. According to Bayes
theorem, P[s|r] can be obtained from P[r|s], but the stimulus probability
P[s] is also needed. As a result, decoding requires knowledge of the statis-
tical properties of experimentally or naturally occurring stimuli.

In the above discussion, we have assumed that both the stimulus and re-
sponse are characterized by discrete values so that ordinary probabilities,
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3.2 Discrimination 3

not probability densities, are used to describe their distributions. For ex-
ample, firing rates obtained by counting spikes over the duration of a trial
take discrete values and can be described by a probability. However, we
sometimes treat the response firing rates or the stimulus values as contin-
uous variables. In this case, the probabilities listed must be replaced by
the corresponding probability densities, p[r], p[r|s], etc. Nevertheless, the
relationships discussed above are equally valid.

In the following sections, we present examples of decoding that involve
both single neurons and neuronal populations. We first study a restricted
case of single-cell decoding, discrimination between two different stimu-
lus values. We then consider extracting the value of a parameter that char-
acterizes a static stimulus from the responses of a population of neurons.
As a final example, we return to single neurons and discuss spike-train
decoding in which an estimate of a time-varying stimulus is constructed
from the spike train it evokes.

3.2 Discrimination

To introduce the notion of discriminability and the receiver operating char-
acteristic that lie at the heart of discrimination analysis, we will discuss a
fascinating study performed by Britten, Shadlen, Newsome and Movshon
(1992). In their experiments, a monkey was trained to discriminate be-
tween two directions of motion of a visual stimulus. The stimulus was a
pattern of dots on a video monitor that jump from random initial locations
to new locations every 45 ms. To introduce a sense of directed movement
at a particular velocity, a percentage of the dots move together by a fixed
amount in a fixed direction (figure 3.1). The coherently moving dots are
selected randomly at each time step, and the remaining dots move to ran-
dom new locations. The percentage of dots that move together in the fixed
direction is called the coherence level. At 0% coherence, the image appears
chaotic with no sense of any particular direction of motion. As the coher-
ence increases, a sense of movement in a particular direction appears in the
image, until, at 100% coherence, the entire array of dots moves together on
the monitor. By varying the degree of coherence, the task of detecting the
movement direction can be made more or less difficult.

The experiments combined neural recording with behavioral measure-
ments. In the behavioral part, the monkey had to report the direction of
motion in the random dot images. During the same task, recordings were
made from neurons in area MT. Only two different possible directions of
coherent movement of the dots were used while a particular neuron was
being recorded; either the direction that produced the maximum response
in that neuron, or the opposite direction. The monkey’s task was to dis-
criminate between these two directions. The filled circles and solid curve
in figure 3.2A show the proportion of correct responses in a typical ex-
periment. Below 1% coherence, the responses were near chance (fraction
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4 Neural Decoding

0% coherence 50% coherence 100% coherence

Figure 3.1: The moving random-dot stimulus for different levels of coherence.
The visual image consists of randomly placed dots that jump every 45 ms accord-
ing to the scheme described in the text. At 0% coherence the dots move randomly.
At 50% coherence, half the dots move randomly and half move together (upwards
in this example). At 100% coherence all the dots move together. (Adapted from
Britten et al., 1992.)

correct = 0.5), but the monkey approached perfect performance (fraction
correct = 1) above 10% coherence.
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Figure 3.2: Behavioral and electrophysiological results from a random dot motion
discrimination task. A) The filled circles show the fraction of correct discrimina-
tions made by the monkey as a function of the degree of coherence of the mo-
tion. The open circles show the discrimination accuracy that an ideal observer
could achieve on the analogous two-alternative forced choice discrimination task
given the neural responses. B) Firing rate histograms for three different levels of
coherence. Hatched rectangles show the results for motion in the plus direction
and solid rectangles for motion in the minus direction. The histograms have been
thinned for clarity so that not all the bins are shown. (Adapted from Britten et al.,
1992 .)
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3.2 Discrimination 5

Figure 3.2B shows histograms of average firing rates in response to differ-
ent levels of movement coherence. The firing rates plotted are the number
of spikes recorded during the 2 s period that the stimulus was presented,
divided by 2 s. The neuron shown tended to fire more spikes when the
motion was in its preferred direction, which we will call the plus (or ‘+’)
direction (hatched histogram), than in the other, minus (or ‘−’) direction
(solid histogram). At high coherence levels, the firing-rate distributions
corresponding to the two directions are fairly well separated, while at low
coherence levels, they merge. Although spike count rates only take dis-
crete values, it is more convenient to treat r as a continuous variable for our
discussion. Treated as probability densities, these two distributions are
approximately Gaussian with the same variance, σ2

r , but different means,
〈r〉+ for the plus direction and 〈r〉− for the minus direction. A convenient
measure of the separation between the distributions is the discriminability discriminability d′

d′ = 〈r〉+ − 〈r〉−
σr

(3.4)

which is the distance between the means in units of their common stan-
dard deviation. The larger d′, the more separated the distributions.

In the example we are considering, decoding involves using the neural re-
sponse to determine in which of the two possible directions the stimulus
moved. A simple decoding procedure is to determine the firing rate r dur-
ing a trial and compare it to a threshold number z. If r≥ z, we report plus;
otherwise we report minus. Figure 3.2B suggests that if we choose z to
lie somewhere between the two distributions, this procedure will give the
correct answer at high coherence, but will have difficultly distinguishing
the two directions for low coherence. This difficulty is clearly related to
the degree to which the two distributions in figure 3.2B overlap, and thus
to the discriminability.

The probability that the procedure outlined in the previous paragraph will
generate the correct answer (called a hit) when the stimulus is moving in
the plus direction is the conditional probability that r≥z given a plus stim-
ulus, P[r≥z|+]. The probability that it will give the answer plus when the
stimulus is actually moving in the minus direction (called a false alarm)
is similarly P[r ≥ z|−]. These two probabilities completely determine the
performance of the decoding procedure because the probabilities for the
other two cases, i.e. reporting minus when the correct answer is plus, and
reporting minus when the correct answer is minus, are 1−P[r≥ z|+] and
1−P[r ≥ z|−] respectively. In signal detection theory, the quantity used
to perform the discrimination, r in our case, is called the test, and the
two probabilities corresponding to reporting a plus answer have specific test size and power

or false alarm and
hit rate

names:

α(z) = P[r ≥ z|−] is the size or false alarm rate of the test, and
β(z) = P[r ≥ z|+] is the power or hit rate of the test .

(3.5)
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6 Neural Decoding

The following table shows how the probabilities of the test giving correct
and incorrect answers in the different cases depend on α and β.

probability
stimulus correct incorrect

+ β 1 − β

− 1 − α α

The performance of the decoding procedure we have been discussing
depends critically on the value of the threshold z to which the rate r
is compared. Obviously, we would like to use a threshold for which
the size is near 0 and the power near 1. In general, it is impossible to
choose the threshold so that both the size and power of the test are opti-
mized; a compromise must be made. A logical optimization criterion is
to maximize the probability of getting a correct answer, which is equal to
(β(z) + 1 − α(z))/2 if the plus and minus stimuli occur with equal proba-
bility. While this is a possible approach for the experiment we are study-
ing, the analysis we present introduces a powerful technique that makes
better use of the full range of recorded data and can be generalized to tasks
where the optimal strategy is unknown. This approach makes use of ROC
curves, which indicate how the size and power of a test trade off as the
threshold is varied.

ROC Curves

The receiver operating characteristic (ROC) curve provides a way of eval-
uating how test performance depends on the choice of the threshold z.receiver operating

characteristic, ROC Each point on an ROC curve corresponds to a different value of z. The x
coordinate of the point is α, the size of the test for this value of z, and the
y coordinate is β, its power. As the threshold is varied continuously, these
points trace out the ROC plot. If z=0, the firing rate will always be greater
than or equal to z, so the decoding procedure will always give the answer
plus. Thus, for z = 0, α=β=1, producing a point at the upper-right corner
of the ROC plot. At the other extreme, if z is very large, r will always be
less than z, the test will always report minus, and α=β=0. This produces
a point at the bottom-left corner of the plot. Between these extremes, a
curve is traced out as a function of z.

Figure 3.3 shows ROC curves computed by Britten et al. for several dif-
ferent values of the stimulus coherence. At high coherence levels, when
the task is easy, the ROC curve rises rapidly from α(z) = 0, β(z) = 0 as the
threshold is lowered from a very high value, and the probability β(z) of a
correct plus answer quickly approaches 1 without a concomitant increase
in α(z). As the threshold is lowered further, the probability of giving the
answer ‘plus’ when the correct answer is ‘minus’ also rises, and α(z) in-
creases. When the task is difficult, the curve rises more slowly as z is low-
ered; and if the task is impossible, in that the test merely gives random

Peter Dayan and L.F. Abbott Draft: December 17, 2000



3.2 Discrimination 7

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
12.8%

6.4%
3.2%

1.6%

0.8%

�

�

Figure 3.3: ROC curves for a variety of motion coherence levels. Each curve is the
locus of points (α(z), β(z)) for all z values. The values of α and β were computed
from histograms such as those in figure 3.2B. The diagonal line is the ROC curve
for random guessing. (Adapted from Britten et al., 1992.)

answers, the curve will lie along the diagonal α=β, because the probabil-
ities of answers being correct and incorrect are equal. This is exactly the
trend of the ROC curves at different coherence levels shown in figure 3.3.

Examination of figure 3.3 suggests a relationship between the area under
the ROC curve and the level of performance on the task. When the ROC
curve in figure 3.3 lies along the diagonal, the area underneath it is 1/2,
which is the probability of a correct answer in this case (given any thresh-
old). When the task is easy and the ROC curve hugs the left axis and upper
limit in figure 3.3, and the area under it approaches one, which is again the
probability of a correct answer (given an appropriate threshold). However,
the precise relationship between task performance and the area under the
ROC curve is complicated by the fact that different threshold values can be
used. This ambiguity can be removed by considering a slightly different
task, called two-alternative forced choice. Here, the stimulus is presented two-alternative

forced choice testtwice, once with motion in the plus direction and once in the minus di-
rection. The task is to decide which presentation corresponded to the plus
direction given the firing rates on both trials, r1 and r2. A natural extension
of the test procedure we have been discussing is to answer trial 1 if r1 ≥r2
and otherwise answer trial 2. This removes the threshold variable from
consideration.

In the two-alternative forced choice task, the value of r on one trial serves
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8 Neural Decoding

as the threshold for the other trial. For example, if the order of stimu-
lus presentation is plus then minus, the comparison procedure we have
outlined will report the correct answer if r1 ≥ z where z= r2, and this has
probability P[r1 ≥ z|+] = β(z) with z = r2. To determine the probability
of getting the correct answer in a two-alternative forced choice task, we
need to integrate this probability over all possible values of r2 weighted
by their probability of occurrence. For small 
z, the probability that r2
takes a value in the range between z and z+
z when the second trial has
a minus stimulus is p[z|−]
z, where p[z|−] is the conditional firing rate
probability density for a firing rate r = z. Integrating over all values of z
gives the probability of getting the correct answer,

P[correct] =
∫ ∞

0
dz p[z|−]β(z) . (3.6)

Because the two-alternative forced choice test is symmetric, this is also the
probability of being correct if the order of the stimuli is reversed.

The probability that r ≥ z for a minus stimulus, which is just α(z), can
be written as an integral of the conditional firing-rate probability density
p[r|−],

α(z) =
∫ ∞

z
dr p[r|−] . (3.7)

Taking the derivative of this equation with respect to z we find that

dα

dz
= −p[z|−] . (3.8)

This allows us to make the replacement dz p[z|−] → −dα in the integral
of equation 3.6 and to change the integration variable from z to α. Noting
that α=1 when z=0 and α=0 when z=∞, we find

P[correct] =
∫ 1

0
dαβ . (3.9)

The ROC curve is just β plotted as a function or α, so this integral is exactly
the area under the ROC curve. Thus, the area under the ROC curve is
exactly the probability of error in the two-alternative forced choice test.

Suppose that p[r|+] and p[r|−] are both Gaussian functions with means
〈r〉+ and 〈r〉−, and a common variance σ2

r . The reader is invited to show
that, in this case,

P[correct] = 1
2

erfc
( 〈r〉− − 〈r〉+

2σr

)
= 1

2
erfc

(
−d′

2

)
(3.10)

where d′ is the discriminability defined in equation 3.4 and erfc(x) is thecomplementary
error function complementary error function (whose values are closely related to the area

under the tail of a Gaussian distribution) defined as

erfc(x) = 2√
π

∫ ∞

x
dy exp(−y2) . (3.11)
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3.2 Discrimination 9

In the case that the distributions are equal-variance Gaussians, the rela-
tionship between the discriminability and the area under the ROC curve
is invertible because the complementary error function is monotonic. It is
common to quote d′ values even for non-Gaussian distributions by invert-
ing the relationship between P[correct] and d′ in equation 3.10.

ROC Analysis of Motion Discrimination

To interpret their experiment as a two-alternative forced choice task, Brit-
ten et al. imagined that, in addition to being given the firing rate of the
recorded neuron during stimulus presentation, the observer is given the
firing rate of a hypothetical ‘anti-neuron’ having exactly the opposite re-
sponse characteristics from the recorded neuron. In reality, the responses
of this anti-neuron to a plus stimulus were just those of the recorded neu-
ron to a minus stimulus, and vice versa. The idea of using the responses
of a single neuron to opposite stimuli as if they were the simultaneous
responses of two different neurons reappears again in our discussion of
spike train decoding. An observer predicting motion directions on the ba-
sis of just these two neurons at a level equal to the area under the ROC
curve is termed an ideal observer.

Figure 3.2A shows a typical result for the performance of an ideal observer
using one recorded neuron and its anti-neuron partner. The open circles in
figure 3.2A were obtained by calculated the areas under the ROC curves
for this neuron. Amazingly, the ability of the ideal observer to perform
the discrimination task using a single neuron/anti-neuron pair is equal to
the ability of the monkey to do the task. Although the choices of the ideal
observer and the monkey do not necessarily match on a trial-to-trial basis,
their performances are comparable when averaged over trials. This seems
remarkable because the monkey presumably has access to a large popula-
tion of neurons, while the ideal observer uses only two. One speculation
is that correlations in the response variability between neurons limit the
performance of the monkey.

The Likelihood Ratio Test

The discrimination test we have considered compares the firing rate to a
threshold value. Could an observer do better than this already remark-
able performance by comparing some other function of the firing rate to
a threshold? What is the best test function to use for this purpose? The
Neyman-Pearson lemma (proven in appendix A) shows that it is impossi- Neyman-Pearson

lemmable to do better than to chose the test function to be the ratio of probability
densities (or, where appropriate, probabilities),

l(r) = p[r|+]
p[r|−]

, (3.12)
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10 Neural Decoding

which is known as the likelihood ratio. The test function r used above islikelihood ratio
not equal to the likelihood ratio. However, if the likelihood is a mono-
tonically increasing function of r, as it is for the data of Britten et al., the
firing-rate threshold test is equivalent to using the likelihood ratio and is
indeed optimal. Similarly, any monotonic function of the likelihood ratio
will provide as good a test as the likelihood itself, and the logarithm is
frequently used.

There is a direct relationship between the likelihood ratio and the ROC
curve. As in equations 3.7 and 3.8, we can write

β(z) =
∫ ∞

z
dr p[r|+]

dβ
dz

= −p[z|+] . (3.13)

Combining this result with 3.8, we find that

dβ
dα

= dβ
dz

dz
dα

= p[z|+]
p[z|−]

= l(z) , (3.14)

so the slope of the ROC curve is equal to the likelihood ratio.

Another way of seeing that comparing the likelihood ratio to a threshold
value is an optimal decoding procedure for discrimination uses a Bayesian
approach based on associating a cost or penalty with getting the wrong
answer. Suppose that the penalty associated with answering minus when
the correct answer is plus is quantified by the loss parameter L−. Similarly,loss parameter
quantify the loss for answering plus when the correct answer is minus as
L+. For convenience, we assume that there is neither loss nor gain for
answering correctly. The probabilities that the correct answer is plus or
minus given the firing rate r are P[+|r] and P[−|r] respectively. These
probabilities are related to the conditional firing-rate probability densities
by Bayes Theorem,

P[+|r] = p[r|+]P[+]
p[r]

and P[−|r] = p[r|−]P[−]
p[r]

. (3.15)

The average loss expected for a plus answer when the firing rate is r is the
loss associated with being wrong times the probability of being wrong,
Loss+ = L+P[−|r]. Similarly the expected loss when answering minus is
Loss− = L−P[+|r]. A reasonable strategy is to ‘cut the losses’, answering
plus if Loss+ ≤ Loss− and minus otherwise. Using equation 3.15, we find
that this strategy gives the response plus if

l(r) = p[r|+]
p[r|−]

≥ L+
L−

P[−]
P[+]

. (3.16)

This shows that the strategy of comparing the likelihood ratio to a thresh-
old is a way of minimizing the expected loss. The right hand side of this in-
equality gives an explicit formula for the value of the threshold that should
be used, and reflects two factors. One is the relative losses for the two sorts
of possible errors. The other is the prior probabilities that the stimulus is
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3.3 Population Decoding 11

plus or minus. Interestingly, it is possible to change the thresholds that
human subjects use in discrimination tasks by manipulating these two fac-
tors.

If the conditional probability densities p[r|+] and p[r|−] are Gaussians
with means r+ and r− and identical variances σ2

r , and P[+] = P[−] = 1/2,
the probability P[+|r] is a sigmoidal function of r

P[+|r] = 1
1 + exp(−d′(r − rave)/σr)

(3.17)

where rave = (r+ + r−)/2. This provides an alternate interpretation of the
parameter d′ that is often used in the psychophysics literature; it deter-
mines the slope of a sigmoidal fit to P[+|r].

We have so far considered discriminating between two quite distinct stim-
ulus values, plus and minus. Often we are interested in discriminating
between two stimulus values s+
s and s that are very close to each other.
In this case, the likelihood ratio is

p[r|s+
s]
p[r|s]

≈ p[r|s] + 
s∂p[r|s]/∂s
p[r|s]

= 1 + 
s
∂ ln p[r|s]

∂s
.

For small 
s, a test that compares

Z(r) = ∂ ln p[r|s]
∂s

(3.18)

to a threshold (z − 1)/
s is equivalent to the likelihood ratio test. The
function Z(r) is sometimes called the score. score Z(r)

3.3 Population Decoding

The use of large numbers of neurons to perform tasks is one of the ba-
sic operating principles of most nervous systems. Population coding has a
number of advantages, including reduction of uncertainty due to neuronal
variability and the ability to represent a number of different stimulus at-
tributes simultaneously. Individual neurons in such a population typically
have different but overlapping selectivities so that many neurons, but not
necessarily all, respond to a given stimulus. In the previous section, we
discussed discrimination between stimuli on the basis of the response of
a single neuron. The responses of a population of neurons can also be
used for discrimination, with the only essential difference being that terms
such as p[r|s] are replaced by p[r|s], the conditional probability density of
the population response r. ROC analysis, likelihood ratio tests, and the
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12 Neural Decoding

Neyman-Pearson lemma continue to apply in exactly the same way. Dis-
crimination is a special case of decoding in which only few different stim-
ulus values are considered. A more general problem is the extraction of a
continuous stimulus parameter from one or more neuronal responses. In
this section, we study how the value of a continuous parameter associated
with a static stimulus can be decoded from the spike-count firing rates of
a population of neurons.

Encoding and Decoding Direction

The cercal system of the cricket, used to report the direction of incom-
ing air currents as a warning of approaching predators, is an interesting
example of population coding involving a relatively small number of neu-
rons. Crickets and other related insects have two appendages called cerci
extending from their hind ends. These are covered with hairs that are de-
flected by air currents. Each hair is attached to a neuron that fires when
the hair is deflected. Thousands of these primary sensory neurons send
axons to a set of interneurons that relay the sensory information to the rest
of the cricket’s nervous system. No single interneuron of the cercal system
responds to all wind directions, and multiple interneurons respond to any
given wind direction. This implies that the interneurons encode the wind
direction collectively as a population.

Theunissen and Miller (1991) measured both the mean and the variance
of responses of cercal interneurons while blowing air currents at the cerci.
At low wind velocities, information about wind direction is encoded by
just four interneurons. Figure 3.4 shows average firing rate tuning curves
for the four relevant interneurons as a function of wind direction. These
neurons are sensitive primarily to the angle of the wind around the ver-

360270180900
0.0

0.5

1.0

s  (degrees)

f/r
m

ax

Figure 3.4: Tuning curves for the four low-velocity interneurons of the cricket cer-
cal system plotted as a function of the wind direction s. Each neuron responds with
a firing rate that closely approximated by a half-wave rectified cosine function. The
preferred directions of the neurons are located 90◦ from each other, and rmax values
are typically around 40 Hz. Error bars show standard deviations. (Adapted from
Theunissen and Miller, 1991.)
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3.3 Population Decoding 13

tical axis and not to its elevation above the horizontal plane. Wind speed
was held constant in these experiments so we do not discuss how it is
encoded. The interneuron tuning curves are well approximated by half-
wave rectified cosine functions. Neuron a (where a = 1,2,3,4) responds
with a maximum average firing rate when the angle of the wind direction
is sa, the preferred direction angle for that neuron. The tuning curve for
interneuron a in response to wind direction s, 〈ra〉 = fa(s), normalized to
its maximum, can be written as cosine tuning(

f (s)
rmax

)
a
= [(cos(s − sa)]+ (3.19)

where the half-wave rectification eliminates negative firing rates. Here
rmax, which may be different for each neuron, is a constant equal to the
maximum average firing rate. The fit can be improved somewhat by in-
troducing a small offset rate, but the simple cosine is adequate for our
purposes.

To determine the wind direction from the firing rates of the cercal interneu-
rons it is useful to change the notation somewhat. In place of the angle s,
we can represent wind direction by a spatial vector �v pointing parallel to
the wind velocity and having unit length, |�v|= 1 (we use over-arrows to
denote spatial vectors). Similarly, we can represent the preferred wind di-
rection for each interneuron by a vector �ca of unit length pointing in the
direction specified by the angle sa. In this case, we can use the vector dot
product to write �v · �ca = cos(s−sa). In terms of these vectors, the average dot product
firing rate is proportional to a half-wave rectified projection of the wind
direction vector onto the preferred direction axis of the neuron,(

f (s)
rmax

)
a
= [�v · �ca

]
+ . (3.20)

Decoding the cercal system is particularly easy because of the close rela-
tionship between the representation of wind direction it provides and a
two-dimensional Cartesian coordinate system. In a Cartesian system, vec-
tors are parameterized by their projections onto x and y axes, vx and vy.
These projections can be written as dot products of the vector being rep-
resented, �v, with vectors of unit length �x and �y lying along the x and y
axes, vx = �v · �x and vy = �v · �y. Except for the half-wave rectification, these
equations are identical to 3.20. Furthermore, the preferred directions of
the four interneurons, like the x and y axes of a Cartesian coordinate sys-
tem, lie along two perpendicular directions (figure 3.5A). Four neurons are
required, rather than two, because firing rates cannot represent negative
projections. The cricket discovered the Cartesian coordinate system long
before Descartes, but failed to invent negative numbers! Perhaps credit
should also be given to the leech, for Lewis and Kristan (1998) have shown
that the direction of touch sensation in its body segments is encoded by
four neurons in a virtually identical arrangement.

A vector �v can be reconstructed from its Cartesian components through the
component-weighted vector sum �v = vx �x+vy �y. Because the firing rates of
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14 Neural Decoding
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Figure 3.5: A) Preferred directions of four cercal interneurons in relation to the
cricket’s body. The firing rate of each neuron for a fixed wind speed is propor-
tional to the projection of the wind velocity vector �v onto the preferred direction
axis of the neuron. The projection directions �c1, �c2, �c3 and �c4 for the four neurons
are separated by 90◦, and they collectively form a Cartesian coordinate system.
B) The root-mean-square error in the wind direction determined by vector decod-
ing of the firing rates of four cercal interneurons. These results were obtained
through simulation by randomly generating interneuron responses to a variety of
wind directions, with the average values and trial-to-trial variability of the firing
rates matched to the experimental data. The generated rates were then decoded
using equation 3.21 and compared to the wind direction used to generate them. (B
adapted from Salinas and Abbott, 1994.)

the cercal interneurons we have been discussing are proportional to the
Cartesian components of the wind direction vector, a similar sum should
allow us to reconstruct the wind direction from a knowledge of the in-
terneuron firing rates, except that four, not two, terms must be included.
If ra is the spike-count firing rate of neuron a, an estimate of the wind di-
rection on any given trial can be obtained from the direction of the vectorpopulation vector

�vpop =
4∑

a=1

(
r

rmax

)
a
�ca . (3.21)

This vector is known as the population vector, and the associated decod-
ing method is called the vector method. This decoding scheme works quitevector method
well. Figure 3.5B shows the root-mean-square difference between the di-
rection determined by equation 3.21 and the actual wind direction that
evoked the firing rates. The difference between the decoded and actual
wind directions is around 6◦ except for dips at the angles corresponding
to the preferred directions of the neurons. These dips are not due to the
fact that one of the neurons responds maximally, but rather arise because
the two neurons with tuning curves adjacent to the maximally responding
neuron are most sensitive to wind direction at these points.

As discussed in chapter 1, tuning curves of certain neurons in the primary
motor cortex (M1) of the monkey can be described by cosine functions of
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3.3 Population Decoding 15

arm movement direction. Thus, a vector decomposition similar to that of
the cercal system appears to take place in M1. Many M1 neurons have
nonzero offset rates so they can represent the cosine function over most or
all of its range. When an arm movement is made in the direction repre-
sented by a vector of unit length, �v, the average firing rates for such an M1
neuron, labeled by an index a, (assuming that it fires over the entire range
of angles) can be written as( 〈r〉 − r0

rmax

)
a
=

(
f (s) − r0

rmax

)
a
= �v · �ca (3.22)

where �ca is the preferred direction vector that defines the selectivity of
this neuron. Because these firing rates represent the full cosine function,
it would, in principle, be possible to encode all movement directions in
three dimensions using just three neurons. Instead, many thousands of M1
neurons have arm-movement related tuning curves resulting in a highly
redundant representation. Of course, these neurons encode additional
movement-related quantities, for example, their firing rates depend on the
initial position of the arm relative to the body as well as on movement ve-
locity and acceleration. This complicates the interpretation of their activity
as reporting movement direction in a particular coordinate system.

Unlike the cercal interneuron, M1 neurons do not have orthogonal pre-
ferred directions that form a Cartesian coordinate system. Instead, the
preferred directions of the neurons appear to point in all directions with
roughly equal probability. If the projection axes are not orthogonal, the
Cartesian sum of equation 3.21 is not the correct way to reconstruct �v. Nev-
ertheless, if the preferred directions point uniformly in all directions and
the number of neurons N is sufficiently large, the population vector

�vpop =
N∑

a=1

(
r − r0

rmax

)
a
�ca (3.23)

will, on average, point in a direction parallel to the arm movement direc-
tion vector �v. If we average equation 3.23 over trials and use equation 3.22,
we find

〈�vpop〉 =
N∑

a=1

(�v · �ca)�ca . (3.24)

We leave as an exercise the proof that 〈�vpop〉 is approximately parallel to �v if
a large enough number of neurons is included in the sum, and if their pre-
ferred direction vectors point randomly in all directions with equal proba-
bility. Later in this chapter, we discuss how corrections can be made if the
distribution of preferred directions is not uniform or the number of neu-
rons is not large. The population vectors constructed from equation 3.23
on the basis of responses of neurons in primary motor cortex recorded
while a monkey performed a reaching task are compared with the actual
directions of arm movements in figure 3.6.
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16 Neural Decoding

Figure 3.6: Comparison of population vectors with actual arm movement direc-
tions. Results are shown for eight different movement directions. Actual arm
movement directions are radially outward at angles that are multiples of 45◦.
The groups of lines without arrows show the preferred direction vectors of the
recorded neurons multiplied by their firing rates. Vector sums of these terms
for each movement direction are indicated by the arrows. The fact that the ar-
rows point approximately radially outward shows that the population vector re-
constructs the actual movement direction fairly accurately. (Figure adapted from
Kandel et al., 1991 based on data from Kalaska et al., 1983.)

Optimal Decoding Methods

The vector method is a simple decoding method that can perform quite
well in certain cases, but it is neither a general nor an optimal way to re-
construct a stimulus from the firing rates of a population of neurons. In
this section, we discuss two methods that can, by some measure, be con-
sidered optimal. These are called Bayesian and maximum a posteriori or
MAP inference. We also discuss a special case of MAP called maximum
likelihood or ML inference. The Bayesian approach involves finding the
minimum of a loss function that expresses the cost of estimation errors.
MAP and ML inference generally produce estimates that are as accurate,
in terms of the variance of the estimate, as any that can be achieved by a
wide class of estimation methods (so-called unbiased estimates), at least
when large numbers of neurons are used in the decoding. Bayesian and
MAP estimates use the conditional probability that a stimulus parameter
takes a value between s and s+
s given that the set of N encoding neurons
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3.3 Population Decoding 17

fired at rates given by r. The probability density needed for a continuous
stimulus parameter, p[s|r], can be obtained from the encoding probability
density p[r|s] by the continuous version of Bayes theorem (equation 3.3),

p[s|r] = p[r|s]p[s]
p[r]

. (3.25)

A disadvantage of these methods is that extracting p[s|r] from experimen-
tal data can be difficult. In contrast, the vector method only requires us to
know the preferred stimulus values of the encoding neurons,

As mentioned in the previous paragraph, Bayesian inference is based on
the minimization of a particular loss function L(s, sbayes) that quantifies Bayesian inference
the ‘cost’ of reporting the estimate sbayes when the correct answer is s. The
loss function provides a way of defining the optimality criterion for de-
coding analogous to the loss computation discussed previously for opti-
mal discrimination. The value of sbayes is chosen to minimize the expected
loss averaged over all stimuli for a given set of rates, i.e. to minimize the
function

∫
ds L(s, sbayes)p[s|r]. If the loss function is the squared difference

between the estimate and the true value, L(s, sbayes) = (s−sbayes)
2, the es-

timate that minimizes the expected loss is the mean

sbayes =
∫

ds p[s|r]s . (3.26)

If the loss function is the absolute value of the difference, L(s, sbayes) =
|s − sbayes|, then sbayes is the median rather than the mean of the distribution
p[s|r].

Maximum a posteriori (MAP) inference does not involve a loss function but MAP inference
instead simply chooses the stimulus value, sMAP, that maximizes the con-
ditional probability density of the stimulus, p[sMAP|r]. The MAP approach
is thus to choose as the estimate sMAP the most likely stimulus value for
a given set of rates. If the prior or stimulus probability density p[s] is in-
dependent of s, p[s|r] and p[r|s] have the same dependence on s, because
the factor p[s]/p[r] in equation 3.25 is independent of s. In this case, the
MAP algorithm is equivalent to maximizing the likelihood function, i.e.
choosing sML to maximize p[r|sML], which is called maximum likelihood ML inference
(ML) inference.

Previously we applied the vector decoding method to the cercal system
of the cricket. Figure 3.7 shows the root-mean-square difference between
the true and estimated wind directions for the cercal system using ML and
Bayesian methods. For the cercal interneurons, the response probability
density p[r|s] is a product of four Gaussians with means and variances
given by the data points and error bars in figure 3.4. The Bayesian esti-
mate in figure 3.7 is based on the squared-difference loss function. Both
estimates use a constant stimulus probability density p[s], so the ML and
MAP estimates are identical. The maximum likelihood estimate is either
more or less accurate than the Bayesian estimate, depending on the angle.
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Figure 3.7: Maximum likelihood and Bayesian estimation errors for the cricket
cercal system. ML and Bayesian estimates of the wind direction were compared
with the actual stimulus value for a large number of simulated firing rates. Firing
rates were generated as for figure 3.5B. The error shown is the root-mean-squared
difference between the estimated and actual stimulus angles. (Adapted from Sali-
nas and Abbott, 1994.)

The Bayesian result has a slightly smaller average error across all angles.
The dips in the error curves in figure 3.7, as in the curve of figure 3.5B,
appear at angles where one tuning curve peaks and two others rise from
threshold (see figure 3.4). As in figure 3.5B these dips are due to the two
neurons responding near threshold, not to the maximally responding neu-
ron. They occur because neurons are most sensitive at points where their
tuning curves have maximum slopes which, in this case, is near threshold
(see figure 3.11). Comparing these results with figure 3.5B shows the im-
proved performance of these methods relative to the vector method. The
vector method performs extremely well for this system, so the degree of
improvement is not large. This is because the cercal responses are well
described by cosine functions and their preferred directions are 90◦ apart.
Much more dramatic differences occur when the tuning curves are not
cosines or the preferred stimulus directions are not perpendicular.

Up to now, we have considered the decoding of a direction angle. We now
turn to the more general case of decoding an arbitrary continuous stimulus
parameter. An instructive example is provided by an array of N neurons
with preferred stimulus values distributed uniformly across the full range
of possible stimulus values. An example of such an array for Gaussian
tuning curves,

fa(s) = rmax exp

(
−1

2

(
s − sa

σa

)2
)

(3.27)

is shown in figure 3.8. In this example, each neuron has a tuning curve
with a different preferred value sa and potentially a different width σa (al-
though all the curves in figure 3.8 have the same width). If the tuning
curves are evenly and densely distributed across the range of s values, the
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3.3 Population Decoding 19

sum of all tuning curves
∑

fa(s) is approximately independent of s. The
roughly flat line in figure 3.8 is proportional to this sum. The constancy of
the sum over tuning curves will be useful in the following analysis.

1.0

0.8

0.6

0.4

0.2

0.0

f/r
m

ax

-5 -4 -3 -2 -1 0 1 2 3 4 5
s

Figure 3.8: An array of Gaussian tuning curves spanning stimulus values from
-5 to 5. The peak values of the tuning curves fall on the integer values of s and
the tuning curves all have σa = 1. For clarity, the curves are drawn alternately
with dashed and solid lines. The approximately flat curve with value near 0.5 is
1/5 the sum of the tuning curves shown, indicating that this sum is approximately
independent of s.

Tuning curves give the mean firing rates of the neurons across multiple
trials. In any single trial, measured firing rates will vary from their mean
values. To implement the Bayesian, MAP, or ML approaches, we need to
know the conditional firing-rate probability density p[r|s] that describes
this variability. We assume that the firing rate ra of neuron a is determined
by counting na spikes over a trial of duration T (so that ra = na/T), and
that the variability can be described by the homogeneous Poisson model
discussed in chapter 1. In this case, the probability of stimulus s evoking
na = raT spikes, when the average firing rate is 〈ra〉 = fa(s) is given by (see
chapter 1)

P[ra|s] = ( fa(s)T)raT

(raT)!
exp(− fa(s)T) . (3.28)

If we assume that each neuron fires independently, the firing-rate proba-
bility for the population is the product of the individual probabilities,

P[r|s] =
N∏

a=1

( fa(s)T)raT

(raT)!
exp(− fa(s)T) . (3.29)

The assumption of independence simplifies the calculations considerably.

The filled circles in figure 3.9 show a set of randomly generated firing rates
for the array of Gaussian tuning curves in figure 3.8 for s=0. This figure
also illustrates a useful way of visualizing population responses; plotting
the responses as a function of the preferred stimulus values. The dashed
curve in figure 3.9 is the tuning curve for the neuron with sa =0. Because
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20 Neural Decoding

the tuning curves are functions of |s − sa|, the values of the dashed curve at
sa = −5,−4, . . . ,5 are the mean activities of the cells with preferred values
at those locations for a stimulus at s=0.
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Figure 3.9: Simulated responses of 11 neurons with the Gaussian tuning curves
shown in figure 3.8 to a stimulus value of zero. Firing rates for a single trial, gen-
erated using the Poisson model, are plotted as a function of the preferred stimulus
values of the different neurons in the population (filled circles). The dashed curve
shows the tuning curve for the neuron with sa = 0. Its heights at integer values
of sa are the average responses of the corresponding cells. It is possible to have
ra > rmax (point at sa = 0) because rmax is the maximum average firing rate, not the
maximum firing rate.

To apply the ML estimation algorithm, we only need to consider the terms
in P[r|s] that depend on s. Because equation 3.29 involves a product, it is
convenient to take its logarithm and write

ln P[r|s] = T
N∑

a=1

ra ln
(

fa(s)
) + . . . (3.30)

where the ellipsis represents terms that are independent or approximately
independent of s, including, as discussed above,

∑
fa(s). Because maxi-

mizing a function and maximizing its logarithm are equivalent, we can use
the logarithm of the conditional probability in place of the actual probabil-
ity in ML decoding.

The ML estimated stimulus, sML, is the stimulus that maximizes the right-
hand side of equation 3.30. Setting the derivative to zero, we find that sML
is determined by

N∑
a=1

ra
f ′
a(sML)

fa(sML)
= 0 (3.31)

where the prime denotes a derivative. If the tuning curves are the Gaus-
sians of equation 3.27, this equation can be solved explicitly using the re-
sult f ′

a(s)/fa(s) = (sa − s)/σ2
a ,

sML =
∑

rasa/σ
2
a∑

ra/σ2
a

. (3.32)
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If all the tuning curves have the same width, this reduces to

sML =
∑

rasa∑
ra

, (3.33)

which is a simple estimation formula with an intuitive interpretation as
the firing-rate weighted average of the preferred values of the encoding
neurons. The numerator of this expression is reminiscent of the population
vector.

Although equation 3.33 gives the ML estimate for a population of neurons
with Poisson variability, it has some undesirable properties as a decoding
algorithm. Consider a neuron with a preferred stimulus value sa that is
much greater than the actual stimulus value s. Because sa � s, the average
firing rate of this neuron is essentially zero. For a Poisson distribution,
zero rate implies zero variability. If, however, this neuron fires one or more
spikes on a trial due to a non-Poisson source of variability, this will cause
a large error in the estimate because of the large weighting factor sa.

The MAP estimation procedure is similar in spirit to the ML approach, but
the MAP estimate, sMAP, may differ from sML if the probability density p[s]
depends on s. The MAP algorithm allows us to include prior knowledge
about the distribution of stimulus values into the decoding estimate. As
noted above, if the p[s] is constant, the MAP and ML estimates are iden-
tical. In addition, if many neurons are observed, or if a small number of
neurons is observed over a long trial period, even a non-constant stimulus
distribution has little effect and sMAP ≈ sML.

The MAP estimate is computed from the distribution p[s|r] determined by
Bayes theorem. In terms of the logarithms of the probabilities, ln p[s|r] =
ln P[r|s] + ln p[s] − ln P[r]. The last term in this expression is independent
of s and can be absorbed into the ignored s-independent terms, so we can
write

ln p[s|r] = T
N∑

a=1

ra ln
(

fa(s)
) + ln p[s] + . . . . (3.34)

Maximizing this determines the MAP estimate,

T
N∑

a=1

ra f ′
a(sMAP)

fa(sMAP)
+ p′[sMAP]

p[sMAP]
= 0 . (3.35)

If the stimulus or prior distribution is itself Gaussian with mean sprior and
variance σprior, and we use the Gaussian array of tuning curves, equation
3.35 yields

sMAP =
T

∑
rasa/σ

2
a + sprior/σ

2
prior

T
∑

ra/σ2
a + 1/σ2

prior

. (3.36)
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Figure 3.10: Probability densities for the stimulus given the firing rates shown in
figure 3.9 and assuming the tuning curves of figure 3.8. The solid curve is p[s|r]
when the prior distribution of stimulus values is constant and the true value of
the stimulus is s = 0. The dashed curve is for a Gaussian prior distribution with a
mean of −2 and variance of 1, again with the true stimulus being s = 0. The peak
of the solid and dashed curves are at 0.0385 and −0.107 respectively.

Figure 3.10 compares the conditional stimulus probability densities p[s|r]
for a constant stimulus distribution (solid curve) and for a Gaussian stim-
ulus distribution with sprior =−2 and σprior =1, using the firing rates given
by the filled circles in figure 3.9. If the stimulus distribution is constant,
p[s|r] is peaked near the true stimulus value of zero. The effect of a non-
constant stimulus distribution is to shift the curve toward the value −2
where the stimulus probability density has its maximum, and to decrease
its width by a small amount. The estimate is shifted to the left because
the prior distribution suggests that the stimulus is more likely to take
negative values than positive ones, independent of the evoked response.
The decreased width is due to the added information that the prior dis-
tribution provides. The curves in figure 3.10 can be computed from equa-
tions 3.27 and 3.34 as Gaussians with variances 1/(T

∑
ra/σ

2
a ) (constant

prior) and 1/(T
∑

ra/σ
2
a + 1/σ2

prior) (Gaussian prior).

The accuracy with which an estimate sest describes a stimulus s can be
characterized by two important quantities; its bias best(s) and its variancebias
σ2

est(s). The bias is the difference between the average of sest across trials
that use the stimulus s and the true value of the stimulus, namely s,

best(s) = 〈sest〉 − s . (3.37)

Note that the bias depends on the true value of the stimulus. An estimate
is termed unbiased if best(s) = 0 for all stimulus values.

The variance of the estimator, which quantifies how much the estimate
varies about its mean value, is defined asvariance

σ2
est(s) = 〈(sest − 〈sest〉)2〉 . (3.38)

The bias and variance together can be used to compute the trial-average
squared estimation error ,

〈
(sest − s)2

〉
. This is measure of the spread of
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the estimated values about the true value of the stimulus. Because s =
〈sest〉 + best(s), we can write the squared estimation error asestimation error 〈

(sest − s)2〉 = 〈
(sest − 〈sest〉 − best(s))2〉 = σ2

est(s) + b2
est(s) . (3.39)

In other words, the average squared estimation error is the sum of the
variance and the square of the bias. For an unbiased estimate, the average
squared estimation error is equal to the variance of the estimator.

Fisher Information

Decoding can be used to limit the accuracy with which a neural system
encodes the value of a stimulus parameter because the encoding accuracy
cannot exceed the accuracy of an optimal decoding method. Of course, we
must be sure that the decoding technique used to establish such a bound
is truly optimal, or else the result will reflect the limitations of the decod-
ing procedure, not bounds on the neural system being studied. The Fisher
information is a quantity that provides one such measure of encoding ac-
curacy. Through a bound known as the Cramér-Rao bound, the Fisher
information limits the accuracy with which any decoding scheme can ex-
tract an estimate of an encoded quantity.

The Cramér-Rao bound limits the variance of any estimate sest according Cramér-Rao bound
to (appendix B)

σ2
est(s) ≥

(
1 + b′

est(s)
)2

IF(s)
(3.40)

where b′
est(s) is the derivative of best(s). If we assume here that the fir-

ing rates take continuous values and that their distribution in response
to a stimulus s is described by the conditional probability density p[r|s],
the quantity IF(s) is the Fisher information of the firing-rate distribution,
which is related to p[r|s] (assuming the latter is sufficiently smooth) by Fisher information

IF(s) =
〈
−∂2 ln p[r|s]

∂s2

〉
=

∫
dr p[r|s]

(
−∂2 ln p[r|s]

∂s2

)
. (3.41)

The reader can verify that the Fisher information can also be written as

IF(s) =
〈(

∂ ln p[r|s]
∂s

)2
〉

=
∫

dr p[r|s]
(

∂ ln p[r|s]
∂s

)2

. (3.42)

The Cramér-Rao bound sets a limit on the accuracy of any unbiased es-
timate of the stimulus. When best(s) = 0, equation 3.39 indicates that the
average squared estimation error is equal to σ2

est and, by equation 3.40, this
satisfies the bound σ2

est ≥ 1/IF(s). Provided that we restrict ourselves to
unbiased decoding schemes, the Fisher information sets an absolute limit
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on decoding accuracy, and it thus provides a useful limit on encoding ac-
curacy. Although imposing zero bias on the decoding estimate seems rea-
sonable, the restriction is not trivial. In general, minimizing the decoding
error in equation 3.39 involves a trade-off between minimizing the bias
and the variance of the estimator. In some cases, biased schemes may pro-
duce more accurate results than unbiased ones. For a biased estimator, the
average squared estimation error and the variance of the estimate are not
equal, and the estimation error can be either larger or smaller than 1/IF(s).

The limit on decoding accuracy set by the Fisher information can be at-
tained by a decoding scheme we have studied, the maximum likelihood
method. In the limit of large numbers of encoding neurons (N → ∞),
and for most firing rate distributions, the ML estimate satisfies a number
of desirable properties. First, it is asymptotically consistent, in the senseasymptotic

consistency that P[|sML −s| > ε] → 0 for any ε > 0; it is also unbiased and saturates
the Cramér-Rao bound. In other words, the variance of the ML estimate
is given asymptotically (for large N) by σ2

ML(s) = 1/IF(s). Any unbiased
estimator that saturates the Cramér-Rao lower bound is called efficient.efficiency
Furthermore, IF(s) grows linearly with N, and the ML estimate obeys a
central limit theorem, so that N1/2(sML − s) is Gaussian distributed with a
variance that is independent of N in the large N limit.

As equation 3.41 shows, the Fisher information is a measure of the ex-
pected curvature of the log likelihood at the stimulus value s. Curvature
is important because the likelihood is expected to be at a maximum near
to the true stimulus value s that caused the responses. If the likelihood
is very curved and thus the Fisher information is large, typical responses
to the stimulus s are much less likely for other slightly different stimuli.
Therefore, the typical response provides a strong indication of the value of
the stimulus. If the likelihood is fairly flat and thus the Fisher information
is small, typical responses to s are likely to occur for slightly different stim-
uli as well. Thus, the response does not as clearly determine the stimulus
value. The Fisher information is purely local in the sense that it does not
reflect the existence of stimulus values completely different from s that are
likely to evoke the same responses as those evoked by s itself. However,
this does not happen for the sort of simple population codes we consider.
Shannon’s mutual information measure, discussed in chapter 4, takes such
possibilities into account.

The Fisher information for a population of neurons with uniformly ar-
rayed tuning curves (the Gaussian array in figure 3.8, for example) and
Poisson statistics can be computed from the conditional firing-rate proba-
bility in equation 3.30. Because the spike-count rate is described here by a
probability rather than a probability density, we use the discrete analog of
equation 3.41,

IF(s) =
〈
−d2 ln P[r|s]

ds2

〉
= T

N∑
a=1

〈ra〉
((

f ′
a(s)

fa(s)

)2

− f ′′
a (s)
fa(s)

)
. (3.43)

If we assume that the array of tuning curves is symmetric, like the Gaus-

Peter Dayan and L.F. Abbott Draft: December 17, 2000



3.3 Population Decoding 25

1.0

0.8

0.6

0.4

0.2

0.0
-4 -3 -2 -1 0 1 2 3 4

s

f /rmax

IF /  (rmaxT )

Figure 3.11: The Fisher information for a single neuron with a Gaussian tuning
curve with s=0 and σa =1, and Poisson variability. The Fisher information (solid
curve) has been divided by rmaxT, the peak firing rate of the tuning curve times
the duration of the trial. The dashed curve shows the tuning curve scaled by rmax.
Note that the Fisher information is greatest where the slope of the tuning curve is
highest, and vanishes at s=0 where the tuning curve peaks.

sian array of figure 3.8, the second term in the parentheses of the last ex-
pression is zero. We can also make the replacement 〈ra〉 = fa(s), producing
the final result

IF(s) = T
N∑

a=1

(
f ′
a(s)

)2

fa(s)
. (3.44)

In this expression, each neuron contributes an amount to the Fisher infor-
mation proportional to the square of its tuning curve slope and inversely
proportional to the average firing rate for the particular stimulus value be-
ing estimated. Highly sloped tuning curves give firing rates that are sensi-
tive to the precise value of the stimulus. Figure 3.11 shows the contribution
to the sum in equation 3.44 from a single neuron with a Gaussian tuning
curve, the neuron with sa = 0 in figure 3.8. For comparison purposes, a
dashed curve proportional to the tuning curve is also plotted. Note that
the Fisher information vanishes for the stimulus value that produces the
maximum average firing rate, because f ′

a(s)= 0 at this point. The firing
rate of a neuron at the peak of its tuning curve is relatively unaffected by
small changes in the stimulus. Individual neurons carry the most Fisher
information in regions of their tuning curves where average firing rates
are rapidly varying functions of the stimulus value, not where the firing
rate is highest.

The Fisher information can be used to derive an interesting result on the
optimal widths of response tuning curves (Zhang and Sejnowski, 1998).
Consider a population of neurons with tuning curves of identical shapes,
distributed evenly over a range of stimulus values as in figure 3.8. Equa-
tion 3.44 indicates that the Fisher information will be largest if the tuning
curves of individual neurons are rapidly varying (making the square of
their derivatives large), and if many neurons respond (making the sum
over neurons large). For typical neuronal response tuning curves, these
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two requirements are in conflict with each other. If the population of neu-
rons has narrow tuning curves, individual neural responses are rapidly
varying functions of the stimulus, but few neurons response. Broad tun-
ing curves allow many neurons to respond, but the individual responses
are not as sensitive to the stimulus value. To determine whether narrow or
broad tuning curves produce the most accurate encodings, we consider a
dense distribution of Gaussian tuning curves, all with σa = σr. Using such
curves in equation 3.44, we find

IF(s) = T
N∑

a=1

rmax(s − sa)
2

σ4
r

exp

(
−1

2

(
s − sa

σr

)2
)

. (3.45)

This expression can be approximated by replacing the sum over neurons
by an integral over their preferred stimulus values and multiplying by asums→integrals
density factor ρs. The factor ρs is the density with which the neurons cover
the range of stimulus values, and it is equal to the number of neurons with
preferred stimulus values lying within a unit range of s values. Replacing
the sum over a with an integral over a continuous preferred stimulus pa-
rameter ξ (which replaces sa), we find

IF(s) ≈ ρsT
∫ ∞

−∞
dξ

rmax(s − ξ)2

σ4
r

exp

(
−1

2

(
s − ξ

σr

)2
)

=
√

2πρsσrrmaxT
σ2

r
. (3.46)

We have expressed the final result in this form because the number of neu-
rons that respond to a given stimulus value is roughly ρsσr, and the Fisher
information is proportional to this number divided by the square of the
tuning curve width. Combining these factors, the Fisher information is in-
versely proportional to σr, and the encoding accuracy increases with nar-
rower tuning curve widths.

The advantage of using narrow tuning curves goes away if the stimulus
is characterized by more than one parameter. Consider a stimulus with
D parameters and suppose that the response tuning curves are products
of identical Gaussians for each of these parameters. If the tuning curves
cover the D-dimensional space of stimulus values with a uniform density
ρs, the number of responding neurons for any stimulus value is propor-
tional to ρsσ

D
r and, using the same integral approximation as in equation

3.46, the Fisher information is

IF = (2π)D/2Dρsσ
D
r rmaxT

σ2
r

= (2π)D/2Dρsσ
D−2
r rmaxT . (3.47)

This equation, which reduces to the result given above if D = 1, allows us
to examine the effect tuning curve width on encoding accuracy. The trade-
off between the encoding accuracy of individual neurons and the number
of responding neurons depends on the dimension of the stimulus space.
Narrowing the tuning curves (making σr smaller) increases the Fisher in-
formation for D = 1, decreases it for D > 2, and has no impact if D = 2.
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Optimal Discrimination

In the first part of this chapter, we considered discrimination between two
values of a stimulus. An alternative to the procedures discussed there is
simply to decode the responses and discriminate on the basis of the es-
timated stimulus values. Consider the case of discriminating between s
and s+
s for small 
s. For large N, the average value of the difference
between the ML estimates for the two stimulus values is equal to 
s (be-
cause the estimate is unbiased) and the variance of each estimate (for small

s) is 1/IF(s). Thus, the discriminability, defined in equation 3.4, for the ML

discriminabilityML based test is

d′ = 
s
√

IF(s) . (3.48)

The larger the Fisher information, the higher the discriminability. We leave
as an exercise the proof that for small 
s, this discriminability is the same
as that of the likelihood ratio test Z(r) defined in equation 3.18.

Discrimination by ML estimation requires maximizing the likelihood, and
this may be computationally challenging. The likelihood ratio test de-
scribed previously may be simpler, especially for Poisson variability, be-
cause, for small 
s, the likelihood ratio test Z defined in equation 3.18 is a
linear function of the firing rates,

Z = T
N∑

a=1

ra
f ′
a(s)

fa(s)
. (3.49)

Figure 3.12 shows an interesting comparison of the Fisher information
for orientation tuning in the primary visual cortex with human orienta-
tion discrimination thresholds. Agreement like this can occur for difficult
tasks, like discrimination at threshold, where the performance of a subject
may be limited by basic constraints on neuronal encoding accuracy.

3.4 Spike Train Decoding

The decoding methods we have considered estimate or discriminate static
stimulus values on the basis of spike-count firing rates. Spike-count firing
rates do not provide sufficient information for reconstructing a stimulus
that varies during the course of a trial. Instead, we can estimate such a
stimulus from the sequence of firing times ti for i = 1,2, . . . , n of the spikes
that it evokes. One method for doing this is similar to the Wiener kernel
approach used to estimate the firing rate from the stimulus in chapter 2,
and to the approximation of a firing rate using a sliding window function
introduced in chapter 1. For simplicity, we restrict our discussion to the
decoding of a single neuron. We assume, as we did in chapter 2, that the
time average of the stimulus being estimated is zero.
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Figure 3.12: Comparison of Fisher information and discrimination thresholds for
orientation tuning. The solid curve is the minimum standard deviation of an esti-
mate of orientation angle from the Cramér-Rao bound, plotted as a function of the
number of neurons (N) involved in the estimation. The triangles are data points
from an experiment that determined the threshold for discrimination of the orien-
tation of line images by human subjects as a function of line length and eccentricity.
An effective number of neurons involved in the task was estimated for the differ-
ent line lengths and eccentricities using the cortical magnification factor discussed
in chapter 2. (Adapted from Paradiso, 1988.)

In spike train decoding, we attempt to construct an estimate of the stim-
ulus at time t from the sequence of spikes evoked up to that time. There
are paradoxical aspects of this procedure. The firing of an action potential
at time ti is only affected by the stimulus s(t) prior to that time, t < ti, and
yet, in spike decoding, we attempt to extract information from this action
potential about the value of the stimulus at a later time t > ti. That is,
the evoked spikes tell us about the past behavior of the stimulus and, in
spike decoding, we attempt to use this information to predict the current
stimulus value. Clearly, this requires that the stimulus have some form
of temporal correlation so that past behavior provides information about
the current stimulus value. To make the decoding task easier, we can intro-
duce a prediction delay, τ0, and attempt to construct from spikes occurringprediction delay τ0
prior to time t, an estimate of the stimulus at time t − τ0 (see figure 3.13A).
Such a delayed estimate uses a combination of spikes that could have been
fired in response to the stimulus s(t − τ0) being estimated (those for which
t − τ0 < ti < t; spike 7 in figure 3.13A), and spikes that occured too early
to be affected by the value of s(t − τ0) (those for which ti < t − τ0; spikes
1-6 in figure 3.13A), but that can contribute to its estimation on the basis
of stimulus correlations. The estimation task gets easier as τ0 is increased,
but this delays the decoding and makes the result less behaviorally rele-
vant. We will consider decoding with an arbitrary delay and later discuss
how to set a specific value for τ0.

The stimulus estimate is constructed as a linear sum over all spikes. Astimulus estimate
spike occurring at time ti contributes a kernel K(t − ti), and the total esti-
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Figure 3.13: Cartoon illustrating spike train decoding. A) The top trace denotes
a stimulus that evokes the spike train appearing below it. At time t an estimate is
being made of the stimulus at time t − τ0. The estimate is obtained by summing
the values of the kernels where they cross the dashed line labeled t, for spikes up
to and including spike 7. Two such kernels are shown in the third and fourth traces
from the top. The real estimate is obtained by summing similar contributions from
all of the spikes. The kernel is zero for negative values of its argument, so spikes
for i ≥ 8 do not contribute to the estimate at this time. B) The kernel used in A. This
has been truncated to zero value for negative values of τ. C) The spike triggered
average corresponding to the kernel in B, assuming no spike train correlations.
Note that C has been plotted with the τ axis reversed, following the convention
established in chapter 1. With this convention, K in panel B is simply a shifted and
truncated version of the curve appearing here. In this case τ0 = 160 ms.

mate is obtained by summing over all spikes,

sest(t − τ0) =
n∑

i=1

K(t − ti) − 〈r〉
∫ ∞

−∞
dτ K(τ) . (3.50)

The last term, with 〈r〉 = 〈n〉/T the average firing rate over the trial, is
included to impose the condition that the time average of sest is zero, in
agreement with the time-average condition on s. The sum in equation
3.50 includes all spikes so the constraint that only those spikes occurring
prior to the time t (spikes 1-7 in figure 3.13A) should be included must be
imposed by requiring K(t − ti) = 0 for t − ti ≤ 0. A kernel satisfying this
constraint is termed causal. We ignore the causality constraint for now and
construct an acausal kernel, but we will return to issues of causality later
in the discussion. Figure 3.13A shows how spikes contribute to a stimulus
estimate using the kernel shown in figure 3.13B.

Equation 3.50 can be written in a compact way by using the neural re-

Draft: December 17, 2000 Theoretical Neuroscience



30 Neural Decoding

sponse function ρ(t) = ∑
δ(t − ti) introduced in chapter 1,

sest(t − τ0) =
∫ ∞

−∞
dτ (ρ(t − τ) − 〈r〉) K(τ) . (3.51)

Using this form of the estimate, the construction of the optimal kernel K
proceeds very much like the construction of the optimal kernel for predict-
ing firing rates in chapter 2. We choose K so that the squared difference
between the estimated stimulus and the actual stimulus, averaged over
both time and trials,

1
T

∫ T

0
dt

〈(∫ ∞

−∞
dτ (ρ(t − τ) − 〈r〉) K(τ) − s(t − τ0)

)2
〉

, (3.52)

is minimized. The calculation proceeds as in appendix A of chapter 2, and
the result is that K obeys the equation∫ ∞

−∞
dτ′ Qρρ(τ − τ′)K(τ′) = Qrs(τ − τ0) . (3.53)

where Qρρ is the spike-train autocorrelation function,

Qρρ(τ − τ′) = 1
T

∫ T

0
dt

〈
(ρ(t − τ) − 〈r〉)(ρ(t − τ′) − 〈r〉)〉 , (3.54)

as defined in chapter 1, and Qrs is the correlation of the firing rate and
the stimulus, which is related to the spike-triggered average C, both intro-
duced in chapter 1,

Qrs(τ − τ0) = 〈r〉C(τ0 − τ) = 1
T

〈
n∑

i=1

s(ti + τ − τ0)

〉
. (3.55)

At this point in the derivation of the optimal linear kernel for firing-rate
prediction in chapter 2, we chose the stimulus to be uncorrelated so that
an integral equation similar to 3.53 simplified. This could always be done
because we have complete control over the stimulus in this type of exper-
iment. However, we do not have similar control of the neuron, and must
deal with whatever spike train autocorrelation function it gives us. If the
spike train is uncorrelated, which tends to happen at low rates,

Qρρ(τ) = 〈r〉δ(τ) , (3.56)

and we find from equation 3.53 that

K(τ) = 1
〈r〉 Qrs(τ − τ0) = C(τ0 − τ) = 1

〈n〉

〈
n∑

i=1

s(ti + τ − τ0)

〉
. (3.57)

This is the average value of the stimulus at time τ − τ0 relative to the ap-
pearance of a spike. Because τ − τ0 can be either positive or negative,
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stimulus estimation, unlike firing rate estimation, involves both forward
and backward correlation and the average values of the stimulus both be-
fore and after a spike. Decoding in this way follows a simple rule; every
time a spike appears, we replace it with the average stimulus surrounding
a spike, shifted by an amount τ0 (figure 3.13).

The need for either stimulus correlations or a nonzero prediction delay is
clear from equation 3.57. Correlations between a spike and subsequent
stimuli can only arise, in a causal system, from correlations between the
stimulus and itself. If these are absent, as for white noise, K(τ) will be
zero for τ > τ0. For causal decoding, we must also have K(τ) = 0 for τ < 0.
Thus, if τ0 = 0 and the stimulus is uncorrelated, K(τ) = 0 for all values of
τ.

When the spike train autocorrelation function is not a δ function, the solu-
tion for K can be expressed as an inverse Fourier transform, optimal kernel

K(τ) = 1
2π

∫
dω K̃(ω)exp(−iωτ) (3.58)

where, as shown in appendix C,

K̃(ω) = Q̃rs(ω)exp(iωτ0)

Q̃ρρ(ω)
. (3.59)

Here Q̃rs and Q̃ρρ are the Fourier transforms of Qrs and Qρρ. The numer-
ator in this expression reproduces the expression Qrs(τ − τ0) in equation
3.57. The role of the denominator is to correct for any autocorrelations in
the response spike train. Such correlations introduce a bias in the decod-
ing, and the denominator in equation 3.59 corrects for this bias.

If we ignore the constraint of causality, then, because the occurrence of
a spike cannot depend on the behavior of a stimulus in the very distant
past, we can expect K(τ) from equation 3.57 or 3.58 and 3.59 to vanish for
sufficiently negative values of τ − τ0. For most neurons, this will occur for
τ − τ0 more negative than minus a few hundred ms. The decoding kernel
given by equation 3.57 can therefore be made small for negative values of τ

by choosing τ0 large enough, but this may require a fairly large prediction
delay. We can force exact adherence to the causality constaint for τ < 0 by causality constraint
replacing K(τ) by �(τ)K(τ) where �(τ) is defined such that �(τ) = 1 for
τ > 0 and �(τ) = 0 for τ < 0. The causality constraint was imposed in this
way in figure 3.13B. When it is multiplied by �(τ), the restricted K is no
longer the optimal decoding kernel, but it may be close to optimal.

Another way of imposing causality on the decoding kernel is to expand
K(τ) as a weighted sum of causal basis functions (functions that vanish for
negative arguments and span the space of functions satisfying the causal
constraint). The optimal weights are then determined by minimizing the
estimation error. This approach has the advantage of producing a truly
optimal kernel for any desired value of τ0. A simpler but non-optimal
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Figure 3.14: Decoding the stimulus from an H1 neuron of the fly. The upper
panel is the decoding kernel. The jagged curve is the optimal acausal filter and the
smooth curve is a kernel obtained by expanding in a causal set of basis functions.
In both cases, the kernels are shifted by τ0 = 40 ms. The middle panel shows
typical responses of the H1 neuron to the stimulus s(t) (upper trace) and −s(t)
(bottom trace). The dashed line in the lower panel shows the actual stimulus and
the solid line is the estimated stimulus from the optimal linear reconstruction using
the acausal filter. (Adapted from Rieke et al., 1997.)

approach is to consider a fixed functional form for K(τ) that vanishes for
τ ≤ 0 and is characterized by a number of free parameters that can be
determined by minimizing the decoding error. Finally, the optimal causal
kernel, also called the Wiener-Hopf filter, can be obtained by a technique
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that involves so-called spectral factorization of Q̃ρρ(ω).

Figure 3.14 shows an example of spike train decoding for the H1 neuron of
the fly discussed in chapter 2. The top panel gives two reconstruction ker-
nels, one acausal and one causal, that can be used in the decoding, and the
bottom panel compares the reconstructed stimulus velocity with the actual
stimulus velocity. The middle panel in figure 3.14 points out one further
wrinkle in the procedure. Flies have two H1 neurons, one on each side of
the body, that respond to motion in opposite directions. As is often the
case, half-wave rectification prevents a single neuron from encoding both
directions of motion. In the experiment described in the figure, rather than
recording from both H1 neurons, Bialek et al. (1991) recorded from a single
H1 neuron, but presented both the stimulus s(t) and its negative, −s(t).
The two rows of spikes in the middle panel show sample traces for each of
these presentations. This procedure provides a reasonable approximation
of recording both H1 neurons, and produces a neuron/anti-neuron pair
of recordings similar to the one that we discussed in connection with mo-
tion discrimination from area MT neurons. The stimulus is then decoded
by summing the kernel K(t − ti) for all spike times ti of the recorded H1
neuron and summing −K(t − t j) for all spike times t j of its anti-neuron
partner.

The fly only has two H1 neurons from which it must extract information
about visual motion, so it seems reasonable that stimulus reconstruction
using the spike-train decoding technique can produce quite accurate re-
sults (figure 3.14). It is perhaps more surprising that accurate decoding, at
least in the sense of percent correct, can be obtained from single neurons
out of the large population of MT neurons responding to visual motion
in the monkey. Of course, the reconstruction of a time-dependent stim-
ulus from H1 responses is more challenging than the binary discrimina-
tion done with MT neurons. Furthermore, it is worth remembering that in
all the examples we have considered, including decoding wind direction
from the cercal system and arm movement direction from a population of
M1 neurons, the stimuli used are extremely simple compared to the natu-
rally occurring stimuli that must be interpreted during normal behavior.

3.5 Chapter Summary

We have considered the decoding of stimulus characteristics from the re-
sponses they evoke, including discrimination between stimulus values,
the decoding of static stimuli on the basis of population responses, and
the decoding of dynamic stimulus parameters from spike trains. Discrim-
ination was studied using the receiver operating characteristic, likelihood
ratio tests, and the Neyman-Pearson lemma. For static parameter decod-
ing we introduced the vector method, Bayesian, maximum a posteriori and
maximum likelihood inference, the Fisher information and the Cramér-
Rao lower bound. We also showed how to use ideas from Wiener filtering
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34 Neural Decoding

to reconstruct an approximation to a time-varying stimulus from the spike
trains it evokes.

3.6 Appendices

A) The Neyman-Pearson Lemma

Consider the difference 
β in the power of two tests that have identical
sizes α. One uses the likelihood ratio l(r), and the other uses a different
test function h(r). For the test h(r) using the threshold zh,

αh(zh) =
∫

dr p[r|−]�(h(r) − zh) and βh(zh) =
∫

dr p[r|+]�(h(r) − zh) .

(3.60)

Similar equations hold for the αl(zl ) and βl(zl ) values for the test l(r) using
the threshold zl . We use the � function, which is one for positive and zero
for negative values of its argument, to impose the condition that the test is
greater than the threshold. Comparing the β values for the two tests, we
find


β = βl(zl )−βh(zh) =
∫

dr p[r|+]�(l(r)−zl ) −
∫

dr p[r|+]�(h(r)−zh) .

(3.61)

The range of integration where both l(r) ≥ zl and h(r) ≥ zh cancels be-
tween these two integrals, so, in a more compact notation, we can write


β =
∫

dr p[r|+] (�(l(r)−zl )�(zh−h(r)) − �(zl −l(r))�(h(r)−zh)) .

(3.62)

Using the definition l(r) = p[r|+]/p[r|−] we can replace p[r|+] by l(r)p[r|−]
in this equation, giving


β =
∫

dr l(r)p[r|−]
(
�(l(r)−zl )�(zh−h(r)) − �(zl −l(r))�(h(r)−zh)

)
.

(3.63)

Then, due to the conditions on l(r) imposed by the � functions within
the integrals, replacing l(r) by z cannot decrease the value of the integral
resulting from the first term in the large parentheses, nor increase the value
arising from the second. This leads to the inequality


β ≥ z
∫

dr p[r|−] (�(l(r)−zl )�(zh−h(r)) − �(zl −l(r))�(h(r)−zh)) .

(3.64)
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Putting back the region of integration that cancels between these two
terms (for which l(r) ≥ zl and h(r) ≥ zh), we find


β ≥ z
[∫

dr p[r|−]�(l(r)−zl ) −
∫

dr p[r|−]�(h(r)−zh)

]
. (3.65)

By definition, these integrals are the sizes of the two tests, which are equal
by hypothesis. Thus 
β ≥ 0, showing that no test can be better than the
likelihood ratio l(r), at least in the sense of maximizing the power for a
given size.

B) The Cramér-Rao Bound

The Cramér-Rao lower bound for an estimator sest is based on the Cauchy- Cauchy-Schwarz
inequalitySchwarz inequality, which states that for any two quantities A and B

〈A2〉〈B2〉 ≥ 〈AB〉2 . (3.66)

To prove this inequality, note that〈(〈B2〉A − 〈AB〉B
)2

〉
≥ 0 (3.67)

because it is the average value of a square. Computing the square gives

〈B2〉2〈A2〉 − 〈AB〉2〈B2〉 ≥ 0 (3.68)

from which the inequality follows directly.

Consider the inequality of equation 3.66 with A = ∂ ln p/∂s and B = sest −
〈sest〉. From equations 3.42 and 3.38, we have 〈A2〉 = IF and 〈B2〉 = σ2

est.
The Cauchy-Schwarz inequality then gives

σ2
est(s)IF ≥

〈
∂ ln p[r|s]

∂s
(sest − 〈sest〉)

〉2

. (3.69)

To evaluate the expression on the right side of the inequality 3.69, we dif-
ferentiate the defining equation for the bias (equation 3.37),

s + best(s) = 〈sest〉 =
∫

dr p[r|s]sest , (3.70)

with respect to s to obtain

1 + b′
est(s) =

∫
dr

∂p[r|s]
∂s

sest

=
∫

dr p[r|s]
∂ ln p[r|s]

∂s
sest

=
∫

dr p[r|s]
∂ ln p[r|s]

∂s
(sest − 〈sest〉) .
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The last equality follows from the identity

∫
dr p[r|s]

∂ ln p[r|s]
∂s

〈sest〉 = 〈sest〉
∫

dr
∂p[r|s]

∂s
= 0 (3.71)

because
∫

dr p[r|s] = 1. The last line of equation 3.71 is just another way of
writing the expression on the right side of the inequality 3.69, so combin-
ing this result with the inequality gives

σ2
est(s)IF ≥ (1 + b′

est(s))2 (3.72)

which, when rearranged, is the Cramér-Rao bound of equation 3.40.

C) The Optimal Spike-Decoding Filter

The optimal linear kernel for spike train decoding is determined by solv-
ing equation 3.53. This is done by taking the Fourier transform of both
sides of the equation, that is, multiplying both sides by exp(iωτ) and inte-
grating over τ,

∫ ∞

−∞
dτ exp(iωτ)

∫ ∞

−∞
dτ′ Qρρ(τ − τ′)K(τ′) =

∫ ∞

−∞
dτ exp(iωτ)Qrs(τ − τ0) .

(3.73)

By making the replacement of integration variable τ → τ + τ0, we find that
the right side of this equation is

exp(iωτ0)

∫ ∞

−∞
dτ exp(iωτ)Qrs(τ) = exp(iωτ0)Q̃rs(ω) (3.74)

where Q̃rs(ω) is the Fourier transform of Qrs(τ). The integral of the prod-
uct of two functions that appears on the left side of equations 3.53 and 3.73
is called a convolution. To evaluate the Fourier transform on the left side
of equation 3.73, we make use of an important theorem stating that the
Fourier transform of a convolution is the product of the Fourier transforms
of the two functions involved (see the Mathematical Appendix). Accord-
ing to this theorem

∫ ∞

−∞
dτ exp(iωτ)

∫ ∞

−∞
dτ′ Qρρ(τ − τ′)K(τ′) = Q̃ρρ(ω)K̃(ω) (3.75)

where Q̃ρρ(ω) and K̃(ω) are the Fourier transforms of Qρρ(τ) and K(τ)

respectively,

Q̃ρρ(ω) =
∫ ∞

−∞
dτ exp(iωτ)Qρρ(τ) and K̃(ω) =

∫ ∞

−∞
dτ exp(iωτ)K(τ) .

(3.76)
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Putting the left and right sides of equation 3.73 together as we have eval-
uated them, we find that

Q̃ρρ(ω)K̃(ω) = exp(iωτ0)Q̃rs(ω) . (3.77)

Equation 3.59 follows directly from this result, and equation 3.58 then de-
termines K(τ) as the inverse Fourier transform of K̃(ω).

3.7 Annotated Bibliography

Statistical analysis of discrimination, various forms of decoding, the
Neyman-Pearson lemma, the Fisher information and the Cramér-Rao
lower bound can be found in Cox & Hinckley (1974). Receiver opera-
tor characteristics and signal detection theory are described comprehen-
sively in Green & Swets (1966) and Graham (1989); and our account of
spike train decoding follows that of Rieke et al. (1997). Newsome et al.
(1989) and Salzman et al. (1992) present important results concerning vi-
sual motions discrimination and recordings from area MT, and Shadlen et
al. (1996) provide a theoretically oriented review.

The vector method of population decoding has been considered in the
context of a number of systems and references include Humphrey et al.
(1970), Georgopoulos, Schwartz & Kettner (1986), Georgopoulos, Kettner
& Schwartz (1988), van Gisbergen et al. (1987), and Lee et al. (1988). Var-
ious theoretical aspects of population decoding such as vector and ML
decoding and the Fisher information that comprise our account were de-
veloped by Paradiso (1988); Baldi and Heiligenberg (1988); Vogels (1990),
Snippe & Koenderink (1992); Zohary (1992), Seung & Sompolinsky (1993);
Touretzky et al. (1993), Salinas & Abbott (1994); Sanger (1994, 1996),
Snippe (1996), and Oram et al. (1998). Zhang & Sejnowski (1999) treat the
effect of narrowing or broadening tuning curves on the Fisher informa-
tion. Population codes are also known as coarse codes in the connectionist
literature (Hinton, 1981).
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Chapter 4

Information Theory

4.1 Entropy and Mutual Information

Neural encoding and decoding focus on the question: ”What does the re-
sponse of a neuron tell us about a stimulus”. In this chapter we consider
a related but different question: ”How much does the neural response tell
us about a stimulus”. The techniques of information theory allow us to
answer this question in a quantitative manner. Furthermore, we can use
them to ask what forms of neural response are optimal for conveying in-
formation about natural stimuli.

Shannon invented information theory as a general framework for quan-
tifying the ability of a coding scheme or a communication channel (such
as the optic nerve) to convey information. It is assumed that the code in-
volves a number of symbols (such as neuronal responses), and that the
coding and transmission processes are stochastic and noisy. The quanti-
ties we consider in this chapter, the entropy and the mutual information,
depend on the probabilities with which these symbols, or combinations
of them, are used. Entropy is a measure of the theoretical capacity of a
code to convey information. Mutual information measures how much of
that capacity is actually used when the code is employed to describe a par-
ticular set of data. Communication channels, if they are noisy, have only
limited capacities to convey information. The techniques of information
theory are used to evaluate these limits and find coding schemes that sat-
urate them.

In neuroscience applications, the symbols we consider are neuronal re-
sponses, and the data sets they describe are stimulus characteristics. In the
most complete analyses, which are considered at the end of the chapter, the
neuronal response is characterized by a list of action potential firing times.
The symbols being analyzed in this case are sequences of action potentials.
Computing the entropy and mutual information for spike sequences can
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2 Information Theory

be difficult because the frequency of occurrence of many different spike
sequences must be determined. This typically requires a large amount of
data. For this reason, many information theory analyses use simplified
descriptions of the response of a neuron that reduce the number of possi-
ble ‘symbols’ (i.e. responses) that need to be considered. We discuss cases
in which the symbols consist of responses described by spike-count firing
rates. We also consider the extension to continuous-valued firing rates.
Because a reduced description of a spike train can carry no more informa-
tion than the full spike train itself, this approach provides a lower bound
on the actual information carried by the spike train.

Entropy

Entropy is a quantity that, roughly speaking, measures how ‘interesting’
or ‘surprising’ a set of responses is. Suppose that we are given a set of
neural responses. If each response is identical, or if only a few different
responses appear, we might conclude that this data set is relatively un-
interesting. A more interesting set might show a larger range of different
responses, perhaps in a highly irregular and unpredictable sequence. How
can we quantify this intuitive notion of an interesting set of responses?

We begin by characterizing the responses in terms of their spike-count fir-
ing rates, i.e. the number of spikes divided by the trial duration, which can
take a discrete set of different values. The methods we discuss are based
on the probabilities P[r] of observing a response with a spike-count rate
r. The most widely used measure of entropy, due to Shannon, expresses
the ‘surprise’ associated with seeing a response rate r as a function of the
probability of getting that response, h(P[r]), and quantifies the entropy as
the average of h(P[r]) over all possible responses. The function h(P[r]),surprise
which acts as a measure of surprise, is chosen to satisfy a number of con-
ditions. First, h(P[r]) should be a decreasing function of P[r] because low
probability responses are more surprising than high probability responses.
Further, the surprise measure for a response that consists of two indepen-
dent spike counts should be the sum of the measures for each spike count
separately. This assures that the entropy and information measures we
ultimately obtain will be additive for independent sources. Suppose we
record rates r1 and r2 from two neurons that respond independently of
each other. Because the responses are independent, the probability of get-
ting this pair of responses is the product of their individual probabilities,
P[r1]P[r2], so the additivity condition requires that

h(P[r1]P[r2]) = h(P[r1]) + h(P[r2]) . (4.1)

The logarithm is the only function that satisfies such an identity for all P.
Thus, it only remains to decide what base to use for the logarithm. By con-
vention, base 2 logarithms are used so that information can be compared
easily with results for binary systems. To indicate that the base 2 logarithm
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4.1 Entropy and Mutual Information 3

is being used, information is reported in units of ‘bits’, with

h(P[r]) = − log2 P[r] . (4.2)

The minus sign makes h a decreasing function of its argument as required.
Note that information is really a dimensionless number. The bit, like the
radian for angles, is not a dimensional unit but a reminder that a particular
system is being used.

Expression (4.2) quantifies the surprise or unpredictability associated with
a particular response. Shannon’s entropy is just this measure averaged entropy
over all responses

H = −
∑

r

P[r] log2 P[r] . (4.3)

In the sum that determines the entropy, the factor h = − log2 P[r] is mul-
tiplied by the probability that the response with rate r occurs. Responses
with extremely low probabilities may contribute little to the total entropy,
despite having large h values, because they occur so rarely. In the limit
when P[r] → 0, h → ∞, but an event that does not occur does not con-
tribute to the entropy because the problematic expression −0 log2 0 is eval-
uated as −ε log2 ε in the limit ε → 0 and is zero. Very high probability re-
sponses also contribute little because they have h ≈ 0. The responses that
contribute most to the entropy have high enough probabilities so that they
appear with a fair frequency, but not high enough to make h too small.

Computing the entropy in some simple cases helps provide a feel for what
it measures. First, imagine the least interesting situation, when a neuron
responds every time by firing at the same rate. In this case, all of the prob-
abilities P[r] are zero, except for one of them which is one. This means that
every term in the sum of equation (4.3) is zero because either P[r] = 0 or
log2 1 = 0. Thus, a set of identical responses has zero entropy. Next, imag-
ine that the the neuron responds in only two possible ways, either with
rate r+ or r−. In this case, there are only two nonzero terms in equation
(4.3), and, using the fact that P[r−] = 1 − P[r+], the entropy is

H = −(1 − P[r+]) log2(1 − P[r+]) − P[r+] log2 P[r+] . (4.4)

This entropy, plotted in figure 4.1A, takes its maximum value of one bit
when P[r−] = P[r+] = 1/2. Thus, a code consisting of two equally likely
responses has one bit of entropy.

Mutual Information

To convey information about a set of stimuli, neural responses must be
different for different stimuli. Entropy is a measure of response variabil-
ity, but it does not tell us anything about the source of that variability. A
neuron can only provide information about a stimulus if its response vari-
ability is correlated with changes in that stimulus, rather than being purely
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Figure 4.1: A) The entropy of a binary code. P[r+] is the probability of a response
at rate r+ P[r−] = 1 − P[r+] is the probability of the other response, r−. The entropy
is maximum when P[r−] = P[r+] = 1/2. B) The mutual information for a binary
encoding of a binary stimulus. PX is the probability of an incorrect response being
evoked. The plot only shows PX ≤ 1/2 because values of PX > 1/2 correspond
to an encoding in which the relationship between the two responses and the two
stimuli is reversed and the error probability is 1 − PX.

random or correlated with other unrelated factors. One way to determine
whether response variability is correlated with stimulus variability is to
compare the responses obtained using a different stimulus on every trial
with those measured in trials involving repeated presentations of the same
stimulus. Responses that are informative about the identity of the stimu-
lus should exhibit larger variability for trials involving different stimuli
than for trials that use the same stimulus repetitively. Mutual information
is an entropy-based measure related to this idea.

The mutual information is the difference between the total response en-
tropy and the average response entropy on trials that involve repetitive
presentation of the same stimulus. Subtracting the entropy when the stim-
ulus does not change removes from the total entropy the contribution from
response variability that is not associated with the identity of the stimulus.
When the responses are characterized by a spike-count rate, the total re-
sponse entropy is given by equation 4.3. The entropy of the responses
evoked by repeated presentations of a given stimulus s is computed us-
ing the conditional probability P[r|s], the probability of a response at rate
r given that stimulus s was presented, instead of the response probability
P[r] in equation 4.3. The entropy of the responses to a given stimulus is
thus

Hs = −
∑

r

P[r|s] log2 P[r|s] . (4.5)

If we average this quantity over all the stimuli, we obtain a quantity called
the noise entropynoise entropy

Peter Dayan and L.F. Abbott Draft: December 17, 2000



4.1 Entropy and Mutual Information 5

Hnoise =
∑

s

P[s]Hs = −
∑
s,r

P[s]P[r|s] log2 P[r|s] . (4.6)

This is the entropy associated with that part of the response variability that
is not due to changes in the stimulus, but arises from other sources. The
mutual information is obtained by subtracting the noise entropy from the
full response entropy, which from equations 4.3 and 4.6 gives mutual information

Im = H − Hnoise = −
∑

r

P[r] log2 P[r] +
∑
s,r

P[s]P[r|s] log2 P[r|s] . (4.7)

The probability of a response r is related to the conditional probability
P[r|s] and the probability P[s] that stimulus s is presented by the identity
(chapter 3)

P[r] =
∑

s

P[s]P[r|s] . (4.8)

Using this, and writing the difference of the two logarithms in equation 4.7
as the logarithm of the ratio of their arguments, we can rewrite the mutual
information as

Im =
∑
s,r

P[s]P[r|s] log2

(
P[r|s]
P[r]

)
. (4.9)

Recall from chapter 3 that,

P[r, s] = P[s]P[r|s] = P[r]P[s|r] (4.10)

where P[r, s] is the joint probability of stimulus s appearing and response
r being evoked. Equation 4.10 can be used to derive yet another form for
the mutual information

Im =
∑
s,r

P[r, s] log2

(
P[r, s]

P[r]P[s]

)
. (4.11)

This equation reveals that the mutual information is symmetric with re-
spect to interchange of s and r, which means that the mutual information
that a set of responses conveys about a set of stimuli is identical to the mu-
tual information that the set of stimuli conveys about the responses. To see
this explicitly, we apply equation 4.10 again to write

Im = −
∑

s

P[s] log2 P[s] +
∑
s,r

P[r]P[s|r] log2 P[s|r] . (4.12)

This result is the same as equation 4.7 except that the roles of the stimu-
lus and the response have been interchanged. Equation 4.12 shows how
response variability limits the ability of a spike train to carry information.
The second term on the right side, which is negative, is the average uncer-
tainty about the identity of the stimulus given the response, and reduces
the total stimulus entropy represented by the first term.
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To provide some concrete examples, we compute the mutual information
for a few simple cases. First, suppose that the responses of the neuron
are completely unaffected by the identity of the stimulus. In this case,
P[r|s] = P[r], and from equation 4.9 it follows immediately that Im = 0. At
the other extreme, suppose that each stimulus s produces a unique and
distinct response rs. Then, P[rs]= P[s] and P[r|s]=1 if r= rs and P[r|s]=0
otherwise. This causes the sum over r in equation 4.9 to collapse to just
one term, and the mutual information becomes

Im =
∑

s

P[s] log2

(
1

P[rs]

)
= −

∑
s

P[s] log2 P[s] . (4.13)

The last expression, which follows from the fact that P[rs] = P[s], is the en-
tropy of the stimulus. Thus, with no variability and a one-to-one map from
stimulus to response, the mutual information is equal to the full stimulus
entropy.

Finally, imagine that there are only two possible stimulus values, which
we label + and −, and that the neuron responds with just two rates, r+ and
r−. We associate the response r+ with the + stimulus, and the response r−
with the − stimulus, but the encoding is not perfect. The probability of an
incorrect response is PX, meaning that for the correct responses P[r+|+] =
P[r−|−] = 1 − PX, and for the incorrect responses P[r+|−] = P[r−|+] = PX.
We assume that the two stimuli are presented with equal probability so
that P[r+] = P[r−] = 1/2 which, from equation 4.4, makes the full response
entropy one bit. The noise entropy is −(1 − PX) log2(1 − PX) − PX log2 PX.
Thus, the mutual information is

Im = 1 + (1 − PX) log2(1 − PX) + PX log2 PX . (4.14)

This is plotted in figure 4.1B. When the encoding is error free (PX = 0),
the mutual information is one bit, which is equal to both the full response
entropy and the stimulus entropy. When the encoding is random (PX =
1/2), the mutual information goes to zero.

It is instructive to consider this example from the perspective of decoding.
We can think of the neuron as being a communication channel that reports
noisily on the stimulus. From this perspective, we want to know the prob-
ability that a + was presented given that the response r+ was recorded. By
Bayes theorem, this is P[+|r+] = P[r+|+]P[+]/P[r+] = 1 − PX. Before the
response is recorded, the prior expectation was that + and − were equally
likely. If the response r+ is recorded, this expectation changes to 1 − PX.
The mutual information measures the corresponding reduction in uncer-
tainty, or equivalently, the tightening of the posterior distribution due to
the response.

The mutual information is related to a measure used in statistics called
the Kullback-Leibler (KL) divergence. The KL divergence between oneKL divergence
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probability distribution P[r] and another distribution Q[r] is

DKL(P, Q) =
∑

r

P[r] log2

(
P[r]
Q[r]

)
. (4.15)

The KL divergence has a property normally associated with a distance
measure, DKL(P, Q) ≥ 0 with equality if and only if P= Q (proven in ap-
pendix A). However, unlike a distance, it is not symmetric with respect to
interchange of P and Q. Comparing the definition 4.15 with equation 4.11,
we see that the mutual information is the KL divergence between the dis-
tributions P[r, s] and P[r]P[s]. If the stimulus and the response were inde-
pendent of each other, P[r, s] would be equal to P[r]P[s]. Thus, the mutual
information is the KL divergence between the actual probability distribu-
tion P[r, s], and the value it would take if the stimulus and response were
independent. The fact that DKL ≥ 0 proves that the mutual information
cannot be negative. In addition, it can never be larger than either the full
response entropy or the entropy of the stimulus set.

Entropy and Mutual Information for Continuous Variables

Up to now we have characterized neural responses using discrete spike-
count rates. As in chapter 3, it is often convenient to treat these rates in-
stead as continuous variables. There is a complication associated with en-
tropies that are defined in terms of continuous response variables. If we
could measure the value of a continuously defined firing rate with unlim-
ited accuracy, it would be possible to convey an infinite amount of infor-
mation using the endless sequence of decimal digits of this single variable.
Of course, practical considerations always limit the accuracy with which a
firing rate can be measured or conveyed.

To define the entropy associated with a continuous measure of a neural
response, we must include some limit on the measurement accuracy. The
effects of this limit typically cancel in computations of mutual information
because these involve taking differences between two entropies. In this
section, we show how entropy and mutual information are computed for
responses characterized by continuous firing rates. For completeness, we
also treat the stimulus parameter s as a continuous variable. This means
that the probability P[s] is replaced by the probability density p[s], and
sums over s are replaced by integrals.

For a continuously defined firing rate, the probability of the firing rate
lying in the range between r and r +	r, for small 	r, is expressed in terms
of a probability density as p[r]	r. Summing over discrete bins of size 	r
we find, by analogy with equation (4.3),

H = −
∑

p[r]	r log2(p[r]	r) (4.16)

= −
∑

p[r]	r log2 p[r] − log2 	r .
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To extract the last term we have expressed the logarithm of a product as
the sum of two logarithms and used the fact the the sum of the response
probabilities is one. We would now like to take the limit 	r → 0 but we
cannot because the log2 	r term diverges in this limit. This divergence
reflects the fact that a continuous variable measured with perfect accuracy
has infinite entropy. However, for reasonable (i.e. Riemann integrable)
p[r], everything works out fine for the first term because the sum becomes
an integral in the limit 	r → 0. In this limit, we can writecontinuous entropy

lim
	r→0

{
H + log2 	r

} = −
∫

dr p[r] log2 p[r] . (4.17)

	r is best thought of as a limit on the resolution with which the firing
rate can be measured. Unless this limit is known, the entropy of a prob-
ability density for a continuous variable can only be determined up to an
additive constant. However, if two entropies computed with the same res-
olution are subtracted, the troublesome term involving 	r cancels and we
can proceed without knowing its precise value. All of the cases where we
use equation 4.17 are of this form. The integral on the right side of equa-
tion 4.17 is sometimes called the differential entropy.

The noise entropy, for a continuous variable like the firing rate, can be
written in a manner similar to the response entropy 4.17, except that the
conditional probability density p[r|s] is usedcontinuous noise

entropy
lim

	r→0

{
Hnoise + log2 	r

} = −
∫

ds
∫

dr p[s]p[r|s] log2 p[r|s] . (4.18)

The mutual information is the difference between the expression in equa-
tion 4.17 and 4.18,continuous mutual

information
Im =

∫
ds

∫
dr p[s]p[r|s] log2

(
p[r|s]
p[r]

)
. (4.19)

Note that the factor of log2 	r has canceled in the expression for the mu-
tual information because both entropies were evaluated at the same reso-
lution.

In chapter 3, we described the Fisher information as a local measure of
how tightly the responses determine the stimulus. The Fisher informa-
tion is local because it depends on the expected curvature of the likelihood
P[r|s] (typically for the responses of many cells) evaluated at the true stim-
ulus value. The mutual information is a global measure in the sense that
it depends on the average overall uncertainty in the decoding distribution
P[s|r], including values of s both close and far from the true stimulus. If
the decoding distribution P[s|r] has a single peak about the true stimulus,
the Fisher information and the mutual information are closely related. In
particular, for large numbers of neurons, the maximum likelihood estima-
tor tends to have a Gaussian distribution, as discussed in chapter 3. In this
case, the mutual information between stimulus and response is essentially,
up to an additive constant, the logarithm of the Fisher information.
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4.2 Information and Entropy Maximization

Entropy and mutual information are useful quantities for characterizing
the nature and efficiency of neural encoding and selectivity. Often, in ad-
dition to such characterizations, we seek to understand the computational
implications of an observed response selectivity. For example, we might
ask whether neural responses to natural stimuli are optimized to convey as
much information as possible. This hypothesis can be tested by computing
the response characteristics that maximize the mutual information con-
veyed about naturally occurring stimuli and comparing the results with
responses observed experimentally.

Because the mutual information is the full response entropy minus the
noise entropy, maximizing the information involves a compromise. We
must make the response entropy as large as possible without allowing the
noise entropy to get too big. If the noise entropy is small, which means
that the mutual information is limited by the resolution with which the
response can be read out rather than by extraneous sources of noise, max-
imizing the response entropy, subject to an appropriate constraint, maxi-
mizes the mutual information to a good approximation. We therefore be-
gin our discussion by studying how response entropy can be maximized.
Later in the discussion, we will consider the effects of noise entropy.

Constraints play a crucial role in this analysis. We have already seen that
the theoretical information carrying capacity associated with a continuous
firing rate is limited only by the resolution with which the firing rate can be
defined. Even with a finite resolution, a firing rate could convey an infinite
amount of information if it could take arbitrarily high values. Thus, we
must impose some constraint that limits the firing rate to a realistic range.
Possible constraints include limiting the maximum allowed firing rate or
holding the average firing rate or its variance fixed.

Entropy Maximization for a Single Neuron

To maximize the response entropy we must find a probability density p[r]
that makes the integral in equation 4.17 as large as possible while satis-
fying whatever constraints we impose. During the maximization process,
the resolution 	r is held fixed, so the log2 	r term remains constant, and
it can be ignored. As a result, it will not generally appear in the following
equations. One constraint that always applies in entropy maximization is
that the integral of the probability density must be one. Suppose that the
neuron in question has a maximum firing rate of rmax. Then, the integrals
in question extend from 0 to rmax. To find the p[r] producing the maximum
entropy, we must maximize

−
∫ rmax

0
dr p[r] log2 p[r] (4.20)
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10 Information Theory

subject to the constraint ∫ rmax

0
dr p[r] = 1 . (4.21)

The result is that the probability density that maximizes the entropy sub-
ject to this constraint is a constant,

p[r] = 1
rmax

, (4.22)

independent of r. The entropy for this probability density is

H = log2 rmax − log2 	r = log2

( rmax

	r

)
. (4.23)

Note that the factor 	r, expressing the resolution for firing rates makes the
argument of the logarithm dimensionless.

Equation 4.22 is the basis of a signal processing technique called histogramhistogram
equalization equalization. Applied to neural responses, this is a procedure for tailoring

the neuronal selectivity so that p[r] = 1/rmax in response to a set of stimuli
over which the entropy is to be maximized. Suppose a neuron responds
to a stimulus characterized by the parameter s by firing at a rate r= f (s),
where f (s) is the response tuning curve. For small 	s, the probability
that the continuous stimulus variable falls in the range between s and s +
	s is given in terms of the stimulus probability density by p[s]	s. This
produces a response that falls in the range between f (s + 	s) and f (s).
If the response probability density takes its optimal value, p[r] = 1/rmax,
the probability that the response falls within this range is | f (s + 	s) −
f (s)|/rmax. Setting these two probabilities equal to each other, we find that
| f (s + 	s) − f (s)|/rmax = p[s]	s. Consider the case of a monotonically
increasing response so that f (s + 	s) > f (s) for positive 	s. Then, in the
limit 	s → 0, the condition becomes

df
ds

= rmax p[s] (4.24)

which has the solution

f (s) = rmax

∫ s

smin

ds′ p[s′] (4.25)

where smin is the minimum value of s, which is assumed to generate no
response. Thus, entropy maximization requires that the tuning curve of
the responding neuron be proportional to the integral of the probability
density of the stimulus.

Laughlin (1981) has provided evidence that responses of the large monopo-
lar cell (LMC) in the visual system of the fly satisfy the entropy maximiz-
ing condition. The LMC responds to contrast, and Laughlin measured the
probability distribution of contrasts of natural scenes in habitats where the
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Figure 4.2: Contrast response of the fly LMC (data points) compared to the in-
tegral of the natural contrast probability distribution (solid curve). The relative
response is the amplitude of the membrane potential fluctuation produced by the
onset of a light or dark image with a given level of contrast divided by the max-
imum response. Contrast is defined relative to the background level of illumina-
tion, Ib, as (I − Ib)/Ib. (Adapted from Laughlin, 1981.)

flies he studied live. The solid curve in figure 4.2 is the integral of this mea-
sured distribution. The data points in figure 4.2 are LMC responses as a
function of contrast. These responses are measured as membrane poten-
tial fluctuation amplitudes, not as firing rates, but the analysis presented
above applies equally to this case. As figure 4.2 indicates, the response
tuning curve as a function of contrast is very close to the integrated prob-
ability density, suggesting that the LMC is using a maximum entropy en-
coding.

Even though neurons have maximum firing rates, the constraint r ≤ rmax
may not always be the factor that limits the entropy. For example, the aver-
age firing rate of the neuron may be constrained to values much less than
rmax, or the variance of the firing rate might be constrained. The reader is
invited to show that the entropy maximizing probability density if the av-
erage firing rate is constrained to a fixed value is an exponential. A related
calculation shows that the probability density that maximizes the entropy
subject to constraints on the firing rate and its variance is a Gaussian.

Populations of Neurons

When a population of neurons encodes a stimulus, optimizing their indi-
vidual response properties will not necessarily lead to an optimized popu-
lation response. Optimizing individual responses could result in a highly
redundant population representation in which different neurons encode
the same information. Entropy maximization for a population requires
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12 Information Theory

that the neurons convey independent pieces of information, i.e. they must
have different response selectivities. Let the vector r with components ra

for a = 1,2, . . . , N denote the firing rates for a population of N neurons,
measured with resolution 	r. If p[r] is the probability of evoking a pop-
ulation response characterized by the vector r, the entropy for the entire
population response is

H = −
∫

dr p[r] log2 p[r] − N log2 	r . (4.26)

Along with the full population entropy of Equation 4.26, we can also con-
sider the entropy associated with individual neurons within the popula-
tion. If p[ra] = ∫ ∏

b �=a drb p[r] is the probability density for response ra

from neuron a, its entropy is

Ha = −
∫

dra p[ra] log2 p[ra] − log2 	r = −
∫

dr p[r] log2 p[ra] − log2 	r .

(4.27)

The true population entropy can never be greater than the sum of these
individual neuron entropies over the entire population,

H ≤
∑

a

Ha . (4.28)

To prove this, we note that the difference between the full entropy and the
sum of individual neuron entropies is

∑
a

Ha − H =
∫

dr p[r] log2

(
p[r]∏

a pa[ra]

)
≥ 0 . (4.29)

The inequality follows from the fact that the middle expression is the KL
divergence between the probability distributions p[r] and

∏
a p[ra], and a

KL divergence is always non-negative. Equality holds only if

p[r] =
∏

a

p[ra] , (4.30)

i.e. the responses of the neurons are statistically independent. Thus, the
full response entropy is never greater than the sum of the entropies of
the individual neurons in the population, and it reaches the limiting value
when equation 4.30 is satisfied. A code that satisfies this condition is calledfactorial code
a factorial code because the probability factorizes into a product of single
neuron probabilities. The entropy difference in equation 4.29 has been
suggested as a measure of redundancy. When the population response
probability density factorizes, this implies that the individual neurons re-
spond independently.

Combining this result with the results of the previous section, we con-
clude that the maximum population response entropy can be achieved
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by satisfying two conditions. First, the individual neurons must respond
independently, i.e. p[r] = ∏

a p[ra] must factorize. Second, they must allfactorization
have response probabilities that are optimal for whatever constraints are
imposed, for example flat, exponential, or Gaussian. If the same con-
straint is imposed on every neuron, the second condition implies that
every neuron must have the same response probability density. In other
words p[ra] must be the same for all a values, a property called probability
equalization. This does not imply that all the neurons respond identically probability

equalizationto every stimulus. Indeed, the conditional probabilities p[ra|s] must be dif-
ferent for different neurons if they are to act independently. We proceed
by considering factorization and probability equalization as general prin-
ciples of entropy maximization, without imposing explicit constraints.

Exact factorization and probability equalization are difficult to achieve,
especially if the form of the neural response is restricted. These goals are
likely to be impossible to achieve, for example, if the neural responses are
modeled as having a linear relation to the stimulus. A more modest goal
is to require that the lowest order moments of the population response
probability distribution match those of a fully factorized and equalized
distribution. If the individual response probability distributions are equal,
the average firing rates and firing rate variances will be the same for all
neurons, 〈ra〉 = 〈r〉 and 〈(ra − 〈r〉)2〉 = σ2

r for all a. The covariance matrix
for a factorized and probability equalized population distribution is thus
proportional to the identity matrix,

Qab =
∫

dr p[r](ra − 〈r〉)(rb − 〈r〉) = σ2
r δab . (4.31)

Finding response distributions that satisfy only the decorrelation and vari- decorrelation and
variance

equalization
ance equalization condition of equation 4.31 is usually tractable. In the fol-
lowing examples, we will restrict ourselves to this easier task. This max-
imizes the entropy only if the statistics of the responses are Gaussian, but
it is a reasonable procedure even in a non-Gaussian case, because it typi-
cally reduces the redundancy in the population code and spreads the load
of information transmission equally among the neurons.

Application to Retinal Ganglion Cell Receptive Fields

Entropy and information maximization have been used to explain proper-
ties of visual receptive fields in the retina, LGN, and primary visual cor-
tex. The basic assumption is that these receptive fields serve to maximize
the amount of information that the associated neural responses convey
about natural visual scenes in the presence of noise. Information theoret-
ical analyses are sensitive to the statistical properties of the stimuli being
represented, so the statistics of natural scenes play an important role in
these studies. Natural scenes exhibit substantial spatial and temporal re-
dundancy. Maximizing the information conveyed requires removing this
redundancy from the neural responses.
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14 Information Theory

It should be kept in mind that the information maximization approach
sets limited goals and requires strong assumptions about the nature of the
constraints relevant to the nervous system. In addition, the approach only
analyzes the representational properties of neural responses and ignores
the computational goals of the visual system, such as object recognition
or target tracking. Finally, maximizing other measures of performance,
different from the mutual information, may give similar results. Never-
theless, the principal of information maximization is quite successful at
accounting for properties of receptive fields early in the visual pathway.

In chapter 2, a visual image was defined by a contrast function s(x, y, t)
with an average value over trials of zero. For the calculations we present
here, it is more convenient to express the x and y coordinates for locations
on the viewing screen in terms of a single vector �x = (x, y), or sometimes
�y = (x, y). Using this notation, the linear estimate of the response of a
visual neuron discussed in chapter 2 can be written as

L(t) =
∫ ∞

0
dτ

∫
d�x D(�x, τ)s(�x, t − τ) . (4.32)

If the space-time receptive field D(�x, τ) is separable, D(�x, τ) = Ds(�x)Dt(τ)

and we can rewrite L(t) as the product of integrals involving temporal
and spatial filters. To keep the notation simple, we assume that the stimu-
lus can also be separated, so that s(�x, t) = ss(�x)st(t). Then, L(t) = LsLt(t)
where

Ls =
∫

d�x Ds(�x)ss(�x) (4.33)

and

Lt(t) =
∫ ∞

0
dτ Dt(τ)st(t − τ) . (4.34)

In the following, we analyze the spatial and temporal components, Ds and
Dt, separately by considering the information carrying capacity of Ls and
Lt. We study the spatial receptive fields of retinal ganglion cells in this sec-
tion, and the temporal response properties of LGN cells in the next. Later,
we discuss the application of information maximization ideas to primary
visual cortex.

To derive appropriately optimal spatial filters, we consider an array of
retinal ganglion cells with receptive fields covering a small patch of the
retina. We assume that the statistics of the input are spatially (and tem-
porally) stationary or translation invariant. This means that all locations
and directions in space (and all times), at least within the patch we con-
sider, are equivalent. This equivalence allows us to give all of the receptive
fields the same spatial structure, with the receptive fields of different cells
merely being shifted to different points within the visual field. As a result,
we write the spatial kernel describing a retinal ganglion cell with receptive
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field centered at the point �a as Ds(�x − �a). The linear response of this cell is
then

Ls(�a) =
∫

d�x Ds(�x − �a)ss(�x) . (4.35)

Note that we are labeling the neurons by the locations �a of the centers of
their receptive fields rather than by an integer index such as i. This is a
convenient labeling scheme that allows sums over neurons to be replaced
by sums over parameters describing their receptive fields. The vectors
�a for the different neurons take on discrete values corresponding to the
different neurons in the population. If many neurons are being considered,
these discrete vectors may fill the range of receptive field locations quite
densely. In this case, it is reasonable to approximate the large but discrete
set of �a values, with a vector �a that is allowed to vary continuously. In
other words, as an approximation, we proceed as if there were a neuron
corresponding to every continuous value of �a. This allows us to treat L(�a)
as a function of �a and to replace sums over neurons with integrals over
�a. In the case we are considering, the receptive fields of retinal ganglion
cells cover the retina densely, with many receptive fields overlapping each
point on the retina, so the replacement of discrete sums over neurons with
continuous integrals over �a is quite accurate.

The Whitening Filter

We will not attempt a complete entropy maximization for the case of reti-
nal ganglion cells, but rather will follow the approximate procedure of
setting the correlation matrix between different neurons within the pop-
ulation proportional to the identity matrix (equation 4.31). The relevant
correlation, in this case, is the average over all stimuli of the product of the
linear responses of two cells, one with receptive field centered at �a and the
other at �b,

QLL(�a, �b) = 〈Ls(�a)Ls(�b)〉 =
∫

d�xd�y Ds(�x − �a)Ds(�y − �b)〈ss(�x)ss(�y)〉 .

(4.36)

The average here, denoted by angle brackets, is not over trials but over the
set of natural scenes for which we believe the receptive field is optimized.
By analogy with equation 4.31, decorrelation and variance equalization of
the different retinal ganglion cells, when �a and �b are taken to be continuous
variables, require that we set this correlation function proportional to a δ

function,

QLL(�a, �b) = σ2
Lδ(�a − �b) . (4.37)

This is the continuous variable analog of making a discrete correlation ma-
trix proportional to the identity matrix (equation 4.31). The δ function with
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vector arguments is only non-zero when all of the components of �a and �b
are identical.

The quantity 〈ss(�x)ss(�y)〉 in equation 4.36 is the correlation function of the
stimulus averaged over natural scenes. Our assumption of homogeneity
implies that this quantity is only a function of the vector difference �x − �y
(actually, if all directions are equivalent, it is only a function of the magni-
tude |�x − �y|), and we write it as

Qss(�x − �y) = 〈ss(�x)ss(�y)〉 . (4.38)

To determine the form of the receptive field filter that is optimal, we must
solve equation 4.37 for Ds. This is done by expressing Ds and Qss in terms
of their Fourier transforms D̃s and Q̃ss,

Ds(�x − �a) = 1
4π2

∫
d�k exp

(
−i�k · (�x − �a)

)
D̃s(�k) (4.39)

Qss(�x − �y) = 1
4π2

∫
d�k exp

(
−i�k · (�x − �y)

)
Q̃ss(�k) . (4.40)

Q̃ss, which is real and non-negative, is also called the stimulus power spec-
trum (see chapter 1). In terms of these Fourier transforms, equation 4.37
becomes

|D̃s(�k)|2Q̃ss(�k) = σ2
L (4.41)

from which we find

|D̃s(�k)| = σL√
Q̃ss(�k)

. (4.42)

The linear kernel described by equation 4.42 exactly compensates forwhitening filter
whatever dependence the Fourier transform of the stimulus correlation
function has on the spatial frequency �k such that the product Q̃ss(�k)|D̃s(�k)|2
is independent of �k. This product is the power spectrum of L. The out-
put of the optimal filter has a power spectrum that is independent of spa-
tial frequency, and therefore has the same characteristics as white noise.
Therefore, the kernel in equation 4.42 is called a whitening filter. Differ-
ent spatial frequencies act independently in a linear system, so decorrela-
tion and variance equalization require them to be utilized at equal signal
strength. The calculation we have performed only determines the ampli-
tude |D̃s(�k)| and not D̃s(�k) itself. Thus, decorrelation and variance equal-
ization do not uniquely specify the form of the linear kernel. We study
some consequences of the freedom to choose different linear kernels satis-
fying equation 4.42 later in the chapter.

The spatial correlation function for natural scenes has been measured,
with the result that Q̃ss(�k) is proportional to 1/|�k|2 over the range it has
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been evaluated. The behavior near �k = 0 is not well established, but the
divergence of 1/|�k|2 near �k = 0 can be removed by setting Q̃ss(�k) propor-
tional to 1/(|�k|2 + k2

0) where k0 is a constant. The stimuli of interest in the
calculation of retinal ganglion receptive fields are natural images as they
appear on the retina, not in the photographs from which the natural scenes
statistics are measured. An additional factor must be included in Q̃ss(�k) to
account for filtering introduced by the optics of the eye (the optical modu-
lation transfer function). A simple model of the optical modulation trans-
fer function results in an exponential correction to the stimulus correlation optical modulation

transfer functionfunction

Q̃ss(�k) ∝ exp(−α|�k|)
|�k|2 + k2

0

. (4.43)

Putting this into equation 4.42 gives a rather peculiar result; the ampli-
tude |D̃s(�k)|, being proportional to the inverse of the square root of Q̃ss, is
predicted to grow exponentially for large |�k|. Whitening filters maximize
entropy by equalizing the distribution of response power over the entire
spatial frequency range. High spatial frequency components of images are
relatively rare in natural scenes and, even as they occur, are greatly atten-
uated by the eye. The whitening filter compensates for this by boosting
the responses to high spatial frequencies. Although this is the result of
the entropy maximization calculation, it is not a good strategy to use in
an unrestricted way for visual processing. Real inputs to retinal ganglion
cells involve a mixture of true signal and noise coming from biophysical
sources in the retina. At high spatial frequencies, for which the true sig-
nal is weak, inputs to retinal ganglion cells are likely to be dominated by
noise, especially in low-light conditions. Boosting the amplitude of this
noise-dominated input and transmitting it to the brain is not an efficient
visual encoding strategy.

The problem of excessive boosting of responses at high spatial frequency
arises in the entropy maximization calculation because no distinction has
been made between the entropy coming from true signals and that coming
from noise. To correct this problem, we should maximize the information
transmitted by the retinal ganglion cells about natural scenes, rather than
maximize the entropy. A full information maximization calculation of the
receptive field properties of retinal ganglion cells can be performed, but
this requires introducing a number of assumptions about the constraints
that are relevant, and it is not entirely obvious what these constraints
should be. Instead, we will follow an approximate procedure that pre-
filters the input to eliminate as much noise as possible, and then uses the
results of this section to maximize the entropy of a linear filter acting on
the pre-filtered input signal.
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Filtering Input Noise

Suppose that the visual stimulus on the retina is the sum of the true stim-
ulus ss(�x) that should be conveyed to the brain and a noise term η(�x) that
reflects image distortion, photoreceptor noise, and other signals that are
not worth conveying beyond the retina. To deal with such a mixed input
signal, we express the Fourier transform of the linear kernel D̃s(�k) as a
product of two terms, a noise filter, D̃η(�k), that eliminates as much of the
noise as possible, and a whitening filter, D̃w(�k), that satisfies equation 4.42.
The Fourier transform of the complete filter is then D̃s(�k) = D̃w(�k)D̃η(�k).

To determine the form of the noise filter, we demand that when it is ap-
plied to the total input ss(�x) + η(�x), the result is as close to the signal part
of the input, ss(�x), as possible. As in the previous section, it is easiest
to perform the necessary calculations in the Fourier-transformed spatial
frequency domain. Thus, we express the difference between the filtered
input and the true signal in terms of the Fourier transforms of the signal
and noise, s̃(�k) and η̃(�k). The Fourier transform of the output of the noise
filter is D̃η(�k)(s̃(�k)+ η̃(�k)), and we want to make this as close as possible to
the Fourier transform of the pure signal, s̃(�k). To do this, we minimize the
integral over �k of the squared amplitude of the difference between these
two quantities, averaged over natural scenes,〈∫

d�k
∣∣∣D̃η(�k)

(
s̃(�k) + η̃(�k)

)
− s̃(�k)

∣∣∣2
〉

. (4.44)

Note that the squared amplitude of a complex quantity such as s̃(�k) is∣∣∣s̃(�k)
∣∣∣2 = s̃(�k)s̃∗(�k) where s̃∗(�k) is the complex conjugate of s̃(�k). Setting

the derivative of equation 4.44 with respect to D̃∗
η(

�k′) to zero gives∫
d�k D̃η(�k)

(〈
s̃(�k)s̃∗(�k′)

〉
+

〈
η̃(�k)η̃∗(�k′)

〉)
=

∫
d�k

〈
s̃(�k)s̃∗(�k′)

〉
. (4.45)

In evaluating this expression, we have assumed that the signal and noise
terms are uncorrelated so that 〈s̃(�k)η̃∗(�k′)〉 = 〈η̃(�k)s̃∗(�k′)〉 = 0. The re-
maining averages are related to the Fourier transforms of the stimulus-
stimulus and noise-noise correlation functions (assuming spatial station-
arity in both the stimulus and the noise) by the identities

〈s̃(�k)s̃∗(�k′)〉 = Q̃ss(�k)δ(�k − �k′) and 〈η̃(�k)η̃∗(�k′)〉 = Q̃ηη(�k)δ(�k − �k′) . (4.46)

Substituting these expressions into equation 4.45 gives

D̃η(�k)
(

Q̃ss(�k) + Q̃ηη(�k)
)

= Q̃ss(�k) , (4.47)

which has the solutionnoise filter
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D̃η(�k) = Q̃ss(�k)

Q̃ss(�k) + Q̃ηη(�k)
. (4.48)

This determines both the phase and magnitude of the noise filter. Because
the noise filter is designed so that its output matches the signal as closely
as possible, we make the approximation of using the same whitening filter
as before (equation 4.42). Combining the two, we find that

|D̃s(�k)| ∝ σL

√
Q̃ss(�k)

Q̃ss(�k) + Q̃ηη(�k)
. (4.49)
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Figure 4.3: Receptive field properties predicted by entropy maximization and
noise suppression of responses to natural images. A) The amplitude of the pre-
dicted Fourier-transformed linear filters for low (solid curve) and high (dashed
curve) input noise. |D̃s(�k)| is plotted relative to its maximum value. B) The lin-
ear kernel as a function of the distance from the center of the receptive field for
low (solid curve) and high (dashed curve) input noise. Note the center-surround
structure at low noise. D̃s(�k) is taken to be real, and Ds(|�x|) is plotted relative to
its maximum value. Parameter values used were α = 0.16 cycles/degree, k0 = 0.16
cycles/degree, and Q̃ηη/Q̃ss(0) = 0.05 for the low-noise case and 1 for the high-
noise case.

Linear kernels resulting from equation 4.49 using equation 4.43 for the
stimulus correlation function are plotted in figure 4.3. For this figure, we
have assumed that the input noise is white so that Q̃ηη is independent
of �k. Both the amplitude of the Fourier transform of the kernel (figure
4.3A), and the actual spatial kernel Ds(�x) (figure 4.3B) are plotted under
conditions of low and high noise. The linear kernels in figure 4.3B have
been constructed by assuming that D̃s(�k) satisfies equation 4.49 and is real,
which minimizes the spatial extent of the resulting receptive field. The
resulting function Ds(�x) is radially symmetric so it only depends on the
distance |�x| from the center of the receptive field to the point �x, and this
radial dependence is plotted in figure 4.3B. Under low noise conditions
(solid lines in figure 4.3), the linear kernel has a bandpass character and the
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predicted receptive field has a center-surround structure, which matches
the retinal ganglion receptive fields shown in chapter 2. This structure
eliminates one major source of redundancy in natural scenes; the strong
similarity of neighboring inputs owing to the predominance of low spatial
frequencies in images.

When the noise level is high (dashed lines in figure 4.3), the structure of
the optimal receptive field is different. In spatial frequency terms, the filter
is now low-pass, and the receptive field loses its surround. This structure
averages over neighboring pixels to extract the true signal obscured by the
uncorrelated noise. In the retina, we expect the signal-to-noise ratio to be
controlled by the level of ambient light, with low levels of illumination cor-
responding to the high noise case. The predicted change in the receptive
fields at low illumination (high noise) matches what actually happens in
the retina. At low light levels, circuitry changes within the retina remove
the opposing surrounds from retinal ganglion cell receptive fields.

Temporal Processing in the LGN

Just as many aspects of the visual world vary gradually across space, nat-
ural images also tend to change slowly over time. This means that there is
substantial redundancy in the succession of natural images, suggesting an
opportunity for efficient temporal filtering to complement efficient spatial
filtering. An analysis similar to that of the previous section can be per-
formed to account for the temporal receptive fields of visually responsive
neurons early in the visual pathway. Recall that the predicted linear tem-
poral response is given by Lt(t) as expressed in equation 4.34. The analog
of equation 4.37 for temporal decorrelation and variance equalization is

〈Lt(t)Lt(t′)〉 = σ2
Lδ(t − t′) . (4.50)

This is mathematically identical to equation 4.37 except that the role of
the spatial variables �a and �b has been replaced by the temporal variables
t and t′. The analysis proceeds exactly as above and the optimal filter is
the product of a noise filter and a temporal whitening filter as before. The
temporal linear kernel Dt(τ) is written in terms of its Fourier transform

Dt(τ) = 1
2π

∫
dω exp(−iωτ)D̃t(ω) (4.51)

and D̃t(ω) is given by an equation similar to 4.49,

|D̃t(ω)| ∝ σL

√
Q̃ss(ω)

Q̃ss(ω) + Q̃ηη(ω)
. (4.52)

In this case, Q̃ss(ω) and Q̃ηη(ω) are the power spectra of the signal and the
noise in the temporal domain.
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Figure 4.4: A) Predicted (curve) and actual (diamonds) selectivity of an LGN cell
as a function of temporal frequency. The predicted curve is based on the optimal
linear filter D̃t(ω) with ω0 = 5.5 Hz. B) Causal, minimum phase, temporal form of
the optimal filter. (Adapted from Dong and Atick, 1995; data in A from Saul and
Humphrey, 1990.)

Dong and Atick (1995) analyzed temporal receptive fields in the LGN in
this way under the assumption that a substantial fraction of the tempo-
ral redundancy of visual stimuli is removed in the LGN rather than in
the retina. They determined that the temporal power spectrum of natural
scenes has the form

Q̃ss(ω) ∝ 1
ω2 + ω2

0

(4.53)

where ω0 is a constant. The resulting filter, in both the temporal frequency
and time domains, is plotted in figure 4.4. Figure 4.4A shows the predicted
and actual frequency responses of an LGN cell. This is similar to the plot
in figure 4.3A except that the result has been normalized to a realistic re-
sponse level so that it can be compared with data. Because the optimiza-
tion procedure only determines the amplitude of the Fourier transform of
the linear kernel, Dt(τ) is not uniquely specified. To uniquely specify the
temporal kernel we require it to be causal (Dt(τ) = 0 for τ < 0) and im-
pose a technical condition known as minimum phase, which assures that
the output changes as rapidly as possible when the stimulus varies. Fig-
ure 4.4B shows the resulting form of the temporal filter. The space-time
receptive fields shown in chapter 2 tend to change sign as a function of τ.
The temporal filter in figure 4.4B has exactly this property.

An interesting test of the notion of optimal coding was carried out by Dan,
Atick, and Reid (1996). They used both natural scene and white-noise
stimuli while recording cat LGN cells. Figure 4.5A shows the power spec-
tra of spike trains of cat LGN cells in response to natural scenes (the movie
Casablanca), and figure 4.5B shows power spectra for white-noise stimuli.
The power spectra of the responses to natural scenes are quite flat above
about ω = 3 Hz. In response to white noise, on the other hand, they rise
with ω. This is exactly what we would expect if LGN cells are acting as
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Figure 4.5: A) Power spectra of the spike trains of 51 cat LGN cells in response
to presentation of the movie Casablanca, normalized to their own values between 5
and 6 Hz. B) Equivalently normalized power spectra of the spike trains of 75 LGN
cells in response to white-noise stimuli. (Adapted from Dan et al., 1996.)

temporal whitening filters. In the case of natural stimuli, the whitening
filter evenly distributes the output power over a broad frequency range.
Responses to white-noise stimuli increase at high frequencies due to the
boosting of inputs at these frequencies by the whitening filter.

Cortical Coding

Computational concerns beyond mere linear information transfer are
likely to be relevant at the level of cortical processing of visual images.
For one thing, the primary visual cortex has many more neurons than the
LGN, yet they can collectively convey no more information about the vi-
sual world than they receive. As we saw in chapter 2, neurons in primary
visual cortex are selective for quantities such as spatial frequency and ori-
entation that are of particular importance in relation to object recognition
but not for information transfer. Nevertheless, the methods described in
the previous section can be used to understand restricted aspects of re-
ceptive fields of neurons in primary visual cortex, namely the way that
the multiple selectivities are collectively assigned. For example, cells that
respond best at high spatial frequencies tend to respond more to low tem-
poral frequency components of images, and vice-versa.

The stimulus power spectrum written as a function of both spatial and
temporal frequency has been estimated as

Qss(�k, ω) ∝ 1

|�k|2 + α2ω2
(4.54)

where α = 0.4 cycle seconds/degree. This correlation function decreases

Peter Dayan and L.F. Abbott Draft: December 17, 2000



4.2 Information and Entropy Maximization 23

1 10
0.1

0.2

0.3

0.4

0.5

0.5 cycles/degree

4 cycles/degree

temporal frequency (Hz)

se
ns

iti
vi

ty

Figure 4.6: Dependence of temporal frequency tuning on preferred spatial fre-
quency for space-time receptive fields derived from information maximization
in the presence of noise. The curves show a transition from partial whitening
in temporal frequency for low preferred spatial frequency (solid curve, 0.5 cy-
cles/degree) to temporal summation for high preferred spatial frequency (dashed
curve, 4 cycles/degree). (Adapted from Li, 1996.)

both for high spatial and high temporal frequencies. Figure 4.6 shows how
temporal selectivity for a combined noise and whitening filter constructed
using this stimulus power spectrum changes for different preferred spatial
frequencies. The basic idea is that components with fairly low stimulus
power are boosted by the whitening filter, while those with very low stim-
ulus power get suppressed by the noise filter. As shown by Li (1996), if a
cell is selective for high spatial frequencies, the input signal rapidly falls
below the noise (treated as white) as the temporal frequency of the input is
increased. As a result, the noise filter of equation 4.48 causes the temporal
response to be largest at zero temporal frequency (dashed curve of figure
4.6). If instead, the cell is selective for low spatial frequencies, the signal
dominates the noise up to higher temporal frequencies, and the whitening
filter causes the response to increase as a function of temporal frequency
up to a maximum value where the noise filter begins to suppress the re-
sponse (solid curve in figure 4.6). Model receptive fields with preference
for high spatial frequency thus act as low-pass temporal filters, and re-
ceptive fields with selectivity for low spatial frequency act as band-pass
temporal filters.

Similar conclusions can be drawn concerning other joint selectivities. For
instance, color selective (chrominance) cells tend to be selective for low
temporal frequencies, because their input signal to noise ratio is lower
than that for broad-band (luminance) cells. There is also an interesting
predicted relationship between ocular dominance and spatial frequency
tuning due to the nature of the correlations between the two eyes. Opti-
mal receptive fields with low spatial frequency tuning (for which the in-
put signal-to-noise ratio is high) have enhanced sensitivity to differences
between inputs coming from the two eyes. Receptive fields tuned to inter-
mediate and high spatial frequencies suppress ocular differences.
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4.3 Entropy and Information for Spike Trains

Computing the entropy or information content of a neuronal response
characterized by spike times is much more difficult than computing these
quantities for responses described by firing rates. Nevertheless, these com-
putations are important, because firing rates are incomplete descriptions
that can lead to serious underestimates of the entropy and information. In
this section, we discuss how the entropy and mutual information can be
computed for spike trains. Extensive further discussion can be found in
the book by Rieke et al. (1997).

Spike-train entropy calculations are typically based on the study of long-
duration recordings consisting of many action potentials. The entropy or
mutual information typically grows linearly with the length of the spike
train being considered. For this reason, the entropy and mutual informa-
tion of spike trains are reported as entropy or information rates. Theseentropy and

information rates are the total entropy or information divided by the duration of the spike
train. We write the entropy rate as h rather than H. Alternately, entropy
and mutual information can be divided by the total number of action po-
tentials and reported as bits per spike rather than bits per second.

To compute entropy and information rates for a spike train, we need to
determine the probabilities that various temporal patterns of action poten-
tials appear. These probabilities replace the factors P[r] or p[r] that occur
when discrete or continuous firing rates are used to characterize a neu-
ral response. The temporal pattern of a group of action potentials can be
specified by listing either the individual spike times or the sequence of in-
tervals between successive spikes. The entropy and mutual information
calculations we present are based on a spike-time description, but as an
initial example we consider an approximate computation of entropy us-
ing interspike intervals.

The probability of an interspike interval falling in the range between τ and
τ + 	τ is given in terms of the interspike interval probability density by
p[τ]	τ. Because the interspike interval is a continuous variable, we must
specify a resolution 	τ with which it is measured to define the entropy. If
the different interspike interval are statistically independent, the entropy
associated with the interspike intervals in a spike train of average rate 〈r〉
and of duration T is the number of intervals, 〈r〉T, times the integral over τ

of −p[τ] log2(p[τ]	τ). The entropy rate is obtained by dividing this result
by T, and the entropy per spike requires dividing by the number of spikes,
〈r〉T. The assumption of independent interspike intervals is critical for ob-
taining the spike-train entropy solely in terms of p[τ]. Correlations be-
tween different interspike intervals reduce the total entropy, so the result
obtained by assuming independent intervals provides an upper bound on
the true entropy of a spike train. Thus, in general, the entropy rate h for
a spike train with interspike interval distribution p[τ] and average rate 〈r〉
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satisfies

〈h〉 ≤ −〈r〉
∫ ∞

0
dτ p[τ] log2(p[τ]	τ) . (4.55)

If a spike train is described by a homogeneous Poisson process with rate
〈r〉, we have p[τ] = 〈r〉exp(−〈r〉τ), and the interspikes are statistically in-
dependent (chapter 1). Equation 4.55 is then an equality and, performing Poisson entropy

ratethe integrals,

〈h〉 = 〈r〉
ln(2)

(1 − ln(〈r〉	τ)) . (4.56)

We now turn to a more general calculation of the spike-train entropy. To
make entropy calculations practical, a long spike train is broken into sta-
tistically independent subunits, and the total entropy is written as the sum
of the entropies for the individual subunits. In the case of equation 4.55,
the subunit was the interspike interval. If interspike intervals are not in-
dependent and we wish to compute a result and not merely a bound, we
must work with larger subunit descriptions. Strong, Koberle, de Ruyter
van Steveninck, and Bialek (1998) proposed a scheme that uses spike se-
quences of duration Ts as these basic subunits. Note that the variable Ts is
used here to denote the duration of the spike sequence being considered,
while T, which is much larger than Ts, is the duration of the entire spike
train.

The time that a spike occurs is a continuous variable so, as in the case
of interspike intervals, a resolution must be specified when spike train
entropies are computed. This can be done by dividing time into discrete
bins of size 	t. We assume that the bins are small enough so that not more
than one spike appears in a bin. Depending on whether or not a spike
occurred within it, each bin is labeled by a zero (no spike) or a one (spike).
A spike sequence defined over a block of duration Ts is thus represented
by a string of Ts/	t zeros and ones. We denote such a sequence by B(t),
where B is a Ts/	t bit binary number, and t specifies the time of the first
bin in the sequence being considered. Both Ts and t are integer multiples
of the bin size 	t.

The probability of a sequence B occurring at any time during the entire re-
sponse is denoted by P[B]. This can be obtained by counting the number
of times the sequence B occurs anywhere within the spike trains being an-
alyzed (including overlapping cases). The spike-train entropy rate implied
by this distribution is

h = − 1
Ts

∑
B

P[B] log2 P[B] , (4.57)

where the sum is over all the sequences B found in the data set, and we
have divided by the duration Ts of a single sequence.
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If the spike sequences in non-overlapping intervals of duration Ts are in-
dependent, the full spike-train entropy rate is also given by equation 4.57.
However, any correlations between successive intervals (if B(t + Ts) is cor-
related with B(t), for example) reduce the total spike-train entropy, caus-
ing equation 4.57 to overestimate the true entropy rate. Thus, for finite Ts,
this equation provides an upper bound on the true entropy rate. If Ts is too
small, B(t + Ts) and B(t) are likely to be correlated, and the overestimate
may be severe. As Ts increases, we expect the correlations to get smaller,
and equation 4.57 should provide a more accurate value. For any finite
data set, Ts cannot be increased past a certain point, because there will
not be enough spike sequences of duration Ts in the data set to determine
their probabilities. Thus, in practice, Ts must be increased until the point
where the extraction of probabilities becomes problematic, and some form
of extrapolation to Ts → ∞ must be made.

Statistical mechanics arguments suggest that the difference between the
entropy for finite Ts and the true entropy for Ts → ∞ should be propor-
tional to 1/Ts for large Ts. Therefore, the true entropy can be estimated, as
in figure 4.7, by linearly extrapolating a plot of the entropy rate versus 1/Ts
to the point 1/Ts = 0. In figure 4.7 (upper line), this has been done for data
from the motion sensitive H1 neuron of the fly visual system. The plotted
points show entropy rates computed for different values of 1/Ts, and they
vary linearly over most of the range of the plot. However, when 1/Ts goes
below about 20/s (or Ts = 50 ms), the variation suddenly increases. This
is the point at which the amount of data is insufficient to extract even an
overestimate of the entropy. By linearly extrapolating the linear part of the
series of computed points in figure 4.7, Strong et al. estimated that the H1
spike trains had an entropy rate of 157 bits/s for a resolution of 	t = 3 ms.

To compute the mutual information rate for a spike train, we must sub-
tract the noise entropy rate from the full spike-train entropy rate. The
noise entropy rate is determined from the probabilities of finding various
sequences B given that they were evoked by the same stimulus. This is
done by considering sequences B(t) that start at a fixed time t. If the same
stimulus is used in repeated trials, sequences that begin at time t in every
trial are generated by the same stimulus. Therefore, the conditional prob-
ability of the response given the stimulus is, in this case, the distribution
P[B(t)] for response sequences beginning at the time t. This is obtained
by determining the fraction of trials on which B(t) was evoked. Note that
P[B(t)] is the probability of finding a given sequence at time t within a
set of spike trains obtained on trials using the same stimulus. In contrast,
P[B], used in the spike-train entropy calculation, is the probability of find-
ing the sequence B at any time within these trains. Determining P[B(t)] for
a sufficient number of spike sequences may take a large number of trials
using the same stimulus.

The full noise entropy is computed by averaging the noise entropy at time
t over all t values. The average over t plays the role of the average over
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Figure 4.7: Entropy and noise entropy rates for the H1 visual neuron in the fly
responding to a randomly moving visual image. The filled circles in the upper
trace show the full spike-train entropy rate computed for different values of 1/Ts.
The straight line is a linear extrapolation to 1/Ts = 0, which corresponds to Ts →
∞. The lower trace shows the spike train noise entropy rate for different values
of 1/Ts. The straight line is again an extrapolation to 1/Ts = 0. Both entropy rates
increase as functions of 1/Ts , and the true spike-train and noise entropy rates are
overestimated at large values of 1/Ts. At 1/Ts ≈ 20/s, there is a sudden shift in
the dependence. This occurs when there is insufficient data to compute the spike
sequence probabilities. The difference between the y intercepts of the two straight
lines plotted is the mutual information rate. The resolution is 	t = 3 ms. (Adapted
from Strong et al., 1998.)

stimuli in equation 4.6. The result is

hnoise = −	t
T

∑
t

(
1
Ts

∑
B

P[B(t)] log2 P[B(t)]

)
(4.58)

where T/	t is the number of different t values being summed.

If equation 4.58 is based on finite-length spike sequences, it provides an
upper bound on the noise entropy rate. The true noise entropy rate is es-
timated by performing a linear extrapolation in 1/Ts to 1/Ts = 0, as was
done for the spike-train entropy rate. This is done for the H1 data in figure
4.7. The result is a noise entropy of 79 bits/s for 	t = 3 ms. The infor-
mation rate is obtained by taking the difference between the extrapolated
values for the spike-train and noise entropy rates. The result for the fly H1
neuron used in figure 4.7, is an information rate of 157 - 79 = 78 bits/s or
1.8 bits/spike. Values in the range 1 to 3 bits/spike are typical results of
such calculations for a variety of preparations.
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Both the spike-train and noise entropy rates depend on 	t. The leading
dependence, coming from the log2 	t term discussed previously, cancels
in the computation of the information rate, but the information can still de-
pend on 	t through non-divergent terms. This reflects the fact that more
information can be extracted from accurately measured spike times than
from poorly measured spike times. Thus, we expect the information rate
to increase with decreasing 	t, at least over some range of 	t values. At
some critical value of 	t that matches the natural degree of noise jitter in
the spike timings, we expect the information rate to stop increasing. This
value of 	t is interesting because it tells us about the degree of spike tim-
ing accuracy in neural encoding.

The information conveyed by spike trains can be used to compare re-
sponses to different stimuli and thereby reveal stimulus-specific aspects
of neural encoding. For instance, Rieke, Bodnar and Bialek (1995) com-
pared the information conveyed by single neurons in a peripheral audi-
tory organ (the amphibian papilla) of the bullfrog in response to broad-
band noise or to noise filtered to have an amplitude spectrum close to that
of natural bullfrog calls (although the phases for each frequency compo-
nent were chosen randomly). They determined that the cells conveyed on
average 46 bits per second (1.4 bits per spike) for broad-band noise and
133 bits per second (7.8 bits per spike) for stimuli with call-like spectra,
despite the fact that the broad-band noise had a higher entropy. The spike
trains in response to the call-like stimuli conveyed information with near
maximal efficiency.

4.4 Chapter Summary

Shannon’s information theory can be used to determine how much a neu-
ral response tells both us, and presumably the animal in which the neuron
lives, about a stimulus. Entropy is a measure of the uncertainty or surprise
associated with a stochastic variable, such as a stimulus. Mutual informa-
tion quantifies the reduction in uncertainty associated with the observa-
tion of another variable, such as a response. The mutual information is
related to the Kullback-Leibler divergence between two probability distri-
butions. We defined the response and noise entropies for probability dis-
tributions of discrete and and continuous firing rates and considered how
the information transmitted about a set of stimuli might be optimized.
The principles of entropy and information maximization were used to ac-
count for features of the receptive fields of cells in the retina, LGN, and
primary visual cortex. This analysis introduced probability factorization
and equalization and whitening and noise filters. Finally, we discussed
how the information conveyed about dynamic stimuli by spike sequences
can be estimated.

Information theoretic principles also lie at the heart of many of the unsu-
pervised learning methods that are discussed in chapters 8 and 10 which
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suggest how to adjust synaptic weights so that single neurons or networks
of neurons code their inputs in ways that come to be appropriately sensi-
tive to the information they contain.

4.5 Appendix

Positivity of the Kullback-Leibler Divergence

The logarithm is a concave function which means that log2〈z〉 ≥ 〈log2 z〉,
where the angle brackets denote averaging with respect to some probabil- Jensen’s inequality
ity distribution and z is any positive quantity. The equality holds only if
z is a constant. If we consider this relation, known as Jensen’s inequality,
with z = P[r]/Q[r] and the average defined over the probability distribu-
tion P[r], we find

−DKL(P, Q) =
∑

r

P[r] log
(

Q[r]
P[r]

)
≤ log

(∑
r

P[r]
Q[r]
P[r]

)
= 0 . (4.59)

The last equality holds because Q[r] is a probability distribution and thus
satisfies

∑
r Q[r] = 1. The equations in 4.59 implies that DKL(P, Q) ≥ 0,

with equality holding if and only if P[r]= Q[r]. A similar result holds for
the Kullback-Leibler divergence between two probability densities,

DKL(p, q) =
∫

dr p[r] ln
(

p[r]
[q[r]

)
≥ 0 . (4.60)

4.6 Annotated Bibliography

Information theory was created by Shannon (see Shannon & Weaver,
1949) largely as a way of understanding communication in the face of
noise. Cover & Thomas (1991) provide a recent review, and Rieke et al.
(1997) give a treatment specialized to neural coding. Information theory,
and theories inspired by it, such as histogram equalization, were quickly
adopted in neuroscience and psychology as a way of understanding sen-
sory transduction and coding, as discussed by Barlow (1961) and Uttley
(1979). We followed a more recent set of studies, inspired by Linkser (1988)
and Barlow (1989), which have particularly focused on optimal coding in
early vision; Atick & Redlich (1990), Plumbley (1991), Atick, Li & Redlich
(1992), Atick (1992), van Hateren (1992; 1993), Li & Atick (1994a), Dong
& Atick (1995), and Dan et al. (1996). Li & Atick (1994b) discuss the ex-
tension to joint selectivities of cells in V1 and Li & Atick (1994a); Li (1996)
treat stereo and motion sensitivities as examples.

The statistics of natural sensory inputs is reviewed by Field (1987). Camp-
bell & Gubisch (1966) estimated the optimal modulation transfer function.
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We followed the technique of Strong et al. (1998) for computing the mutual
information about a dynamical stimulus in spike trains. Bialek et al. (1993)
present an earlier approach based on stimulus reconstruction.
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Chapter 5

Model Neurons I:
Neuroelectronics

5.1 Introduction

A great deal is known about the biophysical mechanisms responsible for
generating neuronal activity, and these provide a basis for constructing
neuron models. Such models range from highly detailed descriptions
involving thousands of coupled differential equations to greatly simpli-
fied caricatures useful for studying large interconnected networks. In this
chapter, we discuss the basic electrical properties of neurons and the math-
ematical models by which they are described. We present a simple but
nevertheless useful model neuron, the integrate-and-fire model, in a basic
version and with added membrane and synaptic conductances. We also
discuss the Hodgkin-Huxley model, which describes the conductances re-
sponsible for generating action potentials. In chapter 6, we continue by
presenting more complex models, both in terms of their conductances and
their morphology. Circuits and networks of model neurons are discussed
in chapter 7. This chapter makes use of basic concepts of electrical circuit
theory, which are reviewed in the Mathematical Appendix.

5.2 Electrical Properties of Neurons

Like other cells, neurons are packed with a huge number and variety of
ions and molecules. A cubic micron of cytoplasm might contain, for ex-
ample, 1010 water molecules, 108 ions, 107 small molecules such as amino
acids and nucleotides, and 105 proteins. Many of these molecules carry
charges, either positive or negative. Most of the time, there is an excess
concentration of negative charge inside a neuron. Excess charges that are
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mobile, like ions, repel each other and build up on the inside surface of the
cell membrane. Electrostatic forces attract an equal density of positive ions
from the extracellular medium to the outside surface of the membrane.

The cell membrane is a lipid bilayer 3 to 4 nm thick that is essentially im-cell membrane
permeable to most charged molecules. This insulating feature causes the
cell membrane to act as a capacitor by separating the charges lying along
its interior and exterior surfaces. Numerous ion-conducting channels em-ion channels
bedded in the cell membrane (figure 5.1) lower the effective membrane
resistance for ion flow to a value about 10,000 times smaller than that of a
pure lipid bilayer. The resulting membrane conductance depends on the
density and types of ion channels. A typical neuron may have a dozen
or more different types of channels, anywhere from a few to hundreds of
channels in a square micron of membrane, and hundreds of thousands to
millions of channels in all. Many, but not all, channels are highly selective,channel selectivity
allowing only a single type of ion to pass through them (to an accuracy of
about 1 ion in 104). The capacity of channels for conducting ions across the
cell membrane can be modified by many factors including the membrane
potential (voltage-dependent channels), the internal concentration of vari-
ous intracellular messengers (Ca2+-dependent channels, for example), and
the extracellular concentration of neurotransmitters or neuromodulators
(synaptic receptor channels, for example). The membrane also contains
selective pumps that expend energy to maintain differences in the concen-ion pumps
trations of ions inside and outside the cell.

channel

pore

lipid bilayer

Figure 5.1: A schematic diagram of a section of the lipid bilayer that forms the
cell membrane with two ion channels embedded in it. The membrane is 3 to 4 nm
thick and the ion channels are about 10 nm long. (Adapted from Hille, 1992.)

By convention, the potential of the extracellular fluid outside a neuron is
defined to be zero. When a neuron is inactive, the excess internal negative
charge causes the potential inside the cell membrane to be negative. Thismembrane potential
potential is an equilibrium point at which the flow of ions into the cell
matches that out of the cell. The potential can change if the balance of ion
flow is modified by the opening or closing of ion channels. Under normal
conditions, neuronal membrane potentials vary over a range from about
-90 to +50 mV. The order of magnitude of these potentials can be estimated
from basic physical principles.
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Membrane potentials are small enough to allow neurons to take advan-
tage of thermal energy to help transport ions across the membrane, but are
large enough so that thermal fluctuations do not swamp the signaling ca-
pabilities of the neuron. These conditions imply that potential differences
across the cell membrane must lie in a range so that the energy gained or
lost by an ion traversing the membrane is the same order of magnitude as
its thermal energy. The thermal energy of an ion is about kBT where kB
is the Boltzmann constant and T is the temperature on an absolute Kelvin
scale. For chemists and biologists (though not for physicists), it is more
customary to discuss moles of ions rather than single ions. A mole of ions
has Avagadro’s number times as much thermal energy as a single ion, or
RT, where R is the universal gas constant, equal to 8.31 joules/mol K◦
= 1.99 cal/mol K◦. RT is about 2500 joules/mol or 0.6 kCal/mol at nor-
mal temperatures. To estimate the size of typical membrane potentials, we
equate this to the energy gained or lost when a mole of ions crosses a mem-
brane with a potential difference VT across it. This energy is FVT where
F is the Faraday constant, F = 96,480 Coulombs/mol, equal to Avagadro’s
number times the charge of a single proton, q. Setting FVT = RT gives VT

VT = RT
F

= kBT
q

. (5.1)

This is an important parameter that enters into a number of calculations.
VT is between 24 and 27 mV for the typical temperatures of cold and
warm-blooded animals. This sets the overall scale for membrane poten-
tials across neuronal membranes, which range from about -3 to +2 times
VT.

Intracellular Resistance

Membrane potentials measured at different places within a neuron can
take different values. For example, the potentials in the soma, dendrite,
and axon can all be different. Potential differences between different parts
of a neuron cause ions to flow within the cell, which tends to equalize
these differences. The intracellular medium provides a resistance to such
flow. This resistance is highest for long and narrow stretches of dendritic
or axonal cable, such as the segment shown in figure 5.2. The longitudi-
nal current IL flowing along such a cable segment can be computed from longitudinal

current ILOhm’s law. For the cylindrical segment of dendrite shown in figure 5.2,
the longitudinal current flowing from right to left satisfies V2 − V1 = IL RL.
Here, RL is the longitudinal resistance, which grows in proportion to the longitudinal

resistance RLlength of the segment (long segments have higher resistances than short
ones) and is inversely proportional to the cross-sectional area of the seg-
ment (thin segments have higher resistances than fat ones). The constant
of proportionality is called the intracellular resistivity, rL, and it typically intracellular

resistivity rLfalls in a range from 1 to 3 k�·mm. The longitudinal resistance of the seg-
ment in figure 5.2 is rL times the length L divided by the cross-sectional
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4 Model Neurons I: Neuroelectronics

area πa2, RL = rL L/πa2. A segment 100 µm long with a radius of 2 µm
has a longitudinal resistance of about 8 M�. A voltage difference of 8 mV
would be required to force 1 nA of current down such a segment.

L

V1 V2 a

IL = (V2 � V1)=RL

RL = rLL=�a
2 rL � 1 k
�mm

Figure 5.2: The longitudinal resistance of a cylindrical segment of neuronal cable
with length L and radius a. The difference between the membrane potentials at
either end of this segment is related to the longitudinal current within the segment
by Ohm’s law, with RL the longitudinal resistance of the segment. The arrow in-
dicates the direction of positive current flow. The constant rL is the intracellular
resistivity, and a typical value is given.

We can also use the intracellular resistivity to estimate crudely the con-
ductance of a single channel. The conductance, being the inverse of a re-single-channel

conductance sistance, is equal to the cross-sectional area of the channel pore divided by
its length and by rL We approximate the channel pore as a tube of length 6
nm and opening area 0.15 nm2. This gives an estimate of 0.15 nm 2/(1 k�

mm × 6 nm) ≈ 25 pS, which is the right order of magnitude for a channel
conductance.

Membrane Capacitance and Resistance

The intracellular resistance to current flow can cause substantial differ-
ences in the membrane potential measured in different parts of a neuron,
especially during rapid transient excursions of the membrane potential
from its resting value, such as action potentials. Neurons that have few of
the long and narrow cable segments that produce high longitudinal resis-
tance may have relatively uniform membrane potentials across their sur-
faces. Such neurons are termed electrotonically compact. For electroton-electrotonic

compactness ically compact neurons, or for less compact neurons in situations where
spatial variations in the membrane potential are not thought to play an
important functional role, the entire neuron may be adequately described
by a single membrane potential. Here, we discuss the membrane capaci-
tance and resistance using such a description. An analysis for the case of
spatially varying membrane potentials is presented in chapter 6.

We have mentioned that there is typically an excess negative charge on
the inside surface of the cell membrane of a neuron, and a balancing pos-
itive charge on its outside surface (figure 5.3). In this arrangement, themembrane

capacitance Cm cell membrane creates a capacitance Cm, and the voltage across the mem-
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5.2 Electrical Properties of Neurons 5

brane V and the amount of this excess charge Q are related by the stan-
dard equation for a capacitor, Q = CmV. The membrane capacitance is
proportional to the total amount of membrane or, equivalently, to the sur-
face area of the cell. The constant of proportionality, called the specific
membrane capacitance, is the capacitance per unit area of membrane, and specific membrance

capacitance cmis approximately the same for all neurons, cm ≈ 10 nF/mm2. The total
capacitance Cm is the membrane surface area A times the specific capaci-
tance, Cm = cm A. Neuronal surface areas tend to be in the range 0.01 to 0.1
mm2, so the membrane capacitance for a whole neuron is typically 0.1 to 1
nF. For a neuron with a total membrane capacitance of 1 nF, 7 × 10−11 C or
about 109 singly charged ions are required to produce a resting potential
of -70 mV. This is about a hundred-thousandth of the total number of ions
in a neuron and is the amount of charge delivered by a 0.7 nA current in
100 ms.

- -
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-
-

-
-

- -
-

-

+
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+

+
+

+

+ +

+
+

�V = IeRm

Rm = rm=A

rm � 1M
 �mm
2

Q = CmV

Cm = cmA

cm � 10nF=mm2

Ie

Area = A

Figure 5.3: The capacitance and membrane resistance of a neuron considered as
a single compartment. The membrane capacitance determines how the membrane
potential V and excess internal charge Q are related. The membrane resistance Rm
determines the size of the membrane potential deviation �V caused by a small
current Ie entering through an electrode, for example. Equations relating the to-
tal membrane capacitance and resistance, Cm and Rm, to the specific membrane
capacitance and resistance, cm and rm, are given along with typical values of cm
and rm. The value of rm may vary considerably under different conditions and for
different neurons.

We can use the membrane capacitance to determine how much current
is required to change the membrane potential at a given rate. The time
derivative of the basic equation relating the membrane potential and
charge,

Cm
dV
dt

= dQ
dt

, (5.2)

plays an important role in the mathematical modeling of neurons. The
time derivative of the charge dQ/dt is equal to the current passing into the
cell, so the amount of current needed to change the membrane potential
of a neuron with a total capacitance Cm at a rate dV/dt is CmdV/dt. For
example, 1 nA will change the membrane potential of a neuron with a
capacitance of 1 nF at a rate of 1 mV/ms.
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6 Model Neurons I: Neuroelectronics

The capacitance of a neuron determines how much current is required to
make the membrane potential change at a given rate. Holding the mem-
brane potential steady at a level different from its resting value also re-
quires current, but this current is determined by the membrane resistance
rather than by the capacitance of the cell. For example, if a small constant
current Ie is injected into a neuron through an electrode, as in figure 5.3, the
membrane potential will shift away from its resting value by an amount
�V given by Ohm’s law, �V = IeRm. Rm is known as the membrane or
input resistance. The restriction to small currents and small �V is requiredmembrane

resistance Rm because membrane resistances can vary as a function of voltage, whereas
Ohm’s law assumes Rm is constant over the range �V.

The membrane resistance is the inverse of the membrane conductance,membrane
conductance and, like the capacitance, the conductance of a piece of cell membrane

is proportional to its surface area. The constant of proportionality is the
membrane conductance per unit area, but we write it as 1/rm, where rm is
called the specific membrane resistance. Conversely, the membrane resis-specific membrane

resistance rm tance Rm is equal to rm divided by the surface area. When a neuron is in a
resting state, the specific membrane resistance is around 1 M�·mm2. This
number is much more variable than the specific membrane capacitance.
Membrane resistances vary considerably among cells and under different
conditions and at different times for a given neuron, depending on the
number, type, and state of its ion channels. For total surface areas between
0.01 and 0.1 mm, the membrane resistance is typically in the range 10 to
100 M�. With a 100 M� membrane resistance, a constant current of 0.1 nA
is required to hold the membrane potential 10 mV away from its resting
value.

The product of the membrane capacitance and the membrane resistance is
a quantity with the units of time called the membrane time constant, τm =membrane time

constant τm RmCm. Because Cm and Rm have inverse dependences on the membrane
surface area, the membrane time constant is independent of area and equal
to the product of the specific membrane capacitance and resistance, τm =
rmcm. The membrane time constant sets the basic time scale for changes
in the membrane potential and typically falls in the range between 10 and
100 ms.

Equilibrium and Reversal Potentials

Electric forces and diffusion are responsible for driving ions through chan-
nel pores. Voltage differences between the exterior and interior of the cell
produce forces on ions. Negative membrane potentials attract positive
ions into the neuron and repel negative ions. In addition, ions diffuse
through channels because the ion concentrations differ inside and outside
the neuron. These differences are maintained by the ion pumps within the
cell membrane. The concentrations of Na+ and Ca2+ are higher outside the
cell than inside, so these ions are driven into the neuron by diffusion. K+
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5.2 Electrical Properties of Neurons 7

is more concentrated inside the neuron than outside, so it tends to diffuse
out of the cell.

It is convenient to characterize the current flow due to diffusion in terms
of an equilibrium potential. This is defined as the membrane potential at equilibrium

potentialwhich current flow due to electric forces cancels the diffusive flow. For
channels that conduct a single type of ion, the equilibrium potential can
be computed easily. The potential difference across the cell membrane bi-
ases the flow of ions into or out of a neuron. Consider, for example, a
positively charged ion and a negative membrane potential. In this case,
the membrane potential opposes the flow of ions out of the the cell. Ions
can only cross the membrane and leave the interior of the cell if they have
sufficient thermal energy to overcome the energy barrier produced by the
membrane potential. If the ion has an electric charge zq where q is the
charge of one proton, it must have a thermal energy of at least −zqV
to cross the membrane (this is a positive energy for z > 0 and V < 0).
The probability that an ion has a thermal energy greater than or equal to
−zqV, when the temperature (on an absolute scale) is T, is exp(zqV/kBT).
This is determined by integrating the Boltzmann distribution for energies
greater than or equal to −zqV. In molar units, this result can be written as
exp(zFV/RT), which is equal to exp(zV/VT) by equation 5.1.

The biasing effect of the electrical potential can be overcome by an oppos-
ing concentration gradient. A concentration of ions inside the cell, [inside],
that is sufficiently greater than the concentration outside the cell, [outside],
can compensate for the Boltzmann probability factor. The rate at which
ions flow into the cell is proportional to [outside]. The flow of ions out of
the cell is proportional to [inside] times the Boltzmann factor, because in
this direction only those ions that have sufficient thermal energy can leave
the cell. The net flow of ions will be zero when the inward and outward
flows are equal. We use the letter E to denote the particular potential that
satisfies this balancing condition, which is then

[outside] = [inside] exp(zE/VT) . (5.3)

Solving this equation for E, we find Nernst equation

E = VT

z
ln

(
[outside]
[inside]

)
. (5.4)

Equation 5.4 is the Nernst equation. The reader can check that, if the result
is derived for either sign of ionic charge or membrane potential, the result
is identical to 5.4, which thus applies in all cases. Equilibrium potentials
for K+ channels, labeled EK, typically fall in the range between -70 and
-90 mV. Na+ equilibrium potentials, ENa, are 50 mV or higher, and ECa
for Ca2+ channels is higher still, around 150 mV. Finally, Cl− equilibrium
potentials are typically around -60 to -65 mV, near the resting potential of
many neurons.

The Nernst equation (5.4) applies when the channels that generate a par-
ticular conductance allow only one type of ion to pass through them. Some
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8 Model Neurons I: Neuroelectronics

channels are not so selective, and in this case the potential E is not deter-
mined by equation 5.4, but rather takes a value intermediate between the
equilibrium potentials of the individual ion types that it conducts. An ap-
proximate formula known as the Goldman equation (see Tuckwell, 1988;
or Johnston and Wu, 1995) can be used to estimate E for such conduc-Goldman equation
tances. In this case, E is often called a reversal potential, rather than anreversal potential
equilibrium potential, because the direction of current flow through the
channel switches as the membrane potential passes through E.

A conductance with an equilibrium or reversal potential E tends to move
the membrane potential of the neuron toward the value E. When V > E
this means that positive current will flow outward, and when V < E pos-
itive current will flow inward. Because Na+ and Ca2+ conductances have
positive reversal potentials, they tend to depolarize a neuron (make itsdepolarization
membrane potential less negative). K+ conductances, with their negative
E values, normally hyperpolarize a neuron (make its membrane potentialhyperpolarization
more negative). Cl− conductances with reversal potentials near the resting
potential, may pass little net current. Instead, their primary impact is to
change the membrane resistance of the cell. Such conductances are some-
times called shunting, although all conductances ‘shunt’, that is, increaseshunting

conductances the total conductance of a neuron. Synaptic conductances are also charac-
terized by reversal potentials and are termed excitatory or inhibitory on
this basis. Synapses with reversal potentials less than the threshold for ac-
tion potential generation are typically called inhibitory, while those withinhibitory and

excitatory synapses more depolarizing reversal potentials are called excitatory.

The Membrane Current

The total current flowing across the membrane through all of its ion chan-
nels is called the membrane current of the neuron. By convention, the
membrane current is defined as positive when positive ions leave the neu-
ron and negative when positive ions enter the neuron. The total membrane
current is determined by summing currents due to all of the different types
of channels within the cell membrane, including voltage-dependent and
synaptic channels. To facilitate comparisons between neurons of differ-
ent sizes, it is convenient to use the membrane current per unit area of cell
membrane, which we call im. The total membrane current is obtained frommembrane current

per unit area im im by multipling it by A the total surface area of the cell.

We label the different types of channels in a cell membrane with an index
i. As discussed in the last section, the current carried by a set of channels
of type i with reversal potential Ei, vanishes when the membrane poten-
tial satisfies V = Ei. For many types of channels, the current increases or
decreases approximately linearly when the membrane potential deviates
from this value. The difference V − Ei is called the driving force, and thedriving force

conductance per
unit area gi

membrane current per unit area due to the type i channels is written as
gi(V − Ei). The factor gi is the conductance per unit area due to these
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5.3 Single-Compartment Models 9

channels. Summing over the different types of channels, we obtain the
total membrane current membrane current

im =
∑

i

gi(V − Ei) . (5.5)

Sometimes a more complicated expression called the Goldman-Hodgkin-
Katz formula is used to relate the membrane current to gi and membrane
potential (see Tuckwell, 1988; or Johnston and Wu, 1995), but we will re-
strict our discussion to the simpler relationship used in equation 5.5.

Much of the complexity and richness of neuronal dynamics arises because
membrane conductances change over time. However, some of the fac-
tors that contribute to the total membrane current can be treated as rela-
tively constant, and these are typically grouped together into a single term
called the leakage current. The currents carried by ion pumps that main- leakage current
tain the concentration gradients that make equilibrium potentials nonzero
typically fall into this category. For example, one type of pump uses the
energy of ATP hydrolysis to move three Na+ ions out of the cell for every
two K+ ions it moves in. It is normally assumed that these pumps work at
relatively steady rates so that the currents they generate can be included in
a time-independent leakage conductance. Sometimes, this assumption is
dropped and explicit pump currents are modeled. In either case, all of the
time-independent contributions to the membrane current can be lumped
together into a single leakage term gL(V − EL). Because this term hides
many sins, its reversal potential EL is not usually equal to the equilibrium
potential of any specific ion. Instead it is often kept as a free parameter
and adjusted to make the resting potential of the model neuron match that resting potential
of the cell being modeled. Similarly, gL is adjusted to match the membrane
conductance at rest. The line over the parameter gL is used to indicate that
it has constant value. A similar notation is used later in this chapter to
distinguish variable conductances from the fixed parameters that describe
them. The leakage conductance is called a passive conductance to distin-
guish it from variable conductances that are termed active.

5.3 Single-Compartment Models

Models that describe the membrane potential of a neuron by a single vari-
able V are called single-compartment models. This chapter deals exclu-
sively with such models. Multi-compartment models, which can describe
spatial variations in the membrane potential, are considered in chapter
6. The equations for single-compartment models, like those of all neuron
models, describe how charges flow into and out of a neuron and affect its
membrane potential.

Equation 5.2 provides the basic relationship that determines the mem-
brane potential for a single-compartment model. This equation states that
the rate of change of the membrane potential is proportional to the rate
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10 Model Neurons I: Neuroelectronics

at which charge builds up inside the cell. The rate of charge buildup is,
in turn, equal to the total amount of current entering the neuron. The
relevant currents are those arising from all the membrane and synaptic
conductances plus, in an experimental setting, any current injected into
the cell through an electrode. From equation 5.2, the sum of these currents
is equal to CmdV/dt, the total capacitance of the neuron times the rate of
change of the membrane potential. Because the membrane current is usu-
ally characterized as a current per unit area, im, it is more convenient to
divide this relationship by the surface area of the neuron. Then, the total
current per unit area is equal to cmdV/dt, where cm = Cm/A is the spe-
cific membrane capacitance. One complication in this procedure is that the
electrode current, Ie is not typically expressed as a current per unit area,
so we must divide it by the total surface area of the neuron, A. Putting allsingle-

compartment
model

this together, the basic equation for all single-compartment models is

cm
dV
dt

= −im + Ie

A
. (5.6)

By convention, current that enters the neuron through an electrode is
defined as positive-inward, whereas membrane current is defined as
positive-outward. This explains the different signs for the currents in
equation 5.6. The membrane current in equation 5.6 is determined by

Ie

s v v : : :V

V

gs
"
Ie

A

cm gL g1 g2

Es EL E1 E2

Figure 5.4: The equivalent circuit for a one-compartment neuron model. The
neuron is represented, at the left, by a single compartment of surface area A with
a synapse and a current injecting electrode. At right is the equivalent circuit. The
circled s indicates a synaptic conductance that depends on the activity of a presy-
naptic neuron. A single synaptic conductance gs is indicated, but, in general, there
may be several different types. The circled v indicates a voltage-dependent con-
ductance, and Ie is the current passing through the electrode, The dots stand for
possible additional membrane conductances.

equation 5.5 and additional equations that specify the conductance vari-
ables gi. The structure of such a model is the same as that of an electrical
circuit, called the equivalent circuit, consisting of a capacitor and a set ofequivalent circuit
variable and non-variable resistors corresponding to the different mem-
brane conductances. Figure 5.4 shows the equivalent circuit for a generic
one-compartment model.
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5.4 Integrate-and-Fire Models 11

5.4 Integrate-and-Fire Models

A neuron will typically fire an action potential when its membrane poten-
tial reaches a threshold value of about -55 to -50 mV. During the action
potential, the membrane potential follows a rapid stereotyped trajectory
and then returns to a value that is hyperpolarized relative to the threshold
potential. As we will see, the mechanisms by which voltage-dependent
K+ and Na+ conductances produce action potentials are well-understood
and can be modeled quite accurately. On the other hand, neuron models
can be simplified and simulations can be accelerated dramatically if the
biophysical mechanisms responsible for action potentials are not explic-
itly included in the model. Integrate-and-fire models do this by stipulat- integrate and fire

modeling that an action potential occurs whenever the membrane potential of
the model neuron reaches a threshold value Vth. After the action poten-
tial, the potential is reset to a value Vreset below the threshold potential,
Vreset < Vth.

The basic integrate-and-fire model was proposed by Lapicque in 1907,
long before the mechanisms that generate action potentials were under-
stood. Despite its age and simplicity, the integrate-and-fire model is still an
extremely useful description of neuronal activity. By avoiding a biophys-
ical description of the action potential, integrate-and-fire models are left
with the simpler task of modeling only subthreshold membrane potential
dynamics. This can be done with various levels of rigor. In the simplest
version of these models, all active membrane conductances are ignored,
including, for the moment, synaptic inputs, and the entire membrane con-
ductance is modeled as a single passive leakage term, im = gL(V − EL).
This version is called the passive or leaky integrate-and-fire model. For
small fluctuations about the resting membrane potential, neuronal con-
ductances are approximately constant, and the passive integrate-and-fire
model assumes that this constancy holds over the entire subthreshold
range. For some neurons this is a reasonable approximation, and for oth-
ers it is not. With these approximations, the model neuron behaves like
an electric circuit consisting of a resistor and a capacitor in parallel (fig-
ure 5.4), and the membrane potential is determined by equation 5.6 with
im = gL(V − EL),

cm
dV
dt

= −gL(V − EL) + Ie

A
. (5.7)

It is convenient to multiply equation 5.7 by the specific membrane resis-
tance rm, which in this case is given by rm = 1/gL. This cancels the factor of
gL on the right side of the equation and leaves a factor cmrm = τm on the left
side, where τm is the membrane time constant of the neuron. The electrode
current ends up being multiplied by rm/A which is the total membrane
resistance Rm. Thus, the basic equation of the passive integrate-and-fire passive

integrate-and-fire
model

models is

τm
dV
dt

= EL − V + Rm Ie . (5.8)
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12 Model Neurons I: Neuroelectronics

To generate action potentials in the model, equation 5.8 is augmented by
the rule that whenever V reaches the threshold value Vth, an action po-
tential is fired and the potential is reset to Vreset. Equation 5.8 indicates
that when Ie = 0, the membrane potential relaxes exponentially with time
constant τm to V = EL. Thus, EL is the resting potential of the model cell.

The membrane potential for the passive integrate-and-fire model is deter-
mined by integrating equation 5.8 (a numerical method for doing this is
described in appendix A) and applying the threshold and reset rule for
action potential generation. The response of a passive integrate-and-fire
model neuron to a time-varying electrode current is shown in figure 5.5.
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Figure 5.5: A passive integrate-and-fire model driven by a time-varying electrode
current. The upper trace is the membrane potential and the bottom trace the driv-
ing current. The action potentials in this figure are simply pasted onto the mem-
brane potential trajectory whenever it reaches the threshold value. The parameters
of the model are EL = Vreset = −65 mV, Vth = −50 mV, τm = 10 ms, and Rm = 10
M�.

The firing rate of an integrate-and-fire model in response to a constant
injected current can be computed analytically. When Ie is independent of
time, the subthreshold potential V(t) can easily be computed by solving
equation 5.8 and is

V(t) = EL + Rm Ie + (V(0) − EL − Rm Ie)exp(−t/τm) (5.9)

where V(0) is the value of V at time t = 0. This solution can be checked
simply by substituting it into equation 5.8. It is valid for the integrate-and-
fire model only as long as V stays below the threshold. Suppose that at
t = 0, the neuron has just fired an action potential and is thus at the reset
potential, so that V(0) = Vreset. The next action potential will occur when
the membrane potential reaches the threshold, that is, at a time t = tisi
when

V(tisi) = Vth = EL + Rm Ie + (Vreset − EL − Rm Ie)exp(−tisi/τm) . (5.10)

By solving this for tisi, the time of the next action potential, we can de-
termine the interspike interval for constant Ie, or equivalently its inverse,
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5.4 Integrate-and-Fire Models 13

which we call the interspike-interval firing rate of the neuron,

risi = 1
tisi

=
[
τm ln

(
Rm Ie + EL − Vreset

Rm Ie + EL − Vth

)]−1

. (5.11)

This expression is valid if Rm Ie > Vth − EL, otherwise risi = 0. For suffi-
ciently large values of Ie, we can use the linear approximation of the loga-
rithm (ln(1 + z) ≈ z for small z) to show that

risi ≈
[

EL − Vth + Rm Ie

τm(Vth − Vreset)

]
+

, (5.12)

which shows that the firing rate grows linearly with Ie for large Ie.
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Figure 5.6: A) Comparison of interspike-interval firing rates as a function of in-
jected current for an integrate-and-fire model and a cortical neuron measure in
vivo. The line gives risi for a model neuron with τm = 30 ms, EL = Vreset = −65
mV, Vth = −50 mV and Rm = 90 M�. The data points are from a pyramidal cell in
the primary visual cortex of a cat. The filled circles show the inverse of the inter-
spike interval for the first two spikes fired, while the open circles show the steady-
state interspike-interval firing rate after spike-rate adaptation. B) A recording of
the firing of a cortical neuron under constant current injection showing spike-rate
adaptation. C) Membrane voltage trajectory and spikes for an integrate-and-fire
model with an added current with rm�gsra = 0.06, τsra = 100 ms, and EK = -70
mV (see equations 5.13 and 5.14). (Data in A from Ahmed et al., 1998, B from
McCormick, 1990.)

Figure 5.6A compares risi as a function of Ie, using appropriate parame-
ter values, with data from current injection into a cortical neuron in vivo.
The firing rate of the cortical neuron in figure 5.6A has been defined as
the inverse of the interval between pairs of spikes. The rates determined
in this way using the first two spikes fired by the neuron in response to
the injected current (filled circles in figure 5.6A) agree fairly well with the
results of the integrate-and-fire model with the parameters given in the
figure caption. However, the real neuron exhibits spike-rate adaptation, in spike-rate

adaptationthat the interspike intervals lengthen over time when a constant current
is injected into the cell (figure 5.6B) before settling to a steady-state value.
The steady-state firing rate in figure 5.6A (open circles) could also be fit by
an integrate-and-fire model, but not using the same parameters as were
used to fit the initial spikes. Spike-rate adaptation is a common feature of
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14 Model Neurons I: Neuroelectronics

cortical pyramidal cells, and consideration of this phenomenon allows us
to show how an integrate-and-fire model can be modified to incorporate
more complex dynamics.

Spike-Rate Adaptation and Refractoriness

The passive integrate-and-fire model that we have described thus far is
based on two separate approximations, a highly simplified description of
the action potential and a linear approximation for the total membrane
current. If details of the action potential generation process are not im-
portant for a particular modeling goal, the first approximation can be re-
tained while the membrane current is modeled in as much detail as is nec-
essary. We will illustrate this process by developing a heuristic description
of spike-rate adaptation using a model conductance that has characteris-
tics similar to measured neuronal conductances known to play important
roles in producing this effect.

We model spike-rate adaptation by including an additional current in the
model,

τm
dV
dt

= EL − V − rmgsra(V − EK) + Rm Ie . (5.13)

The spike-rate adaptation conductance gsra has been modeled as a K+ con-
ductance so, when activated, it will hyperpolarize the neuron, slowing any
spiking that may be occurring. We assume that this conductance relaxes
to zero exponentially with time constant τsra through the equation

τsra
dgsra

dt
= −gsra . (5.14)

Whenever the neuron fires a spike, gsra is increased by an amount �gsra,
that is, gsra → gsra +�gsra. During repetitive firing, the current builds up in
a sequence of steps causing the firing rate to adapt. Figures 5.6B and 5.6C
compare the adapting firing pattern of a cortical neuron with the output
of the model.

As discussed in chapter 1, the probability of firing for a neuron is signifi-
cantly reduced for a short period of time after the appearance of an action
potential. Such a refractory effect is not included in the basic integrate-
and-fire model. The simplest way of including an absolute refractory pe-
riod in the model is to add a condition to the basic threshold crossing rule
forbidding firing for a period of time immediately after a spike. Refratori-
ness can be incorporated in a more realistic way by adding a conductance
similar to the spike-rate adaptation conductance discussed above, but with
a faster recovery time and a larger conductance increment following an
action potential. With a large increment, the current can essentially clamp
the neuron to EK following a spike, temporarily preventing further firing
and producing an absolute refractory period. As this conductance relaxes
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5.5 Voltage-Dependent Conductances 15

back to zero, firing will be possible but initially less likely, producing a rel-
ative refractory period. When recovery is completed, normal firing can re-
sume. Another scheme that is sometimes used to model refractory effects
is to raise the threshold for action potential generation following a spike
and then to allow it to relax back to its normal value. Spike-rate adapta-
tion can also be described by using an integrated version of the integrate-
and-fire model known as the spike-response model in which membrane
potential wave forms are determined by summing pre-computed postsy-
naptic potentials and after-spike hyperpolarizations. Finally, spike-rate
adaptation and other effects can be incorporated into the integrate-and-
fire framework by allowing the parameters gL and EL in equation 5.7 to
vary with time.

5.5 Voltage-Dependent Conductances

Most of the interesting electrical properties of neurons, including their
ability to fire and propagate action potentials, arise from nonlinearities
associated with active membrane conductances. Recordings of the current
flowing through single channels indicate that channels fluctuate rapidly
between open and closed states in a stochastic manner (figure 5.7). Models stochastic channel
of membrane and synaptic conductances must describe how the probabil-
ity that a channel is in an open, ion-conducting state at any given time de-
pends on the membrane potential (for a voltage-dependent conductance), voltage-dependent,

synaptic, and
Ca2+-dependent

conductances

the presence or absence of a neurotransmitter (for a synaptic conduc-
tance), or a number of other factors such as the concentration of Ca2+
or other messenger molecules inside the cell. In this chapter, we con-
sider two classes of active conductances, voltage-dependent membrane
conductancesand transmitter-dependent synaptic conductances.An addi-
tional type, the Ca2+-dependent conductance,is considered in chapter 6.
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Figure 5.7: Recording of the current passing through a single ion channel. This
is a synaptic receptor channel sensitive to the neurotransmitter acetylcholine. A
small amount of acetylcholine was applied to the preparation to produce occa-
sional channel openings. In the open state, the channel passes 6.6 pA at a holding
potential of -140 mV. This is equivalent to more than 107 charges per second pass-
ing through the channel and corresponds to an open channel conductance of 47
pS. (From Hille, 1992.)
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16 Model Neurons I: Neuroelectronics

In a later section of this chapter, we discuss stochastic models of individ-
ual channels based on state diagrams and transition rates. However, most
neuron models use deterministic descriptions of the conductances arising
from many channels of a given type. This is justified because of the large
number of channels of each type in the cell membrane of a typical neuron.
If large numbers of channels are present, and if they act independently of
each other (which they do, to a good approximation), then, from the law of
large numbers, the fraction of channels open at any given time is approx-
imately equal to the probability that any one channel is in an open state.
This allows us to move between single-channel probabilistic formulations
and macroscopic deterministic descriptions of membrane conductances.

We have denoted the conductance per unit area of membrane due to a set
of ion channels of type i by gi. The value of gi at any given time is deter-
mined by multiplying the conductance of an open channel by the density
of channels in the membrane and by the fraction of channels that are open
at that time. The product of the first two factors is a constant called the
maximal conductance and denoted by gi. It is the conductance per unit
area of membrane if all the channels of type i are open. Maximal conduc-
tance parameters tend to range from µS/mm2 to mS/mm2. The fraction
of channels in the open state is equivalent to the probability of finding any
given channel in the open state, and it is denoted by Pi. Thus, gi = gi Pi.open probability Pi

The dependence of a conductance on voltage, transmitter concentration,
or other factors arises through effects on the open probability.

The open probability of a voltage-dependent conductance depends, as its
name suggests, on the membrane potential of the neuron. In this chap-
ter, we discuss models of two such conductances, the so-called delayed-
rectifier K+ and fast Na+ conductances. The formalism we present, which
is almost universally used to describe voltage-dependent conductances,
was developed by Hodgkin and Huxley (1952) as part of their pioneering
work showing how these conductances generate action potentials in the
squid giant axon. Other conductances are modeled in chapter 6.

Persistent Conductances

Figure 5.8 shows cartoons of the mechanisms by which voltage-dependent
channels open and close as a function of membrane potential. Channels
are depicted for two different types of conductances termed persistent (fig-
ure 5.8A) and transient (figure 5.8B). We begin by discussing persistent
conductances. Figure 5.8A shows a swinging gate attached to a voltage
sensor that can open or close the pore of the channel. In reality, channelactivation gate
gating mechanisms involve complex changes in the conformational struc-
ture of the channel, but the simple swinging gate picture is sufficient if
we are only interested in the current carrying capacity of the channel. A
channel that acts as if it had a single type of gate (although, as we will see,
this is actually modeled as a number of identical sub-gates), like the chan-
nel in figure 5.8A, produces what is called a persistent or noninactivating
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5.5 Voltage-Dependent Conductances 17

conductance. Opening of the gate is called activation of the conductance
and gate closing is called deactivation. For this type of channel, the prob-
ability that the gate is open, PK, increases when the neuron is depolarized
and decreases when it is hyperpolarized. The delayed-rectifier K+ conduc-
tance that is responsible for repolarizing a neuron after an action potential
is such a persistent conductance.

B

activation
gate

inactivation
gate

intracellularextracellular

A
lipid bilayer

aqueous
poreselectivity

filter

anchor
protein

channel
protein

sensor

intracellularextracellular

gate

Figure 5.8: Gating of membrane channels. In both figures, the interior of the
neuron is to the right of the membrane, and the extracellular medium is to the left.
A) A cartoon of gating of a persistent conductance. A gate is opened and closed by
a sensor that responds to the membrane potential. The channel also has a region
that selectively allows ions of a particular type to pass through the channel, for
example, K+ ions for a potassium channel. B) A cartoon of the gating of a transient
conductance. The activation gate is coupled to a voltage sensor (denoted by a
circled +) and acts like the gate in A. A second gate, denoted by the ball, can block
that channel once it is open. The top figure shows the channel in a deactivated
(and deinactivated) state. The middle panel shows an activated channel, and the
bottom panel shows an inactivated channel. Only the middle panel corresponds
to an open, ion-conducting state. (A from Hille, 1992; B from Kandel et al., 1991.)

The opening of the gate that describes a persistent conductance may in-
volve a number of conformational changes. For example, the delayed-
rectifier K+ conductance is constructed from four identical subunits, and
it appears that all four must undergo a structural change for the channel
to open. In general, if k independent, identical events are required for a
channel to open, PK can be written as

PK = nk (5.15)

where n is the probability that any one of the k independent gating events
has occurred. Here, n, which varies between 0 and 1, is called a gating
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18 Model Neurons I: Neuroelectronics

or an activation variable, and a description of its voltage and time depen-activation variable
n dence amounts to a description of the conductance. We can think of n as

the probability of an individual subunit gate being open, and 1 − n as the
probability that it is closed.

Although using the value of k = 4 is consistent with the four subunit struc-
ture of the delayed-rectifier conductance, in practice k is an integer chosen
to fit the data, and should be interpreted as a functional definition of a
subunit rather than a reflection of a realistic structural model of the chan-
nel. Indeed, the structure of the channel was not known at the time that
Hodgkin and Huxley chose the form of equation 5.15 and suggested that
k = 4.

We describe the transition of each subunit gate by a simple kinetic
scheme in which the gating transition closed → open occurs at a voltage-channel kinetics
dependent rate αn(V), and the reverse transition open → closed occurs at
a voltage-dependent rate βn(V). The probability that a subunit gate opens
over a short interval of time is proportional to the probability of finding
the gate closed, 1 − n, multiplied by the opening rate αn(V). Likewise, the
probability that a subunit gate closes during a short time interval is pro-
portional to the probability of finding the gate open, n, multiplied by the
closing rate βn(V). The rate at which the open probability for a subunit
gate changes is given by the difference of these two terms

dn
dt

= αn(V)(1 − n) − βn(V)n. (5.16)

The first term describes the opening process and the second term the clos-
ing process (hence the minus sign) that lowers the probability of being in
the configuration with an open subunit gate. Equation 5.16 can be written
in another useful form by dividing through by αn(V) + βn(V),gating equation

τn(V)
dn
dt

= n∞(V) − n , (5.17)

whereτn(V)

τn(V) = 1
αn(V) + βn(V)

(5.18)

andn∞(V)

n∞(V) = αn(V)

αn(V) + βn(V)
. (5.19)

Equation 5.17 indicates that for a fixed voltage V, n approaches the limit-
ing value n∞(V) exponentially with time constant τn(V).

The key elements in the equation that determines n are the opening and
closing rate functions αn(V) and βn(V). These are obtained by fitting ex-
perimental data. It is useful to discuss the form that we expect these rate
functions to take on the basis of thermodynamic arguments. The state
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5.5 Voltage-Dependent Conductances 19

transitions described by αn, for example, are likely to be rate-limited by
barriers requiring thermal energy. These transitions involve the move-
ment of charged components of the gate across part of the membrane, so
the height of these energy barriers should be affected by the membrane po-
tential. The transition requires the movement of an effective charge, which
we denote by qBα, through the potential V. This requires an energy qBαV.
The constant Bα reflects both the amount of charge being moved and the
distance over which it travels. The probability that thermal fluctuations
will provide enough energy to surmount this energy barrier is propor-
tional to the Boltzmann factor, exp(−qBαV/kBT). Based on this argument,
we expect αn to be of the form

αn(V) = Aα exp(−qBα/kBT) = Aα exp(−BαV/VT) (5.20)

for some constant Aα. The closing rate βn should be expressed similarly,
except with different constants Aβ and Bβ. From equation 5.19, we then
find that n∞(V) is expected to be a sigmoidal function

n∞(V) = 1
1 + (Aβ/Aα)exp((Bα − Bβ)V/VT)

. (5.21)

For a voltage-activated conductance, depolarization causes n to grow
toward one, and hyperpolarization causes them to shrink toward zero.
Thus, we expect that the opening rate, αn should be an increasing function
of V (and thus Bα < 0) and βn should be a decreasing function of V (and
thus Bβ > 0). Examples of the functions we have discussed are plotted in
figure 5.9.
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Figure 5.9: Generic voltage-dependent gating functions compared with Hodgkin-
Huxley results for the delayed-rectifier K+ conductance. A) The exponential αn

and βn functions expected from thermodynamic arguments are indicated by the
solid curves. Parameter values used were Aα = 1.22 ms−1, Aβ = 0.056 ms−1,
Bα/VT = −0.04/mV, and Bβ/VT = 0.0125/mV. The fit of Hodgkin and Huxley
for βn is identical to the solid curve shown. The Hodgkin-Huxley fit for αn is the
dashed curve. B) The corresponding function n∞(V) of equation 5.21 (solid curve).
The dashed curve is obtained using the αn and βn functions of the Hodgkin-Huxley
fit (equation 5.22). C) The corresponding function τn(V) obtained from equation
5.18 (solid curve). Again the dashed curve is the result of using the Hodgkin-
Huxley rate functions.
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20 Model Neurons I: Neuroelectronics

While thermodynamic arguments support the forms we have presented,
they rely on simplistic assumptions. Not surprisingly, the resulting func-
tional forms do not always fit the data and various alternatives are often
employed. The data upon which these fits are based are typically obtained
using a technique called voltage clamping. In this techniques, an amplifiervoltage clamping
is configured to inject the appropriate amount of electrode current to hold
the membrane potential at a constant value. By current conservation, this
current is equal to the membrane current of the cell. Hodgkin and Huxley
fit the rate functions for the delayed-rectifier K+ conductance they studied
using the equations

αn = .01(V + 55)

1 − exp(−.1(V + 55))
and βn = 0.125 exp(−0.0125(V + 65))

(5.22)

where V is expressed in mV, and αn and βn are both expressed in units
of 1/ms. The fit for βn is exactly the exponential form we have discussed
with Aβ = 0.125 exp(−0.0125 · 65) ms−1 and Bβ/VT = 0.0125 mV−1, but
the fit for αn uses a different functional form. The dashed curves in figure
5.9 plot the formulas of equation 5.22.

Transient Conductances

Some channels only open transiently when the membrane potential is de-
polarized because they are gated by two processes with opposite voltage-
dependences. Figure 5.8B is a schematic of a channel that is controlled by
two gates and generates a transient conductance. The swinging gate in fig-
ure 5.8B behaves exactly like the gate in figure 5.8A. The probability that
it is open is written as mk where m is an activation variable similar to n,activation

variable m and k is an integer. Hodgkin and Huxley used k = 3 for their model of the
fast Na+ conductance. The ball in figure 5.8B acts as the second gate. The
probability that the ball does not block the channel pore is written as h and
called the inactivation variable. The activation and inactivation variablesinactivation

variable h m and h are distinguished by having opposite voltage dependences. De-
polarization causes m to increase and h to decrease, and hyperpolarization
decreases m while increasing h.

For the channel in figure 5.8B to conduct, both gates must be open, and,
assuming the two gates act independently, this has probability

PNa = mkh , (5.23)

This is the general form used to describe the open probability for a tran-
sient conductance. We could raise the h factor in this expression to an
arbitrary power as we did for m, but we leave out this complication to
streamline the discussion. The activation m and inactivation h, like all gat-
ing variables, vary between zero and one. They are described by equations
identical to 5.16, except that the rate functions αn and βn are replaced by
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5.5 Voltage-Dependent Conductances 21

either αm and βm or αh and βh. These rate functions were fit by Hodgkin
and Huxley using the equations (in units of 1/ms with V in mV )

αm = .1(V + 40)

1 − exp[−.1(V + 40)]
βm = 4 exp[−.0556(V + 65)]

αh = .07 exp[−.05(V + 65)] βh = 1/(1 + exp[−.1(V + 35)]) . (5.24)

Functions m∞(V) and h∞(V) describing the steady-state activation and
inactivation levels, and voltage-dependent time constants for m and h can
be defined as in equations 5.19 and 5.18. These are plotted in figure 5.10.
For comparison, n∞(V) and τn(V) for the K+ conductance are also plot-
ted. Note that h∞(V), because it corresponds to an inactivation variable,
is flipped relative to m∞(V) and n∞(V), so that it approaches one at hy-
perpolarized voltages and zero at depolarized voltages.
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Figure 5.10: The voltage-dependent functions of the Hodgkin-Huxley model. The
left panel shows m∞(V), h∞(V), and n∞(V), the steady-state levels of activation
and inactivation of the Na+ conductance and activation of the K+ conductance.
The right panel shows the voltage-dependent time constants that control the rates
at which these steady-state levels are approached for the three gating variables.

The presence of two factors in equation (5.23) gives a transient conduc-
tance some interesting properties. To turn on a transient conductance max-
imally, it may first be necessary to hyperpolarize the neuron below its rest-
ing potential and then to depolarize it. Hyperpolarization raises the value
of the inactivation h, a process called deinactivation. The second step, de- deinactivation
polarization, increases the value of m, a process known as activation. Only activation
when m and h are both nonzero is the conductance turned on. Note that
the conductance can be reduced in magnitude either by decreasing m or
h. Decreasing h is called inactivation to distinguish it from decreasing m, inactivation
which is called deactivation. deactivation

Hyperpolarization-Activated Conductances

Persistent currents act as if they are controlled by an activation gate, while
transient currents acts as if they have both an activation and an inactiva-
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tion gate. Another class of conductances, the hyperpolarization-activated
conductances, behave as if they are controlled solely by an inactivation
gate. They are thus persistent conductances, but they open when the neu-
ron is hyperpolarized rather than depolarized. The opening probability
for such channels is written solely of an inactivation variable similar to
h. Strictly speaking these conductances deinactivate when they turn on
and inactivate when they turn off. However, most people cannot bring
themselves to say deinactivate all the time, so they say instead that these
conductances are activated by hyperpolarization.

5.6 The Hodgkin-Huxley Model

The Hodgkin-Huxley model for the generation of the action potential, in
its single-compartment form, is constructed by writing the membrane cur-
rent in equation 5.6 as the sum of a leakage current, a delayed-rectified K+
current and a transient Na+ current,

im = gL(V − EL) + gKn4(V − EK) + gNam3h(V − ENa) . (5.25)

The maximal conductances and reversal potentials used in the model are
gL = 0.003 mS/mm2, gK = 0.036 mS/mm2, gNa = 1.2 mS/mm2, EL = -54.402
mV, EK = -77 mV and ENa = 50 mV. The full model consists of equation 5.6
with equation 5.25 for the membrane current, and equations of the form
5.17 for the gating variables n, m, and h. These equations can be integrated
numerically using the methods described in appendices A and B.

The temporal evolution of the dynamic variables of the Hodgkin-Huxley
model during a single action potential is shown in figure 5.11. The ini-
tial rise of the membrane potential, prior to the action potential, seen in
the upper panel of figure 5.11, is due to the injection of a positive elec-
trode current into the model starting at t = 5 ms. When this current drives
the membrane potential up to about about -50 mV, the m variable that
describes activation of the Na+ conductance suddenly jumps from nearly
zero to a value near one. Initially, the h variable, expressing the degree
of inactivation of the Na+ conductance, is around 0.6. Thus, for a brief
period both m and h are significantly different from zero. This causes a
large influx of Na+ ions producing the sharp downward spike of inward
current shown in the second trace from the top. The inward current pulse
causes the membrane potential to rise rapidly to around 50 mV (near the
Na+ equilibrium potential). The rapid increase in both V and m is due
to a positive feedback effect. Depolarization of the membrane potential
causes m to increase, and the resulting activation of the Na+ conductance
causes V to increase. The rise in the membrane potential causes the Na+
conductance to inactivate by driving h toward zero. This shuts off the Na+
current. In addition, the rise in V activates the K+ conductance by driving
n toward one. This increases the K+ current which drives the membrane
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Figure 5.11: The dynamics of V, m, h, and n in the Hodgkin-Huxley model during
the firing of an action potential. The upper trace is the membrane potential, the
second trace is the membrane current produced by the sum of the Hodgkin-Huxley
K+ and Na+ conductances, and subsequent traces show the temporal evolution of
m, h, and n. Current injection was initiated at t = 5 ms.

potential back down to negative values. The final recovery involves the
re-adjustment of m, h, and n to their initial values.

The Hodgkin-Huxley model can also be used to study propagation of an
action potential down an axon, but for this purpose a multi-compartment
model must be constructed. Methods for constructing such a model, and
results from it, are described in chapter 6.

5.7 Modeling Channels

In previous sections, we described the Hodgkin-Huxley formalism for
describing voltage-dependent conductances arising from a large number
of channels. With the advent of single channel studies, microscopic de-
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scriptions of the transitions between the conformational states of channel
molecules have been developed. Because these models describe complex
molecules, they typically involve many states and transitions. Here, we
discuss simple versions of these models that capture the spirit of single-
channel modeling without getting mired in the details.

Models of single channels are based on state diagrams that indicate the
possible conformational states that the channel can assume. Typically, one
of the states in the diagram is designated as open and ion-conducting,
while the other states are non-conducting. The current conducted by the
channel is written as gP(V − E), where E is the reversal potential, g is the
single-channel open conductance and P is one whenever the open state is
occupied and zero otherwise. Channel models can be instantiated directly
from state diagrams simply by keeping track of the state of the channel
and allowing stochastic changes of state to occur at appropriate transition
rates. If the model is updated in short time steps of duration �t, the prob-
ability that the channel makes a given transition during an update interval
is the transition rate times �t.
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Figure 5.12: A model of the delayed-rectifier K+ channel. The upper diagram
shows the states and transition rates of the model. In the simulations shown in the
lower panels, the membrane potential was initially held at -100 mV, then held at 10
mV for 20 ms, and finally returned to a holding potential of -100 mV. The smooth
curves in these panels show the membrane current predicted by the Hodgkin-
Huxley model in this situation. The left panel shows a simulation of a single chan-
nel that opened several times during the depolarization. The middle panel shows
the total current from 10 simulated channels and the right panel corresponds to
100 channels. As the number of channels increases, the Hodgkin-Huxley model
provides a more accurate description of the current.

Figure 5.12 shows the state diagram and simulation results for a model of
a single delayed-rectifier K+ channel that is closely related to the Hodgkin-
Huxley description of the macroscopic delayed-rectifier conductance. The
factors αn and βn in the transition rates shown in the state diagram of fig-
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ure 5.12 are the voltage-dependent rate functions of the Hodgkin-Huxley
model. The model uses the same four subunit structure assumed in the
Hodgkin-Huxley model. We can think of state 1 in this diagram as a state
in which all the subunit gates are closed. States 2, 3, 4, and 5 have 1, 2, 3,
and 4 open subunit gates respectively. State 5 is the sole open state. The
factors of 1, 2, 3, and 4 in the transition rates in figure 5.12 correspond to
the number of subunit gates that can make a given transition. For exam-
ple, the transition rate from state 1 to state 2 is four times faster than the
rate from state 4 to state 5. This is because any one of the 4 subunit gates
can open to get from state 1 to state 2, but the transition from state 4 to
state 5 requires the single remaining closed subunit gate to open.

The lower panels in figure 5.12 show simulations of this model involving
1, 10, and 100 channels. The sum of currents from all of these channels
is compared with the current predicted by the Hodgkin-Huxley model
(scaled by the appropriate maximal conductance). For each channel, the
pattern of opening and closing is random, but when enough channels are
summed, the total current matches that of the Hodgkin-Huxley model
quite well.

To see how the channel model in figure 5.12 reproduces the results of
the Hodgkin-Huxley model when the currents from many channels are
summed, we must consider a probabilistic description of the channel
model. We denote the probability that a channel is in state a of figure
5.12 by pa, with a = 1,2, . . . ,5. Dynamic equations for these probabilities
are easily derived by setting the rate of change for a given pa equal to the
probability per unit time of entry into state a from other states minus the
rate for leaving a state. The entry probability per unit time is the product
of the appropriate transition rate times the probability that the state mak-
ing the transition is occupied. The probability per unit time for leaving is
pa times the sum of all the rates for possible transitions out of the state.
Following this reasoning, the equations for the state probabilities are

dp1

dt
= βn p2 − 4αn p1 (5.26)

dp2

dt
= 4αn p1 + 2βn p3 − (βn + 3αn)p2

dp3

dt
= 3αn p2 + 3βn p4 − (2βn + 2αn)p3

dp4

dt
= 2αn p3 + 4βn p5 − (3βn + αn)p4

dp5

dt
= αn p4 − 4βn p5 .

A solution for these equations can be constructed if we recall that, in the
Hodgkin-Huxley model, n is the probability of a subunit gate being in the
open state and 1 − n the probability of it being closed. If we use that same
notation here, state 1 has 4 closed subunit gates, and thus p1 = (1 − n)4.
State 5, the open state, has 4 open subunit gates so p5 = n4 = P. State
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2 has one open subunit gate, which can be any one of the four subunit
gates, and three closed states making p2 = 4n(1 − n)3. Similar arguments
yield p3 = 6n2(1 − n)2 and p4 = 4n3(1 − n). These expressions generate a
solution to the above equations provided that n satisfies equation 5.16, as
the reader can verify.

In the Hodgkin-Huxley model of the Na+ conductance, the activation and
inactivation processes are assumed to act independently. The schematic
in figure 5.8B, which cartoons the mechanism believed to be responsible
for inactivation, suggests that this assumption is incorrect. The ball that
inactivates the channel is located inside the cell membrane where it cannot
be affected directly by the potential across the membrane. Furthermore, in
this scheme, the ball cannot occupy the channel pore until the activation
gate has opened, making the two processes inter-dependent.
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Figure 5.13: A model of the fast Na+ channel. The upper diagram shows the
states and transitions rates of the model. The values k1 = 0.24/ms, k2 = 0.4/ms,
and k3 = 1.5/ms were used in the simulations shown in the lower panels. For
these simulations, the membrane potential was initially held at -100 mV, then held
at 10 mV for 20 ms, and finally returned to a holding potential of -100 mV. The
smooth curves in these panels show the current predicted by the Hodgkin-Huxley
model in this situation. The left panel shows a simulation of a single channel that
opened once during the depolarization. The middle panel shows the total current
from 10 simulated channels and the right panel corresponds to 100 channels. As
the number of channels increases, the Hodgkin-Huxley model provides a fairly
accurate description of the current, but it is not identical to the channel model in
this case.

The state diagram in figure 5.13 reflects this by having a state-dependent,
voltage-independent inactivation mechanism. This diagram is a simpli-state-dependent

inactivation fied version of a Na+ channel model due to Patlak (1991). The sequence
of transitions that lead to channel opening through states 1 ,2, 3, and 4 is
identical to that of the Hodgkin-Huxley model with transition rates deter-
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mined by the Hodgkin-Huxley functions αm(V) and βm(V) and appropri-
ate combinatoric factors. State 4 is the open state. The transition to the
inactivated state 5, however, is quite different from the inactivation pro-
cess in the Hodgkin-Huxley model. Inactivation transitions to state 5 can
only occur from states 2, 3, and 4, and the corresponding transition rates
k1, k2, and k3 are constants, independent of voltage. The deinactivation
process occurs at the Hodgkin-Huxley rate αh(V) from state 5 to state 3.

Figure 5.13 shows simulations of this Na+ channel model. In contrast to
the K+ channel model shown in figure 5.12, this model does not repro-
duce exactly the results of the Hodgkin-Huxley model when large num-
bers of channels are summed. Nevertheless, the two models agree quite
well, as seen in the lower right panel of figure 5.13. The agreement, de-
spite the different mechanisms of inactivation, is due to the speed of the
activation process for the Na+ conductance. The inactivation rate func-
tion βh(V) in the Hodgkin-Huxley model has a sigmoidal form similar
to the asymptotic activation function m∞(V) (see equation 5.24). This is
indicative of the actual dependence of inactivation on m and not V. How-
ever, the activation variable m of the Hodgkin-Huxley model reaches its
voltage-dependent asymptotic value m∞(V) so rapidly that it is difficult
to distinguish inactivation processes that depend on m from those that de-
pend on V. Differences between the two models are only apparent during
a sub-millisecond time period while the conductance is activating. Exper-
iments that can resolve this time scale support the channel model over the
original Hodgkin-Huxley description.

5.8 Synaptic Conductances

Synaptic transmission at a spike-mediated chemical synapse begins when
an action potential invades the presynaptic terminal and activates voltage-
dependent Ca2+ channels leading to a rise in the concentration of Ca2+
within the terminal. This causes vesicles containing transmitter molecules
to fuse with the cell membrane and release their contents into the synaptic
cleft between the pre- and postsynaptic sides of the synapse. The trans-
mitter molecules then diffuse across the cleft and bind to receptors on
the postsynaptic neuron. Binding of transmitter molecules leads to the
opening of ion channels that modify the conductance of the postsynap-
tic neuron, completing the transmission of the signal from one neuron to
the other. Postsynaptic ion channels can be activated directly by binding
to the transmitter, or indirectly when the transmitter binds to a distinct re-
ceptor that affects ion channels through an intracellular second-messenger
signaling pathway.

As with a voltage-dependent conductance, a synaptic conductance can be
written as the product of a maximal conductance and an open channel
probability, gs = gsP. The open probability for a synaptic conductance can
be expressed as a product of two terms that reflect processes occurring on
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the pre- and postsynaptic sides of the synapse, P = PsPrel. The factor Ps issynaptic open
probability Ps the probability that a postsynaptic channel opens given that the transmit-

ter was released by the presynaptic terminal. Because there are typically
many postsynaptic channels, this can also be taken as the fraction of chan-
nels opened by the transmitter.

Prel is related to the probability that transmitter is released by the presy-
naptic terminal following the arrival of an action potential. This reflects thetransmitter release

probability Prel fact that transmitter release is a stochastic process. Release of transmitter
at a presynaptic terminal does not necessarily occur every time an action
potential arrives, and, conversely, spontaneous release can occur even in
the absence of action potential induced depolarization. The interpretation
of Prel is a bit subtle because a synaptic connection between neurons may
involve multiple anatomical synapses, and each of these may have multi-
ple independent transmitter release sites. The factor Prel, in our discussion,
is the average of the release probabilities at each release site. If there are
many release sites, the total amount of transmitter released by all the sites
is proportional to Prel. If there is a single release site, Prel is the probabil-
ity that it releases transmitter. We will restrict our discussion to these two
interpretations of Prel. For a modest number of release sites with widely
varying release probabilities, the current we discuss only describes an av-
erage over multiple trials.

Synapses can exert their effects on the soma, dendrites, axon spike-
initiation zone, or presynaptic terminals of their postsynaptic targets.
There are two broad classes of synaptic conductances that are distin-
guished by whether the transmitter binds to the synaptic channel and acti-
vates it directly, or the transmitter binds to a distinct receptor that activatesionotropic synapse
the conductance indirectly through an intracellular signaling pathway.metabotropic

synapse The first class is called ionotropic and the second metabotropic. Ionotropic
conductances activate and deactivate more rapidly than metabotropic con-
ductances. Metabotropic receptors can, in addition to opening chan-
nels, cause long-lasting changes inside a neuron. They typically operate
through pathways that involve G-protein mediated receptors and vari-
ous intracellular signalling molecules known as second messengers. A
large number of neuromodulators including serotonin, dopamine, nore-
pinephrine, and acetylcholine can act through metabotropic receptors.
These have a wide variety of important effects on the functioning of the
nervous system.

Glutamate and GABA (γ-aminobutyric acid) are the major excitatoryglutamate, GABA
and inhibitory transmitters in the brain. Both act ionotropically and
metabotropically. The principal ionotropic receptor types for glutamate
are called AMPA and NMDA. Both AMPA and NMDA receptors produceAMPA, NMDA
mixed-cation conductances with reversal potentials around 0 mV. The
AMPA current is fast activating and deactivating. The NMDA receptor
is somewhat slower to activate and deactivates considerably more slowly.
In addition, NMDA receptors have an unusual voltage dependence that
we discuss in a later section, and are rather more permeable to Ca2+ than
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AMPA receptors.

GABA activates two important inhibitory synaptic conductances in the GABAA, GABAB
brain. GABAA receptors produce a relatively fast ionotropic Cl− conduc-
tance. GABAB receptors are metabotropic and act to produce a slower and
longer lasting K+ conductance.

In addition to chemical synapses, neurons can be coupled through electri-
cal synapses (gap junctions) that produce a synaptic current proportional gap junctions
to the difference between the pre- and postsynaptic membrane potentials.
Some gap junctions rectify so that positive and negative current flow is not
equal for potential differences of the same magnitude.

The Postsynaptic Conductance

In a simple model of a directly activated receptor channel, the transmitter
interacts with the channel through a binding reaction in which k transmit-
ter molecules bind to a closed receptor and open it. In the reverse reaction,
the transmitter molecules unbind from the receptor and it closes. These
processes are analogous to the opening and closing involved in the gating
of a voltage-dependent channel, and the same type of equation is used to
describe how the open probability Ps changes with time,

dPs

dt
= αs(1 − Ps) − βsPs . (5.27)

Here, βs determines the closing rate of the channel and is usually as-
sumed to be a constant. The opening rate, αs, on the other hand, de-
pends on the concentration of transmitter available for binding to the re-
ceptor. If the concentration of transmitter at the site of the synaptic channel
is [transmitter], the probability of finding k transmitter molecules within
binding range of the channel is proportional to [transmitter]k, and αs is
some constant of proportionality times this factor.

When an action potential invades the presynaptic terminal, the transmitter
concentration rises and αs grows rapidly causing Ps to increase. Follow-
ing the release of transmitter, diffusion out of the cleft, enzyme-mediated
degradation, and presynaptic uptake mechanisms can all contribute to a
rapid reduction of the transmitter concentration. This sets αs to zero, and
Ps follows suit by decaying exponentially with a time constant 1/βs. Typi-
cally, the time constant for channel closing is considerably larger than the
opening time.

As a simple model of transmitter release, we assume that the transmit-
ter concentration in the synaptic cleft rises extremely rapidly after vesicle
release, remains at a high value for a period of duration T, and then falls
rapidly to zero. Thus, the transmitter concentration is modeled as a square
pulse. While the transmitter concentration is nonzero, αs takes a constant
value much greater that βs, otherwise αs = 0. Suppose that vesicle release
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occurs at time t = 0 and that the synaptic channel open probability takes
the value Ps(0) at this time. While the transmitter concentration in the cleft
is nonzero, αs is so much larger than βs that we can ignore the term involv-
ing βs in equation 5.27. Integrating equation 5.27 under this assumption,
we find that

Ps(t) = 1 + (Ps(0) − 1)exp(−αst) for 0 ≤ t ≤ T . (5.28)

The open probability takes its maximum value at time t = T and then, for
t ≥ T, decays exponentially at a rate determined by the constant βs,

Ps(t) = Ps(T)exp(−βs(t − T)) for t ≥ T . (5.29)

If Ps(0) = 0, as it will if there is no synaptic release immediately before the
release at t = 0, equation 5.28 simplifies to Ps(t) = 1 − exp(−αst) for 0 ≤
t ≤ T, and this reaches a maximum value Pmax = Ps(T) = 1 − exp(−αsT).
In terms of this parameter, a simple manipulation of equation 5.28 shows
that we can write, in the general case,

Ps(T) = Ps(0) + Pmax(1 − Ps(0)) . (5.30)

Figure 5.14 shows a fit to a recorded postsynaptic current using this for-
malism. In this case, βs was set to 0.19 ms−1. The transmitter concentra-
tion was modeled as a square pulse of duration T = 1 ms during which
αs = 0.93 ms−1. Inverting these values, we find that the time constant de-
termining the rapid rise seen in figure 5.14A is 0.9 ms, while the fall of the
current is an exponential with a time constant of 5.26 ms.

10 ms

6
0

pA

Figure 5.14: A fit of the model discussed in the text to the average EPSC (exci-
tatory postsynaptic current) recorded from mossy fiber input to a CA3 pyramidal
cell in a hippocampal slice preparation. The smooth line is the theoretical curve
and the wiggly line is the result of averaging recordings from a number of trials.
(Adapted from Destexhe et al., 1994.)

For a fast synapse like the one shown in figure 5.14, the rise of the con-
ductance following a presynaptic action potential is so rapid that it can
be approximated as instantaneous. In this case, the synaptic conductance
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due to a single presynaptic action potential occurring at t = 0 is often writ-
ten as an exponential, Ps = Pmax exp(−t/τs) (see the AMPA trace in figure
5.15A) where, from equation 5.29, τs = 1/βs. The synaptic conductance
due to a sequence of action potentials at arbitrary times can be modeled
by allowing Ps to decay exponentially to zero according to the equation

τs
dPs

dt
= −Ps , (5.31)

and, on the basis of the equation 5.30, making the replacement

Ps → Ps + Pmax(1 − Ps) (5.32)

immediately after each presynaptic action potential.

Equations 5.28 and 5.29 can also be used to model synapses with slower
rise times, but other functional forms are often used. One way of describ-
ing both the rise and the fall of a synaptic conductance is to express Ps as
the difference of two exponentials (see the GABAA and NMDA traces in
figure 5.15). For an isolated presynaptic action potential occurring at t = 0,
the synaptic conductance is written as

Ps = PmaxB
(
exp(−t/τ1) − exp(−t/τ2)

)
(5.33)

where τ1 > τ2, and B is a normalization factor that assures that the peak
value of Ps is equal to one,

B =
((

τ2

τ1

)τrise/τ1

−
(

τ2

τ1

)τrise/τ2
)−1

. (5.34)

The rise time of the synapse is determined by τrise = τ1τ2/(τ1 − τ2),
while the fall time is set by τ1. This conductance reaches its peak value
τrise ln(τ1/τ2) after the presynaptic action potential.

Another way of describing a synaptic conductance is to use the expression

Ps = Pmaxt
τs

exp(1 − t/τs) (5.35)

for an isolated presynaptic release that occurs at time t = 0. This expres-
sion, called an alpha function, starts at zero, reaches its peak value at t = τs, alpha function
and then decays with a time constant τs.

We mentioned earlier in this chapter that NMDA receptor conductance NMDA receptor
has an additional dependence on the postsynaptic potential not normally
seen in other conductances. To incorporate this dependence, the current
due to the NMDA receptor can be described using an additional factor
that depends on the postsynaptic potential, V. The NMDA current is writ-
ten as gNMDAGNMDA(V)P(V − ENMDA). P is the usual open probability
factor. The factor GNMDA(V) describes an extra voltage dependence due
to the fact that, when the postsynaptic neuron is near its resting potential,
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Figure 5.15: Time-dependent open probabilities fit to match AMPA, GABAA, and
NMDA synaptic conductances. A) The AMPA curve is a single exponential de-
scribed by equation 5.31 with τs = 5.26 ms. The GABAA curve is a difference of
exponentials with τ1 = 5.6 ms and τrise = 0.3 ms. B) The NMDA curve is the dif-
ferences of two exponentials with τ1 = 152 ms and τrise = 1.5 ms. (Parameters are
from Destexhe et al., 1994.)

NMDA receptors are blocked by Mg2+ ions. To activate the conductance,
the postsynaptic neuron must be depolarized to knock out the blocking
ions. Jahr and Stevens (1990) have fit this dependence by (figure 5.16)

GNMDA =
(

1 + [Mg2+]
3.57 mM

exp(V/16.13 mV)

)−1

. (5.36)
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Figure 5.16: Dependence of the NMDA conductance on the extracellular Mg2+

concentration. Normal extracellular Mg2+ concentrations are in the range of 1 to 2
mM. The solid lines are the factors GNMDA of equation 5.36 for different values of
[Mg2+] and the symbols indicate the data points. (Adapted from Jahr and Stevens,
1990.)

NMDA receptors conduct Ca2+ ions as well as monovalent cations. En-
try of Ca2+ ions through NMDA receptors is a critical event for long-term
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modification of synaptic strength. The fact that the opening of NMDA re-
ceptor channels requires both pre- and postsynaptic depolarization means
that they can act as coincidence detectors of simultaneous pre- and postsy- coincidence

detectionnaptic activity. This plays an important role in connection with the Hebb
rule for synaptic modification discussed in chapter 8.

Release Probability and Short-Term Plasticity

The probability of transmitter release and the magnitude of the resulting
conductance change in the postsynaptic neuron can depend on the history
of activity at a synapse. The effects of activity on synaptic conductances
are termed short- and long-term. Short-term plasticity refers to a number short-term

plasticityof phenomena that affect the probability that a presynaptic action poten-
tial opens postsynaptic channels and that last anywhere from milliseconds
to tens of seconds. The effects of long-term plasticity are extremely persis- long-term

plasticitytent, lasting, for example, as long as the preparation being studied can
be kept alive. The modeling and implications of long-term plasticity are
considered in chapter 8. Here we describe a simple way of describing
short-term synaptic plasticity as a modification in the release probability
for synaptic transmission. Short-term modifications of synaptic transmis-
sion can involve other mechanisms than merely changes in the probability
of transmission, but for simplicity we absorb all these effects into a modifi-
cation of the factor Prel introduced previously. Thus, Prel can be interpreted
more generally as a presynaptic factor affecting synaptic transmission.

Figure 5.17 illustrates two principal types of short-term plasticity, depres-
sion and facilitation. Figure 5.17A shows trial-averaged postsynaptic cur- depression

facilitationrent pulses produced in one cortical pyramidal neuron by evoking a reg-
ular series of action potentials in a second pyramidal neuron presynaptic
to the first. The pulses decrease in amplitude dramatically upon repeated
activation of the synaptic conductance, revealing short-term synaptic de-
pression. Figure 5.17B shows a similar series of averaged postsynaptic cur-
rent pulses recorded in a cortical inhibitory interneuron when a sequence
of action potentials was evoked in a presynaptic pyramidal cell. In this
case, the amplitude of the pulses increases, and thus the synapse facili-
tates. In general, synapses can exhibit facilitation and depression over a
variety of time scales, and multiple components of short-term plasticity
can be found at the same synapse. To keep the discussion simple, we con-
sider synapses that exhibit either facilitation or depression described by a
single time constant.

Facilitation and depression can both be modeled as presynaptic processes
that modify the probability of transmitter release. We describe them using
a simple non-mechanistic model that has similarities to the model of Ps

presented in the previous subsection. For both facilitation and depression,
the release probability after a long period of presynaptic silence is Prel = P0.
Activity at the synapse causes Prel to increase in the case of facilitation
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Figure 5.17: Depression and facilitation of excitatory intracortical synapses. A)
Depression of an excitatory synapse between two layer 5 pyramidal cells recorded
in a slice of rat somatosensory cortex. Spikes were evoked by current injection into
the presynaptic neuron and postsynaptic currents were recorded with a second
electrode. B) Facilitation of an excitatory synapse from a pyramidal neuron to an
inhibitory interneuron in layer 2/3 of rat somatosensory cortex. (A from Markram
and Tsodyks, 1996; B from Markram et al., 1998.)

and to decrease for depression. Between presynaptic action potentials, the
release probability decays exponentially back to its ‘resting’ value P0,

τP
dPrel

dt
= P0 − Prel . (5.37)

The parameter τP controls the rate at which the release probability decays
to P0.

The models of facilitation and depression differ in how the release proba-
bility is changed by presynaptic activity. In the case of facilitation, Prel is
augmented by making the replacement Prel → Prel + fF(1 − Prel) immedi-
ately after a presynaptic action potential (as in equation 5.32. The param-
eter fF (with 0 ≤ fF ≤ 1) controls the degree of facilitation, and the factor
(1 − Prel) prevents the release probability from growing larger than one.
To model depression, the release probability is reduced after a presynaptic
action potential by making the replacement Prel → fD Prel. In this case, the
parameter fD (with 0 ≤ fD ≤ 1) controls the amount of depression, and the
factor Prel prevents the release probability from becoming negative.

We begin by analyzing the effects of facilitation on synaptic transmission
for a presynaptic spike train with Poisson statistics. In particular, we com-
pute the average release probability, denoted by 〈Prel〉. 〈Prel〉 is determined
by requiring that the facilitation that occurs after each presynaptic action
potential is exactly canceled by the average exponential decrement that
occurs between presynaptic spikes. Consider two presynaptic action po-
tentials separated by an interval τ, and suppose that the release probability
takes its average value value 〈Prel〉 at the time of the first spike. Immedi-
ately after this spike, it is augmented to 〈Prel〉 + fF(1 − 〈Prel〉). By the time
of the second spike, this will have decayed to P0 + (〈Prel〉+ fF(1 −〈Prel〉)−
P0)exp(−τ/τP), which is obtained by integrating equation 5.37. The aver-
age value of the exponential decay factor in this expression is the integral
over all positive τ values of exp(−τ/τP) times the probability density for
a Poisson spike train with a firing rate r to produce an interspike inter-
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val of duration τ, which is r exp(−rτ) (see chapter 1). Thus, the average
exponential decrement is

r

∫ ∞

0
dτ exp(−rτ − τ/τP) = rτP

1 + rτP
. (5.38)

In order for the release probability to return, on average, to its steady-state
value between presynaptic spikes, we must therefore require that

〈Prel〉 = P0 + (〈Prel〉 + fF(1 − 〈Prel〉) − P0
) rτP

1 + rτP
. (5.39)

Solving for 〈Prel〉 gives

〈Prel〉 = P0 + fFrτP

1 + r fFτP
. (5.40)

This equals P0 at low rates and rises toward the value one at high rates
(figure 5.18A). As a result, isolated spikes in low-frequency trains are
transmitted with lower probability than spikes occurring within high-
frequency bursts. The synaptic transmission rate when the presynaptic
neuron is firing at rate r is the firing rate times the release probability. This
grows linearly as P0r for small rates and approaches r at high rates (figure
5.18A).
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Figure 5.18: The effects of facilitation and depression on synaptic transmission.
A) Release probability and transmission rate for a facilitating synapse as a function
of the firing rate of a Poisson presynaptic spike train. The dashed curve shows the
rise of the average release probability as the presynaptic rate increases. The solid
curve is the average rate of transmission, which is the average release probability
times the presynaptic firing rate. The parameters of the model are P0 = 0.1, fF =
0.4, and τP = 50 ms. B) Same as A, but for the case of depression. The parameters
of the model are P0 = 1, fD = 0.4, and τP = 500 ms.

The value of 〈Prel〉 for a Poisson presynaptic spike train can also be com-
puted in the case of depression. The only difference from the above deriva-
tion is that following a presynaptic spike 〈Prel〉 is decreased to fD〈Prel〉.
Thus, the consistency condition 5.39 is replaced by

〈Prel〉 = P0 + ( fD〈Prel〉 − P0)
rτP

1 + rτP
(5.41)

Draft: December 17, 2000 Theoretical Neuroscience



36 Model Neurons I: Neuroelectronics

giving

〈Prel〉 = P0

1 + (1 − fD)rτP
(5.42)

This equals P0 at low rates and goes to zero as 1/r at high rates (figure
5.18B), which has some interesting consequences. As noted above, the av-
erage rate of successful synaptic transmissions is equal to 〈Prel〉 times the
presynaptic rate r. Because 〈Prel〉 is proportional to 1/r at high rates, the av-
erage transmission rate is independent of r in this range. This can be seen
by the flattening of the solid curve in figure 5.18B. As a result, synapses
that depress do not convey information about the values of constant, high
presynaptic firing rates to their postsynaptic targets. The presynaptic fir-
ing rate at which transmission starts to become independent of r is around
1/((1 − fD)τP).

Figure 5.19 shows the average transmission rate, 〈Prel〉r, in response to a
series of steps in the presynaptic firing rate. Note first that the transmis-
sion rates during the 25, 100, 10 and 40 Hz periods are quite similar. This
is a consequence of the 1/r dependence of the average release probability,
as discussed above. The largest transmission rates in the figure occur dur-
ing the sharp upward transitions between different presynaptic rates. This
illustrates the important point that depressing synapses amplify transient
signals relative to steady-state inputs. The transients corresponding the 25
to 100 Hz transition and the 10 to 40 Hz transition are of roughly equal
amplitudes, but the transient for the 10 to 40 Hz transition is broader than
that for the 25 to 100 Hz transition.
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Figure 5.19: The average rate of transmission for a synapse with depression when
the presynaptic firing rate changes in a sequence of steps. The firing rates were
held constant at the values 25, 100, 10 and 40 Hz, except for abrupt changes at
the times indicated by the dashed lines. The parameters of the model are P0 = 1,
fD = 0.6, and τP = 500 ms.

The equality of amplitudes of the two upward transients in figure 5.19 is
a consequence of the 1/r behavior of 〈Prel〉. Suppose that the presynaptic
firing rate makes a sudden transition from a steady value r to a new value
r + �r. Before the transition, the average release probability is given by
equation 5.42. Immediately after the transition, before the release proba-
bility has had time to adjust to the new input rate, the average transmis-
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sion rate will be this previous value of 〈Prel〉 times the new rate r + �r,
which is P0(r + �r)/(1 + (1 − fD)rτP). For sufficiently high rates, this is
approximately proportional to (r + �r)/r. The size of the change in the
transmission rate is thus proportional to �r/r, which means that depress-
ing synapses not only amplify transient inputs, they transmit them in a
scaled manner. The amplitude of the transient transmission rate is propor-
tional to the fractional change, not the absolute change, in the presynaptic
firing rate. The two transients seen in figure 5.19 have similar amplitudes
because in both cases �r/r = 3. The difference in the recovery time for
the two upward transients in figure 5.19 is due to the fact that the effec-
tive time constant governing the recovery to a new steady-state level r is
τP/(1 + (1 − fD)τPr).

5.9 Synapses On Integrate-and-Fire Neurons

Synaptic inputs can be incorporated into an integrate-and-fire model by
including synaptic conductances in the membrane current appearing in
equation 5.8,

τm
dV
dt

= EL − V − rmgsPs(V − Es) + Rm Ie . (5.43)

For simplicity, we assume that Prel = 1 in this example. The synaptic cur-
rent is multiplied by rm in equation 5.43 because equation 5.8 was multi-
plied by this factor. To model synaptic transmission, Ps changes whenever
the presynaptic neuron fires an action potential using one of the schemes
described previously.

Figures 5.20A and 5.20B show examples of two integrate-and-fire neu-
rons driven by electrode currents and connected by identical excitatory
or inhibitory synapses. The synaptic conductances in this example are
described by the α function model. This means that the synaptic conduc-
tance a time t after the occurrence of a presynaptic action potential is given
by Ps = (t/τs)exp(−t/τs). The figure shows a non-intuitive effect. When
the synaptic time constant is sufficiently long (τs = 10 ms in this exam-
ple), excitatory connections produce a state in which the two neurons fire
alternately, out of phase with each other, while inhibitory synapses pro-
duce synchronous firing. It is normally assumed that excitation produces synchronous and

asynchronous
firing

synchrony. Actually, inhibitory connections can be more effective in some
cases than excitatory connections at synchronizing neuronal firing.

Synapses have multiple effects on their postsynaptic targets. In equation
5.43, the term rmgsPsEs acts as a source of current to the neuron, while the
term rmgsPsV changes the membrane conductance. The effects of the latter
term are referred to as shunting, and they can be identified most easily if
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Figure 5.20: Two synaptically coupled integrate-and-fire neurons. A) Excitatory
synapses (Es = 0 mV) produce an alternating, out-of-phase pattern of firing. B) In-
hibitory synapses (Es = -80 mV) produce synchronous firing. Both model neurons
have EL = -70 mV, Vth = -54 mV, Vreset = -80 mV, rmgs = 0.05, Pmax = 1, Rm Ie = 25
mV, and τs = 10 ms.

we divide equation 5.43 by 1 + rmgsPs to obtain

τm

1 + rmgsPs

dV
dt

= −V + EL + rmgsPsEs + Rm Ie

1 + rmgsPs
. (5.44)

The shunting effects of the synapse are seen in this equation as a decrease
in the effective membrane time constant and a divisive reduction in the
impact of the leakage and synaptic reversal potentials, and of the electrode
current.

The shunting effects seen in equation 5.44 have been proposed as a possi-
ble basis for neural computations involving division. However, shunting
only has a divisive effect on the membrane potential of an integrate-and-
fire neuron; its effect on the firing rate is subtractive. To see this, assume
that synaptic input is arriving at a sufficient rate to maintain a relatively
constant value of Ps. In this case, shunting amounts to changing the value
of the membrane resistance from Rm to Rm/(1 + rmgsPs). Recalling equa-
tion 5.12 for the firing rate of the integrate-and-fire model and the fact that
τm = CmRm, we can write the firing rate in a form that reveals its depen-
dence on Rm,

risi ≈
[

EL − Vth

CmRm(Vth − Vreset)
+ Ie

Cm(Vth − Vreset)

]
+

. (5.45)

Changing Rm only modifies the constant term in this equation, it has no
effect on the dependence of the firing rate on Ie.
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Figure 5.21: The regular and irregular firing modes of an integrate-and-fire model
neuron. A) The regular firing mode. Upper panel: The membrane potential of the
model neuron when the spike generation mechanism is turned off. The average
membrane potential is above the spiking threshold (dashed line). Lower panel:
When the spike generation mechanism is turned on, it produces a regular spiking
pattern. B) The irregular firing mode. Upper panel: The membrane potential of
the model neuron when the spike generation mechanism is turned off. The aver-
age membrane potential is below the spiking threshold (dashed line). Lower panel:
When the spike generation mechanism is turned on, it produces an irregular spik-
ing pattern. In order to keep the firing rates from differing too greatly between
these two examples, the value of the reset voltage is higher in B than in A.

Regular and Irregular Firing Modes

Integrate-and-fire models are useful for studying how neurons sum large
numbers of synaptic inputs and how networks of neurons interact. One
issue that has received considerable attention is the degree of variability
in the firing output of integrate-and-fire neurons receiving synaptic input.
This work has led to the realization that neurons can respond to multi-
ple synaptic inputs in two different modes of operation depending on the
balance that exists between excitatory and inhibitory contributions.

The two modes of operation are illustrated in figure 5.21, which shows
membrane potentials of an integrate-and-fire model neuron responding to
1000 excitatory and 200 inhibitory inputs. Each input consists of an inde-
pendent Poisson spike train driving a synaptic conductance. The upper
panels of figure 5.21 show the membrane potential with the action po-
tential generation mechanism of the model turned off, and figures 5.21A
and 5.21B illustrate the two different modes of operation. In figure 5.21A,
the effect of the excitatory inputs is strong enough, relative to that of the
inhibitory inputs, to make the average membrane potential, when action
potential generation is blocked, more depolarized than the spiking thresh-
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old of the model (the dashed line in the figure). When the action poten-
tial mechanism is turned on (lower panel of figure 5.21A), this produces a
fairly regular pattern of action potentials.

The irregularity of a spike train can be quantified using the coefficient of
variation (CV), the ratio of the standard deviation to the mean of the in-
terspike intervals (see chapter 1). For the Poisson inputs being used in
this example, CV = 1, while for the spike train in the lower panel of figure
5.21A, CV = 0.3. Thus, the output spike train is much more regular than the
input trains. This is not surprising, because the model neuron effectively
averages its many synaptic inputs. In the regular firing mode, the total
synaptic input attempts to charge the neuron above the threshold, but ev-
ery time the potential reaches the threshold it gets reset and starts charging
again. In this mode of operation, the timing of the action potentials is de-
termined primarily by the charging rate of the cell, which is controlled by
its membrane time constant.

Figure 5.21B shows the other mode of operation that produces an irreg-
ular firing pattern. In the irregular firing mode, the average membrane
potential is more hyperpolarized than the threshold for action potential
generation (upper panel of figure 5.21B). Action potentials are only gener-
ated when there is a fluctuation in the total synaptic input strong enough
to make the membrane potential reach the threshold. This produces an
irregular spike train, such as that seen in the lower panel of figure 5.21B
which has a CV value of 0.84.

The high degree of variability seen in the spiking patterns of in vivo record-
ings of cortical neurons (see chapter 1) suggests that they are better ap-
proximated by an integrate-and-fire model operating in an irregular-firing
mode. There are advantages to operating in the irregular-firing mode that
may compensate for its increased variability. One is that neurons firing
in the irregular mode reflect in their outputs the temporal properties of
fluctuations in their total synaptic input. In the regular firing mode, the
timing of output spikes is only weakly related to the temporal character
of the input spike trains. In addition, neurons operating in the irregular
firing mode can respond more quickly to changes in presynaptic spiking
patterns and firing rates than those operating in the regular firing mode.

5.10 Chapter Summary

In this chapter, we considered the basic electrical properties of neurons
including their intracellular and membrane resistances, capacitances, and
active voltage-dependent and synaptic conductances. We introduced the
Nernst equation for equilibrium potentials and the formalism of Hodgkin
and Huxley for describing persistent, transient, and hyperpolarization-
activated conductances. Methods were introduced for modeling stochas-
tic channel opening and stochastic synaptic transmission, including the
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effects of synaptic facilitation and depression. We discussed a number of
ways of describing synaptic conductances following the release of a neuro-
transmitter. Two models of action potential generation were discussed, the
simple integrate-and-fire scheme and the more realistic Hodgkin-Huxley
model.

5.11 Appendices

A) Integrating the Membrane Potential

We begin by considering the numerical integration of equation 5.8. It is
convenient to rewrite this equation in the form

τV
dV
dt

= V∞ − V . (5.46)

where τV = τm and V∞ = EL + Rm Ie. When the electrode current Ie is
independent of time, the solution of this equation is

V(t) = V∞ + (V(t0) − V∞)exp(−(t − t0)/τV ) (5.47)

where t0 is any time prior to t and V(t0) is the value of V at time t0. Equa-
tion 5.9 is a special case of this result with t0 = 0.

If Ie depends on time, the solution 5.47 is not valid. An analytic solution
can still be written down in this case, but it is not particularly useful except
in special cases. Over a small enough time period �t, we can approximate
Ie(t) as constant and use the solution 5.47 to step from a time t to t + �t.
This requires replacing the variable t0 in equation 5.47 with t and t with
t + �t so that

V(t + �t) = V∞ + (V(t) − V∞)exp(−�t/τV ) . (5.48)

This equation provides an updating rule for the numerical integration of
equation 5.46. Provided that �t is sufficiently small, repeated application
of the update rule 5.48 provides an accurate way of determining the mem-
brane potential. Furthermore, this method is stable because, if �t is too
large, it will only move V toward V∞ and not, for example, make it grow
without bound.

The equation for a general single-compartment conductance-based model,
equation 5.6 with 5.5, can be written in the same form as equation 5.46 with

V∞ =
∑

i gi Ei + Ie/A∑
i gi

(5.49)

and

τV = cm∑
i gi

. (5.50)
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Note that if cm is in units of nF/mm2 and the conductances are in the units
µS/mm2, τV comes out in ms units. Similarly, if the reversal potentials are
given in units of mV, Ie is in nA, and A is in mm2, V∞ will be in mV units.

If we take the time interval �t to be small enough so that the gating vari-
ables can be approximated as constant during this period, the membrane
potential can again be integrated over one time step using equation 5.48.
Of course, the gating variables are not fixed, so once V has been updated
by this rule, the gating variables must be updated as well.

B) Integrating the Gating Variables

All the gating variables in a conductance-based model satisfy equations of
the same form,

τz
dz
dt

= z∞ − z (5.51)

where we use z to denote a generic variable. Note that this equation has
the same form as equation 5.46, and it can be integrated in exactly the same
way. We assume that �t is sufficiently small so that V does not change ap-
preciably over this time interval (and similarly [Ca2+] is approximated as
constant over this interval if any of the conductances are Ca2+-dependent).
Then, τz and z∞, which are functions of V (and possibly [Ca2+]) can be
treated as constants over this period and z can be updated by a rule iden-
tical to 5.48,

z(t + �t) = z∞ + (z(t) − z∞)exp(−�t/τz). (5.52)

An efficient integration scheme for conductance-based models is to alter-
nate using rule (5.48) to update the membrane potential and rule (5.52)
to update all the gating variables. It is important to alternate the updat-
ing of V with that of the gating variables, rather than doing them all si-
multaneously, as this keeps the method accurate to second order in �t. If
Ca2+-dependent conductances are included, the intracellular Ca2+ concen-
tration should be computed simultaneously with the membrane potential.
By alternating the updating, we mean that the membrane potential is com-
puted at times 0,�t,2�t, . . . , while the gating variables are computed at
times �t/2,3�t/2,5�t/2, . . . . A discussion of the second-order accuracy
of this scheme is given in Mascagni and Sherman (1998).

5.12 Annotated Bibliography

Jack et al. (1975); Tuckwell (1988); Johnston & Wu (1995); Koch & Segev
(1998); Koch (1998) cover much of the material in this chapter and chap-
ter 6. Hille (1992) provides a comprehensive treatment of ion channels.
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Hodgkin & Huxley (1952) present the classic biophysical model of the ac-
tion potential, and Sakmann & Neher (1983) describe patch clamp record-
ing techniques allowing single channels to be studied electrophysiologi-
cally.

The integrate-and-fire model was introduced by Lapicque in 1907. Des-
texhe et al. (1994) describe kinetic models of both ion channels and short-
term postsynaptic effects at synapses. Marom & Abbott (1994) show how
the Na+ channel model of Patlak (1991) can be reconciled with typical
macroscopic conductance models. For a review of the spike-response
model, the integrated version of the integrate-and-fire model, see Gerst-
ner (1998). Wang (1994) has analyzed a spike-rate adaptation similar to
the one we presented, and Stevens & Zador (1998) introduce an integrate-
and-fire model with time-dependent parameters.

The dynamic aspects of synaptic transmission are reviewed in Magelby
(1987) and Zucker (1989). Our presentation followed Abbott et al. (1997),
Varela et al. (1997), and Tsodyks & Markram (1997). Wang & Rinzel (1992)
noted that inhibitory synapses can synchronize coupled cells, and in our
discussion we followed the treatment in Van Vreeswijk et al. (1994). Our
analysis of the regular and irregular firing mode regimes of integrate-and-
fire cells was based on Troyer & Miller (1997). Numerical methods for
integrating the equations of neuron models are discussed in Mascagni &
Sherman (1998).
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Chapter 6

Model Neurons II:
Conductances and
Morphology

6.1 Levels of Neuron Modeling

In modeling neurons, we must deal with two types of complexity; the in-
tricate interplay of active conductances that makes neuronal dynamics so
rich and interesting, and the elaborate morphology that allows neurons to
receive and integrate inputs from so many other neurons. The first part of
this chapter extends the material presented in chapter 5, by examining
single-compartment models with a wider variety of voltage-dependent
conductances, and hence a wider range of dynamic behaviors, than the
Hodgkin-Huxley model. In the second part of the chapter, we introduce
methods that allow us to study the effects of morphology on the electrical
characteristics of neurons. An analytic approach known as cable theory
is presented first, followed by a discussion of multi-compartment models
that permit numerical simulation of complex neuronal structures.

Model neurons range from greatly simplified caricatures to highly de-
tailed descriptions involving thousands of differential equations. Choos-
ing the most appropriate level of modeling for a given research problem
requires a careful assessment of the experimental information available
and a clear understanding of the research goals. Oversimplified mod-
els can, of course, give misleading results, but excessively detailed mod-
els can obscure interesting results beneath inessential and unconstrained
complexity.
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6.2 Conductance-Based Models

The electrical properties of neurons arise from membrane conductances
with a wide variety of properties. The basic formalism developed by
Hodgkin and Huxley to describe the Na+ and K+ conductances respon-
sible for generating action potentials (discussed in chapter 5) is also used
to represent most of the additional conductances encountered in neuron
modeling. Models that treat these aspects of ionic conductances, known as
conductance-based models, can reproduce the rich and complex dynam-conductance-based

model ics of real neurons quite accurately. In this chapter, we discuss both single-
and multi-compartment conductance-based models, beginning with the
single-compartment case.

To review from chapter 5, the membrane potential of a single-compartment
neuron model, V, is determined by integrating the equation

cm
dV
dt

= −im + Ie

A
. (6.1)

with Ie the electrode current, A the membrane surface area of the cell, and
im the membrane current. In the following subsections, we present ex-
pressions for the membrane current in terms of the reversal potentials,
maximal conductance parameters, and gating variables of the different
conductances of the models being considered. The gating variables and
V comprise the dynamic variables of the model. All the gating variables
are determined by equations of the form

τz(V)
dz
dt

= z∞(V) − z (6.2)

where we have used the letter z to denote a generic gating variable. The
functions τz(V) and z∞(V) are determined from experimental data. For
some conductances, these are written in terms of the open and closing
rates αz(V) and βz(V) (see chapter 5) as

τz(V) = 1
αz(V) + βz(V)

and z∞(V) = αz(V)

αz(V) + βz(V)
. (6.3)

We have written τz(V) and z∞(V) as functions of the membrane potential,
but for Ca2+-dependent currents they also depend on the internal Ca2+
concentration. We call the αz(V), βz(V), τz(V), and z∞(V) collectively
gating functions. A method for numerically integrating equations 6.1 and
6.2 is described in the appendices of chapter 5.

In the following subsections, some basic features of conductance-based
models are presented in a sequence of examples of increasing complexity.
We do this to illustrate the effects of various conductances and combina-
tions of conductances on neuronal activity. Different cells (and even the
same cell held at different resting potentials) can have quite different re-
sponse properties due to their particular combinations of conductances.
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6.2 Conductance-Based Models 3

Research on conductance-based models focuses on understanding how
neuronal response dynamics arises from the properties of membrane and
synaptic conductances, and how the characteristics of different neurons
interact when they are coupled to each other in networks.

The Connor-Stevens Model

The Hodgkin-Huxley model of action potential generation, discussed in
chapter 5, was developed on the basis of data from the giant axon of the
squid, and we present a multi-compartment simulation of action poten-
tial propagation using this model in a later section. The Connor-Stevens
model (Connor and Stevens, 1971; Connor et al. 1977) provides an alterna-
tive description of action potential generation. Like the Hodgkin-Huxley
model, it contains fast Na+, delayed-rectifier K+, and leakage conduc-
tances. The fast Na+and delayed-rectifier K+ conductances have some-
what different properties from those of the Hodgkin-Huxley model, in
particular faster kinetics, so the action potentials are briefer. In addition,
the Connor-Stevens model contains an extra K+ conductance, called the
A-current, that is transient. K+ conductances come in wide variety of dif- A-type potassium

currentferent forms, and the Connor-Stevens model involves two of them.

The membrane current in the Connor-Stevens model is

im = gL(V − EL) + gNam3h(V − ENa) + gKn4(V − EK) + gAa3b(V − EA)

(6.4)

where gL = 0.003 mS/mm2 and EL = -17 mV are the maximal conductance
and reversal potential for the leak conductance, and gNa = 1.2 mS/mm2,
gK = 0.2 mS/mm2, gA = 0.477 mS/mm2, ENa = 55 mV, EK = -72 mV, and
EA = -75 mV (although the A-current is carried by K+, the model does not
require EA = EK) and are similar parameters for the active conductances.
The gating variables, m, h, n, a, and b, are determined by equations of the
form 6.2 with the gating functions given in appendix A.

The fast Na+ and delayed-rectifier K+ conductances generate action po-
tentials in the Connor-Stevens model just as they do in the Hodgkin-
Huxley model (see chapter 5). What is the role of the additional A-current?
Figure 6.1 illustrates action potential generation in the Connor-Stevens
model. In the absence of an injected electrode current or synaptic input,
the membrane potential of the model remains constant at a resting value of
−68 mV. For a constant electrode current greater than a threshold value,
the model neuron generates action potentials. Figure 6.1A shows how
the firing rate of the model depends on the magnitude of the electrode
current relative to the threshold value. The firing rate rises continuously
from zero and then increases roughly linearly for currents over the range
shown. Figure 6.1B shows an example of action potential generation for
one particular value of the electrode current.
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Figure 6.1: Firing of action potentials in the Connor-Stevens model. A) Firing
rate as a function of electrode current. The firing rate rises continuously from zero
as the current increases beyond the threshold value. B) An example of action po-
tentials generated by constant current injection. C) Firing rate as a function of
electrode current when the A-current is turned off. The firing rate now rises dis-
continuously from zero as the current increases beyond the threshold value. D)
Delayed firing due to hyperpolarization. The neuron was held hyperpolarized for
a prolonged period by injection of negative current. At t = 50 ms, the negative
electrode current was switched to a positive value. The A-current delays the oc-
currence of the first action potential.

Figure 6.1C shows the firing rate as a function of electrode current for the
Connor-Stevens model with the maximal conductance of the A-current set
to zero. The leakage conductance and reversal potential have been ad-
justed to keep the resting potential and membrane resistance the same as
in the original model. The firing rate is clearly much higher with the A-
current turned off. This is because the deinactivation rate of the A-current
limits the rise time of the membrane potential between action potentials.
In addition, the transition from no firing for currents less than the thresh-
old value to firing with suprathreshold currents is different when the A-
current is eliminated. Without the A-current, the firing rate jumps dis-
continuously to a nonzero value rather than rising continuously. Neurons
with firing rates that rise continuously from zero as a function of electrode
current are called type I, and those with discontinuous jumps in their fir-
ing rates at threshold are called type II. An A-current is not the only mech-type I, type II
anism that can produce a type I response but, as figures 6.1A and 6.1C
show, it plays this role in the Connor-Stevens model. The Hodgkin-Huxley
model produces a type II response.

Another effect of the A-current is illustrated in figure 6.1D. Here the model
neuron was held hyperpolarized by negative current injection for an ex-
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Figure 6.2: A burst of action potentials due to rebound from hyperpolarization.
The model neuron was held hyperpolarized for an extended period (until the con-
ductances came to equilibrium) by injection of constant negative electrode current.
At t = 50 ms, the electrode current was set to zero, and a burst of Na+ spikes was
generated due to an underlying Ca2+ spike. The delay in the firing is caused by
the presence of the A-current in the model.

tended period of time, and then the current was switched to a positive
value. While the neuron was hyperpolarized, the A-current deinactivated,
that is, the variable b increased toward one. When the electrode current
switched sign and the neuron depolarized, the A-current first activated
and then inactivated. This delayed the first spike following the change in
the electrode current.

Postinhibitory Rebound and Bursting

The range of responses exhibited by the Connor-Stevens model neuron can
be extended by including a transient Ca2+ conductance. The conductance transient Ca2+

conductancewe use was modeled by Huguenard and McCormick (1992) on the basis of
data from thalamic relay cells. The membrane current due to the transient
Ca2+ conductance is expressed as

iCaT = gCaT M2H(V − ECa) (6.5)

with, for the example given here, gCaT = 13 µS/mm2 and ECa = 120 mV.
The gating variables for the transient Ca2+ conductance are determined
from the gating functions in appendix A.

Several different Ca2+ conductances are commonly expressed in neuronal
membranes. These are categorized as L, T, N, and P types. L-type Ca2+ L, T, N and P type

Ca2+ channelscurrents are persistent as far as their voltage dependence is concerned, and
they activate at a relatively high threshold. They inactivate due to a Ca2+-
dependent rather than voltage-dependent process. T-type Ca2+ currents
have lower activation thresholds and are transient. N- and P-type Ca2+
conductances have intermediate thresholds and are respectively transient
and persistent. They may be responsible for the Ca2+ entry that causes the
release of transmitter at presynaptic terminals. Entry of Ca2+ into a neuron
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has many secondary consequences ranging from gating Ca2+-dependent
channels to inducing long-term modifications of synaptic conductances.

A transient Ca2+ conductance acts, in many ways, like a slower version of
the transient Na+ conductance that generates action potentials. Instead of
producing an action potential, a transient Ca2+ conductance generates a
slower transient depolarization sometimes called a Ca2+ spike. This tran-Ca2+ spike
sient depolarization causes the neuron to fire a burst of action potentials,burst
which are Na+ spikes riding on the slower Ca2+ spike. Figure 6.2 shows
such a burst and illustrates one way to produce it. In this example, the
model neuron was hyperpolarized for an extended period and then re-
leased from hyperpolarization by setting the electrode current to zero.
During the prolonged hyperpolarization, the transient Ca2+ conductance
deinactivated. When the electrode current was set to zero, the resulting
depolarization activated the transient Ca2+ conductance and generated a
burst of action potentials. The burst in figure 6.2 is delayed due to the pres-
ence of the A-current in the original Connor-Stevens model, and it termi-
nates when the Ca2+ conductance inactivates. Generation of action poten-
tials in response to release from hyperpolarization is called postinhibitory
rebound because, in a natural setting, the hyperpolarization would bepostinhibitory

rebound caused by inhibitory synaptic input, not by current injection.

The transient Ca2+ current is an important component of models of thala-
mic relay neurons. These neurons exhibit different firing patterns in sleepthalamic relay

neuron and wakeful states. Action potentials tend to appear in bursts during
sleep. Figure 6.3 shows an example of three states of activity of a model
thalamic relay cell due to Wang (1994) that has, in addition to fast Na+,
delayed-rectifier K+, and transient Ca2+ conductances, a hyperpolariza-
tion activated mixed-cation conductance, and a persistent Na+ conduc-
tance. The cell is silent or fires action potentials in a regular pattern or in
bursts depending on the level of current injection. In particular, injection
of small amounts of negative current leads to bursting. This occurs be-
cause the hyperpolarization due to the current injection deinactivates the
transient Ca2+ current and activates the hyperpolarization activated cur-
rent. The regular firing mode of the middle plot of figure 6.3 is believed to
be relevant during wakeful states when the thalamus is faithfully report-
ing input from the sensory periphery to the cortex.

Neurons can fire action potentials either at a steady rate or in bursts even
in the absence of current injection or synaptic input. Periodic bursting is a
common feature of neurons in central patterns generators, which are neu-
ral circuits that produce periodic patterns of activity to drive rhythmic mo-
tor behaviors such as walking, running, or chewing. To illustrate periodic
bursting, we consider a model constructed to match the activity of neu-
rons in the crustacean stomatogastric ganglion (STG), a neuronal circuitstomatogastric

ganglion that controls chewing and digestive rhythms in the foregut of lobsters and
crabs. The model contains fast Na+, delayed-rectifier K+, A-type K+, and
transient Ca2+ conductances similar to those discussed above, although
the formulae and parameters used are somewhat different. In addition,
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Figure 6.3: Three activity modes of a model thalamic neuron. Upper panel: with
no electrode current the model is silent. Middle panel: when a positive current
is injected into the model neuron, it fires action potentials in a regular periodic
pattern. Lower panel: when negative current is injected into the model neuron, it
fires action potentials in periodic bursts. (Adapted from Wang, 1994.)

the model has a Ca2+-dependent K+ conductance. Due to the complexity
of the model, we do not provide complete descriptions of its conductances
except for the Ca2+-dependent K+ conductance which plays a particularly
significant role in the model.

The repolarization of the membrane potential after an action potential is
often carried out both by the delayed-rectifier K+ conductance and by a
fast Ca2+-dependent K+ conductance. Ca2+-dependent K+ conductances Ca2+-dependent

K+ conductancemay be voltage dependent, but they are primarily activated by a rise in
the level of intracellular Ca2+. A slow Ca2+-dependent K+ conductance
called the after-hyperpolarization (AHP) conductance builds up during after-

hyperpolarization
conductance

sequences of action potentials and typically contributes to the spike-rate
adaptation discussed and modeled in chapter 5.

The Ca2+-dependent K+ current in the model STG neuron is given by

iKCa = gKCac4(V − EK) (6.6)

where c∞ depends on both the membrane potential and the intracellu-
lar Ca2+ concentration, [Ca2+] (see appendix A). The intracellular Ca2+
concentration is computed in this model using a simplified description in
which rises in intracellular Ca2+ are caused by influx through membrane
Ca2+ channels, and Ca2+ removal is described by an exponential process.
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8 Model Neurons II: Conductances and Morphology
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Figure 6.4: Periodic bursting in a model of a crustacean stomatogastric ganglion
neuron. From the top, the panels show the membrane potential, the Ca2+ conduc-
tance, the intracellular Ca2+ concentration, and the Ca2+-dependent K+ conduc-
tance. The Ca2+-dependent K+ conductance is shown at an expanded scale so the
reduction of the conductance due to the falling intracellular Ca2+ concentration
during the interburst intervals can be seen. In this example, τCa = 200 ms. (Simu-
lation by M. Goldman based on a variant of a model of Turrigiano et al., 1995 due
to Z. Liu and M. Goldman.)

The resulting equation for the intracellular Ca2+ concentration, [Ca2+], is

d[Ca2+]
dt

= −γiCa − [Ca2+]
τCa

. (6.7)

Here iCa is the total Ca2+ current per unit area of membrane, τCa is the time
constant determining the rate at which intracellular Ca2+ is removed, and
γ is a factor that converts from the electric current due to Ca2+ ion flow
to the rate at which the Ca2+ ion concentration changes within the cell.
Because the Ca2+ concentration is determined by dividing the number of
Ca2+ ions in a cell by the total cellular volume and the Ca2+ influx is com-
puted by multiplying iCa by the membrane surface area, γ is proportional
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6.3 The Cable Equation 9

to the surface to volume ratio for the cell. It also contains a factor that con-
verts from Coulombs per second of electrical current to moles per second
of Ca2+ ions. This factor is 1/(zF) where z is the number of charges on the
ion (z = 2 for Ca2+), and F is the Faraday constant. If, as is normally the
case, [Ca2+] is in mols/liter, γ should also contain a factor that converts the
volume measure to liters, 106 mm3/liter. Finally, γ must be multiplied by
the additional factor that reflects fast intracellular Ca2+ buffering. Most of
the Ca2+ ions that enter a neuron are rapidly bound to intracellular buffers,
so only a fraction of the Ca2+ current through membrane channels is actu-
ally available to change the concentration [Ca2+] of free Ca2+ ions in the
cell. This factor is about 1%. The minus sign in front of the γ factor in
equation 6.7 is due to the definition of membrane currents as positive in
the outward direction.

Figure 6.4 shows the model STG neuron firing action potentials in bursts.
As in the models of figures 6.2 and 6.3, the bursts are transient Ca2+ spikes
with action potentials riding on top of them. The Ca2+ current during
these bursts causes a dramatic increase in the intracellular Ca2+ concen-
tration. This activates the Ca2+-dependent K+ current which, along with
the inactivation of the Ca2+ current, terminates the burst. The interburst
interval is determined primarily by the time it takes for the intracellular
Ca2+ concentration to return to a low value, which deactivates the Ca2+-
dependent K+ current, allowing another burst to be generated. Although
figure 6.4 shows that the conductance of the Ca2+-dependent K+ current
reaches a low value immediately after each burst (due to its voltage de-
pendence), this initial dip is too early for another burst to be generated at
that point in the cycle.

The STG is a model system for investigating the effects of neuromodula-
tors, such as amines and neuropeptides, on the activity patterns of a neu-
ral network. Neuromodulators modify neuronal and network behavior by
activating, deactivating, or otherwise altering the properties of membrane
and synaptic channels. Neuromodulation has a major impact on virtually
all neural networks ranging from peripheral motor pattern generators like
the STG to the sensory, motor, and cognitive circuits of the brain.

6.3 The Cable Equation

Single-compartment models describe the membrane potential over an en-
tire neuron with a single variable. Membrane potentials can vary consid-
erably over the surface of the cell membrane, especially for neurons with
long and narrow processes or if we consider rapidly changing membrane
potentials. Figure 6.5A shows the delay and attenuation of an action po-
tential as it propagates from the soma out to the dendrites of a cortical
pyramidal neuron. Figure 6.5B shows the delay and attenuation of an ex-
citatory postsynaptic potential (EPSP) initiated in the dendrite by synaptic
input as it spreads to the soma. Understanding these features is crucial for
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10 Model Neurons II: Conductances and Morphology

determining whether and when a given synaptic input will cause a neuron
to fire an action potential.

10 ms

25 m
V

10 ms

1 m
V

A B

Figure 6.5: Simultaneous intracellular recordings from the soma and apical den-
drite of a cortical pyramidal neuron in slice preparations. A) A pulse of current
was injected into the soma of the neuron to produce the action potential seen in the
somatic recording. The action potential appears delayed and with smaller ampli-
tude in the dendritic recording. B) A set of axon fibers was stimulated producing
an excitatory synaptic input. The excitatory postsynaptic potential is larger and
peaks earlier in the dendrite than in the soma. Note that the scale for the potential
is smaller than in A. (A adapted from Stuart and Sakmann, 1994; B adapted from
Stuart and Spruston, 1998.)

The attenuation and delay within a neuron are most severe when electri-
cal signals travel down the long and narrow, cable-like structures of den-
dritic or axonal branches. For this reason, the mathematical analysis of
signal propagation within neurons is called cable theory. Dendritic andcable theory
axonal cables are typically narrow enough that variations of the potential
in the radial or axial directions are negligible compared to longitudinal
variations. Therefore, the membrane potential along a neuronal cable is
expressed as a function of a single longitudinal spatial coordinate x and
time, V(x, t), and the basic problem is to solve for this potential.

Current flows within a neuron due to voltage gradients. In chapter 5, we
discussed how the potential difference across a segment of neuronal cable
is related to the longitudinal current flowing down the cable. The longi-
tudinal resistance of a cable segment of length �x and radius a is given
by multiplying the intracellular resistivity rL by �x and dividing by the
cross-sectional area, πa2, so that RL = rL�x/(πa2). The voltage drop across
this length of cable, �V, is then related to the amount of longitudinal cur-
rent flow by Ohm’s law. In chapter 5, we discussed the magnitude of this
current flow, but for the present purposes, we also need to define a sign
convention for its direction. We define currents flowing in the direction
of increasing x as positive. By this convention, the relationship between
�V and IL given by Ohm’s law is �V = −RL IL or �V = −rL�xIL/(πa2).
Solving this for the longitudinal current, we find IL = −πa2�V/(rL�x). It
is useful to take the limit of this expression for infinitesimally short cable
segments, that is as �x → 0. In this limit, the ratio of �V to �x becomes
the derivative ∂V/∂x. We use a partial derivative here, because V can also
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6.3 The Cable Equation 11

depend on time. Thus, for at any point along a cable of radius a and intra-
cellular resistivity rL, the longitudinal current flowing in the direction of
increasing x is

IL = −πa2

rL

∂V
∂x

. (6.8)

The membrane potential V(x, t) is determined by solving a partial differ-
ential equation, the cable equation, that describes how the currents enter- cable equation
ing, leaving, and flowing within a neuron affect the rate of change of the
membrane potential. To derive the cable equation, we consider the cur-
rents within the small segment shown in figure 6.6. This segment has a
radius a and a short length �x. The rate of change of the membrane po-
tential due to currents flowing into and out of this region is determined
by its capacitance. Recall from chapter 5 that the capacitance of a mem-
brane is determined by multiplying the specific membrane capacitance cm
by the area of the membrane. The cylinder of membrane shown in fig-
ure 6.6 has a surface area of 2πa�x and hence a capacitance of 2πa�xcm.
The amount of current needed to change the membrane potential at a rate
∂V/∂t is 2πa�xcm∂V/∂t.

�

�a2

rL

@V

@x

�
�
�
�
left

�

�a2

rL

@V

@x

�
�
�
�
right

2a

�x

2�a�xcm@V=@t

2�a�xie 2�a�xim

Figure 6.6: The segment of neuron used in the derivation of the cable equation.
The longitudinal, membrane, and electrode currents that determine the rate of
change of the membrane potential within this segment are denoted. The segment
has length �x and radius a. The expression involving the specific membrane ca-
pacitance refers to the rate at which charge builds up on the cell membrane gener-
ating changes in the membrane potential.

All of the currents that can change the membrane potential of the segment
being considered are shown in figure 6.6. Current can flow longitudinally
into the segment from neighboring segments, and expression 6.8 has been
used in figure 6.6 to specify the longitudinal currents at both ends of the
segment. Current can flow across the membrane of the segment we are
considering through ion and synaptic receptor channels, or through an
electrode. The contribution from ion and synaptic channels is expressed
as a current per unit area of membrane im times the surface area of the
segment, 2πa�x. The electrode current is not normally expressed as a
current per unit area, but, for the present purposes, it is convenient to
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12 Model Neurons II: Conductances and Morphology

define ie to be the total electrode current flowing into a given region of
the neuronal cable divided by the surface area of that region. The total
amount of electrode current being injected into the cable segment of figure
6.6 is then ie2πa�x. Because the electrode current is normally specified by
Ie, not by a current per unit area, all the results we obtain will ultimately be
re-expressed in terms of Ie. Following the standard convention, membrane
and synaptic currents are defined as positive when they are outward, and
electrode currents are defined as positive when they are inward.

The cable equation is derived by setting the sum of all the currents shown
in figure 6.6 equal to the current needed to charge the membrane. The
total longitudinal current entering the cylinder is the difference between
the current flowing in on the left and that flowing out on the right. Thus,

2πa�xcm
∂V
∂t

= −
(

πa2

rL

∂V
∂x

)∣∣∣∣
left

+
(

πa2

rL

∂V
∂x

)∣∣∣∣
right

− 2πa�x(im − ie) .

(6.9)

Dividing both sides of this equation by 2πa�x, we note that the right side
involves the term

1
2arL�x

[(
a2 ∂V

∂x

)∣∣∣∣
right

−
(

a2 ∂V
∂x

)∣∣∣∣
left

]
→ ∂

∂x

(
πa2

rL

∂V
∂x

)
. (6.10)

The arrow refers to the limit �x → 0, which we now take. We have moved
rL outside the derivative in this equation under the assumption that it is
not a function of position. However, the factor of a2 must remain inside
the integral unless it is independent of x. Substituting the result 6.10 into
6.9, we obtain the cable equation

cm
∂V
∂t

= 1
2arL

∂

∂x

(
a2 ∂V

∂x

)
− im + ie . (6.11)

To determine the membrane potential, equation (6.11) must be aug-
mented by appropriate boundary conditions. The boundary conditionsboundary

conditions on the
cable equation

specify what happens to the membrane potential when the neuronal ca-
ble branches or terminates. The point at which a cable branches or equiv-
alently where multiple cable segments join is called a node. At such a
branching node, the potential must be continuous, that is, the functions
V(x, t) defined along each of the segments must yield the same result
when evaluated at the x value corresponding to the node. In addition,
charge must be conserved, which means that the sum of the longitudi-
nal currents entering (or leaving) a node along all of its branches must be
zero. According to equation 6.8, the longitudinal current entering a node
is proportional to the square of the cable radius times the derivative of
the potential evaluated at that point, a2∂V/∂x. The sum of the longitudi-
nal currents entering the node, computed by evaluating these derivatives
along each cable segment at the point where they meet at the node, must
be zero.
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6.3 The Cable Equation 13

Several different boundary conditions can be imposed at the end of a ter-
minating cable segment. A reasonable condition is that no current should
flow out of the end of the cable. By equation 6.8, this means that the spatial
derivative of the potential must vanish at a termination point.

Due to the complexities of neuronal membrane currents and morpholo-
gies, the cable equation is most often solved numerically using multi-
compartmental techniques described later in this chapter. However, it is
useful to study analytic solutions of the cable equation in simple cases to
get a feel for how different morphological features such as long dendritic
cables, branching nodes, changes in cable radii, and cable ends affect the
membrane potential.

Linear Cable Theory

Before we can solve the cable equation by any method, the membrane cur-
rent im must be specified. We discussed models of various ion channel con-
tributions to the membrane current in chapter 5 and earlier in this chapter.
These models typically produce nonlinear expressions that are too com-
plex to allow analytic solution of the cable equation. The analytic solu-
tions we discuss use two rather drastic approximations; synaptic currents
are ignored, and the membrane current is written as a linear function of the
membrane potential. Eliminating synaptic currents requires us to examine
how a neuron responds to the electrode current ie. In some cases, electrode
current can mimic the effects of a synaptic conductance, although the two
are not equivalent. Nevertheless, studying responses to electrode current
allows us to investigate the effects of different morphologies on membrane
potentials.

Typically, a linear approximation for the membrane current is only valid
if the membrane potential stays within a limited range, for example close
to the resting potential of the cell. The resting potential is defined as the
potential where no net current flows across the membrane. Near this po-
tential, we approximate the membrane current per unit area as

im = (V − Vrest)/rm (6.12)

where Vrest is the resting potential, and the factor of rm follows from the
definition of the membrane resistance. It is convenient to define v as the
membrane potential relative to the resting potential, v = V − Vrest, so that
im = v/rm.

If the radii of the cable segments used to model a neuron are constant ex-
cept at branches and abrupt junctions, the factor a2 in equation 6.11 can be
taken out of the derivative and combined with the prefactor 1/2arL to pro-
duce a factor a/2rL that multiplies the second spatial derivative. With this
modification and use of the linear expression for the membrane current,
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14 Model Neurons II: Conductances and Morphology

the cable equation for v is

cm
∂v

∂t
= a

2rL

∂2v

∂x2 − v

rm
+ ie . (6.13)

It is convenient to multiply this equation by rm, turning the factor that
multiplies the time derivative on the left side into the membrane time con-
stant τm = rmcm. This also changes the expression multiplying the spatial
second derivative on the right side of equation 6.13 to arm/2rL. This factor
has the dimensions of length squared, and it defines a fundamental length
constant for a segment of cable of radius a, the electrotonic length,λ electrotonic

length
λ =

√
arm

2rL
. (6.14)

Using the values rm = 1 M�·mm2 and rL = 1 k�·mm, a cable of radius a =
2 µm has an electrotonic length of 1 mm. A segment of cable with radius
a and length λ has a membrane resitance that is equal to its longitudinal
resistance, as can be seen from equation 6.14,Rλ

Rλ = rm

2πaλ
= rLλ

πa2 . (6.15)

The resistance Rλ defined by this equation is a useful quantity that enters
into a number of calculations.

Expressed in terms of τm and λ, the cable equation becomes

τm
∂v

∂t
= λ2 ∂2v

∂x2 − v + rmie . (6.16)

Equation 6.16 is a linear equation for v similar to the diffusion equation,
and it can be solved by standard methods of mathematical analysis. The
constants τm and λ set the scale for temporal and spatial variations in the
membrane potential. For example, the membrane potential requires a time
of order τm to settle down after a transient, and deviations in the mem-
brane potential due to localized electrode currents decay back to zero over
a length of order λ.

The membrane potential is affected both by the form of the cable equation
and by the boundary conditions imposed at branching nodes and termi-
nations. To isolate these two effects, we consider two idealized cases: an
infinite cable that does not branch or terminate, and a single branching
node that joins three semi-infinite cables. Of course, real neuronal cables
are not infinitely long, but the solutions we find are applicable for long
cables far from their ends. We determine the potential for both of these
morphologies when current is injected at a single point. Because the equa-
tion we are studying is linear, the membrane potential for any other spatial
distribution of electrode current can be determined by summing solutions
corresponding to current injection at different points. The use of point
injection to build more general solutions is a standard method of linear
analysis. In this context, the solution for a point source of current injection
is called a Green’s function.Green’s function
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6.3 The Cable Equation 15

An Infinite Cable

In general, solutions to the linear cable equation are functions of both po-
sition and time. However, if the current being injected is held constant, the
membrane potential settles to a steady-state solution that is independent
of time. Solving for this time-independent solution is easier than solving
the full time-dependent equation, because the cable equation reduces to
an ordinary differential equation in the static case,

λ2 d2v

dx2 = v − rmie . (6.17)

For the localized current injection we wish to study, ie is zero everywhere
except within a small region of size �x around the injection site, which we
take to be x = 0. Eventually we will let �x → 0. Away from the injection
site, the linear cable equation is λ2d2v/dx2 = v, which has the general so-
lution v(x) = B1 exp(−x/λ) + B2 exp(x/λ) with as yet undetermined coef-
ficients B1 and B2. These constant coefficients are determined by imposing
boundary conditions appropriate to the particular morphology being con-
sidered. For an infinite cable, on physical grounds, we simply require that
the solution does not grow without bound when x → ±∞. This means
that we must choose the solution with B1 = 0 for the region x < 0 and the
solution with B2 = 0 for x > 0. Because the solution must be continuous at
x = 0, we must require B1 = B2 = B, and these two solutions can be com-
bined into a single expression v(x) = B exp(−|x|/λ). The remaining task
is to determine B, which we do by balancing the current injected with the
current that diffuses away from x = 0.

In the small region of size �x around x = 0 where the current is injected,
the full equation λ2d2v/dx2 = v − rmie must be solved. If the total amount
of current injected by the electrode is Ie, the current per unit area injected
into this region is Ie/2πa�x. This grows without bound as �x → 0. The
first derivative of the membrane potential v(x) = B exp(−|x|/λ) is discon-
tinuous at the point x = 0. For small �x, the derivative at one side of the
region we are discussing (at x = −�x/2) is approximately B/λ, while at
the other side (at x = +�x/2) it is −B/λ. In these expressions, we have
used the fact that �x is small to set exp(−|�x|/2λ) ≈ 1. For small �x, the
second derivative is approximately the difference between these two first
derivatives divided by �x, which is −2B/λ�x. We can ignore the term v in
the cable equation within this small region, because it is not proportional
to 1/�x. Substituting the expressions we have derived for the remaining
terms in the equation, we find that −2λ2B/λ�x = −rm Ie/2πa�x, which
means that B = IeRλ/2, using Rλ from equation 6.15. Thus, the membrane
potential for static current injection at the point x = 0 along an infinite
cable is

v(x) = IeRλ

2
exp

(
−|x|

λ

)
. (6.18)

According to this result, the membrane potential away from the site of
current injection (x = 0) decays exponentially with length constant λ (see
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Figure 6.7: The potential for current injection at the point x = 0 along an infinite
cable. A) Static solution for a constant electrode current. The potential decays
exponentially away from the site of current injection. B) Time-dependent solution
for a δ function pulse of current. The potential is described by a Gaussian function
centered at the site of current injection that broadens and shrinks in amplitude
over time.

figure 6.7A). The ratio of the membrane potential at the injection site to
the magnitude of the injected current is called the input resistance of the
cable. The value of the potential at x = 0 is IeRλ/2 indicating that the
infinite cable has an input resistance of Rλ/2. Each direction of the cable
acts like a resistance of Rλ and these two act in parallel to produce a total
resistance half as big. Note that each semi-infinite cable extending from
the point x = 0 has a resistance equal to a finite cable of length λ.

We now consider the membrane potential produced by an instantaneous
pulse of current injected at the point x = 0 at the time t = 0. Specifically,
we consider ie = Ieδ(x)δ(t)/2πa. We do not derive the solution for this
case (see Tuckwell, 1988, for example), but simply state the answer

v(x, t) = IeRλ√
4πλ2t/τm

exp
(
−τmx2

4λ2t

)
exp

(
− t

τm

)
. (6.19)

In this case, the spatial dependence of the potential is determined by a
Gaussian, rather than an exponential function. The Gaussian is always
centered around the injection site, so the potential is always largest at
x = 0. The width of the Gaussian curve around x = 0 is proportional to
λ
√

t/τm. As expected, λ sets the scale for this spatial variation, but the
width also grows as the square root of the time measured in units of τm.
The factor (4πλ2t/τm)−1/2 in equation 6.19 preserves the total area under
this Gaussian curve, but the additional exponential factor exp(−t/τm) re-
duces the integrated amplitude over time. As a result, the spatial depen-
dence of the membrane potential is described by a spreading Gaussian
function with an integral that decays exponentially (figure 6.7B).
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Figure 6.8: Time-dependence of the potential on an infinite cable in response to a
pulse of current injected at the point x = 0 at time t = 0. A) The potential is always
largest at the site of current injection. At any fixed point, it reaches its maximum
value as a function of time later for measurement sites located further away from
the current source. B) Movement of the temporal maximum of the potential. The
solid line shows the relationship between the measurement location x, and the time
tmax when the potential reaches its maximum value at that location. The dashed
line corresponds to a constant velocity 2λ/τm.

Figure 6.8 illustrates the properties of the solution 6.19 plotted at various
fixed positions as a function of time. Figure 6.8A shows that the membrane
potential measured further from the injection site reaches its maximum
value at later times. It is important to keep in mind that the membrane
potential spreads out from the region x = 0, it does not propagate like a
wave. Nevertheless, we can define a type of ‘velocity’ for this solution by
computing the time tmax when the maximum of the potential occurs at a
given spatial location. This is done by setting the time derivative of v(x, t)
in equation 6.19 to zero, giving

tmax = τm

4

(√
1 + 4(x/λ)2 − 1

)
. (6.20)

For large x, tmax ≈ xτm/2λ corresponding to a velocity of 2λ/τm. For
smaller x values, the location of the maximum moves faster than this ‘ve-
locity’ would imply (figure 6.8B).

An Isolated Branching Node

To illustrate the effects of branching on the membrane potential in re-
sponse to a point source of current injection, we consider a single isolated
junction of three semi-infinite cables as shown in the bottom panels of fig-
ure 6.9. For simplicity, we discuss the solution for static current injection
at a point, but the results generalize directly to the case of time-dependent
currents. We label the potentials along the three segments by v1, v2, and
v3, and label the distance outward from the junction point along any given
segment by the coordinate x. The electrode injection site is located a dis-
tance y away from the junction along segment 2. The solution for the three
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segments is then

v1(x) = p1 IeRλ1 exp(−x/λ1 − y/λ2)

v2(x) = IeRλ2

2
[
exp(−|y − x|/λ2) + (2p2 − 1)exp(−(y + x)/λ2)

]
v3(x) = p3 IeRλ3 exp(−x/λ3 − y/λ2) , (6.21)

where, for i = 1, 2, and 3,

pi = a3/2
i

a3/2
1 + a3/2

2 + a3/2
3

, λi =
√

rmai

2rL
, and Rλi = rLλi

πa2
i

. (6.22)

Note that the distances x and y appearing in the exponential functions are
divided by the electrotonic length of the segment along which the poten-
tial is measured or the current is injected. This solution satisfies the ca-
ble equation, because it is constructed by combining solutions of the form
6.18. The only term that has a discontinuous first derivative within the
range being considered is the first term in the expression for v2, and this
solves the cable equation at the current injection site because it is identical
to 6.18. We leave it to the reader to verify that this solution satisfies the
boundary conditions v1(0) = v2(0) = v3(0) and

∑
a2

i ∂vi/∂x = 0.

Figure 6.9 shows the potential near a junction where a cable of radius 2 µ

breaks into two thinner cables of radius 1 µ. In figure 6.9A, current is in-
jected along the thicker cable, while in figure 6.9B it is injected along one
of the thinner branches. In both cases, the site of current injection is one
electrotonic length constant away from the junction. The two daughter
branches have little effect on the fall-off of the potential away from the
electrode site in figure 6.9A. This is because the thin branches do not rep-
resent a large current sink. The thick branch has a bigger effect on the
attenuation of the potential along the thin branch receiving the electrode
current in figure 6.9B. This can be seen as an asymmetry in the fall-off of
the potential on either side of the electrode. Loading by the thick cable
segment contributes to a quite severe attenuation between the two thin
branches in figure 6.9B. Comparison of figures 6.9A and B reveals a gen-
eral feature of static attenuation in a passive cable. Attenuation near the
soma due to potentials arising in the periphery is typically greater than
attenuation in the periphery due to potentials arising near the soma.

The Rall Model

The infinite and semi-infinite cables we have considered are clearly math-
ematical idealizations. We now turn to a model neuron introduced by Rall
(1959, 1977) that, while still highly simplified, captures some of the im-
portant elements that affect the responses of real neurons. Most neurons
receive their synaptic inputs over complex dendritic trees. The integrated
effect of these inputs is usually measured from the soma, and the spike-
initiation region of the axon that determines whether the neuron fires an
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Figure 6.9: The potentials along the three branches of an isolated junction for a
current injection site one electrotonic length constant away from the junction. The
potential v is plotted relative to vmax, which is v at the site of the electrode. The thick
branch has a radius of 2 µ and an electrotonic length constant λ = 1 mm, and the
two thin branches have radii of 1 µ and λ = 2−1/2 mm. A) Current injection along
the thick branch. The potentials along both of the thin branches, shown by the
solid curve over the range x > 0, are identical. The solid curve over the range x < 0
shows the potential on the thick branch where current is being injected. B) Current
injection along one of the thin branches. The dashed line shows the potential along
the thin branch where current injection does not occur. The solid line shows the
potential along the thick branch for x < 0 and along the thin branch receiving the
injected current for x > 0.

action potential is typically located near the soma. In Rall’s model, a com-
pact soma region (represented by one compartment) is connected to a sin-
gle equivalent cylindrical cable that replaces the entire dendritic region of
the neuron (see the schematics in figures 6.10 and 6.12). The critical feature
of the model is the choice of the radius and length for the equivalent cable
to best match the properties of the dendritic structure being approximated.

The radius a and length L of the equivalent cable are determined by match-
ing two important elements of the full dendritic tree. These are its average
length in electrotonic units, which determines the amount of attenuation,
and the total surface area, which determines the total membrane resistance
and capacitance. The average electrotonic length of a dendrite is deter-
mined by considering direct paths from the soma to the terminals of the
dendrite. The electrotonic lengths for these paths are constructed by mea-
suring the distance traveled along each of the cable segments traversed
in units of the electrotonic length constant for that segment. In general,
the total electrotonic length measured by summing these electrotonic seg-
ment lengths depends on which terminal of the tree is used as the end
point. However, an average value can be used to define an electrotonic
length for the full dendritic structure. The length L of the equivalent ca-
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20 Model Neurons II: Conductances and Morphology

ble is then chosen so that L/λ is equal to this average electrotonic length,
where λ is the length constant for the equivalent cable. The radius of the
equivalent cable, which is needed to compute λ, is determined by setting
the surface area of the equivalent cable, 2πaL, equal to the surface area of
the full dendritic tree.

Under some restrictive circumstances the equivalent cable reproduces the
effects of a full tree exactly. Among these conditions is the requirement
a3/2

1 = a3/2
2 + a3/2

3 on the radii of any three segments being joined at a nodes
within the tree. Note from equation 6.22 that this conditions makes p1 =
p2 + p3 = 1/2. However, even when the so-called 3/2 law is not exact,
the equivalent cable is an extremely useful and often reasonably accurate
simplification.

Figures 6.10 and 6.12 depict static solutions of the Rall model for two dif-
ferent recording configurations expressed in the form of equivalent cir-
cuits. The equivalent circuits are an intuitive way of describing the so-
lution of the cable equation. In figure 6.10, constant current is injected
into the soma. The circuit diagram shows an arrangement of resistors
that replicates the results of solving the time-independent cable equation
(equation 6.17) for the purposes of voltage measurements at the soma,
vsoma, and at a distance x along the equivalent cable, v(x). The values
for these resistances (and similarly the values of R3 and R4 given below)
are set so that the equivalent circuit reconstructs the solution of the ca-
ble equation obtained using standard methods (see for example Tuckwell,
1988). Rsoma is the membrane resistance of the soma, and

R1 = Rλ (cosh (L/λ) − cosh ((L − x)/λ))

sinh (L/λ)
(6.23)

R2 = Rλ cosh ((L − x)/λ)

sinh (L/λ)
. (6.24)

Expressions for vsoma and v(x), arising directly from the equivalent circuit
using standard rules of circuit analysis (see the Mathematical Appendix),
are given at the right side of figure 6.10.

The input resistance of the Rall model neuron, as measured from the soma,
is determined by the somatic resistance Rsoma acting in parallel with the
effective resistance of the cable and is (R1 + R2)Rsoma/(R1 + R2 + Rsoma).
The effective resistance of the cable, R1 + R2 = Rλ/ tanh(L), approaches
the value Rλ when L � λ. The effect of lengthening a cable saturates when
it gets much longer than its electrotonic length. The voltage attenuation
caused by the cable is defined as the ratio of the dendritic to somatic po-
tentials, and it is given in this case by

v(x)

vsoma
= R2

R1 + R2
= cosh ((L − x)/λ)

cosh (L/λ)
. (6.25)

This result is plotted in figure 6.11.

Peter Dayan and L.F. Abbott Draft: December 17, 2000



6.3 The Cable Equation 21

v(x)

R2

R1

Rsoma

Ie

Ie

x

v
vsoma =

Ie(R1 + R2)Rsoma

R1 + R2 + Rsomavsoma

L

vsoma

v(x)  =
IeR2Rsoma

R1 + R2 + Rsoma

v

!

Figure 6.10: The Rall model with static current injected into the soma. The
schematic at left shows the recording set up. The potential is measured at the
soma and at a distance x along the equivalent cable. The central diagram is the
equivalent circuit for this case, and the corresponding formulas for the somatic
and dendritic voltages are given at the right. The symbols at the bottom of the re-
sistances Rsoma and R2 indicate that these points are held at zero potential. Rsoma
is the membrane resistance of the soma, and R1 and R2 are the resistances given in
equations 6.23 and 6.24.
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Figure 6.11: Voltage and current attenuation for the Rall model. The attenuation
plotted is the ratio of the dendritic to somatic voltages for the recording setup
of figure 6.10, or the ratio of the somatic current to the electrode current for the
arrangement in figure 6.12. Attenuation is plotted as a function of x/λ for different
equivalent cable lengths.

Figure 6.12 shows the equivalent circuit for the Rall model when current
is injected at a location x along the dendritic tree and the soma is clamped
at vsoma = 0 (or equivalently V = Vrest). The equivalent circuit can be used
to determine the current entering the soma and the voltage at the site of
current injection. In this case, the somatic resistance is irrelevant because
the soma is clamped at its resting potential. The other resistances are

R3 = Rλ sinh (x/λ) (6.26)

and

R4 = Rλ sinh (x/λ) cosh ((L − x)/λ)

cosh (L/λ) − cosh ((L − x)/λ)
. (6.27)

The input resistance for this configuration, as measured from the dendrite,
is determined by R3 and R4 acting in parallel and is R3R4/(R3 + R4) =
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Figure 6.12: The Rall model with static current injected a distance x along the
equivalent cable while the soma is clamped at its resting potential. The schematic
at left shows the recording set up. The potential at the site of the current injection
and the current entering the soma are measured. The central diagram is the equiv-
alent circuit for this case, and the corresponding formulas for the somatic current
and dendritic voltage are given at the right. Rsoma is the membrane resistance of
the soma, and R3 and R4 are the resistances given in equations 6.26 and 6.27.

Rλ sinh(x/λ) cosh((L − x)/λ)/ cosh(L/λ). When L and x are both much
larger than λ, this approaches the limiting value Rλ. The current attenua-
tion is defined as the ratio of the somatic to electrode currents and is given
by

Isoma

Ie
= R4

R3 + R4
= cosh ((L − x)/λ)

cosh (L/λ)
. (6.28)

The inward current attenuation (plotted in figure 6.11) for the recording
configuration of figure 6.12 is identical to the outward voltage attenuation
for figure 6.10 given by equation 6.25. Equality of the voltage attenuation
measured in one direction and the current attenuation measured in the
opposite direction is a general feature of linear cable theory.

The Morphoelectrotonic Transform

The membrane potential for a neuron of complex morphology is obviously
much more difficult to compute than the simple cases we have considered.
Fortunately, efficient numerical schemes (discussed later in this chapter)
exist for generating solutions for complex cable structures. However, even
when the solution is known, it is still difficult to visualize the effects of
a complex morphology on the potential. Zador, Agmon-Snir, and Segev
(1995; see also Tsai et al., 1994) devised a scheme for depicting the attenua-
tion and delay of the membrane potential for complex morphologies. The
voltage attenuation, as plotted in figure 6.11, is not an appropriate quan-
tity to represent geometrically because it is not additive. Consider three
points along a cable satisfying x1 > x2 > x3. The attenuation between x1
and x3 is the product of the attenuation from x1 to x2 and from x2 to x3,
v(x1)/v(x3) = (v(x1)/v(x2))(v(x2)/v(x3)). An additive quantity can be
obtained by taking the logarithm of the attenuation, due to the identity
ln(v(x1)/v(x3)) = ln(v(x1)/v(x2)) + ln(v(x2)/v(x3)). The morphoelectro-
tonic transform is a diagram of a neuron in which the distance betweenmorphoelectrotonic

transform
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any two points is determined by the logarithm of the ratio of the mem-
brane potentials at these two locations, not by the actual size of the neuron.

vv

anatomy attenuation (in) delay (in)

100 µm 10 ms1=e

Figure 6.13: The morphoelectrotonic transform of a cortical neuron. The left panel
is a normal drawing of the neuron. The central panel is a diagram in which the
distance between any point and the soma is proportional to the logarithm of the
steady-state attenuation between the soma and that point for static current injected
at the terminals of the dendrites. The scale bar denotes the distance corresponding
to an attenuation of exp(−1). In the right panel, the distance from the soma to a
given point is proportional to the inward delay, which is the centroid of the soma
potential minus the centroid at the periphery when a pulse of current is injected
peripherally. The arrows in the diagrams indicate that the reference potential in
these cases is the somatic potential. (Adapted from Zador et al, 1995.)

Another morphoelectrotonic transform can be used to indicate the amount
of delay in the voltage waveform produced by a transient input current.
The morphoelectrotonic transform uses a different definition of delay than
that used in Figure 6.8B. The delay between any two points is defined as
the difference between the centroid, or center of ‘gravity’, of the voltage
response at these points. Specifically, the centroid at point x is defined
as

∫
dt tv(x, t)/

∫
dt v(x, t). Like the log-attenuation, the delay between any

two points on a neuron is represented in the morphoelectrotonic transform
as a distance.

Morphoelectrotonic transforms of a pyramidal cell from layer 5 of cat vi-
sual cortex are shown in figures 6.13 and 6.14. The left panel of figure
6.13 is a normal drawing of the neuron being studied, the middle panel
shows the steady-state attenuation, and the right panel shows the delay.
The transformed diagrams correspond to current being injected peripher-
ally, with somatic potentials being compared to dendritic potentials. These
figures indicate that, for potentials generated in the periphery, the apical
and basal dendrites are much more uniform than the morphology would
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suggest.

The small neuron diagram at the upper left of figure 6.14 shows attenua-
tion for the reverse situation from figure 6.13, when DC current is injected
into the soma and dendritic potentials are compared with the somatic po-
tential. Note how much smaller this diagram is than the one in the central
panel of figure 6.13. This illustrates the general feature mentioned previ-
ously that potentials are attenuated much less in the outward than in the
inward direction. This is because the thin dendrites provide less of a cur-
rent sink for potentials arising from the soma than the soma provides for
potentials coming from the dendrites.

100 Hz 500 Hz

0 Hz

1=e

Figure 6.14: Morphoelectrotonic transforms of the same neuron as in figure 6.13
but showing the outward log-attenuation for DC and oscillating input currents.
Distances in these diagrams are proportional to the logarithm of the amplitude of
the voltage oscillations at a given point divided by the amplitude of the oscillations
at the soma when a sinusoidal current is injected into the soma. The upper left
panel corresponds to DC current injection, the lower left panel to sinusoidal cur-
rent injection at a frequency of 100 Hz, and the right panel to an injection frequency
of 500 Hz. The scale bar denotes the distance corresponding to an attenuation of
exp(−1). (Adapted from Zador et al, 1995.)

The capacitance of neuronal cables causes the voltage attenuation for time-
dependent current injection to increase as a function of frequency. Figure
6.14 compares the attenuation of dendritic potentials relative to the so-
matic potential when DC or sinusoidal current of two different frequen-
cies is injected into the soma. Clearly, attenuation increases dramatically
as a function of frequency. Thus, a neuron that appears electrotonically
compact for static or low frequency current injection may be not compact
when higher frequencies are considered. For example, action potential
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waveforms, that correspond to frequencies around 500 Hz, are much more
severely attenuated within neurons than slower varying potentials.

6.4 Multi-Compartment Models

The cable equation can only be solved analytically in relatively simple
cases. When the complexities of real membrane conductances are in-
cluded, the membrane potential must be computed numerically. This is
done by splitting the neuron being modeled into separate regions or com-
partments and approximating the continuous membrane potential V(x, t)
by a discrete set of values representing the potentials within the differ-
ent compartments. This assumes that each compartment is small enough
so that there is negligible variation of the membrane potential across it.
The precision of such a multi-compartmental description depends on the
number of compartments used and on their size relative to the length con-
stants that characterize their electrotonic compactness. Figure 6.15 shows
a schematic diagram of a cortical pyramidal neuron, along with a series
of compartmental approximations of its structure. The number of com-
partments used can range from thousands, in some models, to one, for the
description at the extreme right of figure 6.15.

Figure 6.15: A sequence of approximations of the structure of a neuron.
The neuron is represented by a variable number of discrete compartments
each representing a region that is described by a single membrane poten-
tial. The connectors between compartments represent resistive couplings.
The simplest description is the single-compartment model furthest to the
right. (Neuron diagram from Haberly, 1990.)

In a multi-compartment model, each compartment has its own membrane
potential Vµ (where µ labels compartments), and its own gating variables
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that determine the membrane current for compartment µ, iµm. Each mem-
brane potential Vµ satisfies an equation similar to 6.1 except that the com-
partments couple to their neighbors in the multi-compartment structure
(figure 6.16). For a non-branching cable, each compartment is coupled to
two neighbors, and the equations for the membrane potentials of the com-
partments are

cm
dVµ

dt
= −iµm + Iµ

e

Aµ

+ gµ,µ+1(Vµ+1 − Vµ) + gµ,µ−1(Vµ−1 − Vµ) . (6.29)

Here Iµ
e is the total electrode current flowing into compartment µ, and

Aµ is its surface area. Compartments at the ends of a cable have only
one neighbor and thus only a single term replacing the last two terms in
equation 6.29. For a compartment where a cable branches in two, there are
three such terms corresponding to coupling of the branching node to the
first compartment in each of the daughter branches.
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Figure 6.16: A multi-compartment model of a neuron. The expanded region
shows three compartments at a branch point where a single cable splits into two.
Each compartment has membrane and synaptic conductances, as indicated by the
equivalent electrical circuit, and the compartments are coupled together by resis-
tors. Although a single resistor symbol is dranw, note that gµ,µ′ is not necessarily
equal to gµ′,µ.

The constant gµ,µ′ that determines the resistive coupling from neighboring
compartment µ′ to compartment µ is determined by computing the cur-
rent that flows from one compartment to its neighbor due to Ohm’s law.
For simplicity, we begin by computing the coupling between two com-
partment that have the same length L and radius a. Using the results of
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chapter 5, the resistance between two such compartments, measured from
their centers, is the intracellular resistivity, rL times the distance between
the compartment centers divided by the cross-sectional area, rL L/πa2. The
total current flowing from compartment µ + 1 to compartment µ is then
πa2(Vµ+1 − Vµ)/rL L. Equation 6.29 for the potential within a compart-
ment µ refers to currents per unit area of membrane. Thus, we must divide
the total current from compartment µ′ by the surface area of compartment
µ, 2πaL. Thus, we find that gµ,µ′ = a/(2rL L2).

The value of gµ,µ′ is given by a more complex expression if the two neigh-
boring compartments have different lengths or radii. This can occur when
a tapering cable is approximated by a sequence of cylindrical compart-
ments, or at a branch point where a single compartment connects with
two other compartments as in figure 6.16. In either case, suppose that com-
partment µ has length Lµ and radius aµ and compartment µ′ has length
Lµ′ and radius aµ′ . The resistance between these two compartments is the
sum of the two resistances from the middle of each compartment to the
junction between them, rL Lµ/(2πa2

µ) + rL Lµ′/(2πa2
µ′ ). To compute gµ,µ′

we invert this expression and divide the result by the total surface area of
compartment µ, 2πaµLµ, which gives

gµ,µ′ = aµa2
µ′

rL Lµ(Lµa2
µ′ + Lµ′ a2

µ)
. (6.30)

Equations 6.29 for all of the compartments of a model determine the mem-
brane potential throughout the neuron with a spatial resolution given
by the compartment size. An efficient method for integrating the cou-
pled multi-compartment equations is discussed in appendix B. Using this
scheme, models can be integrated numerically with excellent efficiency,
even those involving large numbers of compartments. Such integration
schemes are built into neuron simulation software packages such as Neu-
ron and Genesis.

Action Potential Propagation Along an Unmyelinated Axon

As an example of multi-compartment modeling, we simulate the propa-
gation of an action potential along an unmyelinated axon. In this model,
each compartment has the same membrane conductances as the single-
compartment Hodgkin-Huxley model discussed in chapter 5. The dif-
ferent compartments are joined together in a single non-branching cable
representing a length of axon. Figure 6.17 shows an action potential prop-
agating along an axon modeled in this way. The action potential extends
over more than 1 mm of axon and it travels about 2 mm in 5 ms for a speed
of 0.4 m/s.

Although action potentials typically move along axons in a direction out-
ward from the soma (called orthodromic propagation), the basic process
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Figure 6.17: Propagation of an action potential along a multi-compartment model
axon. The upper panel shows the multi-compartment representation of the axon
with 100 compartments. The axon segment shown is 4 mm long and has a radius
of 1 µm. An electrode current sufficient to initiate action potentials is injected at
the point marked Ie. The panel beneath this shows the membrane potential as a
function of position along the axon, at t = 9.75 ms. The spatial position in this
panel is aligned with the axon depicted above it. The action potential is moving
to the right. The bottom two panels show the membrane potential as a function
of time at the two locations denoted by the arrows and symbols V1 and V2 in the
upper panel.

of action potential propagation does not favor one direction over the other.
Propagation in the reverse direction, called antidromic propagation, isorthodromic;

antidromic
propagation

possible under certain stimulation conditions. For example, if an axon is
stimulated in the middle of its length, action potentials will propagate in
both directions away from the point of stimulation. Once an action poten-
tial starts moving along an axon, it does not generate a second action po-
tential moving in the opposite direction because of refractory effects. The
region in front of a moving action potential is ready to generate a spike
as soon as enough current moves longitudinally down the axon from the
region currently spiking to charge the next region up to spiking threshold.
However, Na+ conductances in the region just behind the moving action
potential are still partially inactivated, so this region cannot generated an-
other spike until after a recovery period. By the time the trailing region
has recovered, the action potential has moved too far away to generate a
second spike.

Refractoriness following spiking has a number of other consequences for
action potential propagation. Two action potentials moving in oppo-
site directions that collide annihilate each other because they cannot pass
through each other’s trailing refractory regions. Refractoriness also keeps
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action potentials from reflecting off the ends of axon cables, which avoids
the impedance matching needed to prevent reflection from the ends of or-
dinary electrical cables.

The propagation velocity for an action potential along an unmyelinated
axon is proportional to the ratio of the electrotonic length constant to the
membrane time constant, λ/τm = (a/(c2

mrLrm))1/2. This is proportional to
the square root of the axon radius. The square-root dependence of the
propagation speed on the axon radius means that thick axons are required
to achieve high action potential propagation speeds, and the squid giant
axon is an extreme example. Action potential propagation can also be sped
up by covering the axon with an insulating myelin wrapping, as we dis-
cuss next.

Propagation Along a Myelinated Axon

Many axons in vertebrates are covered with an insulating sheath of
myelin, except at gaps, called the nodes of Ranvier, where there is a high
density of fast voltage-dependent Na+ channels and other ion channels
(see figure 6.18A). The myelin sheath consists of many layers of (glial cell)
membrane wrapped around the axon. This gives the myelinated region of
the axon a very high membrane resistance and a small membrane capaci-
tance. This results in what is called saltatory propagation, in which mem- saltatory

propagationbrane potential depolarization is transferred passively down the myelin-
covered sections of the axon, and action potentials are actively regenerated
at the nodes of Ranvier. The cell membrane at the nodes of Ranvier has a
high density of fast Na+ channels. Figure 6.18A shows an equivalent cir-
cuit for a multi-compartment model of a myelinated axon.

We can compute the capacitance of a myelin-covered axon by treating the
myelin sheath as an extremely thick cell membrane. Consider the geom-
etry shown in the cross-sectional diagram of figure 6.18B. The myelin
sheath extends from the radius a1 of the axon core to the outer radius
a2. For calculational purposes, we can think of the myelin sheath as be-
ing made of a series of thin concentric cylindrical shells. The capacitances
of these shells combine in series to make up the full capacitance of the
myelinated axon. If a single layer of cell membrane has thickness dm and
capacitance per unit area cm, the capacitance of a cylinder of membrane
of radius a, thickness �a, and length L is cm2πdmLa/�a. According to the
rule for capacitors in series, the inverse of the total capacitance is obtained
by adding the inverses of the individual capacitances. The capacitance of a
myelinated cylinder of length L and the dimensions in figure 6.18B is then
obtained by taking the limit �a → 0 and integrating,

1
Cm

= 1
cm2πdmL

∫ a2

a1

da
a

= ln(a2/a1)

cm2πdmL
. (6.31)
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Figure 6.18: A myelinated axon. A) The equivalent circuit for a multi-
compartment representation of a myelinated axon. The myelinated segments are
represented by a membrane capacitance, a longitudinal resistance, and a leakage
conductance. The nodes of Ranvier also contain a voltage-dependent Na+ conduc-
tance. B) A cross-section of a myelinated axon consisting of a central axon core of
radius a1 and a myelin sheath making the outside radius a2.

A re-evaluation of the derivation of the linear cable equation earlier in
this chapter indicates that the equation describing the membrane potential
along the myelinated sections of an axon, in the limit of infinite resistance
for the myelinated membrane and with ie = 0, is

Cm

L
∂v

∂t
= πa2

1

rL

∂2v

∂x2 . (6.32)

This is equivalent to the diffusion equation, ∂v/∂t = D∂2v/∂x2 with diffu-
sion constant D = πa2

1L/(CmrL) = a2
1 ln(a2/a1)/(2cmrLdm). It is interesting

to compute the inner core radius, a1, that maximizes this diffusion con-
stant for a fixed outer radius a2. Setting the derivative of D with respect to
a1 to zero gives the optimal inner radius a1 = a2 exp(−1/2) or a1 ≈ 0.6a2.
An inner core fraction of 0.6 is typical for myelinated axons. This indi-
cates that, for a given outer radius, the thickness of myelin maximizes the
diffusion constant along the myelinated axon segment.

At the optimal ratio of radii, D = a2
2/(4ecmrLdm), which is proportional to

the square of the axon radius. Because of the form of the diffusion equation
it obeys with this value of D, v can be written as a function of x/a2 and t.
This scaling implies that the propagation velocity for a meylinated cable
is proportional to a2, that is, to the axon radius not its square root as in
the case of an unmyelinated axon. Increasing the axon radius by a factor
of four, for example, increases the propagation speed of an unmyelinated
cable only by a factor of two, while it increases the speed for a myelinated
cable fourfold.
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6.5 Chapter Summary

We continued the discussion of neuron modeling that began in chapter 5
by considering models with more complete sets of conductances and tech-
niques for incorporating neuronal morphology. We introduced A-type K+,
transient Ca2+, and Ca2+-dependent K+ conductances and noted their ef-
fect on neuronal activity. The cable equation and its linearized version
were introduced to examine the effects of morphology on membrane po-
tentials. Finally, multi-compartment models were presented and used to
discuss propagation of action potentials along unmyelinated and myeli-
nated axons.

6.6 Appendices

A) Gating Functions for Conductance-Based Models

Connor-Stevens Model

The rate functions used for the gating variables n, m, and h of the Connor-
Stevens model, in units of 1/ms with V in units of mV, are

αm = 0.38(V + 29.7)

1 − exp[−0.1(V + 29.7)]
βm = 15.2 exp[−0.0556(V + 54.7)]

αh = 0.266 exp[−0.05(V + 48)] βh = 3.8/(1 + exp[−0.1(V + 18)])

αn = 0.02(V + 45.7)

1 − exp[−.1(V + 45.7)]
βn = 0.25 exp[−0.0125(V + 55.7)] . (6.33)

The A-current is described directly in terms of the asymptotic values and
τ functions for its gating variables (with τa and τb in units of ms and V in
units of mV),

a∞ =
[

0.0761 exp[0.0314(V + 94.22)]
1 + exp[0.0346(V + 1.17)]

]1/3

(6.34)

τa = 0.3632 + 1.158/(1 + exp[0.0497(V + 55.96)]) (6.35)

b∞ =
[

1
1 + exp[0.0688(V + 53.3)]

]4

(6.36)

and

τb = 1.24 + 2.678/(1 + exp[0.0624(V + 50)]) . (6.37)
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Transient Ca2+ Conductance

The gating functions used for the variables M and H in the transient Ca2+
conductance model we discussed, with V in units of mV and τM and τH in
ms, are

M∞ = 1
1 + exp (−(V + 57)/6.2)

(6.38)

H∞ = 1
1 + exp ((V + 81)/4)

(6.39)

τM = 0.612 + (
exp (−(V + 132)/16.7) + exp ((V + 16.8)/18.2))

)−1

(6.40)

and

τH =
{

exp ((V + 467)/66.6) if V < −80 mV
28 + exp (−(V + 22)/10.5) if V ≥ −80 mV .

(6.41)

Ca2+-dependent K+ Conductance

The gating functions used for the Ca2+-dependent K+ conductance we dis-
cussed, with V in units of mV and τc in ms, are

c∞ =
(

[Ca2+]
[Ca2+] + 3µM

)
1

1 + exp(−(V + 28.3)/12.6)
(6.42)

and

τc = 90.3 − 75.1
1 + exp(−(V + 46)/22.7)

. (6.43)

B) Integrating Multi-Compartment Models

Multi-compartmental models are defined by a coupled set of differential
equations (equation 6.29), one for each compartment. There are also gat-
ing variables for each compartment, but these only involve the membrane
potential (and possibly Ca2+ concentration) within that compartment, and
integrating their equations can be handled as in the single-compartment
case using the approach discussed in appendix B of chapter 5. Integrating
the membrane potentials for the different compartments is more complex
because they are coupled to each other.

Equation 6.29 for the membrane potential within compartment µ can be
written in the form

dVµ

dt
= AµVµ−1 + BµVµ + CµVµ+1 + Dµ (6.44)
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where

Aµ = c−1
m gµ,µ−1 , Bµ = −c−1

m (
∑

i

gµ

i + gµ,µ+1 + gµ,µ−1) ,

Cµ = c−1
m gµ,µ+1 , and Dµ = c−1

m (
∑

i

gµ

i Ei + Iµ
e /Aµ) . (6.45)

Note that the gating variables and other parameters have been absorbed
into the values of Aµ, Bµ, Cµ, and Dµ in this equation. Equation 6.44, with
µ running over all of the compartments of the model, generates a set of
coupled differential equations. Because of the coupling between compart-
ments, we cannot use the method discussed in appendix A of chapter 5 to
integrate these equations. Instead, we present another method that shares
some of the positive features of that method.

Two of the most important features of an integration method are accuracy
and stability. Accuracy refers to how closely numerical finite-difference
methods reproduce the exact solution of a differential equation as a func-
tion of the integration step size �t. Stability refers to what happens when
�t is chosen to be excessively large and the method starts to become in-
accurate. A stable integration method will degrade smoothly as �t is in-
creased, producing results of steadily decreasing accuracy. An unstable
method, on the other hand, will, at some point, display a sudden transition
and generate wildly inaccurate results. Given the tendency of impatient
modelers to push the limits on �t, it is highly desirable to have a method
that is stable.

Defining

Vµ(t + �t) = Vµ(t) + �Vµ , (6.46)

the finite difference form of equation 6.44 gives the update rule

�Vµ = (
AµVµ−1(t) + BµVµ(t) + CµVµ+1(t) + Dµ

)
�t (6.47)

which is how �Vµ is computed using the so-called Euler method. This
method is both inaccurate and unstable. The stability of the method can
be improved dramatically by evaluating the membrane potentials on the
right side of equation 6.47 not at time t, but at a later time t + z�t, so that

�Vµ = (
AµVµ−1(t + z�t) + BµVµ(t + z�t) + CµVµ+1(t + z�t) + Dµ

)
�t .

(6.48)

Two such methods are predominantly used, the reverse Euler method for
which z = 1 and the Crank-Nicholson method with z = 0.5. The reverse
Euler method is the more stable of the two and the Crank-Nicholson is
the more accurate. In either case, �Vµ is determined from equation 6.48.
These methods are called implicit because equation 6.48 must be solved
to determine �Vµ. To do this, we write Vµ(t + z�t) ≈ Vµ(t) + z�Vµ and
likewise for Vµ±1. Substituting this into equation 6.48 gives

�Vµ = aµ�Vµ−1 + bµ�Vµ + cµ�Vµ+1 + dµ (6.49)
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where

aµ = Aµz�t , bµ = Bµz�t , cµ = Cµz�t , and
dµ = (Dµ + AµVµ−1(t) + BµVµ(t) + CµVµ+1(t))�t . (6.50)

Equation 6.49 for all µ values provides a set of coupled linear equations for
the quantities �Vµ. An efficient method exists for solving these equations
(Hines 1984, Tuckwell 1988). We illustrate the method for a single, non-
branching cable that begins with at compartment µ = 1, so that a1 = 0, and
ends at compartment µ = N, so cN = 0. The method consists of solving
equation 6.49 for �Vµ in terms of �Vµ+1 sequentially starting at one end
of the cable and proceeding to the other end. For example, if we start the
procedure at compartment one, �V1 can be expressed as

�V1 = c1�V2 + d1

1 − b1
. (6.51)

Substituting this into the equation 6.49 for µ = 2 gives

�V2 = b′
2�V2 + c2�V3 + d′

2 (6.52)

where b′
2 = b2 + a2c1/(1 − b1) and d′

2 = d2 + a2d1/(1 − b1). We now repeat
the procedure going down the cable. At each stage, we solve for �Vµ−1 in
terms of �Vµ finding

�Vµ−1 = cµ−1�Vµ + d′
µ−1

1 − b′
µ−1

. (6.53)

where

b′
µ+1 = bµ+1 + aµ+1cµ

1 − b′
µ

(6.54)

and

d′
µ+1 = dµ+1 + aµ+1d′

µ

1 − b′
µ

. (6.55)

Finally, when we get to the end of the cable we can solve for

�VN = d′
N

1 − b′
N

(6.56)

because cN = 0.

The procedure for computing all the �Vµ is the following. Define b′
1 = b1

and d′
1 = d1 and iterate equations 6.54 and 6.55 down the length of the cable

to define all the b′ and d′ parameters. Then, solve for �VN from equation
6.56 and iterate back up the cable solving for the �V’s using 6.53. This
process takes only 2N steps.
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We leave the extension of this method to the case of a branched cable as
an exercise for the reader. The general procedure is similar to the one we
presented for an non-branching cable. The equations are solved starting
at the ends of the branches and moving in toward their branching node,
then continuing on as for an non-branching cable, and finally reversing
direction and completing the solution moving in the opposite direction
along the cable and its branches.

6.7 Annotated Bibliography

Many of the references for chapter 5 apply to this chapter as well, includ-
ing Jack et al. (1975); Tuckwell (1988); Johnston & Wu (1995); Koch &
Segev (1998); Koch (1998); Hille (1992); Mascagni & Sherman (1998). Rall
(1977) describes cable theory, the equivalent cable model of dendritic trees,
and the 3/2 law. Marder & Calabrese, (1996) review neuromodulation.

Two freely available modeling packages for detailed neural models are in
wide use, Neuron (see Hines & Carnevale, 1997) and Genesis (see Bower &
Beeman, 1998). These are available at http://www.neuron.yale.edu and
http://genesis.bbb.caltech.edu/GENESIS/genesis.html.
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Chapter 7

Network Models

7.1 Introduction

Extensive synaptic connectivity is a hallmark of neural circuitry. For ex-
ample, neurons in the mammalian neocortex each receive thousands of
synaptic inputs. Network models allow us to explore the computational
potential of such connectivity, using both analysis and simulations. As
illustrations, we study in this chapter how networks can perform the fol-
lowing tasks: coordinate transformations needed in visually guided reach-
ing, selective amplification leading to models of simple and complex cells
in primary visual cortex, integration as a model of short-term memory,
noise reduction, input selection, gain modulation, and associative mem-
ory. Networks that undergo oscillations are also analyzed, with applica-
tion to the olfactory bulb. Finally, we discuss network models based on
stochastic rather than deterministic dynamics, using the Boltzmann ma-
chine as an example.

Neocortical circuits are a major focus of our discussion. In the neocor-
tex, which forms the convoluted outer surface of the (for example) human
brain, neurons lie in six vertical layers highly coupled within cylindrical
columns. Such columns have been suggested as basic functional units, and cortical columns
stereotypical patterns of connections both within a column and between
columns are repeated across cortex. There are three main classes of inter-
connections within cortex, and in other areas of the brain as well. Feed-
forward connections bring input to a given region from another region lo- feedforward,

recurrent, and
top-down

connections

cated at an earlier stage along a particular processing pathway. Recurrent
synapses interconnect neurons within a particular region that are consid-
ered to be at the same stage along the processing pathway. These may in-
clude connections within a cortical column as well as connections between
both nearby and distant cortical columns within a region. Top-down con-
nections carry signals back from areas located at later stages. These defini-
tions depend on the how the region being studied is specified and on the
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hierarchical assignment of regions along a pathway. In general, neurons
within a given region send top-down projections back to the areas from
which they receive feedforward input, and receive top-down input from
the areas to which they project feedforward output. The numbers, though
not necessarily the strengths, of feedforward and top-down fibers between
connected regions are typically comparable, and recurrent synapses typi-
cally outnumber feedforward or top-down inputs. We begin this chapter
by studying networks with purely feedforward input and then study the
effects of recurrent connections. The analysis of top-down connections, for
which it is more difficult to establish clear computational roles, is left until
chapter 10.

The most direct way to simulate neural networks is to use the methods dis-
cussed in chapters 5 and 6 to synaptically connect model spiking neurons.
This is a worthwhile and instructive enterprise, but it presents significant
computational, calculational, and interpretational challenges. In this chap-
ter, we follow a simpler approach and construct networks of neuron-like
units with outputs consisting of firing rates rather than action potentials.
Spiking models involve dynamics over time scales ranging from channel
openings that can take less than a millisecond, to collective network pro-
cesses that may be several orders of magnitude slower. Firing-rate models
avoid the short time scale dynamics required to simulate action potentials
and thus are much easier to simulate on computers. Firing-rate models
also allow us to present analytic calculations of some aspects of network
dynamics that could not be treated in the case of spiking neurons. Finally,
spiking models tend to have more free parameters than firing-rate models,
and setting these appropriately can be difficult.

There are two additional arguments in favor of firing-rate models. The
first concerns the apparent stochasticity of spiking. The models discussed
in chapters 5 and 6 produce spike sequences deterministically in response
to injected current or synaptic input. Deterministic models can only pre-
dict spike sequences accurately if all their inputs are known. This is un-
likely to be the case for the neurons in a complex network, and network
models typically include only a subset of the many different inputs to indi-
vidual neurons. Therefore, the greater apparent precision of spiking mod-
els may not actually be realized in practice. If necessary, firing-rate models
can be used to generate stochastic spike sequences from a deterministically
computed rate, using the methods discussed in chapters 1 and 2.

The second argument comes involves a complication with spiking models
that arises when they are used to construct simplified networks. Although
cortical neurons receive many inputs, the probability of finding a synaptic
connection between a randomly chosen pair of neurons is actually quite
low. Capturing this feature, while retaining a high degree of connectiv-
ity through polysynaptic pathways, requires including a large number of
neurons in a network model. A standard way of dealing with this problem
is to use a single model unit to represent the average response of several
neurons that have similar selectivities. These ‘averaging’ units can then
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7.2 Firing-Rate Models 3

be interconnected more densely than the individual neurons of the actual
network, and so fewer of them are needed to build the model. If neural
responses are characterized by firing rates, the output of the model unit is
simply the average of the firing rates of the neurons it represents collec-
tively. However, if the response is a spike, it is not clear how the spikes
of the represented neurons can be averaged. The way spiking models are
typically constructed, an action potential fired by the model unit dupli-
cates the effect of all the neurons it represents firing synchronously. Not
surprisingly, such models tend to exhibit large-scale synchronization un-
like anything seen in a healthy brain.

Firing-rate models also have their limitations. Most importantly, they can-
not account for aspects of spike timing and spike correlations that may be
important for understanding nervous system function. Firing-rate models
are restricted to cases where the firing of neurons in a network is uncor-
related, with little synchronous firing, and where precise patterns spike
timing are unimportant. In such cases, comparisons of spiking network
models with models that use firing-rate descriptions have shown that they
produce similar results. Nevertheless, the exploration of neural networks
undoubtedly requires the use of both firing-rate and spiking models.

7.2 Firing-Rate Models

As discussed in chapter 1, the sequence of spikes generated by a neuron
is completely characterized by the neural response function ρ(t), which
consists of δ function spikes located at times when the neuron fired action
potentials. In firing-rate models, the exact description of a spike sequence
provided by the neural response function ρ(t) is replaced by the approxi-
mate description provided by the firing rate r(t). Recall from chapter 1 that
r(t) is defined as the probability density of firing and is obtained from ρ(t)
by averaging over trials. The validity of a firing-rate model depends on
how well the trial-averaged firing rate of network units approximates the
effect of actual spike sequences on the dynamic behavior of the network.

The replacement of the neural response function by the corresponding fir-
ing rate is typically justified by the fact that each network neuron has a
large number of inputs. Replacing ρ(t), which describes an actual spike
train, by the trial-averaged firing rate r(t) is justified if the quantities of
relevance for network dynamics are relatively insensitive to the trial-to-
trial fluctuations in the spike sequences represented by ρ(t). In a network
model, the relevant quantities that must be modeled accurately are the
total inputs to all the neurons in the network. For any single synaptic in-
put, the trial-to-trial variability is likely to be large. However, if we sum
the input over many synapses activated by uncorrelated presynaptic spike
trains, the mean of the total input typically grows linearly with the number
of synapses, while its standard deviation grows only as the square root of
the number of synapses. Thus, for uncorrelated presynaptic spike trains,

Draft: December 19, 2000 Theoretical Neuroscience



4 Network Models

using presynaptic firing rates in place of the actual presynaptic spike trains
may not significantly modify the dynamics of the network. Conversely, a
firing-rate model will fail to describe a network adequately if the presy-
naptic inputs to a substantial fraction of its neurons are correlated. This
can occur, for example, if the presynaptic neurons fire synchronously.

The synaptic input arising from a presynaptic spike train is effectively fil-
tered by the dynamics of the conductance changes that each presynaptic
action potential evokes in the postsynaptic neuron (see chapter 5), and the
dynamics of propagation of the current from the synapse to the soma. The
temporal averaging provided by slow synaptic or membrane dynamics
can reduce the effects of spike train variability and help justify the approx-
imation of using firing rates instead of presynaptic spike trains. Firing-rate
models are more accurate if the network being modeled has a significant
amount of synaptic transmission that is slow relative to typical presynap-
tic interspike intervals.

The construction of a firing-rate model proceeds in two steps. First, we
determine how the total synaptic input to a neuron depends on the fir-
ing rates of its presynaptic afferents. This is where we use firing rates to
approximate neural response functions. Second, we model how the firing
rate of the postsynaptic neuron depends on its total synaptic input. Firing-
rate response curves are typically measured by injecting current into the
soma of a neuron. We therefore find it most convenient to define the total
synaptic input as the total current delivered to the soma as a result of all
the synaptic conductance changes resulting from presynaptic action po-
tentials. We denote this total synaptic current by Is. We then determinesynaptic current Is

the postsynaptic firing rate from Is. In general, Is depends on the spa-
tially inhomogeneous membrane potential of the neuron, but we assume
that, other than during action potentials or transient hyperpolarizations,
the membrane potential remains close to, but slightly below, the thresh-
old for action potential generation. An example of this type of behavior
is seen in the upper panels of figure 7.2. Is is then approximately equal to
the synaptic current that would be measured from the soma in a voltage-
clamp experiment, except for a reversal of sign. In the next section, we
model how Is depends on presynaptic firing rates.

In the network models we consider, both the output from, and input to, a
neuron are characterized by firing rates. To avoid a proliferation of sub-
and superscripts on the quantity r(t), we use the letter u to denote a presy-
naptic firing rate, and v to denote a postsynaptic rate. Note that v is usedinput rate u

output rate v here to denote a firing rate, not a membrane potential. In addition, we use
these two letters to distinguish input and output firing rates in network
models, a convention we retain through the remaining chapters. When
we consider multiple input or output neurons, we use vectors u and v toinput rate vector u

output rate vector v represent their firing rates collectively, with the components of these vec-
tors representing the firing rates of the individual input and output units.
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7.2 Firing-Rate Models 5

The Total Synaptic Current

Consider a neuron receiving Nu synaptic inputs labeled by b = 1,2, . . . , Nu

(figure 7.1). The firing rate of input b is denoted by ub, and the input rates
are represented collectively by the Nu-component vector u. We model how
the synaptic current Is depends on presynaptic firing rates by first consid-
ering how it depends on presynaptic spikes. If an action potential arrives
at input b at time zero, we write the synaptic current generated in the soma
of the postsynaptic neuron at time t as wbKs(t) where wb is the synaptic
weight and Ks(t) is called the synaptic kernel. Collectively, the synap-
tic weights are represented by a synaptic weight vector w, which has Nu synaptic weights w
components wb. The amplitude and sign of the synaptic current generated
by input b are determined by wb. For excitatory synapses, wb > 0, and for
inhibitory synapses, wb < 0. In this formulation of the effect of presynaptic
spikes, the probability of transmitter release from a presynaptic terminal is
absorbed into the synaptic weight factor wb, and we do not include short-
term plasticity in the model (although this can be done by making wb a
dynamic variable).

The synaptic kernel, Ks(t) ≥ 0, describes the time course of the synaptic synaptic kernel
Ks(t)current in response to a presynaptic spike arriving at time t=0. This time

course depends on the dynamics of the synaptic conductance activated by
the presynaptic spike and also on both the passive and active properties
of the dendritic cables that carry the synaptic current to the soma. For
example, long passive cables broaden the synaptic kernel and slow its rise
from zero. Cable calculations or multicompartment simulations, such as
those discussed in chapter 6, can be used to compute Ks(t) for a specific
dendritic structure. To avoid ambiguity, we normalize Ks(t) by requiring
its integral over all positive times to be one. At this point, for simplicity,
we use the same function Ks(t) to describe all synapses.

output v

input u
weights w

Figure 7.1: Feedforward inputs to a single neuron. Input rates u drive a neuron
at an output rate v through synaptic weights given by the vector w.

Assuming that the spikes at a single synapse act independently, the total
synaptic current at time t arising from a sequence of presynaptic spikes
occurring at input b at times ti is given by the sum

wb

∑
ti<t

Ks(t − ti) = wb

∫ t

−∞
dτ Ks(t − τ)ρb(τ) . (7.1)

In the second expression, we have used the neural response function,
ρb(τ) = ∑

i δ(τ − ti), to describe the sequence of spikes fired by presy-
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naptic neuron b. The equality follows from integrating over the sum of δ

functions in the definition of ρb(τ). If there is no nonlinear interaction be-
tween different synaptic currents, the total synaptic current coming from
all presynaptic inputs is obtained simply by summing,

Is =
Nu∑

b=1

wb

∫ t

−∞
dτ Ks(t − τ)ρb(τ) . (7.2)

As discussed previously, the critical step in the construction of a firing-rate
model is the replacement of the neural response function ρb(τ) in equation
7.2 by the firing rate of neuron b, namely ub(τ), so that we write

Is =
Nu∑

b=1

wb

∫ t

−∞
dτ Ks(t − τ)ub(τ) . (7.3)

The synaptic kernel most frequently used in firing-rate models is an expo-
nential, Ks(t) = exp(−t/τr)/τr. With this kernel, we can describe Is by a
differential equation if we take the derivative of equation 7.3 with respect
to t,

τs
dIs

dt
= −Is +

Nu∑
b=1

wbub = −Is + w · u . (7.4)

In the second equality, we have expressed the sum
∑

wbub as the dot
product of the weight and input vectors, w · u. In this and the follow-dot product
ing chapters, we primarily use the vector versions of equations such as
equation 7.4, but when we first introduce an important new equation, we
often write it in its subscripted form as well.

Recall that K describes the temporal evolution of the synaptic current due
to both synaptic conductance and dendritic cable effects. For an electro-
tonically compact dendritic structure, τs will be close to the time constant
that describes the decay of the synaptic conductance. For fast synaptic
conductances such as those due to AMPA glutamate receptors, this may
be as short as a few milliseconds. For a long, passive dendritic cable, τs
may be larger than this, but its measured value is typically quite small.

The Firing-Rate

Equation 7.4 determines the synaptic current entering the soma of a post-
synaptic neuron in terms of the firing rates of the presynaptic neurons. To
finish formulating a firing-rate model, we must determine the postsynap-
tic firing rate from our knowledge of Is. For constant synaptic current, the
firing rate of the postsynaptic neuron can be expressed as v = F(Is), where
F is the steady-state firing rate as a function of somatic input current. F
is also called an activation function. F is sometimes taken to be a satu-activation

function F(Is) rating function such as a sigmoid function. This is useful in cases where
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the derivative of F is needed in the analysis of network dynamics. It is
also bounded from above, which can be important in stabilizing a network
against excessively high firing rates. More often, we use a threshold linear
function F(Is) = [Is − γ]+, where γ is the threshold and the notation [ ]+ threshold γ

denotes half-wave rectification as in previous chapters. For convenience,
we treat Is in this expression as if its were measured in units of a firing rate
(Hz), i.e. as if Is is multiplied by a constant that converts its units from nA
to Hz. This makes the synaptic weights dimensionless. The threshold γ

also has units of Hz.

For time-independent inputs, the relation v = F(Is) is all we need to know
to complete the firing-rate model. The total steady-state synaptic current
predicted by equation 7.4 for time-independent u is Is = w · u. This gener-
ates a steady-state output firing rate v = v∞ given by

v∞ = F(w · u) . (7.5)

The steady-state firing rate tells us how a neuron responds to constant cur-
rent, but not to a current that changes with time. To model time-dependent
inputs, we need to know the firing rate in response to a time-dependent
synaptic current Is(t). The simplest assumption is that this is still given
by the activation function, so v = F(Is(t)) even when the total synaptic
current varies with time. This leads to a firing-rate model in which all the
dynamics arise exclusively from equation 7.4, firing-rate model

with current
dynamicsτs

dIs

dt
= −Is + w · u with v = F(Is) . (7.6)

An alternative formulation of a firing-rate model can be constructed by
assuming that the firing rate does not follow changes in the total synaptic
current instantaneously, as was assumed for the model of equation 7.6. Ac-
tion potentials are generated by the synaptic current through its effect on
the membrane potential of the neuron. Due to the membrane capacitance
and resistance, the membrane potential is, roughly speaking, a low-pass
filtered version of Is (see the Mathematical Appendix). For this reason, the
time-dependent firing rate is often modeled as a low-pass filtered version
of the steady-state firing rate,

τr
dv

dt
= −v + F(Is(t)) . (7.7)

The constant τr in this equation determines how rapidly the firing rate
approaches its steady-state value for constant Is, and how closely v can
follow rapid fluctuations for a time-dependent Is(t). Equivalently, it mea-
sures the time-scale over which v averages F(Is(t)). The low-pass filtering
effect of equation 7.7 is described in the Mathematical Appendix in the
context of electrical circuit theory. The argument we have used to moti-
vate equation 7.7 would suggest that τr should be approximately equal to
the membrane time constant of the neuron. However, this argument really
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applies to the membrane potential not the firing rate, and the dynamics of
the two are not the same. Most network models use a value of τr that is
considerably less than the membrane time constant. We re-examine this
issue in the following section.

The second model that we have described involves the pair of equa-
tions 7.4 and 7.7. If one of these equations relaxes to its equilibrium point
much more rapidly than the other, the pair can be reduced to a single equa-
tion. For example, if τr � τs, we can make the approximation that equation
7.7 rapidly sets v = F(Is(t)), and then the second model reduces to the first
model that is defined by equation 7.6. If instead, τr 	 τs, we can make the
approximation that equation 7.4 comes to equilibrium quickly compared
to equation 7.7. Then, we can make the replacement Is = w · u in equation
7.7 and writefiring-rate equation

τr
dv

dt
= −v + F(w · u) . (7.8)

For most of this chapter, we analyze network models described by the
firing-rate dynamics of equation 7.8, although occasionally we consider
networks based on equation 7.6.

Firing-Rate Dynamics

The firing-rate models described by equations 7.6 and 7.8 differ in their
assumptions about how firing rates respond to and track changes in the
input current to a neuron. In one case (equation 7.6), it is assumed that
firing rates follow time varying input currents instantaneously without
attenuation or delay. In the other case (equation 7.8), the firing rate is a
low-pass filtered version of the input current. To study the relationship
between input current and firing rate, it is useful to examine the firing rate
of a spiking model neuron in response to a time-varying injected current,
I(t). The model used for this purpose in figure 7.2 is an integrate-and-fire
neuron receiving balanced excitatory and inhibitory synaptic input along
with a current injected into the soma that is the sum of constant and oscil-
lating components. This model was discussed in chapter 5. The balanced
synaptic input is used to represent background input not included in the
computation of Is, and it acts as a source of noise. The noise prevents ef-
fects such as locking of the spiking to the oscillations of the injected current
that would invalidate a firing-rate description.

Figure 7.2 shows the firing rates of the model integrate-and-fire neuron
in response to an input current I(t) = I0 + I1 cos(ωt). The firing rate is
plotted at different times during the cycle of the input current oscillations
for ω corresponding to frequencies of 1, 50, and 100 Hz. For the panels
on the left side, the constant component of the injected current (I0) was
adjusted so the neuron never stopped firing during the cycle. In this case,
the relation v(t) = F(I(t)) (solid curves) provides an accurate description
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Figure 7.2: Firing rate of an integrate-and-fire neuron receiving balanced excita-
tory and inhibitory synaptic input and an injected current consisting of a constant
and a sinusoidally varying term. For the left panels, the constant component of the
injected current was adjusted so the firing never stopped during the oscillation of
the varying part of the injected current. For the right panel, the constant compo-
nent was lowered so the firing stopped during part of the cycle. The upper panels
show two representative voltage traces of the model cell. The histograms beneath
these traces were obtained by binning spikes generated over multiple cycles. They
show the firing rate as a function of the time during each cycle of the injected cur-
rent oscillations. The different rows show 1, 50, and 100 Hz oscillation frequencies
for the injected current. The solid curves show the fit of a firing-rate model that
involves both instantaneous and low-pass filtered effects of the injected current.
For the left panel, this reduces to the simple prediction v = F(I(t)). (Adapted from
Chance et al., 2000.)

of the firing rate for all of the oscillation frequencies shown. As long as
the neuron keeps firing fairly rapidly, the low-pass filtering properties of
the membrane potential are not relevant for the dynamics of the firing
rate. Low-pass filtering is irrelevant in this case, because the neuron is
continually being shuttled between the threshold and reset values, and so
it never has a chance to settle exponentially anywhere near its steady-state
value.

The right panels in figure 7.2 show that the situation is different if the
input current is below the threshold for firing through a significant part
of the oscillation cycle. In this case, the firing is delayed and attenuated
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10 Network Models

at high frequencies as would be predicted by equation 7.7. In this case,
the membrane potential stays below threshold for long enough periods of
time that its dynamics become relevant for the firing of the neuron.

The essential message from figure 7.2 is that neither equation 7.6 nor 7.8
provides a completely accurate prediction of the dynamics of the firing
rate at all frequencies and for all levels of injected current. A more com-
plex model can be constructed that accurately describes the firing rate over
the entire range of input currents amplitudes and frequencies. The solid
curves in figure 7.2 were generated by a model that expresses the firing
rate as a function of both F(I) and of v computed from equation 7.8 (al-
though it reduces to v = F(I(t)) in the case of the left panel of figure 7.2).
In other words, it is a combination of the two models discussed in the
previous section. This compound model provides quite an accurate de-
scription of the firing rate of the integrate-and-fire model, but it is more
complex than the models used in this chapter.

Feedforward and Recurrent Networks

Figure 7.3 shows examples of network models with feedforward and re-
current connectivity. The feedforward network of figure 7.3A has Nv out-
put units with rates va (a = 1,2, . . . , Nv), denoted collectively by the vector
v, driven by Nu input units with rates u. Equations 7.8 and 7.6 can easily
be extended to cover this case by replacing the vector of synaptic weights
w by a matrix W, with the matrix component Wab representing the strength
of the synapse from input unit b to output unit a. Using the formulation of
equation 7.8, the output firing rates are then determined byfeedforward model

τr
dv
dt

= −v + F(W · u) or τr
dva

dt
= −v + F

(
Nu∑

b=1

Wabub

)
. (7.9)

We use the notation W · u to denote the vector with components
∑

b Wabub.
The use of the dot to represent a sum of a product of two quantities over
a shared index is borrowed from the notation for the dot product of two
vectors. The expression F(W · u) represents the vector with components
F(

∑
Wabub) for a = 1,2, . . . , Nv.

The recurrent network of figure 7.3B also has two layers of neurons with
rates u and v, but in this case the neurons of the output layer are intercon-
nected with synaptic weights described by a matrix M. Matrix element
Maa′ describes the strength of the synapse from output unit a′ to output
unit a. The output rates in this case are determined byrecurrent model

τr
dv
dt

= −v + F(W · u + M · v) . (7.10)

It is often convenient to define the total feedforward input to each neuron
in the network of figure 7.3B as h = W · u. Then, the output rates are
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output v

input u
W

BA M

Figure 7.3: Feedforward and recurrent networks. A) A feedforward network with
input rates u, output rates v, and a feedforward synaptic weight matrix W. B)
A recurrent network with input rates u, output rates v, a feedforward synaptic
weight matrix W, and a recurrent synaptic weight matrix M. Although we have
drawn the connections between the output neurons as bidirectional, this does not
necessarily imply connections of equal strength in both directions.

determined by the equation

τr
dv
dt

= −v + F(h + M · v) . (7.11)

Neurons are typically classified as either excitatory or inhibitory, meaning
that they have either excitatory or inhibitory effects on all of their postsy-
naptic targets. This property is formalized in Dale’s law, which states that Dale’s law
a neuron cannot excite some of its postsynaptic targets and inhibit others.
In terms of the elements of M, this means that for each presynaptic neuron
a′, Maa′ must have the same sign for all postsynaptic neurons a. To im-
pose this restriction, it is convenient to describe excitatory and inhibitory
neurons separately. The firing-rate vectors vE and vI for the excitatory and
inhibitory neurons are then described by a coupled set of equations iden-
tical in form to equation 7.11, excitatory-

inhibitory
networkτE

dvE

dt
= −vE + FE (hE + MEE · vE + MEI · vI) (7.12)

and

τI
dvI

dt
= −vI + FI (hI + MIE · vE + MII · vI) . (7.13)

There are now four synaptic weight matrices describing the four possible
types of neuronal interactions. The elements of MEE and MIE are greater
than or equal to zero, and those of MEI and MII are less than or equal to
zero. These equations allow the excitatory and inhibitory neurons to have
different time constants, activation functions, and feedforward inputs.

In this chapter, we consider several recurrent network models described
by equation 7.11 with a symmetric weight matrix, Maa′ = Ma′a for all a and
a′. Requiring M to be symmetric simplifies the mathematical analysis, but symmetric coupling
it violates Dale’s law. Suppose, for example, that neuron a, which is exci-
tatory, and neuron a′, which is inhibitory, are mutually connected. Then,
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12 Network Models

Maa′ should be negative and Ma′a positive, so they cannot be equal. Equa-
tion 7.11 with symmetric M can be interpreted as a special case of equa-
tions 7.12 and 7.13 in which the inhibitory dynamics are instantaneous
(τI → 0) and the inhibitory rates are given by vI = MIEvE. This produces
an effective recurrent weight matrix M = MEE + MEI · MIE, which can be
made symmetric by the appropriate choice of the dimension and form of
the matrices MEI and MIE. The dynamic behavior of equation 7.11 is re-
stricted by requiring the matrix M to be symmetric. For example symmet-
ric coupling typically does not allow for network oscillations. In the latter
part of this chapter, we consider the richer dynamics of models described
by equations 7.12 and 7.13.

Continuously Labeled Networks

It is often convenient to identify each neuron in a network using a pa-
rameter that describes some aspect of its selectivity rather than the integer
label a or b. For example, neurons in primary visual cortex can be charac-
terized by their preferred orientation angles, preferred spatial phases and
frequencies, or other stimulus-related parameters (see chapter 2). In many
of the examples in this chapter, we consider stimuli characterized by a
single angle �, which represents, for example, the orientation of a visual
stimulus. Individual neurons are identified by their preferred stimulus
angles, which are typically the values of � for which they fire at maxi-
mum rates. Thus, neuron a is identified by an angle θa. The weight of
the synapse from neuron b or neuron a′ to neuron a is then expressed as a
function of the preferred stimulus angles θb, θa′ and θa of the pre- and post-
synaptic neurons, Wab = W(θa, θb) or Maa′ = M(θa, θa′ ). We often consider
cases in which these synaptic weight functions depend only on the differ-
ence between the pre- and postsynaptic angles, so that Wab = W(θa − θb)

or Maa′ = M(θa − θa′ ).

In large networks, the preferred stimulus parameters for different neurons
will typically take a wide range of values. In the models we consider,
the number of neurons is large and the angles θa, for different values of a
cover the range from 0 to 2π densely. For simplicity, we assume that this
coverage is uniform so that the density of coverage, the number of neurons
with preferred angles falling within a unit range, which we denote by ρθ,ρθ density of

coverage is constant. For mathematical convenience in these cases, we allow the
preferred angles to take continuous values rather than restricting them to
the actual discrete values θa for a = 1,2, . . . , N. Thus, we label the neurons
by a continuous angle θ and express the firing rate as a function of θ, so that
u(θ) and v(θ) describe the firing rates of neurons with preferred angles θ.
Similarly, the synaptic weight matrices W and M are replaced by functions
W(θ, θ′) and M(θ, θ′) that characterizes the strength of synapses from a
presynaptic neuron with preferred angle θ′ to a postsynaptic neuron with
preferred angle θ in the feedforward and recurrent case, respectively.

If the number of neurons in a network is large and the density of cover-
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7.3 Feedforward Networks 13

age of preferred stimulus values is high, we can approximate the sums in
equation 7.10 by integrals over θ′. The number of postsynaptic neurons
with preferred angles within a range �θ′ is ρθ�θ′, so, when we take the
limit �θ′ → 0, the integral over θ′ appears multiplied by the density fac-
tor ρθ. Thus, in the case of continuous labeling of neurons, equation 7.10
becomes (for constant ρθ) continuous model

τr
dv(θ)

dt
= −v(θ) + F

(
ρθ

∫ π

−π

dθ′ W(θ, θ′)u(θ′) + M(θ, θ′)v(θ′)
)

. (7.14)

As we did previously in equation 7.11, we can write the first term inside
the integral of this expression as an input function h(θ). We make frequent
use of continuous labeling for network models, and we often approximate
sums over neurons by integrals over their preferred stimulus parameters.

7.3 Feedforward Networks

Substantial computations can be performed by feedforward networks in
the absence of recurrent connections. Much of the work done on feed-
forward networks centers on plasticity and learning, as discussed in the
following chapters. Here, we present an example of the computational
power of feedforward circuits, the calculation of the coordinate transfor-
mations needed in visually guided reaching tasks.

Neural Coordinate Transformations

Reaching for a viewed object requires a number of coordinate transforma-
tions that turn information about where the image of the object falls on
the retina into movement commands in shoulder-, arm-, or hand-based
coordinates. To perform a transformation from retinal to body-based co-
ordinates, information about the retinal location of an image and about
the direction of gaze relative to the body must be combined. Figure 7.4A
and B illustrate, in a one-dimensional example, how a rotation of the eyes
affects the relationship between gaze direction, retinal location, and loca-
tion relative to the body. Figure 7.4C introduces the notation we use. The
angle g describes the orientation of a line extending from the head to the
point of visual fixation. The visual stimulus in retinal coordinates is given
by the angle s between this line and a line extending out to the target. The
angle describing the reach direction, the direction to the target relative to
the body, is the sum s + g.

Visual neurons have receptive fields fixed to specific locations on the
retina. Neurons in motor areas can display visually evoked responses that
are not tied to specific retinal locations, but rather depend on the relation-
ship of a visual image to various parts of the body. Figures 7.5A and B
show tuning curves of a neuron in the premotor cortex of a monkey that
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A F C F

sg

s+g
B F

Figure 7.4: Coordinate transformations during a reaching task. A, B) The location
of the target (the grey square) relative to the body is the same in A and B, and
thus the movements required to reach toward it are identical. However, the image
of the object falls on different parts of the retina in A and B due to a shift in the
gaze direction produced by an eye rotation that shifts the fixation point F. C) The
angles used in the analysis: s is the angle describing the location of the stimulus
(the target) in retinal coordinates, that is, relative to a line directed to the fixation
point; g is the gaze angle, indicating the direction of gaze relative to an axis straight
out from the body. The direction of the target relative to the body-based axis is
s + g.
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Figure 7.5: Tuning curves of a visually responsive neuron in the premotor cortex
of a monkey. Incoming objects approaching at various angles provided the visual
stimulation. A) When the monkey fixated on the three points denoted by the cross
symbols, the response tuning curve did not shift with the eyes. In this panel, unlike
B and C, the horizontal axis refers to the stimulus location in head-based, not reti-
nal, coordinates (s + g, not s). B) Turning the monkey’s head by 15◦ produced a 15◦

shift in the response tuning curve as a function of retinal location, indicating that
this neuron encoded the stimulus direction in head-based coordinates. C) Model
tuning curves based on equation 7.15 shift their retinal tuning to remain constant
in body-based coordinates. The solid, heavy dashed, and light dashed curves refer
to g = 0◦, 10◦, and −20◦ respectively. The small changes in amplitude arise from
the limited range of preferred retinal location and gaze angles in the model. (A,B
adapted from Graziano et al., 1997; C adapted from Salinas and Abbott, 1995.)
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Figure 7.6: Gaze-dependent gain modulation of visual responses of neurons in
posterior parietal cortex. A) Average firing-rate tuning curves of an area 7a neuron
as a function of the location of the spot of light used to evoke the response. Stim-
ulus location is measure as an angle around a circle of possible locations on the
screen and is related to, but not equal to, our stimulus variable s. The two curves
correspond to the same visual image but with two different gaze directions. B)
A three-dimensional plot of the activity of a model neuron as a function of both
retinal position and gaze direction. The striped bands correspond to tuning curves
with different gains similar to those shown in A. (A adapted from Brotchie et al.,
1995; B adapted from Pouget and Sejnowski, 1995.)

responded to visual images of approaching objects. Surprisingly, when the
head of the monkey was held stationary during fixation on three different
targets, the tuning curves did not shift as the eyes rotated (figure 7.5A).
Although the recorded neurons respond to visual stimuli, the responses
do not depend directly on the location of the image on the retina. When
the head of the monkey is rotated but the fixation point remains the same,
the tuning curves shift by precisely the amount of the head rotation (fig-
ure 7.5B). Thus, these neurons encode the location of the image in head- or
body-based, not retinal, coordinates.

To account for these data, we need to construct a model neuron that is
driven by visual input, but that nonetheless has a tuning curve for image
location that is not a function of s, the retinal location of the image, but
of s + g, the location of the object in body-based coordinates. A possible
basis for this construction is provided by a combined representation of s
and g by neurons in area 7a in the posterior parietal cortex of the monkey.
Recordings made in area 7a reveal neurons that fire at rates that depend on
both the location of the stimulating image on the retina and on the direc-
tion of gaze (figure 7.6A). The response tuning curves, expressed as func-
tions of the retinal location of the stimulus, do not shift when the direction
of gaze is varied. However, shifts of gaze direction affect the magnitude
of the visual response. Thus, responses in area 7a exhibit gaze-dependent
gain modulation of a retinotopic visual receptive field. gain modulation
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16 Network Models

Figure 7.6B shows a mathematical description of a gain-modulated tuning
curve. The response tuning curve is expressed as a product of a Gaussian
function of s−ξ, where ξ is the preferred retinal location (ξ=−20◦ in fig-
ure 7.6B), and a sigmoid function of g − γ, where γ is the gaze direction
producing half of the maximum gain (γ =20◦ in figure 7.6B). Although it
does not correspond to the maximum neural response, we refer to γ as the
‘preferred’ gaze direction.

To model a neuron with a body-centered response tuning curve, we con-
struct a feedforward network with a single output unit representing, for
example, the premotor neuron shown in figure 7.5. The input layer of the
network consists of a population of area 7a neurons with gain-modulated
responses similar to those shown in figure 7.6B. Neurons with gains that
both increase and decrease as a function of g are included in the model.
The average firing rates of the input layer neurons are described by tuning
curves u = fu(s−ξ, g−γ) with the different neurons taking a range of ξ

and γ values.

We use continuous labeling of neurons, and replace the sum over presy-
naptic neurons by an integral over their ξ and γ values, inserting the ap-
propriate density factors ρξ and ργ , which we assume are constant. The
steady-state response of the single output neuron is determined by the
continuous analog of equation 7.5. The synaptic weight from a presynap-
tic neuron with preferred stimulus location ξ and preferred gaze direction
γ is denoted by w(ξ, γ), so the steady-state response of the output neurons
is given by

v∞ = F
(
ρξργ

∫
dξdγ w(ξ, γ) fu(s − ξ, g − γ)

)
. (7.15)

For the output neuron to respond to stimulus location in body-based coor-
dinates, its firing rate must be a function of s+g. To see if this is possible,
we shift the integration variables in 7.15 by ξ → ξ−g and γ → γ+g. Ignor-
ing effects from the end points of the integration (which is valid if s and g
are not too close to these limits), we find

v∞ = F
(
ρξργ

∫
dξdγ w(ξ − g, γ + g) fu(s + g − ξ,−γ)

)
. (7.16)

This is a function of s+g provided that w(ξ − g, γ + g) = w(ξ, γ), which
holds if w(ξ, γ) is a function of the sum ξ + γ. Thus, the coordinate trans-
formation can be accomplished if the synaptic weight from a given neuron
depends only the sum of its preferred retinal and gaze angles. It has been
suggested that weights of this form can arise naturally from random hand
and gaze movements through correlation-based synaptic modification of
the type discussed in chapter 8.

Figure 7.5C shows responses predicted by equation 7.15 when the synaptic
weights are given by a function w(ξ+ γ). The retinal location of the tuning
curve shifts as a function of gaze direction, but would remain stationary if
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7.4 Recurrent Networks 17

it were plotted instead as a function of s + g. This can be seen by noting
that the peaks of all three curves in figure 7.5C occur at s + g = 0.

Gain-modulated neurons provide a general basis for combining two dif-
ferent input signals in a nonlinear way. In the network we studied, it is
possible to find appropriate synaptic weights w(ξ, γ) to construct output
neurons with a wide range of response tuning curves expressed as func-
tions of s and g. The mechanism by which sensory and modulatory inputs
combine in a multiplicative way in gain-modulated neurons is not known.
Later in this chapter, we discuss a recurrent network model for generating
gain-modulated responses.

7.4 Recurrent Networks

Recurrent networks have richer dynamics than feedforward networks, but
they are more difficult to analyze. To get a feel for recurrent circuitry, we
begin by analyzing a linear model, that is, a model for which the rela-
tionship between firing rate and synaptic current is linear, F(h + M · r) =
h + M · r. The linear approximation is a drastic one that allows, among
other things, the components of v to become negative, which is impossi-
ble for real firing rates. Furthermore, some of the features we discuss in
connection with linear, as opposed to nonlinear, recurrent networks can
also be achieved by a feedforward architecture. Nevertheless, the linear
model is extremely useful for exploring properties of recurrent circuits,
and this approach will be used both here and in the following chapters. In
addition, the analysis of linear networks forms the basis for studying the
stability properties of nonlinear networks. We augment the discussion of
linear networks with results from simulations of nonlinear networks.

Linear Recurrent Networks

Under the linear approximation, the recurrent model of equation 7.11 takes
the form linear recurrent

model
τr

dv
dt

= −v + h + M · v . (7.17)

Because the model is linear, we can solve analytically for the vector of
output rates v in terms of the feedforward inputs h and the initial values
v(0). The analysis is simplest when the recurrent synaptic weight matrix is
symmetric, and we assume this to be the case. Equation 7.17 can be solved
by expressing v in terms of the eigenvectors of M. The eigenvectors eµ for
µ = 1,2, . . . , Nv satisfy eigenvector e

M · eµ = λµeµ (7.18)

for some value of the constant λµ which is called the eigenvalue. For a eigenvalue λ
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symmetric matrix, the eigenvectors are orthogonal, and they can be nor-
malized to unit length so that eµ · eν = δµν. Such eigenvectors define an
orthogonal coordinate system or basis that can be used to represent any
Nv-dimensional vector. In particular, we can writeeigenvector

expansion

v(t) =
Nv∑

µ=1

cµ(t)eµ (7.19)

where cµ(t) for µ = 1,2, . . . , Nv are a set of time-dependent coefficients
describing v(t).

It is easier to solve equation 7.17 for the coefficients cµ than for v directly.
Substituting the expansion 7.19 into equation 7.17 and using property 7.18,
we find that

τr

Nv∑
µ=1

dcµ

dt
eµ = −

Nv∑
µ=1

(1 − λµ)cµ(t)eµ + h . (7.20)

The sum over µ can be eliminated by taking the dot product of each side of
this equation with one of the eigenvectors, eν, and using the orthogonality
property eµ · eν = δµν to obtain

τr
dcν

dt
= −(1 − λν)cν(t) + eν · h . (7.21)

The critical feature of this equation is that it involves only one of the co-
efficients, cν. For time-independent inputs h, the solution of equation 7.44
is

cν(t) = eν · h
1 − λν

(
1 − exp

(
− t(1 − λν)

τr

))
+ cν(0)exp

(
− t(1 − λν)

τr

)
(7.22)

where cν(0) is the value of cν at time zero, which is given in terms of the
initial firing-rate vector v(0) by cν(0) = eν · v(0).

Equation 7.22 has several important characteristics. If λν >1, the exponen-
tial functions grow without bound as time increases, reflecting a funda-
mental instability of the network. If λν <1, cν approaches the steady-state
value eν · h/(1 − λν) exponentially with time constant τr/(1 − λν). This
steady-state value is proportional to eν · h, which is the projection of the
input vector onto the relevant eigenvector. For 0<λν <1, the steady-state
value is amplified relative to this projection by the factor 1/(1 −λν), which
is greater than one. The approach to equilibrium is slowed relative to the
basic time constant τr by an identical factor. The steady-state value of v(t),
which we call v∞, can be derived from equation 7.19 assteady state v∞

v∞ =
Nv∑
ν=1

(eν · h)

1 − λν

eν . (7.23)
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7.4 Recurrent Networks 19

This steady-state response can also arise from a purely feedforward
scheme if the feedforward weight matrix is chosen appropriately, as we
invite the reader to verify as an exercise.

We have considered amplification when 0 < λ1 < 1. The linear network
becomes unstable if λ1 > 1. The case λν=1 is special and will be discussed
in a later section.

Selective Amplification

Suppose that one of the eigenvalues of a recurrent weight matrix, denoted
by λ1, is very close to one, and all the others are significantly smaller than
1. In this case, the denominator of the ν=1 term on the right side of equa-
tion 7.23 is near zero, and, unless e1 · h is extremely small, this single term
will dominate the sum. As a result, we can write

v∞ ≈ (e1 · h)e1

1 − λ1
. (7.24)

Such a network performs selective amplification. The response is domi-
nated by the projection of the input vector along the axis defined by e1,
and the amplitude of the response is amplified by the factor 1/(1 − λ1),
which may be quite large if λ1 is near one. The steady-state response of
such a network, which is proportional to e1, therefore encodes an ampli-
fied projection of the input vector onto e1.

Further information can be encoded if more eigenvalues are close to one.
Suppose, for example, that two eigenvectors, e1 and e2 have the same
eigenvalue, λ1 =λ2, close to but less than one. Then, equation 7.24 is re-
placed by

v∞ ≈ (e1 · h)e1 + (e2 · h)e2

1 − λ1
(7.25)

which shows that the network now amplifies and encodes the projection
of the input vector onto the plane defined by e1 and e2. In this case, the ac-
tivity pattern of the network is not simply scaled when the input changes.
Instead, changes in the input shift both the magnitude and pattern of net-
work activity. Eigenvectors that share the same eigenvalue are termed
degenerate, and degeneracy is often the result of a symmetry. In the ex-
amples considered in this chapter, degeneracy arises from invariance to
shifts of the parameter θ by a constant amount. Degeneracy is not limited
to just two eigenvectors. A recurrent network with n degenerate eigenval-
ues near one can amplify and encode a projection of the input vector from
the N-dimensional space in which it is defined onto the n-dimensional
subspace spanned by the degenerate eigenvectors.

Draft: December 19, 2000 Theoretical Neuroscience
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Input Integration

If the recurrent weight matrix has an eigenvalue exactly equal to one, λ1 =
1, and all the other eigenvalues satisfy λν < 1, a linear recurrent network
can act as an integrator of its input. In this case, c1 satisfies the equation

τr
dc1

dt
= e1 · h (7.26)

obtained by setting λ1 = 1 in equation 7.44. For arbitrary time-dependent
inputs, the solution of this equation is

c1(t) = c1(0) + 1
τr

∫ t

0
dt′ e1 · h(t′) . (7.27)

If h(t) is constant, c1(t) grows linearly with t. This explains why equation
7.24 diverges as λ1 → 1. Suppose, instead, that h(t) is nonzero for a while,
and then is set to zero for an extended period of time. When h = 0, equa-
tion 7.22 shows that cν → 0 for all ν �= 1, because for these eigenvectors
λν < 1. Assuming that c1(0) = 0, this means that, after such a period, the
firing-rate vector is given, from equation 7.27 and 7.19, bynetwork

integration

v(t) ≈ e1

τr

∫ t

0
dt′ e1 · h(t′) . (7.28)

This shows that the network activity provides a measure of the running
integral of the projection of the input vector onto e1. One consequence of
this is that the activity of the network does not cease if h = 0, provided that
the integral up to that point in time is nonzero. The network thus exhibits
sustained activity in the absence of input, which provides a memory of the
integral of prior input.

Networks in the brain stem of vertebrates responsible for maintaining eye
position appear to act as integrators, and networks similar to the one we
have been discussing have been suggested as models of this system. As
outlined in figure 7.7, eye position changes in response to bursts of ac-
tivity in ocular motor neurons located in the brain stem. Neurons in the
medial vestibular nucleus and prepositus hypoglossi appear to integrate
these motor signals to provide a persistent memory of eye position. The
sustained firing rates of these neurons are approximately proportional to
the angular orientation of the eyes in the horizontal direction, and activ-
ity persists at an approximately constant rate when the eyes are held fixed
(bottom trace in figure 7.7).

The ability of a linear recurrent network to integrate and display persistent
activity relies on one of the eigenvalues of the recurrent weight matrix be-
ing exactly one. Any deviation from this value will cause the persistent
activity to change over time. Eye position does indeed drift, but matching
the performance of the ocular positioning system requires fine tuning of
the eigenvalue to a value extremely close to one. Including nonlinear in-
teractions does not alleviate the need for a precisely tuned weight matrix.
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persistent activity

eye position

ON-direction
burst neuron
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integrator
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Figure 7.7: Cartoon of burst and integrator neurons involved in horizontal eye po-
sitioning. The upper trace represents horizontal eye position during two saccadic
eye movements. Motion of the eye is driven by burst neurons that move the eyes
in opposite directions (second and third traces from top). The steady-state firing
rate (labeled persistent activity) of the integrator neuron is proportional to the time
integral of the burst rates, integrated positively for the ON-direction burst neuron
and negatively for the OFF-direction burst neuron, and thus provides a memory
trace of the maintained eye position. (Adapted from Seung et al., 2000.)

Synaptic modification rules can be used to establish the necessary synaptic
weights, but it is not clear how such precise tuning is accomplished in the
biological system.

Continuous Linear Recurrent Networks

For a linear recurrent network with continuous labeling, the equation for
the firing rate v(θ) of a neuron with preferred stimulus angle θ is a linear
version of equation 7.14,

τr
dv(θ)

dt
= −v(θ) + h(θ) + ρθ

∫ π

−π

dθ′ M(θ − θ′)v(θ′) (7.29)

where h(θ) is the feedforward input to a neuron with preferred stimulus
angle θ, and we have assumed a constant density ρθ. Because θ is an angle,
h, M, and v must all be periodic functions with period 2π. By making M a
function of θ− θ′, we are imposing a symmetry with respect to translations
or shifts of the angle variables on the network. In addition, we assume
that M is an even function, M(θ − θ′) = M(θ′ − θ). This is the analog, in a
continuously labeled model, of a symmetric synaptic weight matrix.

Equation 7.29 can be solved by methods similar to those used for discrete
networks. We introduce eigenfunctions that satisfy

ρθ

∫ π

−π

dθ′ M(θ − θ′)eµ(θ′) = λµeµ(θ) . (7.30)
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We leave it as an exercise to show that the eigenfunctions (normalized
so that ρθ times the integral from −π to π of their square is one) are
1/

√
2πρθ, corresponding to µ = 0, and cos(µθ)/

√
πρθ and sin(µθ)/

√
πρθ

for µ = 1,2, . . . . The eigenvalues are identical for the sine and cosine
eigenfunctions and are given (including the case µ = 0) by

λµ = ρθ

∫ π

−π

dθ′ M(θ′) cos(µθ′) . (7.31)

The identity of the eigenvalues for the cosine and sine eigenfunctions re-
flects a degeneracy that arises from the invariance of the network to shifts
of the angle labels.

The steady-state firing rates for a constant input are given by the continu-
ous analog of equation 7.23,

v∞(θ) = 1
1 − λ0

∫ π

−π

dθ′

2π
h(θ′)

+
∞∑

µ=1

cos(µθ)

1 − λµ

∫ π

−π

dθ′

π
h(θ′) cos(µθ′)

+
∞∑

µ=1

sin(µθ)

1 − λµ

∫ π

−π

dθ′

π
h(θ′) sin(µθ′) . (7.32)

The integrals in this expression are the coefficients in a Fourier series forFourier series
the function h and are know as cosine and sine Fourier integrals (see the
Mathematical Appendix).

Figure 7.8 shows an example of selective amplification by a linear recur-
rent network. The input to the network, shown in panel A of figure 7.8, is
a cosine function that peaks at 0◦ to which random noise has been added.
Figure 7.8C shows Fourier amplitudes for this input. The Fourier ampli-
tude is the square root of the sum of the squares of the cosine and sine
Fourier integrals. No particular µ value is overwhelmingly dominant. In
this and the following examples, the recurrent connections of the network
are given by

M(θ − θ′) = λ1

πρθ

cos(θ − θ′) (7.33)

which has all eigenvalues except λ1 equal to zero. The network model
shown in figure 7.8 has λ1 = 0.9, so that 1/(1 − λ1) = 10. Input amplifi-
cation can be quantified by comparing the Fourier amplitude of v∞, for a
given µ value, with the analogous amplitude for the input h. According
to equation 7.32, the ratio of these quantities is 1/(1 − λµ), so, in this case,
the µ = 1 amplitude should be amplified by a factor of ten while all other
amplitudes are unamplified. This factor of ten amplification can be seen
by comparing the µ = 1 Fourier amplitudes in figures 7.8C and D (note
the different scales for the vertical axes). All the other components are un-
amplified. As a result, the output of the network is primarily in the form
of a cosine function with µ = 1, as seen in figure 7.8B.
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Figure 7.8: Selective amplification in a linear network. A) The input to the neu-
rons of the network as a function of their preferred stimulus angle. B) The activity
of the network neurons plotted as a function of their preferred stimulus angle in
response to the input of panel A. C) The Fourier transform amplitudes of the input
shown in panel A. D) The Fourier transform amplitudes of the output shown in
panel B. The recurrent coupling of this network model took the form of equation
7.33 with λ1 = 0.9. (This figure, and figures 7.9, 7.12, 7.13, and 7.14, were generated
using software from Carandini and Ringach, 1998.)

Nonlinear Recurrent Networks

A linear model does not provide an adequate description of the firing rates
of a biological neural network. The most significant problem is that the
firing rates in a linear network can take negative values. This problem can
be fixed by introducing rectification into equation 7.11 by choosing rectification

F(h + M · r) = [h + M · r − γγγ]+ . (7.34)

where γγγ is a vector of threshold values that we often take to be 000. In this
section, we show some examples illustrating the effect of including such a
rectifying nonlinearity. Some of the features of linear recurrent networks
remain when rectification is included, but several new features also ap-
pear.

In the examples given below, we consider a continuous model, similar to
that of equation 7.29, with recurrent couplings given by equation 7.33, but

Draft: December 19, 2000 Theoretical Neuroscience



24 Network Models

-5

0

-180 -90 0 90 180
0

20

40

60

80

-180 -90 0 90 180

   0   1    2   3    4   5    6   7   8    9    0   1    2   3    4   5    6   7   8    9
   0

0.2

0.4

0.6

0.8

1

θ (deg) θ (deg)

v 
(H

z)
µ µ

A B

C D

   0

0.02

0.04

0.06

0.08

0.1

5

F
ou

rie
r 

am
pl

itu
de

F
ou

rie
r 

am
pl

itu
de

h 
(H

z)

Figure 7.9: Selective amplification in a recurrent network with rectification. A)
The input h(θ) of the network plotted as a function of preferred angle. B) The
steady-state output v(θ) as a function of preferred angle. C) Fourier transform
amplitudes of the input h(θ). D) Fourier transform amplitudes of the output v(θ).
The recurrent coupling took the form 7.33 with λ1 = 1.9.

now including a rectification nonlinearity, so that

τr
dv(θ)

dt
= −v(θ) +

[
h(θ) + λ1

π

∫ π

−π

dθ′ cos(θ − θ′)v(θ′)
]

+
. (7.35)

If λ1 is not too large, this network converges to a steady state for any con-
stant input (we consider conditions for steady-state convergence in a later
section), and therefore we often limit the discussion to the steady-state ac-
tivity of the network.

Nonlinear Amplification

Figure 7.9 shows the nonlinear analog of the selective amplification shown
for a linear network in figure 7.8. Once again, a noisy input (figure 7.9A)
generates a much smoother output response profile (figure 7.9B). The out-
put response of the rectified network corresponds roughly to the positive
part of the sinusoidal response profile of the linear network (figure 7.8B).
The negative output has been eliminated by the rectification. Because
fewer neurons in the network have nonzero responses than in the linear
case, the value of the parameter λ1 in equation 7.33 has been increased to
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1.9. This value, being larger than one, would lead to an unstable network
in the linear case. While nonlinear networks can also be unstable, the re-
striction to eigenvalues less than one is no longer the relevant condition.

In a nonlinear network, the Fourier analysis of the input and output re-
sponses is no longer as informative as it is for a linear network. Due to
the rectification, the ν = 0,1, and 2 Fourier components are all amplified
(figure 7.9D) compared to their input values (figure 7.9C). Nevertheless,
except for rectification, the nonlinear recurrent network amplifies the in-
put signal selectively in a similar manner as the linear network.

A Recurrent Model of Simple Cells in Primary Visual Cortex

In chapter 2, we discussed a feedforward model in which the elongated
receptive fields of simple cells in primary visual cortex were formed by
summing the inputs from lateral geniculate (LGN) neurons with their re-
ceptive fields arranged in alternating rows of ON and OFF cells. While this
model quite successfully accounts for a number of features of simple cells,
such as orientation tuning, it is difficult to reconcile with the anatomy and
circuitry of the cerebral cortex. By far the majority of the synapses onto
any cortical neuron arise from other cortical neurons, not from thalamic
afferents. Therefore, feedforward models account for the response prop-
erties of cortical neurons while ignoring the inputs that are numerically
most prominent. The large number of intracortical connections suggests,
instead, that recurrent circuitry might play an important role in shaping
the responses of neurons in primary visual cortex.

Ben-Yishai, Bar-Or, and Sompolinsky (1995) developed a model at the
other extreme, for which recurrent connections are the primary determin-
ers of orientation tuning. The model is similar in structure to the model
of equations 7.35 and 7.33, except that it includes a global inhibitory inter-
action. In addition, because orientation angles are defined over the range
from −π/2 to π/2, rather than over the full 2π range, the cosine functions
in the model have extra factors of 2 in them. The basic equation of the
model, as we implement it, is

τr
dv(θ)

dt
= −v(θ) +

[
h(θ) +

∫ π/2

−π/2

dθ′

π

(−λ0 + λ1 cos(2(θ − θ′))
)
v(θ′)

]
+

(7.36)

where v(θ) is the firing rate of a neuron with preferred orientation θ.

The input to the model represents the orientation-tuned feedforward in-
put arising from ON-center and OFF-center LGN cells responding to an
oriented image. As a function of preferred orientation, the input for an
image with orientation angle � = 0 is

h(θ) = Ac (1 − ε + ε cos(2θ)) (7.37)
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where A sets the overall amplitude and c is equal to the image contrast.
The factor ε controls how strongly the input is modulated by the orien-
tation angle. For ε= 0, all neurons receive the same input, while ε= 0.5
produces the maximum modulation consistent with a positive input. We
study this model in the case when ε is small, which means that the input
is only weakly tuned for orientation and any strong orientation selectivity
must arise through recurrent interactions.

To study orientation selectivity, we want to examine the tuning curves of
individual neurons in response to stimuli with different orientation an-
gles �. The plots of network responses that we have been using show the
firing rates v(θ) of all the neurons in the network as a function of their
preferred stimulus angles θ when the input stimulus has a fixed value,
typically � = 0. As a consequence of the translation invariance of the net-
work model, the response for other values of � can be obtained simply by
shifting this curve so that it plots v(θ − �). Furthermore, except for the
asymmetric effects of noise on the input, v(θ −�) is a symmetric function.
These features follow from the fact that the network we are studying is
invariant with respect to translations and sign changes of the angle vari-
ables that characterize the stimulus and response selectivities. An impor-
tant consequence of this result is that the curve v(θ), showing the response
of the entire population, can also be interpreted as the tuning curve of a
single neuron. If the response of the population to a stimulus angle � is
v(θ − �), the response of a single neuron with preferred angle θ = 0 is
v(−�) = v(�) from the symmetry of v. Because v(�) is the tuning curve
of a single neuron with θ = 0 to a stimulus angle �, the plots we show of
v(θ) can be interpreted in a dual way, as both population responses and
individual neuronal tuning curves.

Figure 7.10A shows the feedforward input to the model network for four
different levels of contrast. Because the parameter ε was chosen to be 0.1,
the modulation of the input as a function of orientation angle is small.
Due to network amplification, the response of the network is much more
strongly tuned to orientation (figure 7.10B). This is the result of the selec-
tive amplification of the tuned part of the input by the recurrent network.
The modulation and overall height of the input curve in figure 7.10A in-
crease linearly with contrast. The response shown in figure 7.10B, inter-
preted as a tuning curve, increases in amplitude for higher contrast, but
does not broaden. This can be seen by noting that all four curves in figure
7.10B go to zero at the same two points. This effect, which occurs because
the shape and width of the response tuning curve are determined primar-
ily by the recurrent interactions within the network, is a feature of orien-
tation curves of real simple cells, as seen in figure 7.10C. The width of the
tuning curve can be reduced by including a positive threshold in the re-
sponse function of equation 7.34, or by changing the amount of inhibition,
but it stays roughly constant as a function of stimulus strength.
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Figure 7.10: The effect of contrast on orientation tuning. A) The feedforward in-
put as a function of preferred orientation. The four curves, from top to bottom,
correspond to contrasts of 80%, 40%, 20%, and 10%. B) The output firing rates
in response to different levels of contrast as a function of orientation preference.
These are also the response tuning curves of a single neuron with preferred orien-
tation zero. As in A, the four curves, from top to bottom, correspond to contrasts
of 80%, 40%, 20%, and 10%. The recurrent model had λ0 = 7.3, λ1 = 11, A = 40
Hz, and ε = 0.1. C) Tuning curves measure experimentally at four contrast levels
as indicated in the legend. (C adapted from Sompolinsky and Shapley, 1997; based
on data from Sclar and Freeman, 1982.)

A Recurrent Model of Complex Cells in Primary Visual Cortex

In the model of orientation tuning discussed in the previous section, recur-
rent amplification enhances selectivity. If the pattern of network connec-
tivity amplifies nonselective rather than selective responses, recurrent in-
teractions can also decrease selectivity. Recall from chapter 2 that neurons
in the primary visual cortex are classified as simple or complex depend-
ing on their sensitivity to the spatial phase of a grating stimulus. Simple
cells respond maximally when the spatial positioning of the light and dark
regions of a grating matches the locations of the ON and OFF regions of
their receptive fields. Complex cells do not have distinct ON and OFF re-
gions in their receptive fields and respond to gratings of the appropriate
orientation and spatial frequency relatively independently of where their
light and dark stripes fall. In other words, complex cells are insensitive to
spatial phase.

Chance, Nelson, and Abbott (1999) showed that complex cell responses
could be generated from simple cell responses by a recurrent network. As
in chapter 2, we label spatial phase preferences by the angle φ. The feed-
forward input h(φ) in the model is set equal to the rectified response of
a simple cell with preferred spatial phase φ (figure 7.11A). Each neuron
in the network is labeled by the spatial phase preference of its feedfor-
ward input. The network neurons also receive recurrent input given by
the weight function M(φ − φ′) = λ1/(2πρφ) that is the same for all con-
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nected neuron pairs. As a result, their firing rates are determined by

τr
dv(φ)

dt
= −v(φ) +

[
h(φ) + λ1

2π

∫ π

−π

dφ′ v(φ′)
]

+
. (7.38)
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Figure 7.11: A recurrent model of complex cells. A) The input to the network as
a function of spatial phase preference. The input h(φ) is equivalent to that of a
simple cell with spatial phase preference φ responding to a grating of zero spatial
phase. B) Network response, which can also be interpreted as the spatial phase
tuning curve of a network neuron. The network was given by equation 7.38 with
λ1 = 0.95. (Adapted from Chance et al., 1999.)

In the absence of recurrent connections (λ1 =0), the response of a neuron
labeled by φ is v(φ) = h(φ), which is equal to the response of a simple
cell with preferred spatial phase φ. However, for λ1 sufficiently close to
one, the recurrent model produces responses that resemble those of com-
plex cells. Figure 7.11B shows the population response, or equivalently the
single-cell response tuning curve, of the model in response to the tuned in-
put shown in Figure 7.11A. The input, being the response of a simple cell,
shows strong tuning for spatial phase. The output tuning curve, however,
is almost constant as a function of spatial phase, like that of a complex
cell. The spatial-phase insensitivity of the network response is due to the
fact that the network amplifies the component of the input that is inde-
pendent of spatial phase, because the eigenfunction of M with the largest
eigenvalue is spatial-phase invariant. This changes simple cell inputs into
complex cell outputs.

Winner-Take-All Input Selection

For a linear network, the response to two superimposed inputs is simply
the sum of the responses to each input separately. Figure 7.12 shows one
way in which a rectifying nonlinearity modifies this superposition prop-
erty. In this case, the input to the recurrent network consists of activity
centered around two preferred stimulus angles, ±90◦. The output of the
nonlinear network shown in figure 7.12B is not of this form, but instead
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Figure 7.12: Winner-take-all input selection by a nonlinear recurrent network. A)
The input to the network consisting of two peaks. B) The output of the network
has a single peak at the location of the higher of the two peaks of the input. The
model is the same as that used in figure 7.9.
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Figure 7.13: Effect of adding a constant to the input of a nonlinear recurrent net-
work. A) The input to the network consists of a single peak to which a constant
factor has been added. B) The gain-modulated output of the nonlinear network.
The three curves correspond to the three input curves in panel A, in the same order.
The model is the same as that used in figures 7.9 and 7.12.

has a single peak at the location of the input bump with the larger ampli-
tude (the one at −90◦). This occurs because the nonlinear recurrent net-
work supports the stereotyped unimodal activity pattern seen in figure
7.12B, so a multimodal input tends to generate a unimodal output. The
height of the input peak has a large effect in determining where the single
peak of the network output is located, but it is not the only feature that
determines the response. For example, the network output can favor a
broader, lower peak over a narrower, higher one.

Gain Modulation

A nonlinear recurrent network can generate an output that resembles the
gain-modulated responses of posterior parietal neurons shown in figure
7.6, as noted by Salinas and Abbott (1996). To obtain this result, we in-
terpret the angle θ as a preferred direction in the visual field in retinal
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coordinates (the variable we called s earlier in the chapter). The signal cor-
responding to gaze direction (what we called g before) is represented as a
constant input to all neurons irrespective of their preferred stimulus angle.
Figure 7.13 shows the effect of adding such a constant term to the input of
the nonlinear network. The input shown in figure 7.13A corresponds to
a visual target located at a retinal position of 0◦. The different lines show
different values of the constant input, representing three different gaze di-
rections. The responses shown in figure 7.13B all have localized activity
centered around θ=0◦, indicating that the individual neurons have fixed
tuning curves expressed in retinal coordinates. The effect of the constant
input, representing gaze direction, is to scale up or gain modulate these
tuning curves, producing a result similar to that shown in figure 7.6. The
additive constant in the input shown in figure 7.13A has a multiplicative
effect on the output activity shown in 7.13B. This is primarily due to the
fact that the width of the activity profiles is fixed by the recurrent network
interaction, so a constant positive input raises (and a negative input low-
ers) the peak of the response curve without broadening the base of the
curve.

Sustained Activity

The effects illustrated in figures 7.12 and 7.13 arise because the nonlinear
recurrent network has a stereotyped pattern of activity that is largely de-
termined by interactions with other neurons in the network rather than
by the feedforward input. If the recurrent connections are strong enough,
the pattern of population activity, once established, can become indepen-
dent of the structure of the input. For example, the recurrent network we
have been studying can support a pattern of activity localized around a
given preferred stimulus value, even when the input is uniform. This is
seen in figure 7.14. The neurons of the network initially receive inputs that
depend on their preferred angles, as seen in figure 7.14A. This produces
a localized pattern of network activity (figure 7.14B). When the input is
switched to the same constant value for all neurons (figure 7.14C), the net-
work activity does not become uniform. Instead, it stays localized around
the value θ = 0 (figure 7.14D). This means that constant input can main-
tain a state that provides a memory of previous localized input activity.
Networks similar to this have been proposed as models of sustained activ-
ity in the head-direction system of the rat and in prefrontal cortex during
tasks involving working memory.

This memory mechanism is related to the integration seen in the linear
model of eye position maintenance discussed previously. The linear net-
work has an eigenvector e1 with eigenvalue λ1 =1. This allows v= c1e1 to
be a static solution of the equations of the network (7.17) in the absence
of input for any value of c1. As a result, the network can preserve any
initial value of c1 as a memory. In the case of figure 7.14, the steady-state
activity in the absence of tuned input is a function of θ − �, for any value

Peter Dayan and L.F. Abbott Draft: December 19, 2000



7.4 Recurrent Networks 31

-5

0

-180 -90 0 90 180
0

20

40

60

80

θ (deg) θ (deg)

v 
(H

z)

A B
5

h 
(H

z)

-180 -90 0 90 180

-5

0

-180 -90 0 90 180
0

20

40

60

80

θ (deg) θ (deg)
v 

(H
z)

C D
5

h 
(H

z)

-180 -90 0 90 180

Figure 7.14: Sustained activity in a recurrent network. A) Input to the neurons of
the network consisting of localized excitation and a constant background. B) The
activity of the network neurons in response to the input of panel A. C) Constant
network input. D) Response to the constant input of panel C when it immediately
followed the input in A. The model is the same as that used in figures 7.9, 7.12,
and 7.13.

of the angle �. As a result, the network can preserve any initial value of
� as a memory (� = 0◦ in the figure). The activities of the units v(θ) de-
pend on � in an essentially nonlinear manner, but, if we consider linear
perturbations around this nonlinear solution, there is an eigenvector with
eigenvalue λ1 = 1 associated with shifts in the value of �. In this case,
it can be shown that λ1 = 1 because the network was constructed to be
translationally invariant.

Maximum Likelihood and Network Recoding

Recurrent networks can generate characteristic patterns of activity even
when they receive complex inputs (figure 7.9) and can maintain these pat-
terns while receiving constant input (figure 7.14). Pouget, Zhang, Deneve
and Latham (1998) suggested that the location of the characteristic pat-
tern (i.e. the value of � associated with the peak of the population activity
profile) could be interpreted as a match of a fixed template curve to the
input activity profile. This curve fitting operation is at the heart of the
maximum likelihood decoding method we described in chapter 3 for esti-
mating a stimulus variable such as �. In the maximum likelihood method,
the fitting curve is determined by the tuning functions of the neurons, and
the curve fitting procedure is defined by the characteristics of the noise
perturbing the input activities. If the properties of the recurrent network
match these optimal characteristics, the network can approximate maxi-
mum likelihood decoding. Once the activity of the population of neurons
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Figure 7.15: Recoding by a network model. A) The noisy initial inputs h(θ) to 64
network neurons are shown as dots. The standard deviation of the noise is 0.25
Hz. After a short settling time, the input is set to a constant value of h(θ) = 10. B)
The smooth activity profile that results from the recurrent interactions. The net-
work model was similar to that used in figure 7.9 except that the recurrent synap-
tic weights were in the form of a Gabor-like function rather than a cosine, and the
recurrent connections had short-range excitation and long-range inhibition. (see
Pouget et al., 1998.)

has stabilized to its sterotyped shape, a simple decoding method such as
vector decoding can be applied to extract the estimated value of �. This
allows the accuracy of a vector decoding method to approach that of more
complex optimal methods, because the computational work of curve fit-
ting has been performed by the nonlinear recurrent interactions.

Figure 7.15 shows how this idea works in a network of 64 neurons re-
ceiving inputs that have Gaussian (rather than cosine) tuning curves as a
function of �. Vector decoding applied to the reconstruction of � from the
activity of the network or its inputs turns out to be almost unbiased. The
way to judge decoding accuracy is therefore to compute the standard devi-
ation of the decoded � values (chapter 3). The noisy input activity shown
in figure 7.15A shows a slight bump around the value θ = 10◦. Vector de-
coding applied to input activities with this level of noise gives a standard
deviation in the decoded angle of 4.5◦. Figure 7.15B shows the output of
the network obtained by starting with initial activities v(θ) = 0 and input
h(θ) as in figure 7.15A, and then setting h(θ) to a constant (θ-independent)
value to maintain sustained activity. This generates a smooth pattern of
sustained population activity. Vector decoding applied to the output ac-
tivities generated in this way gives a standard deviation in the decoded
angle of 1.7◦. This is not too far from the Cramér-Rao bound that gives the
maximum possible accuracy for any unbiased decoding scheme applied
to this system (see chapter 3), which is 0.88◦.
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Network Stability

When a network responds to a constant input by relaxing to a steady state
with dv/dt=000, it is said to exhibit fixed-point behavior. Almost all the net- fixed-point behavior
work activity we have discussed thus far involves such fixed points. This
is by no means the only type of long-term activity that a network model
can display. In a later section of this chapter, we discuss networks that os-
cillate, and chaotic behavior is also possible. But if certain conditions are
met, a network will inevitably reach a fixed point in response to constant
input. The theory of Lyapunov functions, to which we give an informal
introduction, can be used to prove when this occurs.

It is easier to discuss the Lyapunov function for a network if we use the
firing-rate dynamics of equation 7.6 rather than equation 7.8. For a net-
work model, this means expressing the vector of network firing rates as
v = F(I), where I is the total synaptic current vector, i.e. Ia represents the
total synaptic current for unit a. I obeys the dynamic equation derived
from generalizing equation 7.6 to a network situation, recurrent model

with current
dynamicsτs

dI
dt

= −I + h + M · F(I) . (7.39)

Note that we have made the substitution v = F(I) in the last term of the
right side of this equation. Equation 7.39 is sometimes used instead of
equation 7.11 as the dynamical equation governing recurrent firing-rate
model networks. For this form of firing-rate model with a symmetric re-
current weight matrix satisfying Maa = 0 for all a, Cohen and Grossberg
(1983) showed that the function Lyapunov

function L

L(I) =
Nv∑

a=1

(∫ Ia

0
dza zaF′(za) − haF(Ia) − 1

2

Nv∑
a′=1

F(Ia)Maa′ F(Ia′ )

)
(7.40)

has dL/dt < 0 whenever dI/dt �= 000. To see this, take the time derivative of
equation 7.40 and use 7.39 to obtain

dL(I)
dt

= − 1
τs

Nv∑
a=1

F′(Ia)

(
dIa

dt

)2

. (7.41)

Because F′ > 0, L decreases unless dI/dt = 000. If L is bounded from below,
it cannot decrease indefinitely, so I = h + M · v must converge to a fixed
point. This implies that v must converge to a fixed point as well.

We have required that F′(I) > 0 for all values of its argument I. However,
with some technical complications, it can be shown that the Lyapunov
function we have presented also applied to the case of the rectifying ac-
tivation function F(I) = [I]+, even though it is not differentiable at I = 0
and F′(I) = 0 for I < 0. Convergence to a fixed point, or one of a set of
fixed points, requires the Lyapunov function to be bounded from below.
One way to ensure this is to use a saturating activation function F, so that
F(I) is bounded as I →∞. Another way is to keep the eigenvalues of M
sufficiently small.
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Associative Memory

In an associative memory, a partial or approximate representation of a
stored item is used to recall the full item. Unlike a standard random ac-
cess memory, recall in an associative memory is based on content rather
than on an address. For this reason, associative memory is also known
as content-addressable memory. An example would be recalling every
digit of a known phone number given a few of its digits as an initial
clue. Associative memory networks have been suggested as models of
various parts of the mammalian brain in which there is substantial recur-
rent feedback. These include area CA3 of the hippocampus and parts of
the prefrontal cortex, structures which have long been implicated in var-
ious forms of memory. A number of network models exhibit associative
memory, the best known being the so-called Hopfield networks (Hopfield,
1982 & 1984).

The models of memory we discussed previously in this chapter store infor-
mation by means of persistent activity, with a particular item represented
by the position of a stereotyped population activity profile. The idea un-
derlying an associative (more strictly, auto-associative) memory is to ex-
tend persistent activity to a broader set of different population profiles,
which are called memory patterns. Each of these is a fixed point of the
dynamics of the network. The memory patterns are determined by and
stored within the recurrent synaptic weights of the network, so memory
retention does not require persistent activity. Rather, persistent activity is
used to signal memory recall and to retain the identity of the most recently
retrieved item.

During recall, an associative memory performs the computational oper-
ation of pattern matching, finding the memory pattern that most closely
matches a distorted or partial activity pattern. This is achieved by initial-
izing the network with an activity profile similar (but not identical) to one
of the memory patterns, letting it relax to a fixed point, and treating the
network activity at the fixed point as the best matching pattern. This is
exactly the analog of the way that the recurrent model of maximum like-
lihood decoding executes a curve fitting procedure. Each memory pattern
has a basin of attraction, defined as the set of initial states for which the
network relaxes to that fixed point. The structure of these basins of attrac-
tion defines the matching properties of the network. The network dynam-
ics is governed by a Lyapunov function of the form described above, and
therefore the network will always relax to a fixed point. Provided that not
too many memories are stored, the fixed points will closely resemble the
stored memory patterns.

The associative network satisfies the dynamic equation 7.11, with the sat-
urating activation function

F(Is) = 150 Hz
[

tanh
(

Is − γ

150 Hz

)]
+

(7.42)
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chosen to ensure that the Lyapunov function 7.40 is bounded from below.
This is similar to a half-wave rectified activation function with threshold
γ, except that it saturates at a firing rate of 150 Hz, which is outside the
normal operating range of the units. We use a negative threshold, γ =
−20 Hz, which corresponds to a constant source of excitation rather than
a conventional threshold and generates background activity.

When this model is used for memory storage, a number of patterns, de-
noted by vm with m = 1,2, . . . , Nmem, are stored. Associative recall is
achieved by starting the network in an initial state that is almost, but not
exactly, proportional to one of the memory patterns, v(0) ≈ cvm for some
value of m and constant c. In this case, approximately proportional means
that a significant number, but not all, of the elements of v(0) are close to
the corresponding elements of cvm. The network then evolves according
to equation 7.11 (with h = 000). If the recall is successful, the dynamics con-
verge to a fixed point proportional to the memory pattern associated with
the initial state, that is v(t) → c′vm for large t, where c′ is another constant.
Failure of recall occurs if the fixed point reached by the network is not
proportional to the memory state vm.

In the example we consider, the components of the patterns to be stored are
set to either 0 or 1. The assignment of these two values to the components
of a given vm is usually random with the probability of assigning a 1 equal
to α and of assigning a 0 equal to 1 −α. However, in the example we show,
two of the patterns have been assigned non-randomly to make them easier
to detect in the figures. The parameter α is known as the sparseness of the memory

sparseness αmemory patterns. The sparser the patterns, the more can be stored, but the
less information each contains. We are interested in the limit of large Nv,
in which case the maximum number of patterns that can be stored, Nmem, number of

memories Nmemis proportional to Nv.

The key to successful recall is in the choice of the matrix M, which is given
by

M = 1.25
(1 − α)αNv

Nmem∑
m=1

(vm − αn)(vm − αn) − 1
αNv

nn . (7.43)

Here n is defined as a vector that has each of its Nv components equal vector of ones n
to one. This form of coupling is called a covariance rule, because the first covariance rule
term on the right side is proportional to the covariance matrix of the collec-
tion of patterns. In chapter 8, we study synaptic plasticity rules that lead
to this term. The second term introduces inhibition between the units.

Figure 7.16 shows an example of a network of Nv = 50 units exhibiting
associative memory. This network stores 4 patterns with α = 0.25. Re-
call of two of these patterns is shown in figure 7.16B and 7.16C. From an
initial activity pattern only vaguely resembling one of the stored patterns,
the network is able to attain a fixed activity pattern approximately propor-
tional to the best matching memory pattern. Similar results would apply
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Figure 7.16: Associative recall of memory patterns in a network model. Panel A
shows two representative model neurons, while panels B and C show the firing
rates of all 50 cells plotted against time. The thickness of the horizontal lines in
these plots is proportional to the firing rate of the corresponding neuron. A) Fir-
ing rates of representative neurons. The upper panel shows the firing rate of one
of the excitatory neurons corresponding to a nonzero component of the recalled
memory pattern. The firing rate achieves a nonzero steady-state value. The lower
panel shows the firing rate of another excitatory neuron corresponding to a zero
component of the recalled memory pattern. This firing rate goes to zero. B) Recall
of one of the stored memory patterns. The stored pattern had nonzero values only
for cells 18 through 31. The initial state of the network was random but with a bias
toward this particular pattern. The final state is similar to the memory pattern. C)
Recall of another of the stored memory patterns. The stored pattern had nonzero
values only for every fourth cell. The initial state of the network was again random
but biased toward this pattern. The final state is similar to the memory pattern.

for the other two memory patterns stored by the network, but it would be
more difficult to see these patterns in the figure because they are random.

The rationale behind the weight matrix comes from considering the effect
of the recurrent interactions if the activities match one of the memories,
v = c′v1 for example. A network activity pattern v = c′v1 can only be a
fixed point if

c′v1 = F(c′M · v1) , (7.44)

which ensures that the right side of equation 7.11 (with h = 000) vanishes.
We assume that αNv components of v1 are equal to one and the remaining
(1 − α)Nv are zero. In this case,

M · v1 = 1.25v1 − (1 + 1.25α)n + εεε (7.45)
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where

εεε = 1.25
(1 − α)αNv

Nmem∑
m=2

(vm − αn)(vm − αn) · v1 (7.46)

is a term of order of magnitude
√

Nmem/Nv. To begin, suppose that εεε is
small enough to be ignored. Then, equation 7.44 amounts to two condi-
tions, one arising from the nonzero components of v1 and the other from
the zero components,

c′ = F((0.25 − 1.25α)c′) and − (1 + 1.25α)c′ − γ < 0 . (7.47)

The inequality follows from the requirement that the total synaptic current
plus the threshold is less than zero so that F(Is) = 0 for these components.
On the other hand, the first equation requires that (0.25 − 1.25α)c′ − γ >

0 so that F > 0 for the nonzero components of v1. If εεε can be ignored
and these two conditions are satisfied, v = c′v1 will be a fixed point of the
network dynamics.

The term εεε in equation 7.45, which we have been ignoring, is only negligi-
ble if Nmem � Nv. If Nmem ≈ N, εεε can become large enough to destabilize
the memory states as fixed points. This limits the number of memories that
can be stored in the network. Detailed analysis of the maximum value of
Nmem is complicated by correlations among the terms that contribute to
εεε, but rigorous evaluations can be made of the capacity of the network,
both for binary stored patterns (as here), and for real-valued patterns for
which the activities of each element are drawn from a probability distri-
bution. Different network architectures can also be considered, including
ones with very sparse connectivity between units.

The basic conclusions from studies of associative memory models with
threshold linear or saturating units is that large networks can store even
larger numbers of patterns, particularly if the patterns are sparse (α is near
0) and if a few errors in recall can be tolerated. Nevertheless, the informa-
tion stored per synapse is typically quite small. However, the simple co-
variance prescription for the weights in equation 7.43 is far from optimal.
More sophisticated methods (such as the delta rule discussed in chapter 8)
can achieve significantly higher storage densities.

7.5 Excitatory-Inhibitory Networks

In this section, we discuss models in which excitatory and inhibitory neu-
rons are described separately by equations 7.12 and 7.13. These models
exhibit richer dynamics than the single population models with symmet-
ric coupling matrices we have analyzed up to this point. In models with
excitatory and inhibitory sub-populations, the full synaptic weight matrix
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is not symmetric, and network oscillations can arise. We begin by analyz-
ing a model of homogeneous coupled excitatory and inhibitory popula-
tions. We introduce methods for determining whether this model exhibits
constant or oscillatory activity. We then present two network models in
which oscillations appear. The first is a model of the olfactory bulb, and
the second displays selective amplification in an oscillatory mode.

Homogeneous Excitatory and Inhibitory Populations

As an illustration of the dynamics of excitatory-inhibitory network mod-
els, we analyze a simple model in which all of the excitatory neurons are
described by a single firing rate vE, and all of the inhibitory neurons are
described by a second rate vI. Although we think of this example as a
model of interacting neuronal populations, it is constructed as if it con-
sists of just two neurons. Equations 7.12 and 7.13 with threshold linear
response functions are used to describe the two firing rates, so that

τE
dvE

dt
= −vE + [MEEvE + MEIvI − γE]+ (7.48)

and

τI
dvI

dt
= −vI + [MIIvI + MIEvE − γI]+ . (7.49)

The synaptic weights MEE, MIE, MEI, and MII are numbers rather than
matrices in this model. In the example we consider, we set MEE = 1.25,
MIE = 1, MII = 0, MEI = −1, γE = −10 Hz, γI = 10 Hz, τE = 10 ms, and
we vary the value of τI. The negative value of γE means that this param-
eter serves as a source of constant background activity rather than as a
threshold.

Phase-Plane Methods and Stability Analysis

The model of interacting excitatory and inhibitory populations given by
equations 7.48 and 7.49 provides an opportunity for us to illustrate some
of the techniques used to study the dynamics of nonlinear systems. This
model exhibits both static (constant vE and vI) and oscillatory activity de-
pending on the values of its parameters. Stability analysis can be used
to determine the parameter values where transitions between these two
types of activity take place.

The firing rates vE(t) and vI(t) arising from equations 7.48 and 7.49 can
be displayed by plotting them as functions of time, as in figures 7.18A
and 7.19A. Another useful way of depicting these results, illustrated in
figures 7.18B and 7.19B, is to plot pairs of points (vE(t), vI(t)) for a range
of t values. As the firing rates change, these points trace out a curve or
trajectory in the vE-vI plane, which is called the phase plane of the model.phase plane
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Figure 7.17: A) Nullclines, flow directions, and fixed point for the firing-rate
model of interacting excitatory and inhibitory neurons. The two straight lines
are the nullclines along which dvE/dt = 0 or dvI/dt = 0. The filled circle is the
fixed point of the model. The horizontal and vertical arrows indicate the direc-
tions that vE (horizontal arrows) and vI (vertical arrows) flow in different regions
of the phase plane relative to the nullclines. B) Real (upper panel) and imaginary
(lower panel) parts of the eigenvalue determining the stability of the fixed point.
To the left of the point where the imaginary part of the eigenvalue goes to zero,
both eigenvalues are real. The imaginary part has been divided by 2π to give the
frequency of oscillations near the fixed point.

Phase-plane plots can be used to give a geometric picture of the dynamics
of a model.

Values of vE and vI for which the right sides of either equation 7.48 or equa-
tion 7.49 vanish are of particular interest in phase-plane analysis. Sets of
such values form two curves in the phase plane known as nullclines. The nullcline
nullclines for equations 7.48 and 7.49 are the straight lines drawn in fig-
ure 7.17A. The nullclines are important because they divide the phase
plane into regions with opposite flow patterns. This is because dvE/dt
and dvI/dt are positive on one side of their nullclines and negative on the
other. Above the nullcline along which dvE/dt = 0, dvE/dt < 0, and be-
low it dvE/dt > 0. Similarly, dvI/dt > 0 to the right of the nullcline where
dvI/dt = 0, and dvI/dt < 0 to the left of it. This determines the direction of
flow in the phase plane, as denoted by the horizontal and vertical arrows
in figure 7.17A.

At a fixed point of a dynamic system, the dynamic variables remain at fixed point
constant values. In the model being considered, a fixed point occurs when
the firing rates vE and vI take values that make dvE/dt = dvI/dt = 0. Be-
cause a fixed point requires both derivatives to vanish, it can only occur
at an intersection of nullclines. The model we are considering has a sin-
gle fixed point (at vE = 26.67, vI = 16.67) denoted by the filled circle in
figure 7.17A. A fixed point provides a potential static configuration for
the system, but it is critically important whether the fixed point is stable
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Figure 7.18: Activity of the excitatory-inhibitory firing-rate model when the fixed
point is stable. A) The excitatory and inhibitory firing rates settle to the fixed point
over time. B) The phase-plane trajectory is a counter-clockwise spiral collapsing to
the fixed point. The open circle marks the initial values vE(0) and vI(0). For this
example, τI = 30 ms.

or unstable. If a fixed point is stable, initial values of vE and vI near the
fixed point will be drawn toward it over time. If the fixed point is unsta-
ble, nearby configurations are pushed away from the fixed point, and the
system will only remain at the fixed point indefinitely if the rates are set
initially to the fixed-point values with infinite precision.

Linear stability analysis can be used to determine whether a fixed point is
stable or unstable. This analysis starts by considering the first derivatives
of the right sides of equations 7.48 and 7.49 with respect to vE and vI eval-
uated at the values of vE and vI that correspond to the fixed point. The
four combinations of derivatives computed in this way can be arranged
into a matrixstability matrix (

(MEE − 1)/τE MEI/τE
MIE/τI (MII − 1)/τI

)
. (7.50)

As discussed in the Mathematical Appendix, the stability of the fixed point
is determined by the real parts of the eigenvalues of this matrix. The eigen-
values are given by

λ = 1
2


 MEE − 1

τE
+ MII − 1

τI
±

√(
MEE − 1

τE
− MII − 1

τI

)2

+ 4MEI MIE

τEτI


 .

(7.51)

If the real parts of both eigenvalues are less than zero the fixed point is
stable, while if either is greater than zero the fixed point is unstable. If the
factor inside the square root in equation 7.51 is positive, both eigenvalues
are real, and the behavior near the fixed point is exponential. This means
that there is exponential movement toward the fixed point if both eigen-
values are negative, or away from the fixed point if either eigenvalue is
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Figure 7.19: Activity of the excitatory-inhibitory firing-rate model when the fixed
point is unstable. A) The excitatory and inhibitory firing rates settle into periodic
oscillations. B) The phase-plane trajectory is a counter-clockwise spiral that joins
the limit cycle, which is the closed orbit. The open circle marks the initial values
vE(0) and vI(0). For this example, τI = 50 ms.

positive. We focus on the case when the factor inside the square root is
negative, so that the square root is imaginary and the eigenvalues form a
complex conjugate pair. In this case, the behavior near the fixed point is
oscillatory and the trajectory either spirals into the fixed point, if the real
part of the eigenvalues is negative, or out from the fixed point if the real
part of the eigenvalues is positive. The imaginary part of the eigenvalue
determines the frequency of oscillations near the fixed point. The real and
imaginary parts of one of these eigenvalues are plotted as a function of τI
in figure 7.17B. This figure indicates that the fixed point is stable if τI < 40
ms and unstable for larger values of τI.

Figures 7.18 and 7.19 show examples in which the fixed point is stable
and unstable, respectively. In figure 7.18A, the oscillations in vE and vI
are damped, and the firing rates settle down to the stable fixed point. The
corresponding phase-plane trajectory is a collapsing spiral (figure 7.18B).
In figure 7.19A the oscillations grow, and in figure 7.19B the trajectory is a
spiral that expands outward until the system enters a limit cycle. A limit limit cycle
cycle is a closed orbit in the phase plane indicating periodic behavior. The
fixed point is unstable in this case, but the limit cycle is stable. Without
rectification, the phase-plane trajectory would spiral out from the unstable
fixed point indefinitely. The rectification nonlinearity prevents the spiral
trajectory from expanding past zero and thereby stabilizes the limit cycle.

There are a number of ways that a nonlinear system can make a transi-
tion from a stable fixed point to a limit cycle. Such transitions are called
bifurcations. The transition seen between figures 7.18 and 7.19 is a Hopf
bifurcation. In this case, a fixed point becomes unstable as a parameter Hopf bifurcation
is changed (in this case τI) when the real part of a complex eigenvalue
changes sign. In a Hopf bifurcation, the limit cycle emerges at a finite fre-
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quency, which is similar to the behavior of a type II neuron when it starts
firing action potentials, as discussed in chapter 6. Other types of bifurca-
tions produce type I behavior with oscillations emerging at zero frequency
(chapter 6). One example of this is a saddle-node bifurcation, which occurssaddle-node

bifurcation when parameters are changed such that two fixed points, one stable and
one unstable, meet at the same point in the phase plane.

The Olfactory Bulb

The olfactory bulb, and analogous olfactory areas in insects, provide exam-
ples where sensory processing involves oscillatory activity. The olfactory
bulb represents the first stage of processing beyond the olfactory receptors
in the vertebrate olfactory system. Olfactory receptor neurons respond to
odor molecules and send their axons to the olfactory bulb. These axons
terminate in glomeruli where they synapse onto mitral and tufted cells,mitral cells

tufted cells and also local interneurons. The mitral and tufted cells provide the out-
put of the olfactory bulb by sending projections to the primary olfactory
cortex. They also synapse onto the larger population of inhibitory granule
cells. The granule cells in turn inhibit the mitral and tufted cells.granule cells

A

v

h
E

vI

receptor inputs

mitral
cells

granule
cells

E

B

100 ms

Figure 7.20: A) Extracellular field potential recorded in the olfactory bulb during
respiratory waves representing three successive sniffs. B) Schematic diagram of the
olfactory bulb model. (A adapted from Freeman and Schneider, 1982; B adapted
from Li, 1995.)

The activity in the olfactory bulb of many vertebrates is strongly influ-
enced by a sniff cycle in which a few quick sniffs bring odors past the ol-
factory receptors. Figure 7.20A shows an extracellular potential recorded
during three successive sniffs. The three large oscillations in the figure
are due to the sniffs. The oscillations we discuss in this section are the
smaller, higher frequency oscillations seen around the peak of each sniff
cycle. These arise from oscillatory neural activity. Individual mitral cells
have quite low firing rates, and do not fire on each cycle of the oscillations.
The oscillations are phase-locked across the bulb, but different odors in-
duce oscillations of different amplitudes and phases.
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Li and Hopfield (1989) modeled the mitral and granule cells of the ol-
factory bulb as a nonlinear input-driven network oscillator. Figure 7.20B
shows the architecture of the model, which uses equations 7.12 and 7.13
with MEE = MII = 0. The absence of these couplings in the model is in ac-
cord with the anatomy of the bulb. The rates vE and vI refer to the mitral
and granule cells, respectively (figure 7.20B). Figure 7.21A shows the acti-
vation functions of the model. The time constants for the two populations
of cells are the same, τE = τI = 6.7 ms. hE is the input from the receptors
to the mitral cells, and hI is a constant representing top-down input that
exists from the olfactory cortex to the granule cells.
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Figure 7.21: Activation functions and eigenvalues for the olfactory bulb model.
A) The activation functions FE (solid curve) for the mitral cells, and FI (dashed
curve) for the granule cells. B) The real (solid line, left axis) and imaginary (dashed
line, right axis) parts of the eigenvalue that determines whether the network model
exhibits fixed-point or oscillatory behavior. These are plotted as a function of time
during a sniff cycle. When the real part of the eigenvalue becomes greater than
one, it determines the growth rate away from the fixed point and the imaginary
part divided by 2π determines the initial frequency of the resulting oscillations.
(Adapted from Li, 1995.)

The field potential in figure 7.20A shows oscillations during each sniff,
but not between sniffs. For the model to match this pattern of activity, the
input from the olfactory receptors, hE, must induce a transition between
fixed-point and oscillatory activity. Before a sniff, the network must have
a stable fixed point with low activities. As hE increases during a sniff, this
steady-state configuration must become unstable leading to oscillatory ac-
tivity. The analysis of the stability of the fixed point and the onset of oscil-
lations is closely related to our previous stability analysis of the model of
homogeneous populations of coupled excitatory and inhibitory neurons.
It is based on properties of the eigenvalues of the linear stability matrix
(see the Mathematical Appendix). In this case, the stability matrix includes
contributions from the derivatives of the activation functions evaluated at
the fixed point. For the fixed point to become unstable, the real part of at
least one of the eigenvalues that arise in this analysis must become larger
than 1. To ensure oscillations, at least one of these destabilizing eigenval-
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Figure 7.22: Activities of four of ten mitral (upper) and granule (lower) cells dur-
ing a single sniff cycle for two different odors. (Adapted from Li and Hopfield,
1989.)

ues should have a non-zero imaginary part. These requirements impose
constraints on the connections between the mitral and granule cells and
on the inputs.

Figure 7.21B shows the real and imaginary parts of the relevant eigen-
value, labeled λ, during one sniff cycle. About 100 ms into the cycle the
real part of λ gets bigger than 1. Reading off the imaginary part of λ at
this point, we find that this sets off roughly 40 Hz oscillations in the net-
work. These oscillations stop about 300 ms into the sniff cycle when the
real part of λ drops below 1. The input hE from the receptors plays two
critical roles in this process. First, it makes the eigenvalue great than 1 by
modifying where the fixed point lies on the activation function curves in
figure 7.21A. Second, it affects which particular neurons are destabilized
and thus, which begin to oscillate. The ultimate pattern of oscillatory ac-
tivity is determined both by the input hE and by the recurrent couplings
of the network.

Figure 7.22 shows the behavior of the network during a single sniff cycle
in the presence of two different odors, represented by two different values
of hE. The top rows show the activity of four mitral cells, and the bottom
rows four granule cells. The amplitudes and phases of the oscillations seen
in these traces, along with the identities of the mitral cells taking part in
them, provide a signature of the identity of the odor that was presented.

Oscillatory Amplification

As a final example of network oscillations, we return to amplification of
input signals by a recurrently connected network. Two factors control
the amount of selective amplification that is viable in networks such as
that shown in figure 7.9. The most important constraint on the recurrent
weights is that the network must be stable, so the activity does not increase
without bound. Another possible constraint is suggested by figure 7.14D
where the output shows a tuned response even though the input to the net-
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work is constant as a function of θ. Tuned output in the absence of tuned
input can serve as a memory mechanism, but it would produce persistent
perceptions if it occurs in a primary sensory area, for example. Avoiding
this in the network limits the recurrent weights and the amount of ampli-
fication that can be supported.

Li and Dayan (1999) showed that this restriction can be significantly eased
using the richer dynamics of networks of coupled inhibitory and excita-
tory neurons. Figure 7.23 shows an example with continuous neuron la-
beling based on a continuous version of equations 7.12 and 7.13. The input
is either hE(θ) = 8(1 + 5

8 cos(2θ)) in the modulated case (figure 7.23B) or
hE(θ) = 8 in the unmodulated case (figure 7.23C). Noise with standard de-
viation 0.4 corrupts this input. The input to the network is constant in
time.

The network oscillates in response to either constant or tuned input. Fig-
ure 7.23A shows the time average of the oscillating activities of the neu-
rons in the network as a function of their preferred angles for noisy tuned
(solid curve) and untuned (dashed curve) inputs. Neurons respond to the
tuned input in a highly tuned and amplified manner. Despite the high de-
gree of amplication, the average response of the neurons to untuned input
is almost independent of θ. Figures 7.23B and 7.23C show the activities of
individual neurons with θ = 0◦ (’o’) and θ = −37◦) (‘x’) over time for the
tuned and untuned inputs respectively. The network does not produce
persistent perception, because the output to an untuned input is itself un-
tuned. In contrast, a non-oscillatory version of this network, with τI = 0,
exhibits tuned sustained activity in response to an untuned intput for re-
current weights this strong. The oscillatory network can thus operate in a
regime of high selective amplification without generating spurious tuned
activity.

7.6 Stochastic Networks

Up to this point, we have considered models in which the output of a cell is
a deterministic function of its input. In this section, we consider a network
model called the Boltzmann machine in which the input-output relation- Boltzmann

machineship is stochastic. Boltzmann machines are interesting from the perspec-
tive of learning, and also because they offer an alternative interpretation
of the dynamics of network models.

In the simplest form of Boltzmann machine, the neurons are treated as
binary, so va(t) = 1 if unit a is active at time t (e.g. it fires a spike between
times t and t +�t for some small value of �t), and va(t) = 0 if it is inactive.
The state of unit a is determined by its total input current,

Ia(t) = ha(t) +
Nv∑

a′=1

Maa′va′ (t) , (7.52)
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Figure 7.23: Selective amplification in an excitatory-inhibitory network. A) Time-
averaged response of the network to a tuned input with � = 0◦ (solid curve) and
to an untuned input (dashed curve). Symbols ’o’ and ’x’ mark the 0◦ and −37◦

points seen in B and C. B) Activities over time of neurons with preferred angles of
θ = 0◦ (solid curve) and θ = −37◦ (dashed curve) in response to a modulated input
with � = 0◦. C) Activities of the same units shown in B to a constant input. The
lines lie on top of each other showing that the two units respond identically. The
parameters are τE = τI = 10 ms, hI = 0, MEI = −δ(θ − θ′)/ρθ, MEE = (1/πρθ)[5.9 +
7.8 cos(2(θ − θ′))]+, MIE = 13.3/πρθ, and MII = 0. (After Li and Dayan, 1999.)

where Maa′ = Ma′a and Maa = 0 for all a and a′ values, and ha is the total
feedforward input into unit a. In the model, units can only change state at
integral multiples of �t. At each time step, a single unit is selected, usually
at random, to be updated. This update is based on a probabilistic rather
than a deterministic rule. If unit a is selected, its state at the next time step
is set stochastically to 1 with probability

P[va(t + �t) = 1] = F(Ia(t)) with F(Ia) = 1
1 + exp(−Ia)

. (7.53)

Of course, it follows that P[va(t + �t) = 0] = 1 − F(Ia(t)). F is a sigmoidal
function, which has the property that the larger the value of Ia, the more
likely unit a is to take the value one.

Under equation 7.53, the state of activity of the network evolves as a
Markov chain. This means that the components of v at different times areMarkov chain
sequences of random variables with the property that v(t + 1) depends
only on v(t), and not on the previous history of the network. The update
of equation 7.53 is known as Glauber dynamics.Glauber dynamics

An advantage of using Glauber dyanmics to define the evolution of a net-
work model is that general results from statistical mechanics can be used
to determine the equilibrium distribution of activities. Under Glauber dy-
namics, v does not converge to a fixed point, but can be described by a
probability distribution associated with an energy functionenergy function

E(v) = −h · v − 1
2

v · M · v . (7.54)

The probability distribution characterizing v, once the network has con-
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verged to an equilibrium state, is

P[v] = exp(−E(v))

Z
where Z =

∑
v

exp(−E(v)) . (7.55)

The notion of convergence as t → ∞ can be formalized precisely, but in-
formally, it means that after repeated updating according to equation 7.53,
the states of the network are described statistically by equation 7.55. Z
is called the partition function and P[v] the Boltzmann distribution. Un- partition function

Boltzmann
distribution

der the Boltzmann distribution, states with lower energies are more likely.
In this case, Glauber dynamics implements a statistical operation called
Gibbs sampling for the distribution given in equation 7.55. Gibbs sampling

The Boltzmann machine is an inherently stochastic device. An approxima-
tion to the Boltzmann machine, known as the mean-field approximation, mean-field

approximationcan be constructed on the basis of the deterministic synaptic current dy-
namics of a firing-rate model. In this case, I is determined by the dynamic
equation 7.39 rather than by equation 7.52, and the model runs in contin-
uous rather than discrete time. The function F in equation 7.39 is taken to
be the same sigmoidal function as in equation 7.53. Although the mean-
field formulation of the Boltzmann machine is inherently deterministic,
F(Ia) can be used to generate a probability distribution over a binary out-
put vector v. This is done by treating the output of each unit a, va, as an
independent binary variable set to either 1 or 0 with probability F(Ia) or
1 − F(Ia) respectively. This replaces the deterministic rule va = F(Ia) used
in the firing-rate version of the model. Because va = 1 has probability F(Ia)

and va = 0 probability 1 − F(Ia) and the units are independent, the proba-
bility distribution for the entire vector v is

Q[v] =
Nv∏

a=1

F(Ia)
va (1 − F(Ia))

1−va . (7.56)

This is called the mean-field distribution for the Boltzmann machine. Note mean field
distributionthat this distribution (and indeed v itself) plays no role in the dynamics of

the mean-field formulation of the Boltzmann machine. It is rather a way
of interpreting the outputs.

We have presented two formulations of the Boltzmann machine, Gibbs
sampling and the mean-field approach, that lead to the two distributions
P[v] and Q[v] (equations 7.55 and 7.56). The Lyapunov function of equa-
tion 7.40, that decreases steadily under the dynamics of equation 7.39 un-
til a fixed point is reached, provides a key insight into the relationship
between these two distributions. In the appendix, we show that this Lya-
punov function can be expressed as

L(I) = DKL(Q, P) + K (7.57)

where K is a constant, and DKL is the Kullback-Liebler divergence defined
in chapter 4. DKL(Q, P) is a measure of how different the two distributions
Q and P are from each other. The fact that the dynamics of equation 7.39
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reduces the Lyapunov function to a minimum value means that it also
reduces the difference between Q and P, as measured by the Kullback-
Liebler divergence. This offers an interesting interpretation of the mean-
field dynamics; it modifies the current value of the vector I until the dis-
tribution of binary output values generated by the mean-field formulation
of the Boltzmann machine matches as closely as possible (to at least a local
minimum of DKL(Q, P)) the distribution generated by Gibbs sampling. In
this way, the mean-field procedure can be viewed as an approximation of
Gibbs sampling.

The power of the Boltzmann machine lies in the relationship between the
distribution of output values, equation 7.55, and the quadratic energy
function of equation 7.54. This makes it is possible to determine how
changing the weights M affects the distribution of output states. In chap-
ter 8, we present a learning rule for the weights of the Boltzmann machine
that allows P[v] to approximate a probability distribution extracted from
a set of inputs. In chapter 10, we study other models that construct output
distributions in this way.

Note that the mean field distribution Q[v] is simpler than the full Boltz-
mann distribution P[v] because the units are statistically independent.
This prevents Q[v] from providing a good approximation in some cases,
particularly if there are negative weights between units, which tend to
make their activities mutually exclusive. Correlations such as these in the
fluctuations of the states about their mean values can be important for
learning. The mean-field analysis of the Boltzmann machine illustrates
the limitations of rate-based descriptions in capturing the full extent of the
correlations that can exist between spiking neurons.

7.7 Chapter Summary

The models in this chapter mark the start of our discussion of computa-
tion, as opposed to coding. Using a description of the firing rates of net-
work neurons, we showed how to construct linear and nonlinear feedfor-
ward and recurrent networks that transform information from one coordi-
nate system to another, selectively amplify input signals, integrate inputs
over extended periods of time, select between competing inputs, sustain
activity in the absence of input, exhibit gain modulation, allow simple de-
coding with performance near the Cramér-Rao bound, and act as content
addressable memories. We used network responses to a continuous stim-
ulus variable as an extended example. This led to models of simple and
complex cells in primary visual cortex. We described a model of the ol-
factory bulb as an example of a system for which computation involves
oscillations arising from asymmetric couplings between excitatory and in-
hibitory neurons. Linear stability analysis was applied to a simplified ver-
sion of this model. We also considered a stochastic network model called
the Boltzmann machine.
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Appendix

Lyapunov Function for the Boltzmann Machine

Here, we show that the Lyapunov function of equation 7.40 can be reduced
to equation 7.57 when applied to the mean-field version of the Boltzmann
machine. Recall, from equation 7.40, that

L(I) =
Nv∑

a=1

(∫ Ia

0
dza zaF′(za) − haF(Ia) − 1

2

Nv∑
a′=1

F(Ia)Maa′ F(Ia′ )

)
(7.58)

When F is given by the sigmoidal function of equation 7.53,

∫ Ia

0
dza zaF′(za) = F(Ia) ln F(Ia) + (1 − F(Ia)) ln(1 − F(Ia)) + k (7.59)

where k is a constant, as can be verified by differentiating the right side.
The non-constant part of the right side of this equation is just the entropy
associated with the binary variable va. In fact,

Nv∑
a=1

∫ Ia

0
dza zaF′(za) = 〈ln Q[v]〉Q + Nvk (7.60)

where the average is over all values of v with probabilities Q[v].

To evaluate the remaining terms in equation 7.58, we note that, because the
components of v are binary and independent, relations such as 〈va〉Q =
F(Ia) and 〈vavb〉Q = F(Ia)F(Ib) are valid. Then, using equation 7.54, we
find

L(I) =
Nv∑

a=1

(
−haF(Ia) − 1

2

Nv∑
a′=1

F(Ia)Maa′ F(Ia′ )

)
= 〈−E(v)〉Q . (7.61)

Similarly, from equation 7.55, we can show that

〈ln P[v]〉Q = 〈−E(v)〉Q − ln Z . (7.62)

Combining the results of equations 7.60, 7.61, and 7.61, we obtain

L(I) = 〈ln Q[v] − ln P[v]〉Q + Nvk − ln Z . (7.63)

which gives equation 7.57 with K = Nvk − log Z because 〈ln Q[v] −
ln P[v]〉Q is, by definition, the Kullback-Liebler divergence DKL(Q, P) (see
chapter 4, although there we use base 2 logarithms, while here we use base
e logarithms in the definition of DKL, but the difference is only an overall
multiplicative constant).
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7.8 Annotated Bibliography

Wilson & Cowan (1972, 1973) provide pioneering analyses of firing-rate
models. Subsequent analyses related to the discussion in this chapter are
presented in Abbott (1994), Ermentrout (1998), Amit & Tsodyks (1991a &
b) and Bressloff & Coombes (2000). Rinzel and Ermentrout (1998) discuss
phase-plane methods; XPP (see http://www.pitt.edu/˜phase) provides
a computer environment for performing phase-plane and other forms of
mathematical analysis on neuron and network models.

Our discussion of the feedforward coordinate transformation model fol-
lowed Pouget & Sejnowski (1995, 1997) and Salinas & Abbott (1995), which
built on theoretical work by Zipser & Andersen (1988) to explain parietal
gain fields (see Andersen, 1989).

We followed Seung’s (1996) discussion of neural integration for eye posi-
tion, which builds on Robinson (1989).

The notion of a regular repeating unit of cortical computation dates back
to the earliest investigations of cortex (see Douglas & Martin 1998). We
followed Seung (1996); Zhang (1996) in adopting the theoretical context of
continuous line or surface attractors, that has the many applications dis-
cussed in the chapter (see also Hahnloser et al., 2000). Sompolinsky &
Shapley 1997 review a recently active debate about the balance of control
of orientation selectivity in primary visual cortex between feedforward in-
put and a recurrent line attractor. We presented a model of a hypercolumn;
the extension to multiple hypercolumns is used to link psychophysical and
physiological data on contour integration and texture segmentation by Li
(1998, 1999).

Network associative memories are described and analyzed by Hopfield
(1982; 1984) and Cohen & Grossberg (1983), who described a general Lya-
punov function. Grossberg (1988); Amit (1989); Hertz, et al. (1991) present
a host of theory about associative networks, in particular about their ca-
pacity to store information. Associative memory in non-binary recurrent
networks has been studied in particular by Treves and collaborators (see
Rolls & Treves, 1998) and, in the context of line attractor networks, by
Samsonovich & McNaughton (1997) and Battaglia & Treves (1998).

We followed Li’s (1995) presentation of Li & Hopfield’s (1989) oscillatory
model of the olfactory bulb.

The Boltzmann machine was invented by Hinton & Sejnowski (1986), and
is a stochastic generalization of the Hopfield net (Hopfield, 1982). The
mean-field model is due to Hopfield (1984), and we followed the proba-
bilistic discussion in Jordan et al. (1998).
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Chapter 8

Plasticity and Learning

8.1 Introduction

Activity-dependent synaptic plasticity is widely believed to be the basic
phenomenon underlying learning and memory, and it is also thought to
play a crucial role in the development of neural circuits. To understand
the functional and behavioral significance of synaptic plasticity, we must
study how experience and training modify synapses, and how these mod-
ifications change patterns of neuronal firing to affect behavior. Experimen-
tal work has revealed ways in which neuronal activity can affect synaptic
strength, and experimentally inspired synaptic plasticity rules have been
applied to a wide variety of tasks including auto- and hetero-associative
memory, pattern recognition, storage and recall of temporal sequences,
and function approximation.

In 1949, Donald Hebb conjectured that if input from neuron A often con-
tributes to the firing of neuron B, the synapse from A to B should be
strengthened. Hebb suggested that such synaptic modification could pro- Hebb rule
duce neuronal assemblies that reflect the relationships experienced dur-
ing training. The Hebb rule forms the basis of much of the research done
on the role of synaptic plasticity in learning and memory. For example,
consider applying this rule to neurons that fire together during training
due to an association between a stimulus and a response. These neu-
rons would develop strong interconnections, and subsequent activation
of some of them by the stimulus could produce the synaptic drive needed
to activate the remaining neurons and generate the associated response.
Hebb’s original suggestion concerned increases in synaptic strength, but
it has been generalized to include decreases in strength arising from the
repeated failure of neuron A to be involved in the activation of neuron B.
General forms of the Hebb rule state that synapses change in proportion to
the correlation or covariance of the activities of the pre- and postsynaptic
neurons.
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Figure 8.1: LTP and LTD at the Schaffer collateral inputs to the CA1 region of a
rat hippocampal slice. The points show the amplitudes of field potentials evoked
by constant amplitude stimulation. At the time marked by the arrow (at time 5
minutes), stimulation at 100 Hz for 1 s caused a significant increase in the response
amplitude. Some of this increase decayed away following the stimulation, but
most of it remained over the following 15 min test period, indicating LTP. Next,
stimulation at 2 Hz was applied for 10 min (between times 20 and 30 minutes).
This reduced that amplitude of the response. After a transient dip, the response
amplitude remained at a reduced level approximately midway between the origi-
nal and post-LTP values, indicating LTD. The arrows at the right show the levels
initially (control), after LTP (potentiated), and after LTD (depressed, partially de-
potentiated). (Unpublished data of J Fitzpatrick and J Lisman.)

Experimental work in a number of brain regions including hippocampus,
neocortex, and cerebellum, has revealed activity-dependent processes that
can produce changes in the efficacies of synapses that persist for vary-
ing amounts of time. Figure 8.1 shows an example in which the data
points indicate amplitudes of field potentials evoked in the CA1 region
of a slice of rat hippocampus by stimulation of the Schaffer collateral af-
ferents. In experiments such as this, field potential amplitudes (or more
often slopes) are used as a measure of synaptic strength. In Figure 8.1,
high-frequency stimulation induced synaptic potentiation (an increase inpotentiation
strength), and then long-lasting, low-frequency stimulation resulted in
synaptic depression (a decrease in strength) that partially removed thedepression
effects of the previous potentiation. This is in accord with a generalized
Hebb rule because high-frequency presynaptic stimulation evokes a post-
synaptic response, whereas low-frequency stimulation does not. Changes
in synaptic strength involve both transient and long-lasting effects, as seen
in figure 8.1. The longest-lasting forms appear to require protein synthe-
sis. Changes that persist for tens of minutes or longer are generally called
long-term potentiation (LTP) and long-term depression (LTD). InhibitoryLTP and LTD
synapses can also display plasticity, but this has been less thoroughly in-
vestigated both experimentally and theoretically, and we focus on the plas-
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ticity of excitatory synapses in this chapter.

A wealth of data is available on the underlying cellular basis of activity-
dependent synaptic plasticity. The postsynaptic concentration of calcium
ions appears to play a critical role in the induction of both long-term poten-
tiation and depression. However, we will not consider mechanistic mod-
els. Rather, we study synaptic plasticity at a functional level, attempting
to relate the impact of synaptic plasticity on neurons and networks to the
basic rules governing its induction.

Studies of plasticity and learning involve analyzing how synapses are af-
fected by activity over the course of a training period. In this and the
following chapters, we consider three types of training procedures. In un-
supervised (or sometimes self-supervised) learning, a network responds unsupervised

learningto a series of inputs during training solely on the basis of its intrinsic con-
nections and dynamics. The network then self-organizes in a manner that
depends on the synaptic plasticity rule being applied and on the nature
of inputs presented during training. We consider unsupervised learning
in a more general setting called density estimation in chapter 10. In su-
pervised learning, which we consider in the last section of this chapter, a supervised

learningdesired set of input-output relationships is imposed on the network by a
‘teacher’ during training. Networks that perform particular tasks can be
constructed in this way by letting a modification rule adjust the synapses
until the desired computation emerges as a consequence of the training
process. This is an alternative to explicitly specifying the synaptic weights,
as was done in chapter 7. In this case, finding a biological plausible teach-
ing mechanism may not be a concern, if the scientific question being ad-
dressed is whether any weights can be found that allow a network to im-
plement a particular function. In more biologically plausible examples of
supervised learning, one network can act as the teacher for another net-
work. In chapter 9, we discuss a third form of learning, reinforcement
learning, that is somewhat intermediate between these cases. In reinforce- reinforcement

learningment learning, the network output is not constrained by a teacher, but
evaluative feedback on network performance is provided in the form of
reward or punishment. This can be used to control the synaptic modifica-
tion process. We will see that the same synaptic plasticity rule can be used
for different types of learning procedures.

In this chapter we focus on activity-dependent synaptic plasticity of the
Hebbian type, meaning plasticity based on correlations of pre- and post-
synaptic firing. To ensure stability and to obtain interesting results, we
must often augment Hebbian plasticity with more global forms of synaptic
modification that, for example, scale the strengths of all the synapses onto
a given neuron. These can have a major impact on the outcome of develop-
ment or learning. Non-Hebbian forms of synaptic plasticity, such as those non-Hebbian

plasticitythat modify synaptic strengths solely on the basis of pre- or postsynaptic
firing, are likely to play important roles in homeostatic, developmental,
and learning processes. Activity can also modify the intrinsic excitabil-
ity and response properties of neurons. Models of such intrinsic plasticity
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show that neurons can be remarkably robust to external perturbations if
they adjust their conductances to maintain specified functional character-
istics. Intrinsic and synaptic plasticity can interact in interesting ways. For
example, shifts in intrinsic excitability can compensate for changes in the
level of input to a neuron caused by synaptic plasticity. It is likely that all
of these forms of plasticity, and many others, are important elements of
both the stability and adaptability of nervous systems.

In this chapter, we describe and analyze basic correlation- and covariance-
based synaptic plasticity rules in the context of unsupervised learning, and
discuss their extension to supervised learning. One running example is the
development of ocular dominance in single cells in primary visual cortex
and the ocular dominance stripes they collectively form.

Stability and Competition

Increasing synaptic strength in response to activity is a positive feedback
process. The activity that modifies synapses is reinforced by Hebbian plas-
ticity, which leads to more activity and further modification. Without ap-
propriate adjustments of the synaptic plasticity rules or the imposition of
constraints, Hebbian modification tends to produce uncontrolled growth
of synaptic strengths.

The easiest way to control synaptic strengthening is to impose an upper
limit on the value that a synaptic weight (defined as in chapter 7) can take.
Such an upper limit is supported by LTP experiments. Further, it makes
sense to prevent weights from changing sign, because the plasticity pro-
cesses we are modeling cannot change an excitatory synapse into an in-
hibitory synapse or vice versa. We therefore impose the constraint, which
we call a saturation constraint, that all excitatory synaptic weights must liesynaptic saturation
between zero and a maximum value wmax, which is a constant. The sim-
plest implementation of saturation is to set any weight that would cross
a saturation bound due to application of a plasticity rule to the limiting
value.

Uncontrolled growth is not the only problem associated with Hebbian
plasticity. Synapses are modified independently under a Hebbian rule,
which can have deleterious consequences. For example, all of the synaptic
weights may be driven to their maximum allowed values wmax, causing
the postsynaptic neuron to lose selectivity to different patterns of input.
The development of input selectivity typically requires competition be-
tween different synapses, so that some are forced to weaken when otherssynaptic

competition become strong. We discuss a variety of synaptic plasticity rules that intro-
duce competition between synapses. In some cases, the same mechanism
that leads to competition also stabilizes growth of the synaptic weights. In
other cases, it does not, and saturation constraints must also be imposed.
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8.2 Synaptic Plasticity Rules

Rules for synaptic modification take the form of differential equations de-
scribing the rate of change of synaptic weights as a function of the pre-
and postsynaptic activity and other possible factors. In this section, we
give examples of such rules. In later sections, we discuss their computa-
tional implications.

In the models of plasticity we study, the activity of each neuron is de-
scribed by a continuous variable, not by a spike train. As in chapter 7, we
use the letter u to denote the presynaptic level of activity and v to denote
the postsynaptic activity. Normally, u and v represent the firing rates of
the pre- and postsynaptic neurons, in which case they should be restricted
to non-negative values. Sometimes, to simplify the analysis, we ignore
this constraint. An activity variable that takes both positive and nega-
tive values can be interpreted as the difference between a firing rate and
a fixed background rate, or between the firing rates of two neurons being
treated as a single unit. Finally, to avoid extraneous conversion factors in
our equations, we take u and v to be dimensionless measures of the cor-
responding neuronal firing rates or activities. For example, u and v could
be the firing rates of the pre- and postsynaptic neurons divided by their
maximum or average values.

In the first part of this chapter, we consider unsupervised learning as ap-
plied to a single postsynaptic neuron driven by Nu presynaptic inputs with
activities represented by ub for b = 1,2, . . . , Nu, or collectively by the vec-
tor u. Because we study unsupervised learning, the postsynaptic activity
v is evoked directly by the presynaptic activity u, not by an external agent.
We use a linear version of the firing-rate model discussed in chapter 7,

τr
dv

dt
= −v + w · u = −v +

Nu∑
b=1

wbub (8.1)

where τr is a time constant that controls the firing rate response dynam-
ics. Recall that wb is the synaptic weight that describes the strength of
the synapse from presynaptic neuron b to the postsynaptic neuron, and w
is the vector formed by all Nu synaptic weights. The individual synaptic w weight vector
weights can be either positive, representing excitation, or negative, rep-
resenting inhibition. Equation 8.1 does not include any nonlinear depen-
dence of the firing rate on the total synaptic input, not even rectification.
Using such a linear firing-rate model considerably simplifies the analysis
of synaptic plasticity. The restriction to non-negative v will either be im-
posed by hand, or sometimes it will be ignored to simplify the analysis.

The processes of synaptic plasticity are typically much slower than the
dynamics characterized by equation 8.1. If, in addition, the stimuli are
presented slowly enough to allow the network to attain its steady-state
activity during training, we can replace the dynamic equation 8.1 by

v = w · u , (8.2)
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6 Plasticity and Learning

which sets v instantaneously to the asymptotic, steady-state value deter-
mined by equation 8.1. This is the equation we primarily use in our anal-
ysis of synaptic plasticity in unsupervised learning. Synaptic modifica-
tion is included in the model by specifying how the vector w changes as a
function of the pre- and postsynaptic levels of activity. The complex time-
course of plasticity seen in figure 8.1 is simplified by modeling only the
longer-lasting changes.

The Basic Hebb Rule

The simplest plasticity rule that follows the spirit of Hebb’s conjecture
takes the form

τw

dw
dt

= vu , (8.3)

which implies that simultaneous pre- and postsynaptic firing increases
synaptic strength. We call this the basic Hebb rule. If the activity variablesbasic Hebb rule
represent firing rates, the right side of this equation can be interpreted as
a measure of the probability that the pre- and postsynaptic neurons both
fire spikes during a small time interval. Here, τw is a time constant that
controls the rate at which the weights change.

Synaptic plasticity is generally modeled as a slow process that gradually
modifies synaptic weights over a time period during which the compo-
nents of u take a variety of different values. Each set of u values is called
an input pattern. The direct way to compute the weight changes induced
by a series of input patterns is to sum the small changes caused by each
of them separately. A convenient alternative is to average over all of the
different input patterns and compute the weight changes induced by this
average. As long as the synaptic weights change slowly enough, the aver-
aging method provides a good approximation of the weight changes pro-
duced by the set of input patterns.

In this chapter, we use angle brackets 〈 〉 to denote averages over the en-
semble of input patterns presented during training (which is a slightly dif-
ferent usage from earlier chapters). The Hebb rule of equation 8.3, when
averaged over the inputs used during training, becomesaveraged Hebb rule

τw

dw
dt

= 〈vu〉 . (8.4)

In unsupervised learning, v is determined by equation 8.2, and, if we re-
place v by w · u, we can rewrite the averaged plasticity rule (equation 8.4)
ascorrelation-based

rule

τw

dw
dt

= Q · w or τw

dwb

dt
=

Nu∑
b′=1

Qbb′wb′ (8.5)

where Q is the input correlation matrix given byQ input correlation
matrix
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8.2 Synaptic Plasticity Rules 7

Q = 〈uu〉 or Qbb′ = 〈ubub′ 〉 . (8.6)

Equation 8.5 is called a correlation-based plasticity rule because of the
presence of the input correlation matrix.

Whether or not the pre- and postsynaptic activity variables are restricted to
non-negative values, the basic Hebb rule is unstable. To show this, we con-
sider the square of the length of the weight vector, |w|2 = w · w = ∑

b w2
b.

Taking the dot product of equation 8.3 with w and noting that d|w|2/dt =
2w · dw/dt and that w · u = v, we find that τwd|w|2/dt = 2v2, which is al-
ways positive (except in the trivial case v = 0). Thus, the length of the
weight vector grows continuously when the rule 8.3 is applied. To avoid
unbounded growth, we must impose an upper saturation constraint. A
lower limit is also required if the activity variables are allowed to be nega-
tive. Even with saturation, the basic Hebb rule fails to induce competition
between different synapses.

Sometimes, we think of the presentation of patterns over discrete rather
than continuous time. In this case, the effect of equation 8.5, integrated
over a time T while ignoring the weight changes that occur during this
period, is approximated by making the replacement

w → w + T
τw

Q · w . (8.7)

The Covariance Rule

If, as in Hebb’s original conjecture, u and v are interpreted as represent-
ing firing rates (which must be positive), the basic Hebb rule only de-
scribes LTP. Experiments, such as the one shown in figure 8.1, indicate
that synapses can depress in strength if presynaptic activity is accompa-
nied by a low level of postsynaptic activity. High levels of postsynaptic
activity, on the other hand, produce potentiation. These results can be
modeled by a synaptic plasticity rule of the form

τw

dw
dt

= (v − θv)u (8.8)

where θv is a threshold that determines the level of postsynaptic activ- θv postsynaptic
thresholdity above which LTD switches to LTP. As an alternative to equation 8.8,

we can impose the threshold on the input rather than output activity and
write

τw

dw
dt

= v(u − θθθu) . (8.9)

Here θθθu is a vector of thresholds that determines the levels of presynaptic
activities above which LTD switches to LTP. It is also possible to combine θθθu presynaptic

thresholdthese two rules by subtracting thresholds from both the u and v terms, but
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8 Plasticity and Learning

this has the undesirable feature of predicting LTP when pre- and postsy-
naptic activity levels are both low.

A convenient choice for the thresholds is the average value of the corre-
sponding variable over the training period. In other words, we set the
threshold in equation 8.8 to the average postsynaptic activity, θv = 〈v〉, or
the threshold vector in equation 8.9 to the average presynaptic activity vec-
tor, θθθu = 〈u〉. As we did for equation 8.5, we use the relation v = w · u and
average over training inputs to obtain an averaged form of the plasticity
rule. When the thresholds are set to their corresponding activity averages,
equations 8.8 and 8.9 both produce the same averaged rule,C input covariance

matrix
covariance rules τw

dw
dt

= C · w (8.10)

where C is the input covariance matrix,

C = 〈(u − 〈u〉)(u − 〈u〉)〉 = 〈uu〉 − 〈u〉〈u〉 = 〈(u − 〈u〉)u〉 . (8.11)

Because of the presence of the covariance matrix in equation 8.10, equa-
tions 8.8 and 8.9 are known as covariance rules.

Although they both average to give equation 8.10, the rules in equations
8.8 and 8.9 have their differences. Equation 8.8 only modifies synapses
with nonzero presynaptic activities. When v < θv, this produces an ef-
fect called homosynaptic depression. In contrast, equation 8.9 reduces thehomosynaptic and

heterosynaptic
depression

strengths of inactive synapses if v > 0. This is called heterosynaptic de-
pression. Note that the threshold in equation 8.8 must change as the
weights are modified to keep θv = 〈v〉, whereas the threshold in equa-
tion 8.9 is independent of the weights and does not need to change during
the training period to keep θθθu = 〈u〉.
Even though covariance rules include LTD, allowing weights to decrease,
they are unstable because of the same positive feedback that makes the
basic Hebb rule unstable. For either rule 8.8 with θv = 〈v〉 or rule 8.9 with
θθθu = 〈u〉, d|w|2/dt = 2v(v − 〈v〉). The time average of the right side of this
equation is proportional to the variance of the output, 〈v2〉 − 〈v〉2, which is
positive except in the trivial case when v is constant. The covariance rules,
like the Hebb rule, are non-competitive, but competition can be introduced
by allowing the thresholds to slide, as described below.

The BCM Rule

The covariance-based rule of equation 8.8 does not require any postsy-
naptic activity to produce LTD, and rule 8.9 can produce LTD without
presynaptic activity. Bienenstock, Cooper and Munro (1982), suggested an
alternative plasticity rule, for which there is experimental evidence, that
requires both pre- and postsynaptic activity to change a synaptic weight.
This rule, which is called the BCM rule, takes the formBCM rule

Peter Dayan and L.F. Abbott Draft: December 17, 2000



8.2 Synaptic Plasticity Rules 9

τw

dw
dt

= vu (v − θv) . (8.12)

As in equation 8.8, θv acts as a threshold on the postsynaptic activity that
determines whether synapses are strengthened or weakened.

If the threshold θv is held fixed, the BCM rule, like the basic Hebbian rule,
is unstable. Synaptic modification can be stabilized against unbounded
growth by allowing the threshold to vary. The critical condition for stabil-
ity is that θv must grow more rapidly than v if the output activity grows
large. In one instantiation of the BCM rule with a sliding threshold, θv sliding threshold
follows v2 according to the equation

τθ

dθv

dt
= v2 − θv (8.13)

where τθ sets the time scale for modification of the threshold. This is usu-
ally slower than the presentation of individual presynaptic patterns, but
faster than the rate at which the weights change, which is determined by
τw. With a sliding threshold, the BCM rule implements competition be-
tween synapses because strengthening some synapses increases the post-
synaptic firing rate, which raises the threshold and makes it more difficult
for other synapses to be strengthened or even to remain at their current
strengths.

Synaptic Normalization

The BCM rule stabilizes Hebbian plasticity by means of a sliding thresh-
old that reduces synaptic weights if the postsynaptic neuron becomes too
active. This amounts to using the postsynaptic activity as an indicator of
the strengths of synaptic weights. A more direct way to stabilize a Heb-
bian plasticity rule is to add terms that depend explicitly on the weights.
This typically leads to some form of weight normalization, the idea that
postsynaptic neurons can only support a fixed total synaptic weight, so
increases in some weights must be accompanied by decreases in others.

Normalization of synaptic weights involves imposing some sort of global
constraint. Two types of constraints are typically used. If the synaptic
weights are non-negative, their growth can be limited by holding the sum
of all the weights of the synapses onto a given postsynaptic neuron to a
constant value. An alternative, which also works for weights that can be
either positive or negative, is to constrain the sum of the squares of the
weights instead of their linear sum. In either case, the constraint can be
imposed either rigidly, requiring that it be satisfied at all times during a
training process, or dynamically, only requiring that it be satisfied asymp-
totically at the end of training. We discuss one example of each type; a
rigid scheme for imposing a constraint on the sum of synaptic weights and
a dynamic scheme for constraining the sum over their squares. Dynamic
constraints can be applied in the former case and rigid constraints in the
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10 Plasticity and Learning

latter, but we restrict our discussion to two widely used schemes. We dis-
cuss synaptic normalization in connection with the basic Hebb rule, but
the results we present can be applied to covariance rules as well. Weight
normalization can drastically alter the outcome of a training procedure,
and different normalization methods may lead to different outcomes.

Subtractive Normalization

The sum over synaptic weights that is constrained by subtractive normal-
ization can be written as

∑
wb = n ·w where n is an Nu-dimensional vector

with all its components equal to one (as introduced in chapter 7). This sum
can be constrained by replacing equation 8.3 withHebb rule with

subtractive
normalization

τw

dw
dt

= vu − v(n · u)n
Nu

(8.14)

This rule imposes what is called subtractive normalization because the
same quantity is subtracted from the change to each weight whether that
weight is large or small. Subtractive normalization imposes the constraint
on the sum of weights rigidly because it does not allow the Hebbian term
to change n · w. To see this, we take the dot product of equation 8.14 with
n to obtain

τw

dn · w
dt

= vn · u
(

1 − n · n
Nu

)
= 0 . (8.15)

The last equality follows because n · n = Nu. Hebbian modification with
subtractive normalization is non-local in that it requires the value of the
sum of all weights, n · w to be available to the mechanism that modifies
any particular synapse. This scheme could conceivably be implemented
by some form of intracellular signaling system.

Subtractive normalization must be augmented by a saturation constraint
that prevents weights from becoming negative. If the rule 8.14 attempts
to drive any of the weights below zero, the saturation constraint prevents
this change. At this point, the rule is not applied to any saturated weights,
and its effect on the other weights is modified. Both modifications can be
achieved by setting the components of the vector n corresponding to any
saturated weights to zero and the factor of Nu in equation 8.14 equal to
the sum of the components of this modified n vector. Without any upper
saturation limit, this procedure often results in a final outcome in which
all weights but one have been set to zero. To avoid this, an upper satu-
ration limit is also typically imposed. Hebbian plasticity with subtractive
normalization is highly competitive because small weights are reduced by
a larger proportion of their sizes than large weights.
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8.2 Synaptic Plasticity Rules 11

Multiplicative Normalization and the Oja Rule

A constraint on the sum of the squares of the synaptic weights can be im-
posed dynamically using a modification of the basic Hebb rule known as
the Oja rule (Oja, 1982), Oja rule

τw

dw
dt

= vu − αv2w (8.16)

where α is a positive constant. This rule only involves information that
is local to the synapse being modified, namely the pre- and postsynap-
tic activities and the local synaptic weight, but its form is based more on
theoretical arguments than on experimental data. The normalization it im-
poses is called multiplicative because the amount of modification induced
by the second term in equation 8.16 is proportional to w.

The stability of the Oja rule can be established by repeating the analysis of
changes in length of the weight vector presented above to find that

τw

d|w|2
dt

= 2v2(1 − α|w|2) . (8.17)

This indicates that |w|2 will relax over time to the value 1/α, which ob-
viously prevents the weights from growing without bound, proving sta-
bility. It also induces competition between the different weights because,
when one weight increases, the maintenance of a constant length for the
weight vector forces other weights to decrease.

Timing-Based Rules

Experiments have shown that the relative timing of pre- and postsynaptic
action potentials plays a critical role in determining the sign and ampli-
tude of the changes in synaptic efficacy produced by activity. Figure 8.2
shows examples from an intracellular recording of a pair of cortical pyra-
midal cells in a slice experiment, and from an in vivo experiment on retino-
tectal synapses in a Xenopus tadpole. Both experiments involve repeated
pairing of pre- and postsynaptic action potentials, and both show that the
relative timing of these spikes is critical in determining the amount and
type of synaptic modification that takes place. Synaptic plasticity only oc-
curs if the difference in the pre- and postsynaptic spike times falls within a
window of roughly ±50 ms. Within this window, the sign of the synaptic
modification depends on the order of stimulation. Presynaptic spikes that
precede postsynaptic action potentials produce LTP. Presynaptic spikes
that follow postsynaptic action potentials produce LTD. This is in accord
with Hebb’s original conjecture, because a synapse is strengthened only
when a presynaptic action potential precedes a postsynaptic action poten-
tial and can therefore be interpreted as contributing to it. When the order is
reversed and the presynaptic action potential could not have contributed
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Figure 8.2: LTP and LTD produced by paired action potentials with various tim-
ings. A) The amplitude of excitatory postsynaptic potentials evoked by stimulation
of the presynaptic neuron plotted as a percentage of the amplitude prior to paired
stimulation. At the time indicated by the arrow, 50 to 75 paired stimulations of the
presynaptic and postsynaptic neurons were performed. For the traces marked by
open symbols, the presynaptic spike occurred either 10 or 100 ms before the postsy-
naptic neuron fired an action potential. The traces marked by solid symbols denote
the reverse ordering in which the presynaptic spike occurred either 10 or 100 ms
after the postsynaptic spike. Separations of 100 ms had no long-lasting effect. In
contrast, the 10 ms delays produced effects that built up to a maximum over a 10
to 20 minute period and lasted for the duration of the experiment. Pairing a presy-
naptic action potential with a postsynaptic action potential 10 ms later produced
LTP, while the reverse ordering generated LTD. B) LTP and LTD of retinotectal
synapses recorded in vivo in Xenopus tadpoles. The percent change in synaptic
strength produced by multiple pairs of action potentials is plotted as a function of
their time difference. The filled symbols correspond to extracellular stimulation
of the postsynaptic neuron and the open symbols to intracellular stimulation. The
H function in equation 8.18 is proportional to the solid curve. (A adapted from
Markram et al., 1997; B adapted from Zhang et al., 1998.)

to the postsynaptic response, the synapse is weakened. The maximum
amount of synaptic modification occurs when the paired spikes are sepa-
rated by only a few ms, and the evoked plasticity decreases to zero as this
separation increases.

Simulating the spike-timing dependence of synaptic plasticity requires a
spiking model. However, an approximate model can be constructed on the
basis of firing rates. The effect of pre- and postsynaptic timing can be in-
cluded in a synaptic modification rule by including a temporal difference
τ between the times when the firing rates of the pre- and postsynaptic neu-
rons are evaluated. A function H(τ) determines the rate of synaptic mod-
ification that occurs due to postsynaptic activity separated in time from
presynaptic activity by an interval τ. The total rate of synaptic modifica-
tion is determined by integrating over all time differences τ. If we assume
that the rate of synaptic modification is proportional to the product of the
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8.3 Unsupervised Learning 13

pre- and postsynaptic rates, as it is for a Hebbian rule, the rate of change
of the synaptic weights at time t is given by timing-based rule

τw

dw
dt

=
∫ ∞

0
dτ (H(τ)v(t)u(t − τ) + H(−τ)v(t − τ)u(t)) . (8.18)

If H(τ) is positive for positive τ and negative for negative τ, the first term
on the right side of this equation represents LTP and the second LTD. The
solid curve in figure 8.2B is an example of such an H function. The tem-
poral asymmetry of H has a dramatic effect on synaptic weight changes
because it causes them to depend on the temporal order of the activity
during training. Among other things, this allows synaptic weights to store
information about temporal sequences.

Rules in which synaptic plasticity is based on the relative timing of pre-
and postsynaptic action potentials still require saturation constraints for
stability, but they can generate competition between synapses without fur-
ther constraints or modifications, at least in nonlinear, spike-based mod-
els. This is because different synapses compete for control of the timing of
postsynaptic spikes. Synapses that are able to evoke postsynaptic spikes
rapidly get strengthened. These synapses then exert a more powerful in-
fluence on the timing of postsynaptic spikes, and they tend to generate
spikes at times that lead to the weakening of other synapses less capable
of controlling spike timing.

8.3 Unsupervised Learning

We now consider the computational properties of the different synaptic
modification rules we have introduced, in the context of unsupervised
learning. Unsupervised learning provides a model for the effects of ac-
tivity on developing neural circuits and the effects of experience on ma-
ture networks. We separate the discussion of unsupervised learning into
cases involving a single postsynaptic neuron and cases in which there are
multiple postsynaptic neurons.

Single Postsynaptic Neuron

Equation 8.5, which shows the consequence of averaging the basic Hebb
rule over all the presynaptic training patterns, is a linear equation for w.
Provided that we ignore any constraints on w, it can be analyzed using
standard techniques for solving differential equations (see chapter 7 and
the Mathematical Appendix). In particular, we use the method of matrix
diagonalization, which involves expressing w in terms of the eigenvectors
of Q. These are denoted by eµ with µ = 1,2, · · · , Nu, and they satisfy
Q · eµ = λµeµ. For correlation or covariance matrices, all the eigenvalues,
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14 Plasticity and Learning

λµ for all µ, are real and non-negative, and, for convenience, we order
them so that λ1 ≥ λ2 ≥ . . . ≥ λNu .

Any Nu-dimensional vector can be represented using the eigenvectors as
a basis, so we can write

w(t) =
Nu∑

µ=1

cµ(t)eµ (8.19)

where the coefficients are equal to the dot products of the eigenvectors
with w. For example, at time zero cµ(0) = w(0) · eµ. Writing w as a sum
of eigenvectors turns matrix multiplication into ordinary multiplication,
making calculations easier. Substituting the expansion 8.19 into 8.5 and
following the procedure presented in chapter 7 for isolating uncoupled
equations for the coefficients, we find that cµ(t) = cµ(0)exp(λµt/τw). Go-
ing back to equation 8.19, this means that

w(t) =
Nu∑

µ=1

exp
(

λµt
τw

)(
w(0) · eµ

)
eµ . (8.20)

The exponential factors in 8.20 all grow over time, because the eigenval-
ues λµ are positive for all µ values. For large t, the term with the largest
value of λµ (assuming it is unique) becomes much larger than any of the
other terms and dominates the sum for w. This largest eigenvalue has the
label µ = 1, and its corresponding eigenvector e1 is called the principal
eigenvector. Thus, for large t, w ∝ e1 to a good approximation, providedprincipal

eigenvector that w(0) · e1 �= 0. After training, the response to an arbitrary input vector
u is well-approximated by

v ∝ e1 · u . (8.21)

Because the dot product corresponds to a projection of one vector onto an-
other, Hebbian plasticity can be interpreted as producing an output pro-
portional to the projection of the input vector onto the principal eigenvec-
tor of the correlation matrix of the inputs used during training. We discuss
the significance of this result in the next section.

The proportionality sign in equation 8.21 hides the large factor exp(λ1t/τw),
which is a result of the positive feedback inherent in Hebbian plasticity.
One way to limit growth of the weight vector in equation 8.5 is to im-
pose a saturation constraint. This can have significant effects on the out-
come of Hebbian modification, including, in some cases, preventing the
weight vector from ending up proportional to the principal eigenvector.
Figure 8.3 shows examples of the Hebbian development of the weights
in a case with just two inputs. For the correlation matrix used in this ex-
ample, the principal eigenvector is e1 = (1,−1)/

√
2, so an analysis that

ignored saturation would predict that one weight would increase while
the other decreases. Which weight moves in which direction is controlled
by the initial conditions. Given the constraints, this would suggest that
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Figure 8.3: Hebbian weight dynamics with saturation. The correlation matrix of
the input vectors had diagonal elements equal to 1 and off-diagonal elements of
-0.4. The principal eigenvector, e1 = (1,−1)/

√
2, dominates the dynamics if the

initial values of the weights are small enough (below and the the left of the dashed
lines). This makes the weight vector move to the corners (wmax,0) or (0,wmax).
However, starting the weights with larger values (between the dashed lines) allows
saturation to occur at the corner (wmax,wmax). (Adapted from MacKay and Miller,
1990.)

(wmax,0) and (0,wmax) are the most likely final configurations. This anal-
ysis only gives the correct answer for the regions in figure 8.3 below or
to the left of the dashed lines. Between the dashed lines, the final state is
w = (wmax,wmax) because the weights hit the saturation boundary before
the exponential growth is large enough to allow the principal eigenvector
to dominate.

Another way to eliminate the large exponential factor in the weights is to
use the Oja rule, 8.16, instead of the basic Hebb rule. The weight vector
generated by the Oja rule, in the example we have discussed, approaches
w = e1/(α)1/2 as t → ∞. In other words, the Oja rule gives a weight vector
that is parallel to the principal eigenvector, but normalized to a length of
1/(α)1/2 rather than growing without bound.

Finally, we examine the effect of including a subtractive constraint, as in
equation 8.14. Averaging equation 8.14 over the training inputs, we find averaged Hebb rule

with subtractive
constraintτw

dw
dt

= Q · w − (w · Q · n)n
Nu

. (8.22)

If we once again express w as a sum of eigenvectors of Q, we find that
the growth of each coefficient in this sum is unaffected by the extra term
in equation 8.22 provided that eµ · n = 0. However, if eµ · n �= 0, the extra
term modifies the growth. In our discussion of ocular dominance, we con-
sider a case in which the principal eigenvector of the correlation matrix is
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16 Plasticity and Learning

proportional to n. In this case, Q · e1 − (e1 · Q · n)n/N = 0 so the projection
in the direction of the principal eigenvector is unaffected by the synaptic
plasticity rule. Further, eµ · n = 0 for µ ≥ 2 because the eigenvectors of the
correlation matrix are mutually orthogonal, which implies that the evolu-
tion of the remaining eigenvectors is unaffected by the constraint. As a
result,

w(t) = (w(0) · e1)e1 +
Nu∑

µ=2

exp
(

λµt
τw

)(
w(0) · eµ

)
eµ . (8.23)

Thus, ignoring the effects of any saturation constraints, the synaptic
weight matrix tends to become parallel to the eigenvector with the second
largest eigenvalue as t → ∞.

In summary, if weight growth is limited by some form of multiplicative
normalization, as in the Oja rule, the configuration of synaptic weights
produced by Hebbian modification will typically be proportional to the
principal eigenvector of the input correlation matrix. When subtractive
normalization is used and the principal eigenvector is proportional to n,
the eigenvector with the next largest eigenvalue provides an estimate of
the configuration of final weights, again up to a proportionality factor. If,
however, saturation constraints are used, as they must be in a subtractive
scheme, this can invalidate the results of a simplified analysis based solely
on these eigenvectors (as in figure 8.3). Nevertheless, we base our analysis
of the Hebbian development of ocular dominance, and cortical maps in
a later section on an analysis of the eigenvectors of the input correlation
matrix. We present simulation results to verify that this analysis is not
invalidated by the constraints imposed in the full models.

Principal Component Projection

If applied for a long enough time, both the basic Hebb rule (equation 8.3)
and the Oja rule (equation 8.16) generate weight vectors that are parallel to
the principal eigenvector of the correlation matrix of the inputs used dur-
ing training. Figure 8.4A provides a geometric picture of the significance
of this result. In this example, the basic Hebb rule was applied to a unit
described by equation 8.2 with two inputs (Nu = 2). The constraint of pos-
itive u and v has been dropped to simplify the discussion. The inputs used
during the training period were chosen from a two-dimensional Gaussian
distribution with unequal variances, resulting in the elliptical distribution
of points seen in the figure. The initial weight vector w(0) was chosen ran-
domly. The two-dimensional weight vector produced by a Hebbian rule is
proportional to the principal eigenvector of the input correlation matrix.
The line in figure 8.4A indicates the direction along which the final w lies,
with the u1 and u2 axes used to represent w1 and w2 as well. The weight
vector points in the direction along which the cloud of input points has the
largest variance, a result with interesting implications.
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Figure 8.4: Unsupervised Hebbian learning and principal component analysis.
The axes in these figures are used to represent the components of both u and w. A)
The filled circles show the inputs u = (u1, u2) used during a training period while a
Hebbian plasticity rule was applied. After training, the vector of synaptic weights
was aligned parallel to the solid line. B) Correlation-based modification with non-
zero mean input. Input vectors were generated as in A except that the distribution
was shifted to produce an average value 〈u〉 = (2,2). After a training period dur-
ing which a Hebbian plasticity rule was applied, the synaptic weight vector was
aligned parallel to the solid line. C) Covariance-based modification. Points from
the same distribution as in B were used while a covariance-based Hebbian rule
was applied. The weight vector becomes aligned with the solid line.

Any unit that obeys equation 8.2 characterizes the state of its Nu inputs by
a single number v, which is proportional to the projection of u onto the
weight vector w. Intuition suggests, and a technique known as principal
component analysis (PCA) formalizes, that this projection is often the op- PCA principal

component analysistimal choice if a set of vectors is to be represented by, and reconstructed
from, a set of single numbers. An information theoretic interpretation of
this projection direction is also possible. The entropy of a Gaussian dis-
tributed random variable with variance σ2 grows with increasing variance
as log2 σ. If the input statistics and output noise are Gaussian, maximizing
the variance of v by a Hebbian rule thus maximizes the amount of infor-
mation v carries about u. In chapter 10, we further consider the compu-
tational significance of finding the direction of maximum variance in the
input data set, and we discuss the relationship between this and general
techniques for extracting structure from input statistics.

Figure 8.4B shows the consequence of applying correlational Hebbian
plasticity when the average activities of the inputs are not zero, as is in-
evitable if real firing rates are employed. In this example, correlation-
based Hebbian modification aligns the weight vector parallel to a line
from the origin to the point 〈u〉. This clearly fails to capture the essence
of the distribution of inputs. Figure 8.4C shows the result of applying a
covariance-based Hebbian modification instead. Now the weight vector is
aligned with the cloud of data points because this rule finds the direction
of the principal eigenvector of the covariance matrix C of equation 8.11
rather the correlation matrix Q.
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18 Plasticity and Learning

Hebbian Development of Ocular Dominance

The input to neurons in the adult primary visual cortex of many mam-
malian species tends to favor one eye over the other, a phenomenon
known as ocular dominance. This is especially true for neurons in layerocular dominance
4, which receives extensive innervation from the LGN. Neurons domi-
nated by one eye or the other occupy different patches of cortex, and ar-
eas with left- or right-eye ocular dominance alternate across the cortex in
fairly regular bands, forming a cortical map. The patterns of connectionscortical map
that give rise to neuronal selectivities and cortical maps are established
during development by both activity-independent and activity-dependent
processes. A conventional view is that activity-independent mechanisms
control the initial targeting of axons, determine the appropriate layer for
them to innervate, and establish a coarse topographic order in their pro-
jections. Other activity-independent and activity-dependent mechanisms
then refine this order and help to create and preserve neuronal selectivi-
ties and cortical maps. Although the relative roles of activity-independent
and activity-dependent processes in cortical development are the subject
of extensive debate, developmental models based on activity-dependent
plasticity rules have played an important role in suggesting key experi-
ments and successfully predicting their outcomes. A detailed analysis of
the more complex pattern-forming models that have been proposed is be-
yond the scope of this book. Instead, in this and later sections, we give
a brief overview of the different approaches and results that have been
obtained.

As an example of a developmental model of ocular dominance at the sin-
gle neuron level, we consider the highly simplified case of a layer 4 cell
that receives input from just two LGN afferents. One afferent is associ-
ated with the right eye and has activity uR, and the other is from the left
eye with activity uL. Two synaptic weights w = (wR,wL) describe the
strengths of these projections, and the output activity v is determined by
equation 8.2,

v = wRuR + wLuL . (8.24)

The weights in this model are constrained to non-negative values. Initially,
the weights for the right- and left-eye inputs are set to approximately equal
values. Ocular dominance arises when one of the weights is pushed to
zero while the other remains positive.

We can estimate the results of a Hebbian developmental process by con-
sidering the input correlation matrix. We assume that the two eyes are
equivalent, so the correlation matrix of the right- and left-eye inputs takes
the form

Q = 〈uu〉 =
( 〈uRuR〉 〈uRuL〉

〈uLuR〉 〈uLuL〉
)

=
(

qS qD
qD qS

)
. (8.25)

The subscripts S and D denote same- and different-eye correlations. The
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eigenvectors are e1 = (1,1)/
√

2 and e2 = (1,−1)/
√

2 for this correlation
matrix, and their eigenvalues are λ1 = qS + qD and λ2 = qS − qD.

If the right- and left-eye weights evolve according to equation 8.5, it is
straightforward to show that the eigenvector combinations w+ = wR + wL
and w− = wR − wL obey the uncoupled equations

τw

dw+
dt

= (qS + qD)w+ and τw

dw−
dt

= (qS − qD)w− . (8.26)

Positive correlations between the two eyes are likely to exist (qD > 0) af-
ter eye opening has occurred. This means that qS + qD > qS − qD, so, ac-
cording to equations 8.26, w+ grows more rapidly than w−. Equivalently,
e1 = (1,1)/

√
2 is the principal eigenvector. The basic Hebbian rule thus

predicts a final weight vector proportional to e1, which implies equal in-
nervation from both eyes. This is not the observed outcome.

Figure 8.3 suggests that, for some initial weight configurations, satura-
tion could ensure that the final configuration of weights is (wmax,0) or
(0,wmax), reflecting ocular dominance, rather than (wmax,wmax) as the
eigenvector analysis would suggest. However, this result would require
the initial weights to be substantially unequal. To obtain a more ro-
bust prediction of ocular dominance, we can use the Hebbian rule with
subtractive normalization, equation 8.14. This completely eliminates the
growth of the weight vector in the direction of e1 (i.e. the increase of
w+) because, in this case, e1 is proportional to n. On the other hand,
it has no effect on growth in the direction e2 (i.e. the growth of w−) be-
cause e2 · n = 0. Thus, with subtractive normalization, the weight vector
grows parallel (or anti-parallel) to the direction e2 = (1,−1)/

√
2. The di-

rection of this growth depends on initial conditions through the value of
w(0) · e2 = (wR(0) − wL(0))/

√
2. If this is positive, wR will increase and

wL will decrease, and if it is negative wL will increase and wR will de-
crease. Eventually, the decreasing weight will hit the saturation limit of
zero, and the other weight will stop increasing due to the normalization
constraint. At this point, total dominance by one eye or the other has been
achieved. This simple model shows that ocular dominance can arise from
Hebbian plasticity if there is sufficient competition between the growth of
the left- and right-eye weights.

Hebbian Development of Orientation Selectivity

Hebbian models can also account for the development of the orientation
selectivity displayed by neurons in primary visual cortex. The model of
Hubel and Wiesel for generating an orientation-selective simple cell re-
sponse by summing linear arrays of alternating ON and OFF LGN inputs
was presented in chapter 2. The necessary pattern of LGN inputs can arise
from Hebbian plasticity on the basis of correlations between the responses
of different LGN cells and competition between ON and OFF units. Such

Draft: December 17, 2000 Theoretical Neuroscience



20 Plasticity and Learning

Figure 8.5: Different cortical receptive fields arising from a correlation-based de-
velopmental model. White and black regions correspond to areas in the visual field
where ON-center cells (white regions) or OFF-center (black regions) LGN cells ex-
cite the cortical neuron being modeled. (Adapted from Miller, 1994.)

a model can be constructed by considering a simple cell receiving input
from ON-center and OFF-center cells of the LGN and applying Hebbian
plasticity, subject to appropriate constraints, to the feedforward weights of
the model.

As in the case of ocular dominance, the development of orientation selec-
tivity can be analyzed on the basis of properties of the correlation matrix
driving Hebbian development. However, constraints must be taken into
account and, in this case, the nonlinearities introduced by the constraints
play a significant role. For this reason, we do not analyze this model math-
ematically, but simply present simulation results.

Neurons in primary visual cortex only receive afferents from LGN cells
centered over a finite region of the visual space. This anatomical con-
straint can be included in developmental models by introducing what is
called an arbor function. The arbor function, which is often taken to bearbor function
Gaussian, characterizes the density of innervation from different visual lo-
cations to the cell being modeled. As a simplification, this density is not al-
tered during the Hebbian developmental process, but that the strengths of
synapses within the arbor are modified by the Hebbian rule. The outcome
is oriented receptive fields of a limited spatial extent. Figure 8.5 shows the
weights resulting from a simulation of receptive-field development using
a large array of ON- and OFF-center LGN afferents. This illustrates a vari-
ety of oriented receptive field structures that can arise through a Hebbian
developmental rule.

Temporal Hebbian Rules and Trace Learning

Temporal Hebbian rules exhibit a phenomenon called trace learning, be-trace learning
cause the changes to a synapse depend on a history or trace of the past
activity across the synapse. Integrating equation 8.18 from t = 0 to a large
final time t = T, assuming that w = 0 initially, and shifting the integration
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variable, we can approximate the final result of this temporal plasticity
rule as

w = 1
τw

∫ T

0
dt v(t)

∫ ∞

−∞
dτ H(τ)u(t − τ) . (8.27)

The approximation comes from ignoring both small contributions asso-
ciated with the end points of the integral and the change in v produced
during training by the modification of w. Equation 8.27 shows that tem-
porally dependent Hebbian plasticity depends on the correlation between
the postsynaptic activity and the presynaptic activity temporally filtered
by the function H.

Equation 8.27 (with a suitably chosen H) can be used to model the de-
velopment of invariant responses. Neurons in infero-temporal cortex, for
example, can respond selectively to particular objects independent of their
location within a wide receptive field. The idea underlying the application
of equation 8.27 is that objects persist in the visual environment for char-
acteristic lengths of time, while moving across the retina. If the plastic-
ity rule in equation 8.27 filters presynaptic activity over this characteristic
time scale, it tends to strengthen the synapses from the presynaptic units
that are active for all the positions adopted by the object while it persists.
As a result, the response of the postsynaptic cell comes to be independent
of the position of the object, and position-invariant responses are gener-
ated.

Multiple Postsynaptic Neurons

To study the effect of plasticity on multiple neurons, we introduce the
network of figure 8.6 in which Nv output neurons receive input from Nu

feedforward connections and from recurrent interconnections. A vector v
represents the activities of the multiple output units, and the feedforward
synaptic connections are described by a matrix W with the element Wab W feedforward

weight matrixgiving the strength and sign of the synapse from input unit b to output
unit a.

It is important that different output neurons in a multi-unit network be
selective for different aspects of the input, or else their responses will be
completely redundant. For the case of a single cell, competition between
different synapses could be used to ensure that synapse-specific plasticity
rules did not make the same modifications to all of the synapses onto a
postsynaptic neuron. For multiple output networks, fixed or plastic linear
or nonlinear recurrent interactions can be used to ensure that the units do
not all develop the same selectivity.
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output v

input u

W

M

u1 u2 u3 uNu

Figure 8.6: A network with multiple output units driven by feedforward synapses
with weights W, and interconnected by recurrent synapses with weights M.

Fixed Linear Recurrent Connections

We first consider the case of linear recurrent connections from output cell a′
to output cell a described by element Maa′ of the matrix M. As in chapter 7,M recurrent

weight matrix the output activity is determined by

τr
dv
dt

= −v + W · u + M · v . (8.28)

The steady-state output activity vector is then

v = W · u + M · v . (8.29)

Provided that the real parts of the eigenvalues of M are less than 1, equa-
tion 8.29 can be solved by defining the matrix inverse K=(I − M)−1, whereK effective

recurrent
interactions

I is the identity matrix, yielding

v = K · W · u . (8.30)

With fixed recurrent weights M and plastic feedforward weights W, the
effect of averaging Hebbian modifications over the training inputs is

τw

dW
dt

= 〈vu〉 = K · W · Q (8.31)

where Q = 〈uu〉 is the input autocorrelation matrix. Equation 8.31 has the
same form as the single unit equation 8.5, except that both K and Q affect
the growth of W.

We illustrate the effect of fixed recurrent interactions using a model of the
Hebbian development of ocular dominance. In the single-cell version of
this model considered in a previous section, the ultimate ocular preference
of the output cell depends on the initial conditions of its synaptic weights.
A multiple-output version of the model without any recurrent connections
would therefore generate a random pattern of selectivities across the cor-
tex if it started with random weights. Figure 8.7B shows that ocular domi-
nance is actually organized in a highly structured cortical map. Such struc-
ture can arise in the context of Hebbian development of the feedforward
weights if we include a fixed intracortical connection matrix M.
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Figure 8.7: The development of ocular dominance in a Hebbian model. A) The
simplified model in which right- and left- eye inputs from a single retinal location
drive an array of cortical neurons. B) Ocular dominance maps. The upper panel
shows an area of cat primary visual cortex radioactively labeled to distinguish re-
gions activated by one eye or the other. The light and dark areas along the cortical
regions at the top and bottom indicate alternating right- and left-eye innervation.
The central region is white matter where fibers are not segregated by ocular domi-
nance. The lower panel shows the pattern of innervation for a 512 unit model after
Hebbian development. White and black regions denote units dominated by right-
and left-eye projections respectively. (B data of S LeVay adapted from Nicholls et
al. 1992.)

We consider a highly simplified model of the development of ocular domi-
nance maps including only a single direction across the cortex and a single
point in the visual field. Figure 8.7A shows the simplified model, which
has only two input activities, uR and uL, with the correlation matrix of
equation 8.25, connected to multiple output units through weight vectors
wR and wL. The output units are connected to each other through weights
M, so v = wRuR + wLuL + M · v. The index a denoting the identity of a
given output unit also represents its cortical location. This linking of a to
locations and distances across the cortical surface allows us to interpret the
results of the model in terms of a cortical map.

Writing w+ = wR +wL and w− = wR −wL, the equivalent of equation 8.26
is

τw

dw+
dt

= (qS + qD)K · w+ τw

dw−
dt

= (qS − qD)K · w− (8.32)

As in the single-cell case we discussed, subtractive normalization, which
holds the value of w+ fixed while leaving the growth of w− unaffected,
eliminates the tendency for the cortical cells to become binocular. In this
case, only the equation for w− is relevant, and its growth is dominated by
the principal eigenvector of K. The components of w− determine whether
a particular region of the cortex is dominated by the right eye (if they are
positive) or the left eye (if they are negative). Oscillations in sign of the
components of this principal eigenvector translate into oscillations in ocu-
lar preference across the cortex, also known as ocular dominance stripes.

We assume that the connections between the output neurons are trans-
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Figure 8.8: Hypothesized K function. A) The solid line is K given by the differ-
ence of two Gaussian functions. We have plotted this as a function of the distance
between the cortical locations corresponding to the indices a and a′. The dotted
line is the principal eigenvector plotted on the same scale. B) The Fourier trans-
form K̃ of K. This is also given by the difference of two Gaussians. As in A, we
use cortical distance units and plot K̃ in terms of the the spatial frequency k rather
than the integer index µ.

lation invariant, so that Kaa′ = K(|a − a′|) only depends on the separation
between the cortical cells a and a′. We also use a convenient trick to remove
edge effects, which is to impose periodic boundary conditions, requiring
the activities of the units with a = 0 and a = Nv to be identical. This means
that all the input and output units have equivalent neighbors, a reasonable
model of a patch of the cortex away from regional boundaries. Actually,
edge effects can impose important constraints on the overall structure of
maps such as that of ocular dominance stripes, but we do not analyze this
here. In the case of periodic boundary conditions, the eigenvectors of K
have the form

eµ
a = cos

(
2πµa

Nv

− φ

)
(8.33)

for µ = 0,1,2, . . . , Nv/2. The eigenvalues are given by the discrete Fourier
transform K̃(µ) of K(|a − a′|) (see the Mathematical Appendix). The phase
φ is arbitrary. The principal eigenvector is the eigenfunction from equa-
tion 8.33 with its µ value chosen to maximize the Fourier transform K̃(µ),
which is real and non-negative in the case we consider. The functions K
and K̃ in figure 8.8 are each the difference of two Gaussian functions. K̃
has been plotted as a function of the spatial frequency k = 2πµ/(Nvd),
where d is the cortical distance between location a and a + 1. The value of
µ to be used in equation 8.33, corresponding to the principal eigenvector,
is determined by the k value of the maximum of the curve in figure 8.8B.

The oscillations in sign of the principal eigenvector, which is indicated by
the dotted line in figure 8.8A, generate an alternating pattern of left- and
right-eye innervation resembling the ocular dominance maps seen in pri-
mary visual cortex (upper panel figure 8.7B). The lower panel of figure
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8.7B shows the result of a simulation of Hebbian development of an ocu-
lar dominance map for a one-dimensional line across cortex consisting of
512 units. In this simulation, constraints that limit the growth of synaptic
weights have been included, but these do not dramatically alter the con-
clusions of our analysis.

Competitive Hebbian Learning

Linear recurrent connections can only produce a limited amount of differ-
entiation among network neurons, because they only induce fairly weak
competition between output units. As detailed in chapter 7, recurrent
connections can lead to much stronger competition if the interactions are
nonlinear. nonlinear

competition
One form of nonlinear competition represents the effect of cortical process-
ing in two somewhat abstract stages. One stage, modeling the effects of
long-range inhibition, involves competition among all the cortical cells for
feedforward input in a scheme related to that used in chapter 2 for contrast
saturation. The second stage, modeling shorter range excitation, involves
cooperation in which neurons that receive feedforward input excite their
neighbors.

In the first stage, the feedforward input for unit a, and that for all the other
units, is fed through a nonlinear function to generate a competitive mea-
sure of the local excitation generated at location a,

za =
(∑

b Wabub
)δ

∑
a′

(∑
b Wa′bub

)δ
. (8.34)

The activities and weights are all assumed to be positive. The parameter
δ controls the degree of competition among units. For large δ, only the
largest feedforward input survives. The case of δ = 1 is closely related to
the linear recurrent connections of the previous section.

In the cooperative stage, the local excitation of equation 8.34 is distributed
across the cortex by the recurrent connections, so that the final level of
activity in unit a is

va =
∑

a′
Maa′ za′ . (8.35)

This ensures that the localized excitation characterized by za is spread
across a local neighborhood of the cortex, rather than being concentrated
entirely at location a. In this scheme, the recurrent connections are usually
purely excitatory and fairly short-range, because the effect of longer range
inhibition has been modeled by the competition.

Using the outputs of equation 8.35 in conjunction with a Hebbian rule for
the feedforward weights is called competitive Hebbian learning. The com- competitive

Hebbian learning
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Figure 8.9: Ocular dominance patterns from a competitive Hebbian model. A)
Final stable weights Wab plotted as a function of a and b, showing the relative
strengths and topography of the connections from left- and right-eye inputs. White
represents a large positive value. B) The difference in the connections between
right- and left- inputs. C) Difference in the connections summed across all the in-
puts b to each cortical cell a showing the net ocularity for each cell. The model used
here has 100 input units for each eye and for the output layer, and a coarse initial
topography was assumed. Circular (toroidal) boundary conditions were imposed
to avoid edge effects. The input activity patterns during training represented sin-
gle Gaussian illuminations in both eyes centered on a randomly chosen input unit
b, with a larger magnitude for one eye (chosen randomly) than for the other. The
recurrent weights M took the form of a Gaussian.

petition between neurons implemented by this scheme does not ensure
competition among the synapses onto a given neuron, so some mechanism
such as a normalization constraint is still required. Most importantly, the
outcome of training cannot be analyzed simply by considering eigenvec-
tors of the covariance or correlation matrix because the activation process
is nonlinear. Rather, higher-order statistics of the input distribution are
important. Nonlinear competition can lead to differentiation of the output
units and the removal of redundancy beyond the second order.

An example of the use of competitive Hebbian learning is shown in fig-
ure 8.9, in the form of a one-dimensional cortical map of ocular domi-
nance with inputs arising from LGN neurons with receptive fields cover-
ing an extended region of the visual field (rather than the single location
of our simpler model). This example uses competitive Hebbian plastic-
ity with non-dynamic multiplicative weight normalization. Two weight
matrices, WR and WL, corresponding to right- and left-eye inputs, char-
acterize the connectivity of the model. These are shown separately in fig-
ure 8.9A, which illustrates that the cortical cells develop retinotopically
ordered receptive fields and segregate into alternating patches dominated
by one eye or the other. The ocular dominance pattern is easier to see
in figure 8.9B, which shows the difference between the right- and left-eye
weights, WR − WL, and 8.9C which shows the net ocularity of the total
input to each output neuron of the model (

∑
b[WR − WL]ab, for each a). It

is possible to analyze the structure shown in figure 8.9 and reveal the pre-
cise effect of the competition (i.e. the effect of changing the competition
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parameter δ in equation 8.34). Such an analysis shows, for example, that
subtractive normalization of the synaptic weight is not necessary to ensure
the robust development of ocular dominance as it is in the non-competitive
case.

Feature-Based Models

Models of cortical map formation can get extremely complex when mul-
tiple neuronal selectivities such as retinotopic location, ocular dominance
and orientation preference are considered simultaneously. To deal with
this, a class of more abstract models, called competitive feature-based
models, has been developed. These use a general approach similar to feature-based

modelsthe competitive Hebbian models discussed in the previous section. These
models are further from the biophysical reality of neuronal firing rates and
synaptic strengths, but they provide a compact description of map devel-
opment.

Feature-based models characterize neurons and their inputs by their se-
lectivities rather than by their synaptic weights. The idea, evident from
figure 8.9, is that the receptive field of cortical cell a for the weights shown
in figure 8.9A (at the end point of development) can be characterized by
just two numbers. One, the ocularity, ζa, is shown in the right hand plot
of figure 8.9C, and is the summed difference of the connections from the
left and right eyes to cortical unit a. The other, xa, is the mean topographic
location in the input of cell a. For many developmental models, the stim-
uli used during training, although involving the activities of a whole set
of input units, can also be characterized abstractly using the same small
number of feature parameters.

The matrix element Wab in a feature-based model is equal to the variable
characterizing the selectivity on neuron a to the feature parameter b. Thus,
in a one-dimensional model of topography and ocular dominance, Wa1 =
xa, Wa2 = ζa. Similarly, the inputs are considered in terms of the same
feature parameters and are expressed as u = (x, ζ). Nu is equal to the
number of parameters being used to characterize the stimulus (here, Nu =
2). In the case of figure 8.9, the inputs are drawn from a distribution in
which x is chosen randomly between 1 and 100, and ζ takes a fixed positive
or negative value with equal probability. The description of the model is
completed by specifying the feature-based equivalent of how a particular
input activates the cortical cells, and how this leads to plasticity in the
feature-based weights W.

The response of a selective neuron depends on how closely the stimulus
matches the characteristics of its preferred stimulus. The weights Wab de-
termine the preferred stimulus features, and thus we assume that the ac-
tivation of neuron a is high if the components of the input ub match the
components of Wab. A convenient way to achieve this is to express the
activation for unit a as exp(−∑

b(ub − Wab)
2/(2σ2

b )), which has its max-
imum at ub = Wab for all b, and falls off as a Gaussian function for less
perfect matches of the stimulus to the selectivity of the cell. The param-
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eter σb determines how selective the neuron is to characteristic b of the
stimulus.

The Gaussian expression for the activation of neuron a is not used directly
to determine its level of activity. Rather, as in the case of competitive Heb-
bian learning, we introduce a competitive activity variable for cortical site
a,

za = exp
(−∑

b(ub − Wab)
2/(2σ2

b )
)

∑
a′ exp

(−∑
b(ub − Wa′b)2/(2σ2

b )
) . (8.36)

In addition, some cooperative mechanism must be included to keep the
maps smooth, which means that nearby neurons should, as far as possi-
ble, have similar selectivities. The two algorithms we discuss, the self-
organizing map and the elastic net, differ in how they introduce this sec-
ond element.

The self-organizing map spreads the activity defined by equation 8.36 toself-organizing map
nearby cortical sites through equation 8.35, va = ∑

a′ Maa′ za′ . This gives
cortical cells a and a′ similar selectivities if they are nearby, because va and
va′ are related through local recurrent connections. Hebbian development
of the selectivities characterized by W is then generated by an activity de-
pendent rule. In general, Hebbian plasticity adjusts the weights of acti-
vated units so that they become more responsive to and selective for the
input patterns that excite them. Feature-based models achieve the same
thing by modifying the selectivities Wab so they more closely match the
input parameters ub when output unit a is activated by u. In the case of
the self-organized map, this is achieved through the averaged rulefeature-based

learning rule

τw

dWab

dt
= 〈va(ub − Wab)〉 . (8.37)

The other feature-based algorithm, the elastic net, sets the activity of unitelastic net
a to the result of equation 8.36, va = za, which generates competition.
Smoothness of the map is ensured not by spreading this activity, as in the
self-organizing map, but by including an additional term in the plastic-
ity rule that tends to make nearby selectivities the same. The elastic net
modification rule iselastic net rule

τw

dWab

dt
= 〈va(ub − Wab)〉 + β

∑
a′ neighbor of a

(Wa′b − Wab) (8.38)

where the sum is over all points a′ that are neighbors of a, and β is a pa-
rameter that controls the degree of smoothness in the map. The elastic net
makes Wab similar to Wa′b, if a and a′ are nearby on the cortex, by reducing
(Wa′b − Wab)

2.

Figure 8.10A shows the results of an optical imaging experiment that re-
veals how ocularity and orientation selectivity are arranged across a re-
gion of the primary visual cortex of a macaque monkey. The dark lines
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Figure 8.10: Orientation domains and ocular dominance. A) Contour map show-
ing iso-orientation contours (grey lines) and the boundaries of ocular dominance
stripes (black lines) in a 1.7 × 1.7 mm patch of macaque primary visual cortex. Iso-
orientation contours are drawn at intervals of 11.25◦. Pinwheels are singularities in
the orientation map where all the orientations meet, and linear zones are extended
patches over which the iso-orientation contours are parallel. B) Ocular dominance
and orientation map produced by the elastic net model. The significance of the
lines is the same as in A, except that the darker grey lines show orientation pref-
erences of 0◦. (A adapted from Obermayer and Blasdel, 1993; B from Erwin et al.,
1995.)

show the boundaries of the ocular dominance stripes. The lighter lines
show iso-orientation contours, i.e. locations where the preferred orienta-
tions are roughly constant and indicate, by the regions they enclose, that
neighborhoods of cells favor similar orientations. They also show how
these neighborhoods are arranged with respect to each other and with
respect to the ocular dominance stripes. There are singularities, called
pinwheels, in the orientation map where regions with different orienta-
tion preferences meet at a point. These tend to occur near the centers of
the ocular dominance stripes. There are also linear zones where the iso-
orientation domains run parallel to each other. These tend to occur at, and
run perpendicular to, the boundaries of the ocular dominance stripes.

Figure 8.10B shows the result of an elastic net model plotted in the
same form as the macaque map of figure 8.10A. The similarity is evi-
dent and striking. Here, 5 input feature dimensions were incorporated
u = (x, y, o, e cos θ, e sin θ), two (x, y) for topographic location, one o for
ocularity, and two (e cos θ, e sin θ) for the direction and strength of orien-
tation. The self-organizing map can produce almost identical results, and
non-competitive and competitive Hebbian developmental algorithms can
also lead to structures like this.
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Anti-Hebbian Modification

We previously alluded to the problem of redundancy among multiple out-
put neurons that can arise from feedforward Hebbian modification. The
Oja rule of equation 8.16 for multiple output units, which takes the form

τw

dWab

dt
= vaub − αv2

aWab , (8.39)

provides a good illustration of this problem. In the absence of recurrent
connections, this rule sets each row of the feedforward weight matrix to
the principal eigenvector of the input correlation matrix, making each out-
put unit respond identically.

One way to reduce redundancy in a linear model is to make the linear
recurrent interactions of equation 8.29 plastic rather than fixed, using anplastic recurrent

synapses anti-Hebbian modification rule. As the name implies, anti-Hebbian plas-
anti-Hebbian
plasticity

ticity causes synapses to decrease (rather than increase) in strength when
there is simultaneous pre- and postsynaptic activity. The recurrent interac-
tions arising from an anti-Hebbian rule can prevent the output units from
representing the same eigenvector. This occurs because the recurrent inter-
actions tend to make the different output units less correlated by canceling
the effects of common feedforward input. Anti-Hebbian modification is
believed to be the predominant form of plasticity at synapses from paral-
lel fibers to Purkinje cells in the cerebellum, although this may be a special
case because Purkinje cells inhibit rather than excite their targets. A basic
anti-Hebbian rule for Maa′ can be created simply by changing the sign on
the right side of equation 8.3. However, just as Hebbian plasticity tends to
make weights increase without bound, anti-Hebbian modification tends
to make them decrease, and for reasons of stability, it is necessary to use

τM
dM
dt

= −vv + βM or τM
dMaa′

dt
= −vava′ + βMaa′ (8.40)

to modify the off-diagonal components of M (the diagonal components
are defined to be zero). Here, β is a positive constant. For suitably chosen
β and τM, the combination of rules 8.39 and 8.40 produces a stable configu-
ration in which the rows of the weight matrix W are different eigenvectors
of the correlation matrix Q, and all the elements of the recurrent weight
matrix M are zero.

Goodall (1960) proposed an alternative scheme for decorrelating different
output units. In his model, the feedforward weights W are kept constant,
while the recurrent weights adapt according to the anti-Hebbian ruleGoodall rule

τM
dM
dt

= −(W · u)v + I − M (8.41)

The minus sign in the term −(W · u)v embodies the anti-Hebbian modifi-
cation. This term is non-local, because the change in the weight of a given
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synapse depends on the total feedforward input to the postsynaptic neu-
ron, not merely on the input at that particular synapse (recall that v �= W ·u
in this case because of the recurrent connections). The term I − M prevents
the weights from going to zero by forcing them toward the identity matrix
I. Unlike 8.40, this rule requires the existence of autapses, synapses that a
neuron makes onto itself (i.e. the diagonal elements of M are not zero).

If the Goodall plasticity rule converges and stops changing M, the right
side of equation 8.41 must vanish on average, which requires (using the
definition of K)

〈(W · u)v〉 = I − M = K−1 . (8.42)

Multiplying both sides by K we find, using equation 8.30,

〈(K · W · u)v〉 = 〈vv〉 = I . (8.43)

This means that the outputs are decorrelated and also indicates histogram
equalization in the sense, discussed in chapter 4, that all the elements of v
have the same variance. Indeed, the Goodall algorithm can be used to im-
plement the decorrelation and whitening discussed in chapter 4. Because
the anti-Hebbian and Goodall rules are based on linear models, they are
only capable of removing second-order redundancy, meaning redundancy
characterized by the covariance matrix. In chapter 10, we consider models
that are based on eliminating higher orders of redundancy as well.

Timing-Based Plasticity and Prediction

Temporal Hebbian rules have been used in the context of multi-unit net-
works to store information about temporal sequences. To illustrate this,
we consider a network with the architecture of figure 8.6. We study the
effect of time-dependent synaptic plasticity, as given by equation 8.18, on
the recurrent synapses of the model, leaving the feedforward synapses
constant. Suppose that, before training, the average response of output
unit a to a stimulus characterized by a parameter s is given by the tuning
curve fa(s), which reaches its maximum for the optimal stimulus s = sa.
Different neurons have different optimal stimulus values, as depicted by
the dashed and thin solid curves in figure 8.11A. We now examine what
happens when the plasticity rule 8.18 is applied throughout a training pe-
riod during which the stimulus being presented is an increasing function
of time. Such a stimulus excites the different neurons in the network se-
quentially. For example, the neuron with sa = −2 is active before the neu-
ron with sa = 0, which in turn is active before the neuron with sa = 2. If
the stimulus changes rapidly enough, the interval between the firing of
the neuron with sa = −2 and that with sa = 0 will fall within the win-
dow for LTP depicted in figure 8.2B. This means that a synapse from the
neuron with sa = −2 to the sa = 0 neuron will be strengthened. On the
other hand, because the neuron with sa = 2 fires after the sa = 0 neuron, a
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Figure 8.11: A) Predicted and experimental shift of place fields. A) Shift in a neu-
ronal firing-rate tuning curve caused by repeated exposure to a time-dependent
stimulus during training. The dashed curves and thin solid curve indicate the
initial response tuning curves of a network of interconnected neurons. The thick
solid curve is the response tuning curve of the neuron that initially had the thin
solid tuning curve after a training period involving a time-dependent stimulus.
The tuning curve increased in amplitude, broadened, and shifted as a result of
temporally asymmetric Hebbian plasticity. The shift shown corresponds to a stim-
ulus with a positive rate of change, that is, one that moved rightward on this plot
as a function of time. The corresponding shift in the tuning curve is to the left. The
shift has been calculated using more neurons and tuning curves than are shown
in this plot. B) Location of place field centers while a rat traversed laps around a
closed track (zero is defined as the average center location across the whole exper-
iment). Over sequential laps, the place fields expanded (not shown) and shifted
backward relative to the direction the rat moved. (B from Mehta et al., 1997.)

synapse from it to the sa = 0 neuron will be weakened by the temporally
asymmetric plasticity rule of equation 8.18.

The effect of this type of modification on the tuning curve in the middle of
the array (the thin solid curve in figure 8.11A centered at s = 0) is shown
by the thick solid curve in figure 8.11A. After the training period, the neu-
ron with sa = 0 receives strengthened input from the sa = −2 neuron and
weakened input from the neuron with sa = 2. This broadens and shifts the
tuning curve of the neuron with sa = 0 to lower stimulus values. The left-
ward shift seen in figure 8.11A is a result of the temporal character of the
plasticity rule and the temporal evolution of the stimulus during training.
Note that the shift is in the direction opposite to the motion of the stimu-
lus during training. This backward shift has an interesting interpretation.
If the same time-dependent stimulus is presented again after training, the
neuron with sa = 0 will respond earlier than it did prior to training. The
responses of other neurons will shift in a similar manner; we just chose the
neuron with sa = 0 as a representative example. Thus, the training experi-
ence causes neurons to develop responses that predict the behavior of the
stimulus.
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Enlargements and backward shifts of neural response tuning curves simi-
lar to those predicted from temporally asymmetric LTP and LTD induction
have been seen in recordings of hippocampal place cells in rats. Figure
8.11B shows the average location of place fields recorded while a rat ran
repeated laps around a closed track. Over time, the place field shifted
backward along the track relative to the direction the rat moved.

8.4 Supervised Learning

In unsupervised learning, inputs are imposed during a training period,
and the output is determined by the network dynamics using the current
values of the weights. This means that the network and plasticity rule
must uncover patterns and regularities in the input data (such as the di-
rection of maximal variance) by themselves. In supervised learning, both
a set of inputs and the corresponding desired outputs are imposed during
training, so the network is essentially given the answer.

Two basic problems addressed in supervised learning are storage, which
means learning the relationship between the input and output patterns
provided during training, and generalization, which means being able to
provide appropriate outputs for inputs that were not presented during
training, but are similar to those that were. The main task we consider
within the context of supervised learning is function approximation (or
regression), in which the output of a network unit is trained to approxi-
mate a specified function of the input. We also consider classification of
inputs into two categories. Understanding generalization in such settings
has been a major focus of theoretical investigations in statistics and com-
puter science but lies outside the scope of our discussion.

Supervised Hebbian Learning

In supervised learning, a set of paired inputs and output samples, um and
vm for m = 1 . . . NS, is presented during training. For a feedforward net-
work, an averaged Hebbian plasticity rule for supervised learning can be
obtained from equation 8.4 by averaging across all the input-output pairs,

τw

dw
dt

= 〈vu〉 = 1
NS

NS∑
m=1

vmum . (8.44)

Note that this is similar to the unsupervised Hebbian learning case, except
that the output vm is imposed on the network rather than being deter-
mined by it. This has the consequence that the input-input correlation is
replaced by the input-output cross-correlation 〈vu〉. cross-correlation

Unless the cross-correlation is zero, equation 8.44 never stops changing
the synaptic weights. The methods introduced to stabilize Hebbian modi-
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fication in the case of unsupervised learning can be applied to supervised
learning as well. However, stabilization is easier in the supervised case,
because the right side of equation 8.44 does not depend on w. Therefore,
the growth is only linear, rather than exponential, in time, making a sim-
ple multiplicative synaptic weight decay term sufficient for stability. This
is introduced by writing the supervised learning rule assupervised learning

with decay

τw

dw
dt

= 〈vu〉 − αw , (8.45)

for some positive constant α. Asymptotically, equation 8.45 makes w =
〈vu〉/α, that is, the weights become proportional to the input-output cross-
correlation.

We have discussed supervised Hebbian learning in the case of a single out-
put unit, but the results can obviously be generalized to multiple outputs
as well.

Classification and The Perceptron

The perceptron is a nonlinear map that classifies inputs into one of twoperceptron
categories. It thus acts as a binary classifier. To make the model consistentbinary classifier
when units are connected together in a network, we also require the in-
puts to be binary. We can think of the two possible states as representing
units that are either active or inactive. As such, we would naturally assign
them the values 1 and 0. However, the analysis is simpler while producing
similar results if, instead, we require the inputs ua and output v to take the
two values +1 and −1.

The output of the perceptron is based on a modification of the linear rule
of equation 8.2 to

v =
{ +1 if w · u − γ ≥ 0

−1 if w · u − γ < 0 .
(8.46)

The threshold γ thus determines the dividing line between values of w · u
that generate +1 and −1 outputs. The supervised learning task for the
perceptron is to place each of NS input patterns um into one of two classes
designated by the binary output vm. How well the perceptron performs
this task depends on the nature of the classification. The weight vector and
threshold define a subspace (called a hyperplane) of dimension Nu −1 (the
subspace perpendicular to w) that cuts the Nu-dimensional space of input
vectors into two regions. It is only possible for a perceptron to classify
inputs perfectly if a hyperplane exists that divides the input space into one
half-space containing all the inputs corresponding to v = +1, and another
half-space containing all those for v = −1. This condition is called linear
separability. An instructive case to consider is when each component oflinear separability
each input vector and the associated output values are chosen randomly
and independently with equal probabilities of being +1 and −1. For large
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Nu, the maximum number of random associations that can be described
by a perceptron in this case is 2Nu.

For linearly separable inputs, a set of weights exists that allows the per-
ceptron to perform perfectly. However, this does not mean that a Hebbian
modification rule can construct such weights. A Hebbian rule based on
equation 8.45 with α = Nu/NS constructs the weight vector

w = 1
Nu

NS∑
m=1

vmum . (8.47)

To see how well such weights allow the perceptron to perform, we com-
pute the output generated by one input vector, un, chosen from the train-
ing set. For this example, we set γ = 0. Nonzero threshold values are
considered later in the chapter.

With γ = 0, the value of v for input un is determined solely by the sign of
w · un. Using the weights of equation 8.47, we find

w · un = 1
Nu

(
vnun · un +

∑
m �=n

vmum · un

)
. (8.48)

If we set
∑

m �=n vmum · un/Nu = ηn (where the superscript is again a label
not a power) and note that 12 = (−1)2 = 1 so vnun · un/Nu = vn, we can
write

w · un = vn + ηn . (8.49)

Substituting this expression into equation 8.46 to determine the output of
the perceptron for the input un, we see that the term ηn acts as a source of
noise, interfering with the ability of the perceptron to generate the correct
answer v=vn.

We can think of ηn as a sample drawn from a probability distribution of η

values. Consider the case when all the components of um and vm for all m
are chosen randomly with equal probabilities of being +1 or −1. Including
the dot product, the right side of the expression Nuη

n = ∑
m �=n vmum · un

that defines ηn is the sum of (NS − 1)Nu terms, each of which is equally
likely to be either +1 or −1. For large Nu and NS, the central limit theorem
(see the Mathematical Appendix) tells us that the distribution of η values is
Gaussian with zero mean and variance (NS −1)/Nu. This suggests that the
perceptron with Hebbian weights should work well if the number of input
patterns being learned is significantly less than the number of input vector
components. We can make this more precise by noting from equations 8.46
with γ = 0 and equation 8.49 that, for vn = +1, the perceptron will give the
correct answer if −1 < ηn < ∞. Similarly, for vn = −1, the perceptron will
give the correct answer if −∞ < ηn < 1. If vn has probability one half
of taking either value, the probability of the perceptron giving the correct
answer is one half the integral of the Gaussian distribution from −1 to ∞
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Figure 8.12: Percentage of correct responses for a perceptron with a Hebbian
weight vector for a random binary input-output map. As the ratio of the number
of inputs, Nu, to one less than the number of input vectors being learned, NS − 1,
grows, the percentage of correct responses goes to one. When this ratio is small,
the percentage of correct responses approaches the chance level of 1/2.

plus one half its integral from −∞ to 1. Combining these two terms we
find

P[correct] =
√

Nu

2π(NS − 1)

∫ 1

−∞
dη exp

(
− Nuη

2

2(NS − 1)

)
. (8.50)

This result is plotted in figure 8.12, which shows that the Hebbian percep-
tron performs fairly well if NS − 1 is less than about 0.2Nu. It is possible for
the perceptron to perform considerably better than this if a non-Hebbian
weight vector is used. We return to this in a later section.

Function Approximation

In chapter 1, we studied examples in which the firing rate of a neuron was
given by a function of a stimulus parameter, namely the response tuning
curve. When such a relationship exists, we can think of the neuronal fir-
ing rate as representing the function. Populations of neurons (labeled by
an index b = 1,2, . . . , Nu) that respond to a stimulus value s, by firing at
average rates fb(s) can similarly represent an entire set of functions. How-
ever, a function h(s) that is not equal to any of the single neuron tuning
curves can only be represented by combining the responses of a number
of units. This can be done using the network shown in figure 8.13. The
average steady-state activity level of the output unit in this network, in
response to stimulus value s, is given by equation 8.2,function

approximation

v(s) = w · u = w · f(s) =
N∑

b=1

wb fb(s) . (8.51)
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s

v(s) = w � f(s) � h(s)

u = f(s)

Figure 8.13: A network for representing functions. The value of an input variable
s is encoded by the activity of a population of neurons with tuning curves f(s).
This activity drives an output neuron through a vector of weights w to create an
output activity v that approximates the function h(s).

Note that we have replaced u by f(s) where f(s) is the vector with compo-
nents fb(s). The network presented in chapter 7 that performs coordinate
transformation is an example of this type of function approximation.

In equation 8.51, the input tuning curves f(s) act as a basis for representing
the output function h(s), and for this reason they are called basis functions. basis functions
Different sets of basis functions can be used to represent a given set of out-
put functions. A set of basis functions that can represent any member of a
class of functions using a linear sum, as in equation 8.51, is called complete
for this class. For the sets of complete functions typically used in mathe- completeness
matics, such as the sines and cosines used in a Fourier series, the weights in
equation 8.51 are unique. When neural tuning curves are used to expand a
function, the weights tend not to be unique, and the set of input functions
is called overcomplete. In this chapter, we assume that the basis functions overcomplete
are held fixed, and only the weights are adjusted to improve output per-
formance, although it is interesting to consider methods for learning the
best basis functions for a particular application. One way of doing this is
by applying backpropagation, which develops the basis functions guided
by the output errors of the network. Other methods, which we consider in
chapter 10, involve unsupervised learning.

Suppose that the function-representation network of figure 8.13 is pro-
vided a sequence of NS sample stimuli sm for m = 1,2, . . . , NS, and the
corresponding function values h(sm) during a training period. To make
v(sm) match h(sm) as closely as possible for all m, we minimize the error

E = 1
2NS

NS∑
m=1

(
h(sm) − v(sm)

)2 = 1
2

〈
(h(s) − w · f(s))2

〉
. (8.52)

We have made the replacement v(s) = w · f(s) in this equation and have
used the bracket notation for the average over the training inputs. Equa-
tions for the weights that minimize this error, called the normal equations, normal equations
are obtained by setting its derivative with respect to the weights to zero,
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yielding the condition

〈f(s)f(s)〉 · w = 〈f(s)h(s)〉 . (8.53)

The supervised Hebbian rule of equation 8.45, applied in this case, ulti-
mately sets the weight vector to w = 〈f(s)h(s)〉/α. These weights must
satisfy the normal equations 8.53 if they are to optimize function approx-
imation. There are two circumstances under which this occurs. The obvi-
ous one is when the input units are orthogonal across the training stimuli,
〈f(s)f(s)〉 = I. In this case, the normal equations are satisfied with α = 1.
However, this condition is unlikely to hold for most sets of input tuning
curves. An alternative possibility is that, for all pairs of stimuli sm and sm′

in the training set,

f(sm) · f(sm′
) = cδmm′ (8.54)

for some constant c. This is called a tight frame condition. If it is satisfied,tight frame
the weights given by a supervised Hebbian learning with decay can satisfy
the normal equations. To see this, we insert the weights w = 〈f(s)h(s)〉/α
into equation 8.53 and use 8.54 to obtain

〈f(s)f(s)〉 · w = 〈f(s)f(s)〉 · 〈f(s)h(s)〉
α

= 1
αN2

S

∑
mm′

f(sm)f(sm) · f(sm′
)h(sm′

)

= c
αN2

S

∑
m

f(sm)h(sm) = c
αNS

〈f(s)h(s)〉 . (8.55)

This shows that the normal equations are satisfied for α = c/NS. Thus,
we have shown two ways that supervised Hebbian learning can solve the
function approximation problem, but both require special conditions on
the basis functions f(s). A more general scheme, discussed below, involves
using an error-correcting rule.

Supervised Error-Correcting Rules

An essential limitation of supervised Hebbian rules is that synaptic mod-
ification does not depend on the actual performance of the network. An
alternative learning strategy is to start with an initial guess for the weights,
compare the output v in response to input um with the desired output vm,
and change the weights to improve the performance. Two important error-
correcting modification rules are the perceptron rule, which applies to bi-
nary classification, and the delta rule, which can be applied to function
approximation and many other problems.

The Perceptron Learning Rule

Suppose that the perceptron of equation 8.46 incorrectly classifies an input
pattern um. If the output is v(um) = −1 when vm = 1, the weight vector
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should be modified to make w · um − γ larger. Similarly, if v(um) = 1 when
vm = −1, w · um − γ should be decreased. A plasticity rule that performs
such an adjustment is the perceptron learning rule, perceptron

learning rule
w → w + εw

2
(
vm − v(um)

)
um γ → γ − εw

2
(vm − v(um)) (8.56)

Here, and in subsequent sections in this chapter, we use discrete updates
for the weights (indicated by the →) rather than the differential equations
used up to this point. This is due to the discrete nature of the presentation
of the training patterns. Here, εw determines the modification rate and is
analogous to 1/τw. In equation 8.56, we have assumed that the threshold
γ is also plastic. The learning rule for γ is inverted compared with that for
the weights, because γ enters equation 8.46 with a minus sign.

To verify that the perceptron learning rule makes appropriate weight ad-
justments, we note that it implies that

(
w · um − γ

) → (
w · um − γ

) + εw

2
(vm − v(um))

(|um|2 + 1
)
. (8.57)

This result shows that if vm = 1 and v(um) = −1, the weight change in-
creases w · um − γ. If vm = −1 and v(um) = 1, w · um − γ is decreased. This
is exactly what is needed to compensate for the error. Note that the per-
ceptron learning rule does not modify the weights if the output is correct.

To learn a set of input pattern classifications, the perceptron learning rule is
applied to each one sequentially. For fixed εw, the perceptron learning rule
of equation 8.56 is guaranteed to find a set of weights w and threshold γ

that solve any linearly separable problem. This is proved in the appendix.

The Delta Rule

The perceptron learning rule is designed for binary outputs. The function
approximation task with the error function E of equation 8.52 can also be
solved using an error correcting scheme. A simple but extremely useful
version of this is the gradient descent procedure, which modifies w ac- gradient descent
cording to

w → w − εw∇wE or wb → wb − εw

∂E
∂wb

(8.58)

where ∇wE is the vector with components ∂E/∂wb. This rule is sensible be-
cause −∇wE points in the direction along which E decreases most rapidly.
This process tends to reduce E because, to first order in εw

E(w − εw∇wE) = E(w) − εw |∇wE|2 ≤ E(w) . (8.59)

Note that, if εw is too large, or w is very near to a point where ∇wE(w) = 000,
then E can increase. We will take εw to be small, and ignore this concern.
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Figure 8.14: Eleven input neurons with Gaussian tuning curves drive an out-
put neuron to approximate a sine function. The input tuning curves are fb(s) =
exp[−0.5(s − sb)

2] with sb = −10,−8,−6, . . . ,8,10. A delta plasticity rule was
used to set the weights. Sample points were chosen randomly in the range be-
tween -10 and 10. The firing rate of the output neuron is plotted as a solid curve
and the sinusoidal target function as a dashed curve. A) The firing rate of the out-
put neuron when random weights in the range between -1 and 1 were used. B)
The output firing rate after weight modification using the delta rule for 20 sample
points. C) The output firing rate after weight modification using the delta rule for
100 sample points.

Thus, E decreases until w is close to a minumum. If E has many min-
ima, gradient descent will find only one of them (a local minimum), and
not necessarily the one with the lowest value of E (the global minimum).
In the case of linear function approximation using basis functions, as in
equation 8.51, gradient descent finds a value of w that satisfies the normal
equations, and therefore constructs an optimal function approximator, be-
cause there are no non-global minima.

For function approximation, the error E in equation 8.52 is an average over
a set of examples. As for the perceptron learning rule of equation 8.56, it is
possible to present randomly chosen input output pairs sm and h(sm), and
change w according to −∇w(h(sm) − v(sm))2/2. Using ∇wv = u = f, this
produces what is called the delta rule,delta rule

w → w + εw(h(sm) − v(sm))f(sm) . (8.60)

The procedure of applying the delta rule to each pattern sequentially is
called stochastic gradient descent, and it is particularly useful because it
allows learning to take place continuously while sample inputs are pre-
sented. There are more efficient methods of searching for minima of func-
tions than stochastic gradient descent, but many of them are complicatedstochastic gradient

decent to implement. The weights w will typically not completely settle down to
fixed values during the training period for a fixed value of εw. However,
their averages will tend to satisfy the normal equations.

Figure 8.14 shows the result of modifying an initially random set of
weights using the delta rule. Ultimately, an array of input neurons with
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Gaussian tuning curves drives an output neuron that quite accurately rep-
resents a sine function. The difference between figures 8.14B and C illus-
trates the difference between storage and generalization. Figure 8.14B is
based on 20 pairs of training inputs and outputs, while figure 8.14C in-
volves 100 pairs. It is clear that v(s) in figure 8.14B does not match the
sine function very well, at least for values of s that were not in the training
set, while v(s) in figure 8.14C provides a good approximation of the sine
function for all s values. The ability of the network to approximate the
function h(s) for stimulus values not presented during training depends
in a complicated way on its smoothness and the number and smoothness
of the basis functions f(s).

It is not obvious how the delta rule of equation 8.60 could be imple-
mented biophysically, because the network has to compute the difference
h(s)f(sm) − v(sm)f(sm). One possibility is that the two terms h(sm)f(sm)

and v(sm)f(sm) could be computed in separate phases. First, the output
of the network is clamped to the desired value h(sm) and Hebbian plas-
ticity is applied. Then, the network runs freely to generate v(sm) and
anti-Hebbian modifications are made. In the next section, we discuss a
particular example of this in the case of the Boltzmann machine, and we
show how learning rules intended for supervised learning can sometimes
be used for unsupervised learning as well.

Contrastive Hebbian Learning

In chapter 7, we presented the Boltzmann machine, which is a stochastic
network with binary units. One of the key innovations associated with the
Boltzmann machine is a synaptic modification rule that has a sound foun-
dation in probability theory. We start by describing the case of supervised
learning, although the underlying theory is similar for both supervised
and unsupervised learning with the Boltzmann machine.

We first consider a Boltzmann machine with only feedforward weights W
connecting u to v. Given an input u, an output v is computed by setting
each component va to one with probability F(

∑
b Wabub) (and zero other-

wise) where F(I) = 1/(1+exp(−I)). This is the Gibbs sampling procedure
discussed in chapter 7 applied to the feedforward Boltzmann machine. Be-
cause there are no recurrent connections, the states of the output units are
independent, and they can all be sampled simultaneously. Analogous to
the discussion in chapter 7, this procedure gives rise to a conditional prob-
ability distribution P[v|u;W] for v given u that can be written as

P[v|u;W] = exp(−E(u,v))

Z(u)
with Z(u) =

∑
v

exp(−E(u,v)) (8.61)

where E(u,v) = −v · W · u.

Supervised learning in deterministic networks involves the development
of a relationship between inputs u and outputs v that matches, as closely as
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possible, a set of samples (um,vm) for m = 1,2, . . . , NS. An analogous task
for a stochastic network is to match the distribution P[v|u;W] as closely
as possible to a probability distribution P[v|u] associated with the sam-
ples (um,vm). This is done by adjusting the feedforward weight matrix
W. Note that we are using the argument W to distinguish between two
different distributions, P[u|v], which is provided externally and generates
the sample data, and P[u|v;W], which is the distribution generated by the
Boltzmann machine with weights W. The idea of constructing networks
that reproduce probability distributions inferred from sample data is cen-
tral to the problem of density estimation covered more fully in chapter 10.density estimation

The natural measure for determining how well the distribution generated
by the network P[v|u;W] matches the sampled distribution P[v|u] for a
particular input u is the Kullback-Leibler divergence,

DKL(P[v|u], P[v|u;W]) =
∑

v

P[v|u] ln
(

P[v|u]
P[v|u;W]

)

= −
∑

v

P[v|u] ln (P[v|u;W]) + K , (8.62)

where K is a term that is proportional to the entropy of the distribution
P[v|u] (see chapter 4). We do not write out this term explicitly because it
does not depend on the feedforward weight matrix, so it does not affect
the learning rule used to modify W. As in chapter 7, we have, for conve-
nience, used natural rather than base 2 logarithms in the definition of the
Kullback-Leibler divergence.

To estimate, from the samples, how well P[v|u;W] matches P[v|u] across
the different values of u, we average the Kullback-Leibler divergence over
all of the input samples um. We also use the sample outputs vm to pro-
vide a stochastic approximation of the sum over all v in equation 8.62 with
weighting factor P[v|u]. Using brackets to denote the average over sam-
ples, this results in the measure

〈DKL(P[v|u], P[v|u;W])〉 = − 1
NS

NS∑
m=1

ln
(
P[vm|um;W]

) + 〈K〉 (8.63)

for comparing P[v|u;W] and P[v|u]. Each logarithmic term in the sum
on the right side of this equation is the negative of the logarithm of the
probability that a sample output vm would have been drawn from the
distribution P[v|um;W], when in fact it is drawn from P[v|um]. A conse-
quence of this approximate equality is that finding the network distribu-
tion P[v|um;W] that best matches P[v|um] (in the sense of minimizing the
Kullback-Leibler divergence) is equivalent to maximizing the conditional
likelihood that the sample vm could have been drawn from P[v|um;W].likelihood

maximization
A learning rule that is equivalent to stochastic gradient ascent of the log
likelihood can be derived by changing the weights by an amount propor-
tion to the derivative of the logarithmic term in equation 8.63 with respect
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to the weight being changed. In a stochastic gradient ascent scheme, the
change in the weight matrix after sample m is presented only depends on
the log likelihood for that sample, so we only need to take the derivative
with respect to Wab of the corresponding term in equation 8.63,

∂ ln P[vm|um;W]
∂Wab

= ∂

∂Wab

(
−E(um,vm) − ln Z(um)

)

= vm
a um

b −
∑

v

P[v|um;W]vaum
b . (8.64)

This derivative has a simple form for the Boltzmann machine because of
equation 8.61.

Before we derive the stochastic gradient ascent learning rule, we need to
evaluate the sum over v in the last term of the bottom line of equation
8.64. For Boltzmann machines with recurrent connections like the ones we
discuss below, this average cannot be calculated tractably. However, be-
cause the learning rule is used repeatedly, it can be estimated by stochastic
sampling. In other words, we approximate the average over v by a sin-
gle instance of a particular output v(um) generated by the Boltzmann ma-
chine in response to the input um. Making this replacement and setting
the change in the weight matrix proportional to the derivative in equation
8.64, we obtain the learning rule supervised

learning for W
Wab → Wab + εw

(
vm

a um
b − va(um)um

b

)
. (8.65)

Equation 8.65 is identical in form to the perceptron learning rule of equa-
tion 8.56, except that v(um) is computed from the input um by Gibbs sam-
pling rather than by a deterministic rule. As discussed at the end of the
previous section, equation 8.65 can also be interpreted as the difference
of Hebbian and anti-Hebbian terms. The Hebbian term vm

a um
b is based on

the sample input um and output vm. The anti-Hebbian term −va(um)um
b

involves the product of the sample input um with an output v(um) gener-
ated by the Boltzmann machine in response to this input, rather than the
sample output vm. In other words, while vm is provided externally, v(um)

is obtained by Gibbs sampling using the input um and the current val-
ues of the network weights. The overall learning rule is sometimes called
a contrastive Hebbian rule because it depends on the difference between contrastive

Hebbian ruleHebbian and anti-Hebbian terms.

Supervised learning for the Boltzmann machine is run in two phases, both
of which use a sample input um. The first phase, sometimes called the
wake phase, involves Hebbian plasticity between sample inputs and out- wake phase
puts. The dynamics of the Boltzmann machine play no role during this
phase. The second phase, called the sleep phase, consists of the network sleep phase
‘dreaming’ (i.e. internally generating) v(um) in response to um based on the
current weights W. Then, anti-Hebbian learning based on um and v(um)

is applied to the weight matrix. Gibbs sampling is typically used to gen-
erate v(um) from um. It is also possible to use the mean field method we
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discussed in chapter 7 to approximate the average over the distribution
P[v|um;W] in equation 8.64.

Supervised learning can also be implemented in a Boltzmann machine
with recurrent connections. When the output units are connected by a
symmetric recurrent weight matrix M (with Maa = 0), the energy function
is

E(u,v) = −v · W · u − 1
2

v · M · v . (8.66)

Everything that has been described thus far applies to this case, except
that the output v(um) for the sample input um must now be computed by
repeated Gibbs sampling using F(

∑
b Wabum

b + ∑
a′ Maa′va′ ) for the proba-

bility that va = 1 (see chapter 7). Repeated sampling is required to assure
that the network relaxes to the equilibrium distribution of equation 8.61.
Modification of the feedforward weight Wab then proceeds as in equa-
tion 8.65. The contrastive Hebbian modification rule for recurrent weight
Maa′ is similarly given bysupervised

learning for M
Maa′ → Maa′ + εm

(
vm

a vm
a′ − va(um)va′ (um)

)
. (8.67)

The Boltzmann machine was originally introduced in the context of un-
supervised rather than supervised learning. In the supervised case, we
tried to make the distribution P[v|u;W] match the probability distribu-
tion P[v|u] that generates the samples pairs (um,vm). In the unsupervised
case, no output sample vm is provided, and instead we try to make the
network generate a probability distribution over u that matches the dis-
tribution P[u] from which the samples um are drawn. As we discuss in
chapter 10, a common goal of probabilistic unsupervised learning is to
generate network distributions that match the distributions of input data.

In addition to the distribution of equation 8.61 for v given a specific input
u, the energy function of the Boltzmann machine can be used to define a
distribution over both u and v defined by

P[u,v;W] = exp(−E(u,v))

Z
with Z =

∑
u,v

exp(−E(u,v)) . (8.68)

This can be used to construct a distribution for u alone by summing over
the possible values of v,

P[u;W] =
∑

v

P[u,v;W] = 1
Z

∑
v

exp(−E(u,v)) . (8.69)

The goal of unsupervised learning for the Boltzmann machine is to make
this distribution match, as closely as possible, the distribution of inputs
P[u].

The derivation of an unsupervised learning rule for a feedforward Boltz-
mann machine proceeds very much like the derivation we presented for

Peter Dayan and L.F. Abbott Draft: December 17, 2000



8.5 Chapter Summary 45

the supervised case. The equivalent of equation 8.64 is

∂ ln P[um;W]
∂Wab

=
∑

v

P[v|um;W]vaum
b −

∑
u,v

P[u,v;W]vaub . (8.70)

In this case, both terms must be evaluated by Gibbs sampling. The wake
phase Hebbian term requires a stochastic output v(um), which is calcu-
lated from the sample input um just as it was for the anti-Hebbian term
in equation 8.65. However, the sleep phase anti-Hebbian term in this case
requires both an input u and an output v generated by the network. These
are computed using a Gibbs sampling procedure in which both input and
output states are stochastically generated through repeated Gibbs sam-
pling. A randomly chosen component va is set to one with probability
F(

∑
b Wabub) (or zero otherwise), and a random component ub is set to one

with probability F(
∑

a vaWab) (or zero otherwise). Note that this corre-
sponds to having the input units drive the output units in a feedforward
manner through the weights W and having the output units drive the in-
put units in a reversed manner using feedback weights with the same val-
ues. Once the network has settled to equilibrium through repeated Gibbs
sampling of this sort, and the stochastic inputs and outputs have been
generated, the full learning rule is unsupervised

learning for W
Wab → Wab + εw

(
va(um)um

b − vaub
)
. (8.71)

The unsupervised learning rule can be extended to include recurrent con-
nections by following the same general procedure.

8.5 Chapter Summary

We presented a variety of forms of Hebbian synaptic plasticity ranging
from the basic Hebb rule to rules that involve multiplicative and subtrac-
tive normalization, a constant or sliding thresholds, and spike-timing ef-
fects. Two important features in synaptic plasticity were emphasized, sta-
bility and competition. We showed how the effects of unsupervised Heb-
bian learning could be estimated by computing the principal eigenvector
of the correlation matrix of the inputs used during training. Unsuper-
vised Hebbian learning could be interpreted as a process that produces
weights that project the input vector onto the direction of maximal vari-
ance in the training data set. In some cases, this requires an extension
from correlation-based to covariance-based rules. We used the principal
eigenvector approach to analyze Hebbian models of the development of
ocular dominance and its associated map in primary visual cortex. Plas-
ticity rules based on the dependence of synaptic modification on spike
timing were shown to implement temporal sequence and trace learning.

Forcing multiple outputs to have different selectivities requires them to be
connected, either through fixed weights or by weights that are themselves
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plastic. In the latter case, anti-Hebbian plasticity can ensure decorrelation
of multiple output units. We also considered the role of competition and
cooperation in models of activity-dependent development and described
two examples of feature-based models, the self-organizing map and the
elastic net.

Finally, we considered supervised learning applied to binary classifica-
tion and function approximation, using supervised Hebbian learning, the
perceptron learning rule, and gradient descent learning through the delta
rule. We also treated contrastive Hebbian learning for the Boltzmann ma-
chine, involving Hebbian and anti-Hebbian updates in different phases.

8.6 Appendix

Convergence of the Perceptron Learning Rule

For convenience, we take εw = 1 and start the perceptron learning rule
with w = 000 and γ = 0. Then, under presentation of the sample m, the
changes in the weights and threshold are given by

�w = 1
2
(vm − v(um))um and �γ = −1

2
(vm − v(um)) . (8.72)

Given a finite, linearly separable problem, there must be a set of weights
w∗ and a threshold γ∗ that are normalized (|w∗|2 + (γ∗)2 = 1) and allow
the perceptron to categorize correctly, for which we require the condition
(w∗ · um − γ∗)vm > δ for some δ > 0 and for all m.

Consider the cosine of the angle between the current weights and thresh-
old w, γ and the solution w∗, γ∗

�(w, γ) = w · w∗ + γγ∗√|w|2 + (γ)2
= ψ(w, γ)

|w, γ| , (8.73)

to introduce some compact notation. Because it is a cosine, � must lie
between −1 and 1. The perceptron convergence theorem shows the per-
ceptron learning rule must lead to a solution of the categorization problem
or else � would grow larger than one, which is impossible.

To show this, we consider the change in ψ due to one step of perceptron
learning during which w and γ are modified because the current weights
generated the wrong response. When an incorrect response is generated
v(um) = −vm, so (vm − v(um))/2 = vm, and thus

�ψ = (w∗ · um − γ∗)vm > δ . (8.74)

The inequality follows from the condition imposed on w∗ and γ∗ as pro-
viding a solution of the categorization problem. Assuming that ψ is ini-
tially positive and iterating this result over n steps in which the weights
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change, we find that

ψ(w, γ) ≥ nδ . (8.75)

Similarly, over one learning step in which some change is made

�|w, γ|2 = 2(w · um − γ)vm + |um|2 + 1 . (8.76)

The first term on the right side is always negative when an error is made
and, if we define D to be the maximum value of |um|2 over all the training
samples, we find

�|w, γ|2 < D + 1 . (8.77)

After n non-trivial learning iterations (iterations in which the weights and
threshold are modified) starting from |w, γ|2 = 0, we therefore have

|w, γ|2 < n(D + 1) (8.78)

Putting together equations 8.75 and 8.78, we find after n non-trivial train-
ing steps

�(w, γ) >
nδ√

n(D + 1)
. (8.79)

To ensure that �(w, γ) ≤ 1, we must have n ≤ (D + 1)/δ2. Therefore, after
a finite number of weight changes, the perceptron learning rule must stop
changing the weights, and the perceptron must classify all the patterns
correctly.

8.7 Annotated Bibliography

Hebb’s (1949) original proposal about learning set the stage for many of
the subsequent investigations. We followed the treatments of Hebbian,
BCM, anti-Hebbian and trace learning of Goodall (1960); Sejnowski (1977);
Bienenstock, Cooper & Munro (1982); Oja (1982); Földiák (1989; 1991);
Leen (1991); Atick & Redlich (1993); Wallis & Baddeley (1997); exten-
sive coverage of these and related analyses can be found in Hertz et al.
(1991). We followed Miller & MacKay (1994); Miller (1996b) in the analy-
sis of weight constraints and normalization. Jolliffe (1986) treats principal
components analysis theoretically; see also chapter 10; Intrator & Cooper
(1992) treats BCM from the statistical perspective of projection pursuit
(Huber, 1985).

Sejnowski (1999) comments on the relationship between Hebb’s sugges-
tions and recent experimental data and theoretical studies on temporal
sensitivity in Hebbian plasticity (see Levy & Steward, 1983; Blum & Ab-
bott, 1996; Kempter et al., 1999; Song et al., 2000).
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Descriptions of relevant data on the patterns of responsivity across cor-
tical areas and the development of these patterns include Hubener et al.
(1997); Yuste & Sur (1999); Weliky (2000); Price & Willshaw (2000) offers
a broad-based, theoretically informed review. There are various recent ex-
perimental challenges to plasticity-based models (e.g. Crair et al., 1998;
Crowley & Katz, 1999). Neural pattern formation mechanisms involv-
ing chemical matching, which are likely important at least for establish-
ing coarse maps, are reviewed from a theoretical perspective in Goodhill
& Richards (1999). The use of learning algorithms to account for corti-
cal maps is reviewed in Erwin et al. (1995), Miller (1996a) and Swindale
(1996). The underlying mathematical basis of some rules is closely related
to Turing (1952)’s reaction diffusion theory of morphogenesis; others are
motivated on the basis of minimizing quantitities such as wire length in
cortex. We described Hebbian models for the development of ocular dom-
inance and orientation selectivity due to Linsker (1986); Miller et al. (1989)
and Miller (1994); a competitive Hebbian model closely related to that of
Goodhill (1993) and Piepenbrock & Obermayer (1999); a self-organizing
map model related to that of Obermayer et al. (1992); and the elastic net
(Durbin & Willshaw, 1987) model of Durbin & Mitchison (1990); Good-
hill & Willshaw (1990); Erwin et al. (1995). The first feature-based models
were called noise models (see Swindale, 1996).

The perceptron learning rule is due to Rosenblatt (1958); see Minsky &
Papert (1969). The delta rule was introduced by Widrow & Hoff (1960; see
also Widrow & Stearns, 1985) and independently arose in various other
fields. The widely used backpropagation algorithm is a form of delta rule
learning that works in a larger class of networks. O’Reilly (1996) suggests
a more biologically plausible implementation.

Supervised learning for classification and function approximation, and its
ties to Bayesian and frequentist statistical theory, are reviewed in Duda
& Hart, 1973; Kearns & Vazirani, 1994; Bishop, 1995. Poggio and col-
leagues have explored basis function models of various representational
and learning phenomena (see Poggio, 1990). Tight frames are discussed in
Daubechies et al. (1986) and applied to visual receptive fields by Salinas &
Abbott (2000).

Contrastive Hebbian learning is due to Hinton & Sejnowski (1986). See
Hinton (2000) for discussion of the particlar Boltzmann machine without
recurrent connections, and for an alternative learning rule.
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Chapter 9

Classical Conditioning and
Reinforcement Learning

9.1 Introduction

The ability of animals to learn to take appropriate actions in response to
particular stimuli on the basis of associated rewards or punishments is a
focus of behavioral psychology. The field is traditionally separated into
classical (or Pavlovian) and instrumental (or operant) conditioning. In classical and

instrumental
conditioning

classical conditioning, the reinforcers (i.e. the rewards or punishments) are
delivered independently of any actions taken by the animal. In instrumen-
tal conditioning, the actions of the animal determine what reinforcement
is provided. Learning about stimuli or actions solely on the basis of the
rewards and punishments associated with them is called reinforcement
learning. As discussed in chapter 8, reinforcement learning is minimally reinforcement

learningsupervised because animals are not told explicitly what actions to take in
particular situations, but must work this out for themselves on the basis of
the reinforcement they receive.

We begin this chapter with a discussion of aspects of classical condition-
ing and the models that have been developed to account for them. We first
discuss various pairings of one or more stimuli with presentation or denial
of a reward and present a simple learning algorithm that summarizes the
results. We then present an algorithm, called temporal difference learning,
that leads to predictions of both the presence and timing of rewards deliv-
ered after a delay following stimulus presentation. Two neural systems,
the cerebellum and the midbrain dopamine system, have been particu-
larly well studied from the perspective of conditioning. The cerebellum
has been studied in association with eyeblink conditioning, a paradigm
in which animals learn to shut their eyes just in advance of disturbances
such as puffs of air that are signalled by cues. The midbrain dopaminergic
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system has been studied in association with reward learning. We focus on
the latter, together with a small fraction of the extensive behavioral data
on conditioning.

There are two broad classes of instrumental conditioning tasks. In the first
class, which we illustrate with an example of foraging by bees, the re-
inforcer is delivered immediately after the action is taken. This makes
learning relatively easy. In the second class, the reward or punishment
depends on an entire sequence of actions and is partly or wholly delayed
until the sequence is completed. Thus, learning the appropriate action atdelayed rewards
each step in the sequence must be based on future expectation, rather than
immediate receipt, of reward. This makes learning more difficult. Despite
the differences between classical and instrumental conditioning, we show
how to use the temporal difference model we discuss for classical condi-
tioning as the heart of a model of instrumental conditioning when rewards
are delayed.

For consistency with the literature on reinforcement learning, throughout
this chapter, the letter r is used to represent a reward rather than a firing
rate. Also, for convenience, we consider discrete actions such as a choice
between two alternatives, rather than a continuous range of actions. We
also consider trials that consist of a number of discrete events and use an
integer time variable t = 0,1,2, . . . to indicate steps during a trial. We
therefore also use discrete weight update rules (like those we discussed
for supervised learning in chapter 8) rather than learning rules described
by differential equations.

9.2 Classical Conditioning

Classical conditioning involves a wide range of different training and test-
ing procedures and a rich set of behavioral phenomena. The basic pro-
cedures and results we discuss are summarized in table 9.1. Rather than
going through the entries in the table at this point, we introduce a learning
algorithm that serves to summarize and structure these results.

In the classic Pavlovian experiment, dogs are repeatedly fed just after a
bell is rung. Subsequently, the dogs salivate whenever the bell sounds
as if they expect food to arrive. The food is called the unconditioned
stimulus. Dogs naturally salivate when they receive food, and salivationunconditioned

stimulus and
response

is thus called the unconditioned response. The bell is called the condi-
tioned stimulus because it only elicits salivation under the condition that

conditioned
stimulus and
response

there has been prior learning. The learned salivary response to the bell
is called the conditioned response. We do not use this terminology in the
following discussion. Instead, we treat those aspects of the conditioned re-
sponses that mark the animal’s expectation of the delivery of reward, and
build models of how these expectations are learned. We therefore refer to
stimuli, rewards, and expectation of reward.
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9.2 Classical Conditioning 3

Paradigm Pre-Train Train Result
Pavlovian s → r s →‘r’
Extinction s → r s → · s →‘·’
Partial s → r s → · s → α‘r’
Blocking s1 → r s1+s2 → r s1 →‘r’ s2 →‘·’
Inhibitory s1+s2 → · s1 → r s1 →‘r’ s2 → −’r’
Overshadow s1+s2 → r s1 → α1‘r’ s2 → α2‘r’
Secondary s1 → r s2 → s1 s2 →‘r’

Table 9.1: Classical conditioning paradigms. The columns indicate the training
procedures and results, with some paradigms requiring a pre-training as well as
a training period. Both training and pre-training periods consist of a moderate
number of training trials. The arrows represent an association between one or
two stimuli (s, or s1 and s2) and either a reward (r) or the absence of a reward
(·). In Partial and Inhibitory conditioning, the two types of training trials that are
indicated are alternated. In the Result column, the arrows represent an association
between a stimulus and the expectation of a reward (‘r’) or no reward (‘·’). The
factors of α denote a partial or weakened expectation, and the minus sign indicates
the suppression of an expectation of reward.

Predicting Reward - The Rescorla-Wagner Rule

The Rescorla-Wagner rule (Rescorla and Wagner, 1972), which is a version
of the delta rule of chapter 8, provides a concise account of certain aspects
of classical conditioning. The rule is based on a simple linear prediction
of the award associated with a stimulus. We use a binary variable u to
represent the presence or absence of the stimulus (u = 1 if the stimulus
is present, u = 0 if it is absent). The expected reward, denoted by v, is stimulus u

expected reward vexpressed as this stimulus variable multiplied by a weight w,

weight w
v = wu . (9.1)

The value of the weight is established by a learning rule designed to min-
imize the expected squared error between the actual reward r and the
prediction v, 〈(r − v)2〉. The angle brackets indicate an average over the
presentations of the stimulus and reward, either or both of which may be
stochastic. As we saw in chapter 8, stochastic gradient descent in the form
of the delta rule is one way of minimizing this error. This results in the
trial-by-trial learning rule known as the Rescorla-Wagner rule, Rescorla-Wagner

rule
w → w + εδu with δ = r − v . (9.2)

Here ε is the learning rate, which can be interpreted in psychological terms
as the associability of the stimulus with the reward. The crucial term in
this learning rule is the prediction error, δ. In a later section, we interpret
the activity of dopaminergic cells in the ventral tegmental area (VTA) as
encoding a form of this prediction error. If ε is sufficiently small, the rule
changes w systematically until the average value of δ is zero, at which
point w fluctuates about the equilibrium value w = 〈ur〉.
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Figure 9.1: Acquisition and extinction curves for Pavlovian conditioning and par-
tial reinforcement as predicted by the Rescorla-Wagner model. The filled circles
show the time evolution of the weight w over 200 trials. In the first 100 trials, a re-
ward of r = 1 was paired with the stimulus, while in trials 100-200 no reward was
paired (r = 0). Open squares show the evolution of the weights when a reward of
r = 1 was paired with the stimulus randomly on 50% of the trials. In both cases,
ε = 0.05.

The filled circles in figure 9.1 show how learning progresses according to
the Rescorla-Wagner rule during Pavlovian conditioning and extinction.Pavlovian

conditioning
extinction

In this example, the stimulus and reward were both initially presented
on each trial, but later the reward was removed. The weight approaches
the asymptotic limit w = r exponentially during the rewarded phase of
training (conditioning), and exponentially decays to w = 0 during the un-
rewarded phase (extinction). Experimental learning curves are generally
more sigmoidal in shape. There are various ways to account for this dis-
crepancy, the simplest of which is to assume a nonlinear relationship be-
tween the expectation v and the behavior of the animal.

The Rescorla-Wagner rule also accounts for aspects of the phenomenon of
partial reinforcement, in which a reward is only associated with a stimuluspartial

reinforcement on a random fraction of trials (table 9.1). Behavioral measures of the ulti-
mate association of the reward with the stimulus in these cases indicate
that it is weaker than when the reward is always presented. This is ex-
pected from the delta rule, because the ultimate steady-state average value
of w = 〈ur〉 is smaller than r in this case. The open squares in figure 9.1
show what happens to the weight when the reward is associated with the
stimulus 50% of the time. After an initial rise from zero, the weight varies
randomly around an average value of 0.5.

To account for experiments in which more than one stimulus is used in
association with a reward, the Rescorla-Wagner rule must be extended to
include multiple stimuli. This is done by introducing a vector of binary
variables u, with each of its components representing the presence or ab-stimulus vector u
sence of a given stimulus, together with a vector of weights w. The ex-weight vector w
pected reward is then the sum of each stimulus parameter multiplied by
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its corresponding weight, written compactly as a dot product,

v = w · u . (9.3)

Minimizing the prediction error by stochastic gradient decent in this case
gives the delta learning rule delta rule

w → w + εδu with δ = r − v . (9.4)

Various classical conditioning experiments probe the way that predic-
tions are shared between multiple stimuli (see table 9.1). Blocking is the blocking
paradigm that first led to the suggestion of the delta rule in connection
with classical conditioning. In blocking, two stimuli are presented to-
gether with the reward, but only after an association has already devel-
oped for one stimulus by itself. In other words, during the pre-training
period, a stimulus is associated with a reward as in Pavlovian condition-
ing. Then, during the training period, a second stimulus is present along
with the first in association with the same reward. In this case, the pre-
existing association of the first stimulus with the reward blocks an asso-
ciation from forming between the second stimulus and the reward. Thus,
after training, a conditioned response is only evoked by the first stimulus,
not by the second. This follows from the vector form of the delta rule,
because training with the first stimulus makes w1 = r. When the second
stimulus is presented along with the first, its weight starts out at w2 = 0,
but the prediction of reward v = w1u1 + w2u2 is still equal to r. This makes
δ = 0, so no further weight modification occurs.

A standard way to induce inhibitory conditioning is to use trials in which inhibitory
conditioningone stimulus is shown in conjunction with the reward in alternation with

trials in which that stimulus and an additional stimulus are presented in
the absence of reward. In this case, the second stimulus becomes a con-
ditioned inhibitor, predicting the absence of reward. This can be demon-
strated by presenting a third stimulus that also predicts reward, in con-
junction with the inhibitory stimulus, and showing that the net prediction
of reward is reduced. It can also be demonstrated by showing that subse-
quent learning of an positive association between the inhibitory stimulus
and reward is slowed. Inhibition emerges naturally from the delta rule.
Trials in which the first stimulus is associated with a reward result in a
positive value of w1. Over trials in which both stimuli are presented to-
gether, the net prediction v = w1 + w2 comes to be 0, so w2 is forced to be
negative.

A further example of the interaction between stimuli is overshadowing. overshadowing
If two stimuli are presented together during training, the prediction of
reward is shared between them. After application of the delta rule, v =
w1 + w2 = r. However, the prediction is often shared unequally, as if one
stimulus is more salient than the other. Overshadowing can be encom-
passed by generalizing the delta rule so that the two stimuli have differ-
ent learning rates (different values of ε), reflecting unequal associabilities.
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6 Classical Conditioning and Reinforcement Learning

Weight modification stops when 〈δ〉 = 0, at which point the faster growing
weight will be larger than the slower growing weight. Various, more sub-
tle, effects come from having different and modifiable associabilities, but
they lie beyond the scope of our account.

The Rescorla-Wagner rule, binary stimulus parameters, and linear reward
prediction are obviously gross simplifications of animal learning behav-
ior. Yet they summarize and unify an impressive amount of classical con-
ditioning data and are useful, provided their shortcomings are fully ap-
preciated. As a reminder of this, we point out one experiment, namely
secondary conditioning, that cannot be encompassed within this scheme.
Secondary conditioning involves the association of one stimulus with a re-secondary

conditioning ward, followed by an association of a second stimulus with the first stim-
ulus (table 9.1). This causes the second stimulus to evoke expectation of
a reward with which it has never been paired (although if pairings of the
two stimuli without the reward are repeated too many times, the result
is extinction of the association of both stimuli with the reward). The delta
rule cannot account for the positive expectation associated with the second
stimulus. Indeed, because the reward does not appear when the second
stimulus is presented, the delta rule would cause w2 to become negative.
In other words, in this case, the delta rule would predict inhibitory, not
secondary, conditioning. Secondary conditioning is particularly impor-
tant, because it lies at the heart of our solution to the problem of delayed
rewards in instrumental conditioning tasks.

Secondary conditioning raises the important issue of keeping track of the
time within a trial in which stimuli and rewards are present. This is evi-
dent because a positive association with the second stimulus is only reli-
ably established if it precedes the first stimulus in the trials in which they
are paired. If the two stimuli are presented simultaneous, the result may
indeed be inhibitory rather than secondary conditioning.

Predicting Future Reward – Temporal Difference Learning

We measure time within a trial using a discrete time variable t, which falls
in the range 0 ≤ t ≤ T. The stimulus u(t), the prediction v(t), and the
reward r(t) are all expressed as functions of t.

In addition to associating stimuli with rewards and punishments, animals
can learn to predict the future time within a trial at which a reinforcer will
be delivered. We might therefore be tempted to interpret v(t) as the re-
ward predicted to be delivered at time step t. However, Sutton and Barto
(1990) suggested an alternative interpretation of v(t) that provides a bet-
ter match to psychological and neurobiological data, and suggests how
animals might use their predictions to optimize behavior in the face of
delayed rewards. The suggestion is that the variable v(t) should be in-
terpreted as a prediction of the total future reward expected from time t
onward to the end of the trial, namelytotal future reward
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9.2 Classical Conditioning 7

〈
T−t∑
τ=0

r(t + τ)

〉
. (9.5)

The brackets denote an average over trials. This quantity is useful for op-
timization, because it summarizes the total expected worth of the current
state. To compute v(t), we generalize the linear relationship used for clas-
sical conditioning, equation 9.3. For the case of a single time-dependent
stimulus u(t), we write

v(t) =
t∑

τ=0

w(τ)u(t − τ) . (9.6)

This is just a discrete time version of the sort of linear filter used in chapters
1 and 2.

Arranging for v(t) to predict the total future reward would appear to re-
quire a simple alteration of the delta rule we have discussed previously,

w(τ) → w(τ) + εδ(t)u(t − τ) , (9.7)

with δ(t) being the difference between the actual and predicted total future
reward, δ(t) = ∑

r(t + τ) − v(t). However, there is a problem with apply-
ing this rule in a stochastic gradient descent algorithm. Computation of
δ(t) requires knowledge of the total future reward on a given trial. Al-
though r(t) is known at this time, the succeeding r(t+1), r(t+2) . . . have
yet to be experienced, making it impossible to calculate δ(t). A possible
solution is suggested by the recursive formula

T−t∑
τ=0

r(t + τ) = r(t) +
T−t−1∑
τ=0

r(t+1+τ) . (9.8)

The temporal difference model of prediction is based on the observation
that v(t+1) provides an approximation of the trial-average value of the
last term in equation 9.8,

v(t+1) ≈
〈

T−t−1∑
τ=0

r(t+1+τ)

〉
. (9.9)

Substituting this approximation into the original expression for δ gives the
temporal difference learning rule temporal difference

rule
w(τ) → w(τ) + εδ(t)u(t−τ) with δ(t) = r(t) + v(t+1) − v(t) . (9.10)

The name of the rule comes from the term v(t+1) − v(t), which is the dif-
ference between two successive estimates. δ(t) is usually called the tempo-
ral difference error. There is an extensive body of theory showing circum-
stances under which this rule converges to make the correct predictions.

Figure 9.2 shows what happens when the temporal difference rule is ap-
plied during a training period in which a stimulus appears at time t = 100,
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Figure 9.2: Learning to predict a reward. A) The surface plot shows the prediction
error δ(t) as a function of time within a trial, across trials. In the early trials, the
peak error occurs at the time of the reward (t = 200), while in later trials it occurs at
the time of the stimulus (t = 100). (B) The rows show the stimulus u(t), the reward
r(t), the prediction v(t), the temporal difference between predictions �v(t − 1) =
v(t)−v(t −1), and the full temporal difference error δ(t −1) = r(t −1)+�v(t −1).
The reward is presented over a short interval, and the prediction v sums the total
reward. The left column shows the behavior before training, and the right column
after training. �v(t − 1) and δ(t − 1) are plotted instead of �v(t) and δ(t) because
the latter quantities cannot be computed until time t + 1 when v(t + 1) is available.

and a reward is given for a short interval around t = 200. Initially, w(τ) = 0
for all τ. Figure 9.2A shows that the temporal difference error starts off be-
ing non-zero only at the time of the reward, t = 200, and then, over trials,
moves backward in time, eventually stabilizing around the time of the
stimulus, where it takes the value 2. This is equal to the (integrated) to-
tal reward provided over the course of each trial. Figure 9.2B shows the
behavior during a trial of a number of variables before and after learn-
ing. After learning, the prediction v(t) is 2 from the time the stimulus is
first presented (t = 100) until the time the reward starts to be delivered.
Thus, the temporal difference prediction error has a spike at t = 99. This
spike persists, because u(t) = 0 for t < 100. The temporal difference term
�v(t) is negative around t = 200, exactly compensating for the delivery of
reward, and so making δ = 0.

As the peak in δ moves backwards from the time of the reward to the time
of the stimulus, weights w(τ) for τ = 100,99, . . . successively grow. This
gradually extends the prediction of future reward, v(t), from an initial
transient at the time of the stimulus, to a broad plateau extending from
the time of the stimulus to the time of the reward. Eventually, v predicts
the correct total future reward from the time of the stimulus onward, and
predicts the time of the reward delivery by dropping to zero when the re-
ward is delivered. The exact shape of the ridge of activity that movesfrom
t = 200 to t = 100 over the course of trials is sensitive to a number of fac-
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9.2 Classical Conditioning 9

tors, including the learning rate, and the exact form of the linear filter of
equation 9.6.

Unlike the delta rule, the temporal difference rule provides an account of
secondary conditioning. Suppose an association between stimulus s1 and
a future reward has been established, as in figure 9.2. When, as indicated
in table 9.1, a second stimulus, s2, is introduced before the first stimulus,
the positive spike in δ(t) at the time that s1 is presented drives an increase
in the value of the weight associated with s2 and thus establishes a posi-
tive association between the second stimulus and the reward. This exactly
mirrors the primary learning process for s1 described above. Of course, be-
cause the reward is not presented in these trials, there is a negative spike in
δ(t) at the time of the reward itself, and ultimately the association between
both s1 and s2 and the reward extinguishes.

Dopamine and Predictions of Reward

The prediction error δ plays an essential role in both the Rescorla-Wagner
and temporal difference learning rules, and we might hope to find a neural
signal that represents this quantity. One suggestion is that the activity of
dopaminergic neurons in the ventral tegmental area (VTA) in the midbrain ventral tegmental

area VTAplays this role.

There is substantial evidence that dopamine is involved in reward learn- dopamine
ing. Drugs of addiction, such as cocaine and amphetamines, act partly
by increasing the longevity of the dopamine that is released onto target
structures such as the nucleus accumbens. Other drugs, such as morphine
and heroin, also affect the dopamine system. Further, dopamine deliv-
ery is important in self-stimulation experiments. Rats will compulsively
press levers that cause current to be delivered through electrodes into var-
ious areas of their brains. One of the most effective self-stimulation sites
is the medial forebrain ascending bundle, which is an axonal pathway.
Stimulating this pathway is likely to cause increased delivery of dopamine
to the nucleus accumbens because the bundle contains many fibers from
dopaminergic cells in the VTA projecting to the nucleus accumbens.

In a series of studies by Schultz and his colleagues (Schultz, 1998), mon-
keys were trained through instrumental conditioning to respond to stimuli
such as lights and sounds to obtain food and drink rewards. The activi-
ties of cells in the VTA were recorded while the monkeys learned these
tasks. Figure 9.3A shows histograms of the mean activities of dopamine
cells over the course of learning in one example. The figure is based on
a reaction time task in which the monkey keeps a finger resting on a key
until a light comes on. The monkey then has to release the key and press
another one to get a fruit juice reward. The reward is delivered a short
time after the second key is pressed. The upper plot shows the response
of the cells in early trials. The cells respond vigorously to the reward, but
barely fire above baseline to the light. The lower plot shows the response
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Figure 9.3: Activity of dopaminergic neurons in the VTA for a monkey perform-
ing a reaction time task. A) Histograms show the number of spikes per second
for various time bins accumulated across trials and either time-locked to the light
stimulus (left panels) or the reward (right panels) at the time marked zero. The top
row is for early trials before the behavior is established. The bottom row is for late
trials, when the monkey expects the reward on the basis of the light. B) Activity
of dopamine neurons with and without reward delivery. The top row shows the
normal behavior of the cells when reward is delivered. The bottom row shows the
result of not delivering an expected reward. The basal firing rate of dopamine cells
is rather low, but the inhibition at the time the reward would have been given is
evident. (Adapted from Schultz, 1998.)

after a moderate amount of training. Now, the cell responds to the light,
but not to the reward. The responses show a distinct similarity to the plots
of δ(t) in figure 9.2.

The similarity between the responses of the dopaminergic neurons and
the quantity δ(t) suggests that their activity provides a prediction error
for reward, i.e. an ongoing difference between the amount of reward that
is delivered and the amount that is expected. Figure 9.3B provides further
evidence for this interpretation. It shows the activity of dopamine cells in a
similar task to that of figure 9.3A. The top row of this figure shows normal
performance, and is just like the bottom row of figure 9.3A. The bottom
row shows what happens when the monkey is expecting reward, but it is
not delivered. In this case, the cell’s activity is inhibited below baseline at
just the time it would have been activated by the reward in the original
trials. This is in agreement with the prediction error interpretation of this
activity.

Something similar to the temporal difference learning rule could be real-
ized in a neural system if the dopamine signal representing δ acts to gate
and regulate the plasticity associated with learning. We discuss this possi-
bility further in a later section.

9.3 Static Action Choice

In classical conditioning experiments, rewards are directly associated with
stimuli. In more natural settings, rewards and punishments are associated
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9.3 Static Action Choice 11

with the actions an animal takes. Animals develop policies, or plans of policy
action, that increase reward. In studying how this might be done, we con-
sider two different cases. In static action choice, the reward or punishment
immediately follows the action taken. In sequential action choice, reward
may be delayed until several actions are completed.

As an example of static action choice, we consider bees foraging among
flowers in search of nectar. We model an experiment in which single bees
forage under controlled conditions among blue and yellow colored arti- foraging
ficial flowers (small dishes of sugar water sitting on colored cards). In
actual experiments, the bees learn within a single session (involving visits
to 40 artificial flowers) about the reward characteristics of the yellow and
blue flowers. All else being equal, they preferentially land on the color
of flower that delivers more reward. This preference is maintained over
multiple sessions. However, if the reward characteristics of the flowers
are interchanged, the bees quickly swap their preferences.

We treat a simplified version of the problem, ignoring the spatial aspects of
sampling, and assuming that a model bee is faced with repeated choices
between two different flowers. If the bee chooses the blue flower on a
trial, it receives a quantity of nectar rb drawn from a probability density
p[rb]. If it chooses the yellow flower, it receives a quantity ry, drawn from
a probability density p[ry]. The task of choosing between the flowers is a
form of stochastic two-armed bandit problem (named after slot machines), two-armed bandit
and is formally equivalent to many instrumental conditioning tasks.

The model bee has a stochastic policy, which means that it chooses blue stochastic policy
and yellow flowers with probabilities that we write as P[b] and P[y] re-
spectively. A convenient way to parameterize these probabilities is to use
the softmax distribution softmax

P[b] = exp(βmb)

exp(βmb) + exp(βmy)
P[y] = exp(βmy)

exp(βmb) + exp(βmy)
(9.11)

Here, mb and my are parameters, known as action values, that are ad- action values m
justed by one of the learning processes described below. Note that
P[b] + P[y] = 1, corresponding to the fact that the model bee invariably
makes one of the two choices. Note that P[b] = σ(β(mb − my)) where
σ(m) = 1/(1 + exp(−m)) is the standard sigmoid function, which grows
monotonically from zero to one as m varies from −∞ to ∞. P[y] is sim-
ilarly a sigmoid function of β(my − mb). The parameters mb and my de-
termine the frequency at which blue and yellow flowers are visited. Their
values must be adjusted during the learning process on the basis of the
reward provided.

The parameter β determines the variability of the bee’s actions and ex-
erts a strong influence over exploration. For large β, the probability of
an action rises rapidly to one, or falls rapidly to zero, as the difference be-
tween the action values increases or decreases. This makes the bee’s action
choice almost a deterministic function of the m variables. If β is small, the
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12 Classical Conditioning and Reinforcement Learning

softmax probability approaches one or zero more slowly, and the bee’s ac-
tions are more variable and random. Thus, β controls the balance between
exploration (small β) and exploitation (large β). The choice of whether
to explore to determine if the current policy can be improved, or to ex-
ploit the available resources on the basis of the current policy, is known
as the exploration-exploitation dilemma. Exploration is clearly critical, be-exploration-

exploitation
dilemma

cause the bee must sample from the two colors of flowers to determine
which is better, and keep sampling to make sure that the reward condi-
tions have not changed. But exploration is costly, because the bee has to
sample flower it believes to be less beneficial, to check if this is really the
case. Some algorithms adjust β over trials, but we will not consider this
possibility.

There are only two possible actions in the example we study, but the exten-
sion to multiple actions, a = 1,2, . . . , Na, is straightforward. In this case, a
vector m of parameters controls the decision process, and the probabilityaction value

vector m P[a] of choosing action a is

P[a] = exp(βma)∑Na
a′=1 exp(βma′ )

. (9.12)

We consider two simple methods of solving the bee foraging task. In the
first method, called the indirect actor, the bee learns to estimate the ex-
pected nectar volumes provided by each flower using a delta rule. It then
bases its action choice on these estimates. In the second method, called
the direct actor, the choice of actions is based directly on maximizing the
expected average reward.

The Indirect Actor

One course for the bee to follow is to learn the average nectar volumes
provided by each type of flower and base its action choice on these. This is
called an indirect actor scheme, because the policy is mediated indirectlyindirect actor
by the expected volumes. Here, this means setting the action values to

mb = 〈rb〉 and my = 〈ry〉 . (9.13)

In our discussion of classical conditioning, we saw that the Rescorla-
Wagner or delta rule develops weights that approximate the average value
of a reward, just as required for equation 9.13. Thus if the bee chooses a
blue flower on a trial and receives nectar volume rb, it should update mb
according to the prediction error by

mb → mb + εδ with δ = rb − mb , (9.14)

and leave my unchanged. If it lands on a yellow flower, my is changed to
my + εδ with δ = ry − my, and mb is unchanged. If the probability densities
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Figure 9.4: The indirect actor. Rewards were 〈rb〉 = 1, 〈ry〉 = 2 for the first 100
flower visits, and 〈rb〉 = 2, 〈ry〉 = 1 for the second 100 flower visits. Nectar was de-
livered stochastically on half the flowers of each type. A) Values of mb (solid) and
my (dashed) as a function of visits for β = 1. Because a fixed value of ε = 0.1 was
used, the weights do not converge perfectly to the corresponding average reward,
but they fluctuates around these values. B-D) Cumulative visits to blue (solid)
and yellow (dashed) flowers. B) When β = 1, learning is slow, but ultimately the
change to the optimal flower color is made reliably. C;D) When β = 50, sometimes
the bee performs well (C), and other times it performs poorly (D).

of reward p[rb] and p[ry] change slowly relative to the learning rate, mb
and my will track 〈rb〉 and 〈ry〉 respectively.

Figure 9.4 shows the performance of the indirect actor on the two-flower
foraging task. Figure 9.4A shows the course of weight change due to the
delta rule in one example run. Figures 9.4B-D indicate the quality of the
action choice by showing cumulative sums of the number of visits to blue
and yellow flowers in three different runs. For ideal performance in this
task, the dashed line should have slope 1 until trial 100 and 0 thereafter,
and the solid line would show the reverse behavior, close to what is seen
in figure 9.4C. This reflects the consistent choice of the optimal flower in
both halves of the trial. A value of β = 1 (figure 9.4B) allows for continu-
ous exploration, but at the cost of slow learning. When β = 50 (figure 9.4C
& D), the tendency to exploit sometimes leads to good performance (fig-
ure 9.4C), but other times, the associated reluctance to explore causes the
policy to perform poorly (figure 9.4D).

Figure 9.5A shows action choices of real bumble bees in a foraging exper-
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Figure 9.5: Foraging in bumble bees. A) The mean preference of five real bumble
bees for blue flowers over 30 trials involving 40 flower visits. There is a rapid
switch of flower preference following the interchange of characteristics after trial
15. Here, ε = 3/10 and β = 23/8. B) Concave subjective utility function mapping
nectar volume (in µl) to the subjective utility. The circle shows the average utility
of the variable flowers, and the star shows the utility of the constant flowers. C)
The preference of a single model bee on the same task as the bumble bees. (Data
in A from Real, 1991; B & C adapted from Montague et al., 1995.)

iment. This experiment was designed to test risk aversion in the bees, so
the blue and yellow flowers differed in the reliability rather than the quan-
tity of their nectar delivery. For the first 15 trials (each involving 40 visits
to flowers), blue flowers always provided 2 µl of nectar, whereas 1

3 of the
yellow flowers provided 6 µl, and 2

3 provided nothing (note that the mean
reward is the same for the two flower types). Between trials 15 and 16, the
delivery characteristics of the flowers were swapped. Figure 9.5A shows
the average performance of five bees on this task in terms of their percent-
age visits to the blue flowers across trials. They exhibit a strong preference
for the constant flower type and switch this preference within only a few
visits to the flowers when the contingencies change.

To apply the foraging model we have been discussing to the experiment
shown in figure 9.5A, we need to model the risk avoidance exhibited by
the bees, that is, their reluctance to choose the unreliable flower. One way
to do this is to assume that the bees base their policy on the subjective
utility function of the nectar volume shown in figure 9.5B, rather than onsubjective utility
the nectar volume itself. Because the function is concave, the mean utility
of the unreliable flowers is less than that of the reliable flowers. Figure 9.5C
shows that the choices of the model bee match quite well those of the real
bees. The model bee is less variable than the actual bees (even more than
it appears, because the curve in 9.5A is averaged over five bees), perhaps
because the model bees are not sampling from a two-dimensional array of
flowers.
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9.3 Static Action Choice 15

The Direct Actor

An alternative to basing action choice on average rewards is to choose
action values directly to maximize the average expected reward. The ex- direct actor
pected reward per trial is given in terms of the action values and average
rewards per flower by

〈r〉 = P[b]〈rb〉 + P[y]〈ry〉 . (9.15)

This can be maximized by stochastic gradient ascent. To see how this is
done, we take the derivative of 〈r〉 with respect to mb,

∂〈r〉
∂mb

= β
(
P[b]P[y]〈rb〉 − P[y]P[b]〈ry〉

)
. (9.16)

In deriving this result, we have used the fact that

∂P[b]
∂mb

= βP[b]P[y] and
∂P[y]
∂mb

= −βP[y]P[b] . (9.17)

Using the relation P[y] = 1 − P[b], we can rewrite equation 9.16 as

∂〈r〉
∂mb

= βP[b](1 − P[b])〈rb〉 − βP[y]P[b]〈ry〉 . (9.18)

Furthermore, we can include an arbitrary parameter r in both these terms,
because it cancels out. Thus,

∂〈r〉
∂mb

= βP[b](1 − P[b]) (〈rb〉 − r) − βP[y]P[b]
(〈ry〉 − r

)
. (9.19)

A similar expression applies to ∂〈r〉/∂my except that the blue and yellow
labels are interchanged.

In stochastic gradient ascent, the changes in the parameter mb are de-
termined such that, averaged over trials, they end up proportional to
∂〈r〉/∂mb. We can derive a stochastic gradient ascent rule for mb from equa-
tion 9.19 in two steps. First, we interpret the two terms on the right hand
side as changes associated with the choice of blue and yellow flowers re-
spectively. This accounts for the factors P[b] and P[y] respectively. Second,
we note that over trials in which blue is selected, rb − r averages to 〈rb〉− r,
and over trials in which yellow is selected, ry − r averages to 〈ry〉− r. Thus,
if we change mb according to

mb → mb + ε(1 − P[b])(rb − r) if b is selected

mb → mb − εP[b] (ry − r) if y is selected,

the average change in mb is proportional to ∂〈r〉/∂mb. Note that mb is
changed even when the bee chooses the yellow flower. We can summa-
rize this learning rule as

mb → mb + ε(δab − P[b])(ra − r) (9.20)
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Figure 9.6: The direct actor. The statistics of the delivery of reward are the same
as in figure 9.4, and ε = 0.1, r = 1.5, and β = 1. The evolution of the weights and
cumulative choices of flower type (with yellow dashed and blue solid) are shown
for two sample sessions, one with good performance (A & B) and one with poor
performance (C & D).

where a is the action selected (either b or y) and δab is the Kronecker delta,
δab = 1 if a = b and δab = 0 if a = y. Similarly, the rule for my is

my → my + ε(δay − P[y])(ra − r) (9.21)

The learning rule of equations 9.20 and 9.21 performs stochastic gradient
ascent on the average reward, whatever the value of r̄. Different values
of r̄ lead to different variances of the stochastic gradient terms, and thus
different speeds of learning. A natural value for r̄ is the mean reward
under the specified policy or some estimate of this quantity.

Figure 9.6 shows the consequences of using the direct actor in the stochas-
tic foraging task shown figure 9.4. Two sample sessions are shown with
widely differing levels of performance. Compared to the indirect actor,
initial learning is quite slow, and the behavior after the reward character-
istics of the flowers are interchanged can be poor. Explicit control of the
trade-off between exploration and exploitation is difficult, because the ac-
tion values can scale up to compensate for different values of β. Despite its
comparatively poor performance in this task, the direct actor is important
because it is used later as a model for how action choice can be separated
from action evaluation.
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Figure 9.7: The maze task. The rat enters the maze from the bottom and has to
move forward. Upon reaching one of the end points (the shaded boxes), it receives
the number of food pellets indicated and the trial ends. Decision points are A, B,
and C.

The direct actor learning rule can be extended to multiple actions, a =
1,2, . . . , Na, by using the multidimensional form of the softmax distribu-
tion (equation 9.12). In this case, when action a is taken, ma′ for all values
of a′ is updated according to

ma′ → ma′ + ε
(
δaa′ − P[a′]

)
(ra − r̄) . (9.22)

9.4 Sequential Action Choice

In the previous section, we considered ways that animals might learn
to choose actions on the basis of immediate information about the con-
sequences of those actions. A significant complication that arises when
reward is based on a sequence of actions is illustrated by the maze task
shown in figure 9.7. In this example, a hungry rat has to move through a
maze, starting from point A, without retracing its steps. When it reaches
one of the shaded boxes, it receives the associated number of food pellets
and is removed from the maze. The rat then starts again at A. The task
is to optimize the total reward, which in this case entails moving left at A
and right at B. It is assumed that the animal starts knowing nothing about
the structure of the maze or about the rewards.

If the rat started from point B or point C, it could learn to move right
or left (respectively) using the methods of the previous section, because
it experiences an immediate consequence of its actions in the delivery or
non-delivery of food. The difficulty arises because neither action at the
actual starting point, A, leads directly to a reward. For example, if the rat
goes left at A and also goes left at B, it has to figure out that the former
choice was good but the latter bad. This is a typical problem in tasks that
involve delayed rewards. The reward for going left at A is delayed until
after the rat also goes right at B.

There is an extensive body of theory in engineering, called dynamic
programming, as to how systems of any sort can come to select appro- dynamic

programming
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18 Classical Conditioning and Reinforcement Learning

priate actions in optimizing control problems similar to (and substantially
more complicated than) the maze task. An important method on which
we focus is called policy iteration. Our reinforcement learning version ofpolicy iteration
policy iteration maintains and improves a stochastic policy, which deter-
mines the actions at each decision point (i.e. left or right turns at A, B, or C)
through action values and the softmax distribution of equation 9.12. Policy
iteration involves two elements. One, called the critic, uses temporal dif-critic
ference learning to estimate the total future reward that is expected when
starting from A, B, or C, when the current policy is followed. The other el-
ement, called the actor, maintains and improves the policy. Adjustment ofactor
the action values at point A is based on predictions of the expected future
rewards associated with points B and C that are provided by the critic. In
effect, the rat learns the appropriate action at A using the same methods of
static action choice that allow it to learn the appropriate actions at B and
C. However, rather than using an immediate reward as the reinforcement
signal, it uses the expectations about future reward that are provided by
the critic.

The Maze Task

As we mentioned when discussing the direct actor, a stochastic policy is a
way of assigning a probability distribution over actions (in this case choos-
ing to turn either left or right) to each location (A, B, or C). The location
is specified by a variable u that takes the values A, B, or C, and a two-
component action value vector m(u) is associated with each location. The
components of the action vector m(u) control the probability of taking a
left or a right turn at u.

The immediate reward provided when action a is taken at location u is
written as ra(u). This takes the values 0, 2, or 5 depending on the values
of u and a. The predicted future reward expected at location u is given by
v(u) = w(u). This is an estimate of the total award that the rat expects to
receive, on average, if it starts at the point u and follows its current policy
through to the end of the maze. The average is taken over the stochastic
choices of actions specified by the policy. In this case, the expected reward
is simply equal to the weight. The learning procedure consists of two sep-
arate steps: policy evaluation, in which w(u) is adjusted to improve the
predictions of future reward, and policy improvement, in which m(u) is
adjusted to increase the total reward.

Policy Evaluation

In policy evaluation, the rat keeps its policy fixed (i.e. keeps all the m(u)

fixed) and uses temporal difference learning to determine the expected
total future reward starting from each location. Suppose that, initially, the
rat has no preference for turning left or right, that is, m(u) = 0 for all u, so
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Figure 9.8: Policy evaluation. The thin lines show the course of learning of the
weights w(A), w(B) and w(C) over trials through the maze in figure 9.7 using a
random unbiased policy (m(u) = 0). Here ε = 0.5, so learning is fast but noisy. The
dashed lines show the correct weight values from equation 9.23. The thick lines are
running averages of the weight values.

the probability of left and right turns is 1/2 at all locations. By inspection
of the possible places the rat can go, we find that the values of the states
are

v(B) = 1
2
(0 + 5) = 2.5 , v(C) = 1

2
(0 + 2) = 1 , and

v(A) = 1
2
(v(B) + v(C)) = 1.75 .

(9.23)

These values are the average total future rewards that will be received
during exploration of the maze when actions are chosen using the random
policy. The temporal difference learning rule of equation 9.10 can be used
to learn them. If the rat chooses action a at location u and ends up at
location u′, the temporal difference rule modifies the weight w(u) by critic learning rule

w(u) → w(u) + εδ with δ = ra(u) + v(u′) − v(u) . (9.24)

Here, a location index u substitutes for the time index t, and we only as-
sociate a single weight w(u) with each state rather than a whole temporal
kernel (this is equivalent to only using τ =0 in equation 9.10). Figure 9.8
shows the result of applying the temporal difference rule to the maze task
of figure 9.7. After a fairly short adjustment period, the weights w(u) (and
thus the predictions v(u)) fluctuate around the correct values for this pol-
icy, as given by equation 9.23. The size of the fluctuations could be reduced
by making ε smaller, but at the expense of increasing the learning time.

In our earlier description of temporal difference learning, we included
the possibility that the reward delivery might be stochastic. Here, that
stochasticity is the result of a policy that makes use of the information
provided by the critic. In the appendix, we discuss a Monte-Carlo inter-
pretation of the terms in the temporal difference learning rule that justifies
using its use.
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20 Classical Conditioning and Reinforcement Learning

Policy Improvement

In policy improvement, the expected total future rewards at the different
locations are used as surrogate immediate rewards. Suppose the rat takes
action a at location u and moves to location u′. The expected worth to
the rat of that action is the sum of the actual reward received and the re-
wards that are expected to follow, which is ra(u) + v(u′). The direct actor
scheme of equation 9.22 uses the difference ra − r̄ between a sample of the
worth of the action (ra) and a reinforcement comparison term (r̄), which
might be the average value over all the actions that can be taken. Policy
improvement uses ra(u) + v(u′) as the equivalent of the sampled worth
of the action, and v(u) as the average value across all actions that can be
taken at u. The difference between these is δ = ra(u) + v(u′) − v(u), which
is exactly the same term as in policy evaluation (equation 9.24). The policy
improvement or actor learning rule is thenactor learning rule

ma′ (u) → ma′ (u) + ε
(
δaa′ − P[a′;u]

)
δ (9.25)

for all a′, where P[a′;u] is the probability of taking action a′ at location u
given by the softmax distribution of equation 9.11 or 9.12 with action value
ma′ (u).

To look at this more concretely, consider the temporal difference error
starting from location u=A, using the true values of the locations given by
equation 9.23 (i.e. assuming that policy evaluation is perfect). Depending
on the action, δ takes the two values

δ = 0 + v(B) − v(A) = 0.75 for a left turn
δ = 0 + v(C) − v(A)= − 0.75 for a right turn.

The learning rule of equation 9.25 increases the probability that the action
with δ > 0 is taken and decreases the probability that the action with δ < 0
is taken. This increases the chance that the rat makes the correct turn (left)
at A in the maze of figure 9.7.

As the policy changes, the values, and therefore the temporal difference
terms, change as well. However, because the values of all locations can
only increase if we choose better actions at those locations, this form of
policy improvement inevitably leads to higher values and better actions.
This monotonic improvement (or at least non-worsening) of the expected
future rewards at all locations is proved formally in the dynamic program-
ming theory of policy iteration for a class of problems called Markov de-Markov decision

problems cision problems (which includes the maze task), as discussed in the ap-
pendix.

Strictly speaking, policy evaluation should be complete before a policy
is improved. It is also most straightforward to improve the policy com-
pletely before it is re-evaluated. A convenient (though not provably cor-
rect) alternative is to interleave partial policy evaluation and policy im-
provement steps. This is called the actor-critic algorithm. Figure 9.9 showsactor-critic

algorithm
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Figure 9.9: Actor-critic learning. The three curves show P[L;u] for the three start-
ing locations u = A, B, and C in the maze of figure 9.7. These rapidly converge
to their optimal values, representing left turns and A and C and a right turn at B.
Here, ε = 0.5 and β = 1.

the result of applying this algorithm to the maze task. The plots show the
development over trials of the probability of choosing to go left, P[L;u],
for all the three locations. The model rat quickly learns to go left at lo-
cation A and right at B. Learning at location C is slow because the rat
learns quickly that it is not worth going to C at all, so it rarely gets to try
the actions there. The algorithm makes an implicit choice of exploration
strategy.

Generalizations of Actor-Critic Learning

The full actor-critic model for solving sequential action tasks includes
three generalizations of the maze learner that we have presented. The first
involves additional information that may be available at the different loca-
tions. If, for example, sensory information is available at a location u, we
associate a state vector u(u) with that location. The vector u(u) parame- state vector u
terizes whatever information is available at location u that might help the
animal decide which action to take. For example, the state vector might
represent a faint scent of food that the rat might detect in the maze task.
When a state vector is available, the most straightforward generalization is
to use the linear form v(u) = w · u(u) to define the value at location u. The
learning rule for the critic (equation 9.24) is then generalized to include the
information provided by the state vector,

w → w + εδu(u) , (9.26)

with δ given given as in equation 9.24. The maze task we discussed could
be formulated in this way using what is called a unary representation, unary

representationu(A) = (1,0,0), u(B) = (0,1,0), and u(C) = (0,0,1).

We must also modify the actor learning rule to make use of the information
provided by the state vector. This is done by generalizing the action value
vector m to a matrix M, called an action matrix. M has as many columns action matrix M
as there are components of u and as many rows as there are actions. Given
input u, action a is chosen at location u with the softmax probability of
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22 Classical Conditioning and Reinforcement Learning

equation 9.12, but using component a of the action value vector

m = M · u(u) or ma =
∑

b

Mabub(u) . (9.27)

In this case, the learning rule 9.25 must be generalized to specify how to
change elements of the action matrix when action a is chosen at location
u with state vector u(u), leading to location u′. A rule similar to equa-
tion 9.25 is appropriate, except that the change in M depends on the state
vector u,three-term

covariance rule
Ma′b → Ma′b + ε

(
δaa′ − P[a′;u]

)
δub(u) (9.28)

for all a′, with δ given again as in equation 9.24. This is called a three-term
covariance learning rule.

We can speculate about the biophysical significance of the three-term co-
variance rule by interpreting δaa′ as the output of cell a′ when action a is
chosen (which has mean value is P[a′;u]) and interpreting u as the input
to that cell. Compared with the Hebbian covariance rules studied in chap-
ter 8, learning is gated by a third term, the reinforcement signal δ. It has
been suggested that the dorsal striatum, which is part of the basal ganglia,dorsal striatum

basal ganglia is involved in the selection and sequencing of actions. Terminals of axons
projecting from the substantia nigra pars compacta release dopamine onto
synapses within the striatum, suggesting that they might play such a gat-
ing role. The activity of these dopamine neurons is similar to that of the
VTA neurons discussed previously as a possible substrate for δ.

The second generalization is to the case that rewards and punishments re-
ceived soon after an action are more important than rewards and punish-
ments received later. One natural way to accommodate this is a technique
called exponential discounting. In computing the expected future reward,discounting
this amounts to multiplying a reward that will be received τ time steps
after a given action by a factor γτ , where 0≤γ≤1 is the discounting factor.
The smaller γ, the stronger the effect, i.e. the less important are tempo-
rally distant rewards. Discounting has a major influence on the optimal
behavior in problems for which there are many steps to a goal. Expo-
nential discounting can be accommodated within the temporal difference
framework by changing the prediction error δ to

δ = ra(u) + γv(u′) − v(u) , (9.29)

which is then used in the learning rules of equations 9.26 and 9.28.

In computing the amount to change a weight or action value, we defined
the worth of an action as the sum of the immediate reward delivered and
the estimate of the future reward arising from the next state. A final gen-
eralization of actor-critic learning comes from basing the learning rules on
the sum of the next two immediate rewards delivered and the estimate of
the future reward from the next state but one, or the next three immediate
rewards and the estimate from the next state but two, and so on. As in
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discounting, we can use a factor λ to weight how strongly the expected
future rewards from temporally distant points in the trial affect learning.
Suppose that u(t) = u(u(t)) is the state vector used at time step t of a
trial. Such generalized temporal difference learning can be achieved by
computing new state vectors, defined by the recursive relation

ũ(t) = ũ(t−1) + (1 − λ)(u(t) − ũ(t−1)) (9.30)

and using them instead of the original state vectors u in equations 9.26 and
9.28. The resulting learning rule is called the TD(λ) rule. Use of this rule TD(λ) rule
with an appropriate value of λ can significantly speed up learning.

Learning the Water Maze

As an example of generalized reinforcement learning, we consider the wa-
ter maze task. This is a navigation problem in which rats are placed in a
large pool of milky water and have to swim around until they find a small
platform that is submerged slightly below the surface of the water. The
opaqueness of the water prevents them from seeing the platform directly,
and their natural aversion to water (although they are competent swim-
mers) motivates them to find the platform. After several trials, the rats
learn the location of the platform and swim directly to it when placed in
the water.

Figure 9.10A shows the structure of the model, with the state vector u
providing input to the critic and a collection of 8 possible actions for the
actor, which are expressed as compass directions. The components of u
represent the activity of hippocampal place cells (which are discussed in
chapter 1). Figure 9.10B shows the activation of one of the input units as
a function of spatial position in the pool. The activity, like that of a place
cell, is spatially restricted.

During training, each trial consists of starting the model rat from a ran-
dom location at the outside of the maze and letting it run until it finds
the platform indicated by a small circle in the lower part of figure 9.10C.
At that point a reward of 1 is provided. The reward is discounted with
γ = 0.9975 to model the incentive for the rat to find the goal as quickly
as possible. Figure 9.10C indicates the course of learning (trials 1, 5 and
20) of the expected future reward as a function of location (upper figures)
and the policy (lower figures with arrows). The lower figures also show
sample paths taken by the rat (lower figures with wiggly lines). The final
value function (at trial 20) is rather inaccurate, but, nevertheless, the pol-
icy learned is broadly correct, and the paths to the platform are quite short
and direct.

Judged by measures such as path length, initial learning proceeds in the
model in a manner comparable to that of actual rats. Figure 9.11A shows
the average performance of 12 real rats in running the water maze on four
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Figure 9.10: Reinforcement learning model of a rat solving a simple water maze
task in a 2 m diameter circular pool. A) There are 493 place cell inputs and 8 actions.
The rat moves at 0.3 m/s and reflects off the walls of the maze if it hits them. B)
Gaussian place field for a single input cell with width σ = 0.16 m. The centers
of the place fields for different cells are uniformly distributed across the pool. C)
Upper: The development of the value function v as a function of the location in the
pool over the first 20 trials, starting from v=0 everywhere . Lower arrow plots: The
action with the highest probability for each location in the maze. Lower path plots:
Actual paths taken by the model rat from random starting points to the platform,
indicated by a small circle. A slight modification of the actor learning rule was
used to enforce generalization between spatially similar actions. (Adapted from
Foster et al., 2000.)

trials per day to a platform at a fixed location, starting from randomly
chosen initial locations. The performance of the rats rapidly improves
and levels off by about the sixth day. When the platform is moved on the
eighth day, in what is called reversal training, the initial latency is long, be-
cause the rats search near the old platform position. However, they rapidly
learn the new location. Figure 9.11B shows the performance of the model
on the same task (though judged by path lengths rather than latencies).
Initial learning is equally quick, with near perfect paths by the sixth day.
However, performance during reversal training is poor, because the model
has trouble forgetting the previous location of the platform. The rats are
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Figure 9.11: Comparison of rats and the model in the water maze task. A) Average
latencies of 12 rats in getting to a fixed platform in the water maze, using four trials
per day. On the 8th day, the platform was moved to a new location, which is called
reversal. B) Average path length from 1000 simulations of the model performing
the same task. Initial learning matches that of the rats, but performance is worse
following reversal. (Adapted from from Foster et al., 2000.)

clearly better at handling this transition. Nevertheless the model shows
something of the power of a primitive, but general, learning method.

9.5 Chapter Summary

We discussed reinforcement learning models for classical and instrumen-
tal conditioning, interpreting the former in terms of learning predictions
about total future rewards and the latter in terms of optimization of those
rewards. We introduced the Rescorla-Wagner or delta learning rule for
classical conditioning, together with its temporal difference extension, and
indirect and direct actor rules for instrumental conditioning given imme-
diate rewards. Finally, we presented the actor-critic version of the dynamic
programming technique of policy iteration, evaluating policies using tem-
poral difference learning and improving them using the direct actor learn-
ing rule, based on surrogate immediate rewards from the evaluation step.
In the appendix, we show more precisely how temporal difference learn-
ing can be seen as a Monte-Carlo technique for performing policy iteration.

Appendix

Markov Decision Problems

Markov decision problems offer a simple formalism for describing tasks
such as the maze. A Markov decision problem is comprised of states, ac-
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tions, transitions, and rewards. The states, labeled by u, are what we called
locations in the maze task, and the actions, labeled by a, are the analogs of
the choices of directions to run. In the maze, each action taken at state
u led uniquely and deterministically to a new state u′. Markov decision
problems generalize this to include the possibility that the transitions from
u due to action a may be stochastic, leading to state u′ with a transition
probability P[u′|u; a].

∑
u′ P[u′|u; a] = 1 for all u and a, because the animal

has to end up somewhere. There can be absorbing states (like the shaded
boxes in figure 9.7), which are u for which P[u|u; a] = 1 for all actions a, i.e.absorbing state
there is no escape for the animal from these locations. Finally, the rewards
r can depend both on the state u and the action executed a, and they might
be stochastic. We write 〈ra(u)〉 for the mean reward in this case. For con-
venience, we only consider Markov chains that are finite (finite numbers
of actions and states), absorbing, (the animal always ends up in one of the
absorbing states), and in which the rewards are bounded. We also require
that 〈ra(u)〉=0 for all actions a at all absorbing states. The crucial Markov
property is that, given the state at the current time step, the distributionMarkov property
over future states and rewards is independent of the past states.

The Bellman Equation

The task for a system or animal facing a Markov decision problem, starting
in state u at time 0, is to choose a policy, denoted by M, that maximizes the
expected total future reward

v∗(u) = max
M

〈 ∞∑
t=0

ra(t)(u(t))

〉
u,M

(9.31)

where u(0) = u, actions a(t) are determined (either deterministically or
stochastically) on the basis of the state u(t) according to policy M, and
the notation 〈〉u,M implies taking an expectation over the actions and the
states to which they lead, starting at state u and using policy M.

The trouble with the sum in equation 9.31 is that the action a(0) at time
0 affects not only 〈ra(0)(u(0))〉, but, by influencing the state of the sys-
tem, also the subsequent rewards. It would seem that the animal would
have to consider optimizing whole sequences of actions, the number of
which grows exponentially with time. Bellman’s (1957) insight was that
the Markov property effectively solves this problem. He rewrote equa-
tion 9.31 to separate the first and subsequent terms, and used a recursive
principle for the latter. The Bellman equation is

v∗(u) = max
a

{
〈ra(u)〉 +

∑
u′

P[u′|u; a]v∗(u′)

}
(9.32)

This says that maximizing reward at u requires choosing the action a that
maximizes the sum of the mean immediate reward 〈ra(u)〉 and the average
of the largest possible values of all the states u′ to which a can lead the
system, weighted by their probabilities.
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Policy Iteration

The actor-critic algorithm is a form of a dynamic programming technique
called policy iteration. Policy iteration involves interleaved steps of policy
evaluation (the role of the critic) and policy improvement (the role of the
actor). Evaluation of policy M requires working out the values for all states
u. We call these values vM(u), to reflect explicitly their dependence on the
policy. Each values is analogous to the quantity in 9.5. Using the same
argument that led to the Bellman equation, we can derive the recursive
formula

vM(u) =
∑

a

PM[a;u]

{
〈ra(u)〉 +

∑
u′

P[u′|u; a]vM(u′)

}
(9.33)

Equation 9.33 for all states u is a set of linear equations, that can be
solved by matrix inversion. Reinforcement learning can be interpreted as
a stochastic Monte-Carlo method for performing this operation (Barto and
Duff, 1994).

Temporal difference learning uses an approximate Monte-Carlo method to Monte-Carlo
methodevaluate the right side of equation 9.33, and uses the difference between

this approximation and the estimate of vM(u) as the prediction error. The
first idea underlying the method is that ra(u) + vM(u′) is a sample whose
mean is exactly the right side of equation 9.33. The second idea is boot-
strapping, using the current estimate v(u′) in place of vM(u′) in this sam-
ple. Thus ra(u) + v(u′) is used as a sampled approximation to vM(u), and

δ(t) = ra(u) + v(u′) − v(u) (9.34)

is used as a sampled approximation to the discrepancy vM(u) − v(u)

which is an appropriate error measure for training v(u) to equal vM(u).
Evaluating and improving policies from such samples without learning
P[u′|u; a] and 〈ra(u)〉 directly is called an asynchronous, model-free, ap-
proach to policy evaluation. It is possible to guarantee the convergence of
the estimate v to its true value vM under a set of conditions discussed in
the texts mentioned in the annotated bibliography.

The other half of policy iteration is policy improvement. This normally
works by finding an action a∗ that maximizes the expression in the curly
brackets in equation 9.33 and making the new PM[a∗;u]=1. One can show
that the new policy will be uniformly better than the old policy, making the
expected long-term reward at every state no smaller than the old policy,
or equally large, if it is already optimal. Further, because the number of
different policies is finite, policy iteration is bound to converge.

Performing policy improvement like this requires knowledge of the tran-
sition probabilities and mean rewards. Reinforcement learning again
uses an asynchronous, model-free approach to policy improvement, us-
ing Monte-Carlo samples. First, note that any policy M′ that improves the
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28 Classical Conditioning and Reinforcement Learning

average value

∑
a

PM′[u; a]

{
〈ra(u)〉 +

∑
u′

P[u′|u; a]vM(u′)

}
. (9.35)

for every state u is guaranteed to be a better policy. The idea for a single
state u is to treat equation 9.35 rather like equation 9.15, except replacing
the average immediate reward 〈ra〉 there by an effective average immedi-
ate reward 〈ra(u)〉 + ∑

u′ P[u′|u; a]vM(u′) to take long term as well as cur-
rent reward into account. By the same reasoning as above, ra(u) + v(u′)
is used as an approximate Monte-Carlo sample of the effective immediate
reward, and v(u) as the equivalent of the reinforcement comparison term
r̄. This leads directly to the actor learning rule of equation 9.25.

Note that there is an interaction between the stochasticity in the rein-
forcement learning versions of policy evaluation and policy improvement.
This means that it is not known whether the two together are guaranteed
to converge. One could perform temporal difference policy evaluation
(which can be proven to converge) until convergence before attempting
policy improvement, and this would be sure to work.

9.6 Annotated Bibliography

Dickinson (1980); Mackintosh (1983); Shanks (1995) review animal and
human conditioning behavior, including alternatives to Rescorla & Wag-
ner’s (1972) rule. Gallistel (1990); Gallistel & Gibbon (2000) discuss as-
pects of conditioning, in particular to do with timing, that we have omit-
ted.

Our description of the temporal difference model of classical condition-
ing in this chapter is based on Sutton (1988); Sutton & Barto (1990). The
treatment of static action choice comes from Narendra & Thatachar (1989)
and Williams (1992), and of action choice in the face of delayed rewards
and the link to dynamic programming from Barto, Sutton & Anderson
(1983); Watkins (1989); Barto, Sutton & Watkins (1989); Bertsekas & Tsit-
siklis (1996); Sutton & Barto (1998). Bertsekas & Tsitsiklis (1996); Sutton
& Barto (1998) describe some of the substantial theory of temporal dif-
ference learning that has been developed. Dynamic programming as a
computational tool of ethology is elucidated by Mangel & Clark (1988).

Schultz (1998) reviews the data on the activity of primate dopamine cells
during appetitive conditioning tasks, together with the psychological and
pharmacological rationale for studying these cells. The link with temporal
difference learning was made by Montague, Dayan & Sejnowski (1996);
Friston et al. (1994); Houk et al. (1995). Houk et al. (1995) review the
basal ganglia from a variety of perspectives. Wickens (1993) provides a
theoretically motivated treatment. The model of Montague et al. (1995)
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for Real’s (1991) experiments in bumble bee foraging was based on Ham-
mer’s (1993) description of an octopaminergic neuron in honey bees that
appears to play, for olfactory conditioning, a somewhat similar role to the
primate dopaminergic cells.

The kernel representation of the weight between a stimulus and reward
can be seen as a form of a serial compound stimulus (Kehoe, 1977) or a
spectral timing model (Grossberg & Schmajuk, 1989). Grossberg and col-
leagues (see Grossberg, 1982, 1987 & 1988) have developed a sophisticated
mathematical model of conditioning, including aspects of opponent pro-
cessing (Konorksi, 1967; Solomon & Corbit, 1974), which puts prediction
of the absence of reward (or the presence of punishment) on a more equal
footing with prediction of the presence of reward, and develops aspects
of how animals pay differing amounts of attention to stimuli. There are
many other biologically inspired models of conditioning, particularly of
the cerebellum (e.g. Gluck et al., 1990; Gabriel & Moore, 1990; Raymond
et al., 1996; Mauk & Donegan, 1997).
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Chapter 10

Representational Learning

10.1 Introduction

The response selectivities of individual neurons, and the way they are dis-
tributed across neuronal populations, define how sensory information is
represented by neural activity in a particular brain region. Sensory in-
formation is typically represented in multiple regions, the visual system
being a prime example, with the nature of the representation shifting pro-
gressively along the sensory pathway. In previous chapters, we discuss
how such representations can be generated by neural circuitry and devel-
oped by activity-dependent plasticity. In this chapter, we study neural
representations from a computational perspective, asking what goals are
served by particular representations and how appropriate representations
might be developed on the basis of input statistics.

Constructing new representations of, or re-representing, sensory input is re-representation
important because sensory receptors often deliver information in a form
that is unsuitable for higher level cognitive tasks. For example, roughly
108 photoreceptors provide a pixelated description of the images that ap-
pear on our retinas. A list of the membrane potentials of each of these
photoreceptors is a bulky and awkward representation of the visual world
from which it is difficult to identify directly the underlying causes of vi-
sual images, such as the objects and people we typically see. Instead, the
information provided by photoreceptor outputs is processed in a series of
stages involving increasingly sophisticated representations of the visual
world. In this chapter, we consider how to specify and learn these more
complex and useful representations.

The key to constructing useful representations lies in determining the
structure of visual images and the constraints imposed on them by the
natural world. Images have causes, such as objects with given locations,
orientations, and scales, illuminated by particular lighting schemes, and
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2 Representational Learning

observed from particular viewing locations and directions. Because of this,
the set of possible pixelated activities arising from natural scenes is richly
structured. Sophisticated representations of images arise from ways of
characterizing this structure.

In this chapter, we discuss one approach to identifying the structure in
natural stimuli and using it as a basis for constructing useful and efficient
representations. The basic goal in the models we discuss is to determine
the causes that give rise to stimuli. These are assumed to be the sources of
structure in the sensory input data. Causal representations are appropriate
because inferences, decisions, and actions are typically based on underly-
ing causes. In more abstract terms, causes are the natural coordinates for
describing complex stimuli such as images. To account for the inevitable
variability that arises when considering natural stimuli, many of the mod-
els we discuss are probabilistic, specifying the probabilities that various
causes underlie particular stimuli.

Causal Models

Figure 10.1A provides a simple example of structured data that suggests
underlying causes. In this case, each input is characterized by a two com-
ponent vector u = (u1, u2). A collection of sample inputs that we wish toinput vector u
represent in terms of underlying causes is indicated by the 40 crosses in
figure 10.1A. These inputs are drawn from a probability density p[u] that
we call the input distribution. Clearly, there are two clusters of points ininput distribution

p[u] figure 10.1A, one centered near (0,1) and the other near (1,0). Many pro-
cesses can generate such clustered data. For example, u1 and u2 might
represent two characterizations of the voltage recorded on an extracellu-
lar electrode in response to an action potential. Interpreted in this way,
these data suggest that we are looking at spikes produced by two neurons
(called A and B), which are the underlying causes of the two clusters seen
in figure 10.1A. A more compact and causal description of the data can
be provided by a single output variable v that takes the value A or B forcause v

each data point, representing which of the two neurons was responsible
for this input. The variable v, which we associate with a cause, is some-
times called a hidden or latent variable because, although it underlies u,hidden or latent

variable its value cannot necessarily be determined unambiguously from u. For
example, it may be impossible to determine definitively the value of v for
an input u near the boundary between the two clusters in figure 10.1A.

The ultimate goal of a causal model is recognition, in which the model tellsrecognition
us something about the causes underlying a particular input. Recognition
can be either deterministic or probabilistic. In a causal model of the data
in figure 10.1A with deterministic recognition, the output v(u) = A or B isdeterministic

recognition the model’s estimate of which neuron produced the spike associated with
input u. In probabilistic recognition, the model estimates the probabilityprobabilistic

recognition that the spike with input data u was generated by either neuron A or neu-
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Figure 10.1: Clustering. A) Input data points drawn from the distribution p[u] are
indicated by the crosses. B) Initialization for a generative model. The means and
twice the standard deviations of the two Gaussians are indicated by the locations
and radii of the circles. The crosses show synthetic data, which are samples from
the distribution p[u;G ] of the generative model. C) Means, standard deviations,
and synthetic data points generated by the optimal generative model. The square
indicates a new input point that can be assigned to cluster A or B with probabilities
computed from the recognition model.

ron B. In either case, the output v is taken as the model’s re-representation
of the input.

We consider models that infer causes in an unsupervised manner. In
the example of figure 10.1A, this means that no indication is given about
which neuron fired which action potential. The only information available
is the statistical structure of the input data that is apparent in the figure. In
the absence of supervisory information or even reinforcement, causes are
judged by their ability to explain and reproduce, statistically, the inputs
they are designed to represent. This is achieved by constructing a gener-
ative model that can be used to create synthetic input data from assumed generative model
causes. The generative model has a number of parameters that we col-
lectively represent by G , and an overall structure or form that determines parameters G
how these parameters specify a distribution over the inputs. The param-
eters are adjusted until the distributions of synthetic and real inputs are
as similar as possible. If the final statistical match is good, the causes are
judged trustworthy, and the model can be used as a basis for recognition.

Generative Models

To illustrate the concept of a generative model, we construct one for the
data in figure 10.1A. We begin by specifying the proportions (also known
as mixing proportions) of action potentials that come from the two neu- mixing proportions
rons. These are written as P[v;G ] with v=A or B. P[v;G ], which is called
the prior distribution over causes, is the probability that a given spike is prior P[v;G ]
generated by neuron v in the absence of any knowledge about the input u
associated with that spike. This might reflect the fact that one of the neu-
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4 Representational Learning

rons has a higher firing rate than the other, for example. The two prior
probabilities represent two of the model parameters contained in the list
G , P[v;G ] = γv for v = A and B. These parameters are not independent
because they must sum to one. We start by assigning them random values
consistent with this constraint.

To continue the construction of the generative model, we need to assume
something about the distribution of u values arising from the action poten-
tials generated by each neuron. An examination of figure 10.1A suggests
that Gaussian distributions (with the same variance in both dimensions)
might be appropriate. We write the probability density of u values given
that neuron v fired as p[u|v;G ], and set it equal to a Gaussian distribu-generative

distribution
p[u|v;G ]

tion with a mean and variance that, initially, we guess. The parameter
list G now contains the prior probabilities for neurons A and B to fire,
γv, and the means and variances of the Gaussian distributions over u for
v = A and B, which we label gv and �v respectively. Note that we use
�v for the variance of cluster v, not its standard deviation, and also that
each cluster is characterized by a single variance because we only consider
circularly symmetric Gaussian distributions.

Figure 10.1B shows synthetic data points (crosses) generated by this
model. To create each point, we set v=A with probability P[v=A;G ] (or
otherwise set v=B) and then generated a point u randomly from the distri-
bution p[u|v;G ]. This generative model clearly has the capacity to create
a data distribution with two clusters similar to the one in figure 10.1A.
However, the values of the parameters G used in figure 10.1B are obvi-
ously inappropriate. They must be adjusted by a learning procedure that
matches, as accurately as possible, the distribution of synthetic data points
in figure 10.1B to the actual input distribution in figure 10.1A. We describe
how this is done in a following section. After optimization, as seen in fig-
ure 10.1C, synthetic data points generated by the model (crosses) overlap
well with the actual data points seen in figure 10.1A.

In summary, generative models are defined by a prior probability distri-
bution over causes, P[v;G ], and a generative distribution for inputs given
each particular cause, p[u|v;G ], which collectively depend on a list of pa-
rameters G . Sometimes, we consider inputs that are discrete, in which
case, following our convention for writing probabilities and probability
densities, the probability distribution for the inputs is written as P[u] and
the generative distribution as P[u|v;G ]. Alternatively, the causal vari-
ables can be continuous, and the generative model then has the prior
probability density p[v;G ]. Sometimes, the relationship between causes
and synthetic inputs in the generative model is deterministic rather than
being stochastic. This corresponds to setting p[u|v;G ] to a δ function,
p[u|v;G ] = δ(u − f(v;G )), where f is a vector of functions. Causes are
sometimes described by a vector v instead of a single variable v. A general
problem that arises in the example of figure 10.1 is determining the num-
ber of possible causes, i.e. the number of clusters. Probabilistic methods
can be used to make statistical inferences about the number of clusters in
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10.1 Introduction 5

the data, but they lie beyond the scope of this text.

The distribution of synthetic data points in figures 10.1B and 10.1C is de-
scribed by the density p[u;G ] that the generative model synthesizes an in-
put with the value u. This density can be computed from the prior P[v;G ]
and the conditional density p[u|v;G ] that define the generative model, marginal

distribution
p[u;G ]p[u;G ] =

∑
v

P[v;G ]p[u|v;G ] . (10.1)

The process of summing over all causes is called marginalization, and
p[u;G ] is called the marginal distribution over u. As in chapter 8, we
use the additional argument G to distinguish the distribution of synthetic
inputs produced by the generative model, p[u;G ], from the distribution of
actual inputs, p[u]. The process of adjusting the parameters G to make the
distributions of synthetic and real input data points match, corresponds to
making the marginal distribution p[u;G ] approximate, as closely as pos-
sible, the distribution p[u] from which the input data points are drawn.
Before we discuss the procedures used to adjusting the parameters of the
generative model to their optimal values, we describe how a model of
recognition can be constructed on the basis of the generative description.

Recognition Models

Once the optimal generative model has been constructed, the culmination
of representational learning is recognition, in which new input data are
interpreted in terms of the causes established during training. In prob-
abilistic recognition models, this amounts to determining the probability
that cause v is associated with input u.

In the model of figure 10.1, and in many of the models discussed in this
chapter, recognition falls directly out of the generative model. The proba-
bility of cause v given input u is P[v|u;G ], which is the statistical inverse
of the distribution p[u|v;G ] that defines the generative model. P[v|u;G ]
is called the posterior distribution over causes or the recognition distribu-
tion. Using Bayes theorem, it can be expressed in terms of the distributions
that define the generative model as recognition

distribution
P[v|u;G ]P[v|u;G ] = p[u|v;G ]P[v;G ]

p[u;G ]
. (10.2)

In the example of figure 10.1, equation 10.2 can be used to determine that
the point indicated by the filled square in figure 10.1C has probability
P[v=A|u;G ] = 0.8 of being associated with neuron A and P[v=B|u;G ] =
0.2 of being associated with neuron B.

Although equation 10.2 provides a direct solution of the recognition prob- invertible and
non-invertible

models
lem, it is sometimes impractically difficult to compute the right side of
this equation. We call models in which the recognition distribution can be
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6 Representational Learning

computed from equation 10.2, invertible, and those in which it cannot be
computed tractably, non-invertible. In the latter case, recognition is based
on an approximate recognition distribution. That is, recognition is basedapproximate

recognition
distribution
Q[v;u,W ]

on a function Q[v;u,W ], expressed in terms of a set of parameters collec-
tively labeled W , that provides an approximation to the exact recognition
distribution P[v|u;G ]. Like generative models, approximate recognition
models can have different structures and parameters. In many cases, as
we discuss in the next section, the best approximation of the recognition
distribution comes from adjusting W through an optimization procedure.
Once this is done, Q[v;u,W ] provides the model’s estimate of the prob-
ability that input u is associated with cause v, performing the same role
that P[v|u;G ] does for invertible models.

The choice of a particular structure for a generative model reflects our no-
tions and prejudices, collectively referred to as heuristics, about the prop-
erties of the causes that underlie a set of input data. Usually, the heuristics
consist of biases toward certain types of representations, which are im-
posed through the choice of the prior distribution p[v;G ]. For example,
we may want the identified causes to be mutually independent (whichfactorial coding
leads to a factorial code) or sparse, or of lower dimension than the inputsparse coding
data. Many heuristics can be formalized using the information theoretic

dimensionality
reduction

ideas we discuss in chapter 4.

Once a causal model has been constructed, it is possible to check whether
the biases imposed by the prior distribution of the generative model have
actually been realized. This is done by examining the distribution of
causes produced by the recognition model in response to actual data. This
distribution should match the prior distribution over the causes, and thus
share its desired properties, such as mutual independence. If the prior dis-
tribution of the generative model does not match the actual distribution of
causes produced by the recognition model, this is an indication that the
desired heuristic does not apply accurately to the input data.

Expectation Maximization

There are various ways to adjust the parameters of a generative model to
optimize the match between the synthetic data it generates and the actual
input data. In this chapter (except for one case), we use a generalization
of an approach called expectation maximization or EM. The general the-EM
ory of EM is discussed in detail in the next section but, as an introduction
to the method, we apply it here to the example of figure 10.1. Recall that
the problem of optimizing the generative model in this case involves ad-
justing the mixing proportions, means, and variances of the two Gaussian
distributions until the clusters of synthetic data points in figure 10.1B and
C match the clusters of actual data points in figure 10.1A.

The parameters gv and �v for v=A and B of the Gaussian distributions
of the generative model should equal the means and variances of the data
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10.1 Introduction 7

points associated with each cluster in figure 10.1A. If we knew which clus-
ter each input point belonged to, it would be a simple matter to compute
these means and variances and construct the optimal generative model.
Similarly, we could set γv, the prior probability of a given spike being a
member of cluster v, equal to the fraction of data points assigned to that
cluster. Of course, we do know the cluster assignments of the input points;
that would amount to knowing the answer to the recognition problem.
However, we can make an informed guess about which point belongs to
which cluster on the basis of equation 10.2. In other words, the recog-
nition distribution P[v|u;G ] of equation 10.2 provides us with our best
current guess about the cluster assignment, and this can be used in place
of the actual knowledge about which neuron produces which spike. The
recognition distribution P[v|u;G ] is thus used to assign the data point u
to cluster v in a probabilistic manner.

In EM algorithm, the mean and variance of the Gaussian distribution cor-
responding to cause v are set equal to a weighted mean and variance of all
the data points, with the weight for point u equal to the current estimate
P[v|u;G ] of the probability that it belongs to cluster v. In this context, the
recognition probability P[v|u;G ] is also called the responsibility of v for u. responsibility
A similar argument is applied to the mixing proportions, resulting in the
equations

γv = 〈P[v|u;G ]〉 , gv = 〈P[v|u;G ]u〉
γv

, �v = 〈P[v|u;G ]|u − gv|2〉
2γv

.

(10.3)

The angle brackets indicate averages over all the input data points. The
factors of γv dividing the last two expressions correct for the fact that the
number of points in cluster v is only expected to be γv times the total num-
ber of input data points, whereas the full averages denoted by the brackets
involve dividing by the total number of data points.

The full EM algorithm consists of two phases that are applied in alterna-
tion. In the E (or expectation) phase, the responsibilities P[v|u;G ] are cal- E phase
culated from equation 10.2. In the M (or maximization) phase, the genera- M phase
tive parameters G are modified according to equation 10.3. The process of
determining the responsibilities and then averaging according to them re-
peats because the responsibilities change when G is modified. Figure 10.2
shows intermediate results at three different times during the running of
the EM procedure starting from the generative model in figure 10.1B and
resulting in the fit shown in figure 10.1C.

The EM procedure for optimizing the generative model in the example
of figure 10.1 makes intuitive sense, but it is not obvious that it will con-
verge to an optimal model. Indeed, the process appears circular because
the generative model defines the responsibilities used to construct itself.
However, there are rigorous theoretical arguments justifying its use, which
we discuss in the following section. These provide a framework for per-
forming unsupervised learning in a wide class of models.
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Figure 10.2: EM for clustering. Three iterations over the course of EM learning
of a generative model. The circles show the Gaussian distributions for clusters A
and B (labeled with the largest ‘A’ and ‘B’) as in figure 10.1B & C. The ‘trails’ be-
hind the centers of the circles plot the change in the mean since the last iteration.
The data from figure 10.1A are plotted using the small labels. Label ‘A’ is used
if P[v=A|u;G ] > 0.5 (and otherwise label ‘B’), with the font size proportional to
|P[v=A|u;G ] − 0.5|. This makes the fonts small in regions where the two distri-
butions overlap, even inside one of the circles. The assignment of labels for the
two Gaussians (i.e. which is ‘A’ and which ‘B’) is arbitrary, depending on initial
conditions.

10.2 Density Estimation

The process of matching the distribution p[u;G ] produced by the gen-
erative model to the actual input distribution p[u] is a form of density
estimation. This technique is discussed in chapter 8 in connection with thedensity estimation
Boltzmann machine. As mentioned in the introduction, the parameters G
of the generative model are fit to the training data by minimizing the dis-
crepancy between the probability density of the input data p[u] and the
marginal probability density of equation 10.1. This discrepancy is mea-
sured using the Kullback-Leibler divergence (chapter 4)

DKL(p[u], p[u;G ]) =
∫

du p[u] ln
p[u]

p[u;G ]

≈ − 〈
ln p[u;G ]

〉 + K (10.4)

where K is a term proportional to the entropy of the distribution p[u] that
is independent of G . In the second line, we have approximated the integral
over all u values weighted by p[u] by the average over input data points
generated from the distribution p[u]. We assume there are sufficient input
data to justify this approximation.

Equation 10.4 and the following discussion are similar to our treatment of
learning in the Boltzmann machine discussed in chapter 8. As in that case,
equation 10.4 implies that minimizing the discrepancy between p[u] and
p[u;G ] amounts to maximizing the log likelihood that the training data
could have been created by the generative model,log likelihood L(G )
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10.2 Density Estimation 9

L(G ) = 〈
ln p[u;G ]

〉
. (10.5)

Here L(G ) is the average log likelihood, and the method is known as max- maximum
likelihood density

estimation
imum likelihood density estimation. A theorem due to Shannon describes
circumstances under which the generative model that maximizes the like-
lihood over input data also provides the most efficient way of coding those
data, so density estimation is closely related to optimal coding.

Theory of EM

Although stochastic gradient ascent can be used to adjust the parameters
of the generative model to maximize the likelihood in equation 10.5 (as
it was for the Boltzmann machine), the EM algorithm discussed in the
introduction is an alternative procedure that is often more efficient. We
already applied this algorithm, on intuitive grounds, to the example of
figure 10.1, but we now present a more general and rigorous discussion.
This is based on the connection of EM with maximization of the function F (Q ,G )

F (Q,G ) =
〈∑

v

Q[v;u] ln
p[v,u;G ]
Q[v;u]

〉
(10.6)

where joint distribution
p[v,u;G ]

p[v,u;G ] = p[u|v;G ]P[v;G ] = P[v|u;G ]p[u;G ] (10.7)

is the joint probability distribution over both causes and inputs specified
by the model. In equation 10.6, Q[v;u] is any non-negative function of the
discrete argument v and continuous input u that satisfies∑

v

Q[v;u] = 1 (10.8)

for all u. Although, in principle, Q[v;u] can be any function, we consider
it to be an approximate recognition distribution. For some non-invertible
models, we express Q in terms of a set of parameters W and write it as
Q[v;u,W ].

F is a useful quantity because, by a rearrangement of terms, it can be
written as the difference of the average log likelihood and the average
Kullback-Leibler divergence between Q[v;u] and p[v|u;G ]. This is done
by substituting the second equality of equation 10.7 into equation 10.6 and
using 10.8 and the definition of the Kullback-Leibler divergence to obtain

F (Q,G ) =
〈∑

v

Q[v;u]
(

ln p[u;G ] + ln
P[v|u;G ]
Q[v;u]

)〉

= 〈
ln p[u;G ]

〉 −
〈∑

v

Q[v;u]
(

ln
Q[v;u]

P[v|u;G ]

)〉

= L(G ) − 〈
DKL(Q[v;u], P[v|u;G ])

〉
. (10.9)
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10 Representational Learning

Because the Kullback-Leibler divergence is never negative,

L(G ) ≥ F (Q,G ) , (10.10)

and because DKL = 0 only if the two distributions being compared are
identical, this inequality is saturated, becoming an equality, only if

Q[v;u] = P[v|u;G ] . (10.11)

The negative of F is related to an important quantity in statistical physics
called the free energy.free energy −F

Expressions 10.9, 10.10, and 10.11 are critical to the operation of EM. The
two phases of EM are concerned with separately maximizing (or at least
increasing) F with respect to its two arguments. When F increases, this
increases a lower bound on the log likelihood of the input data (equation
10.10). In the M phase, F is increased with respect to G , keeping Q con-
stant. For the generative model of figure 10.1, it is possible to maximize
F with respect to G in a single step, through equation 10.3. For other
generative models, this may require multiple steps that perform gradient
ascent on F . In the E phase, F is increased with respect to Q, keeping G
constant. From equation 10.9, we see that increasing F by changing Q is
equivalent to reducing the average Kullback-Leibler divergence between
Q[v;u] and P[v|u;G ]. The E phase can proceed in at least three possible
ways, depending on the nature of the generative model being considered.
We discuss these separately.

Invertible Models

If the causal model being considered is invertible, the E step of EM sim-
ply consists of solving equation 10.2 for the recognition distribution, and
setting Q equal to the resulting P[v|u;G ] as in equation 10.11. This max-
imizes F with respect to Q by setting the Kullback-Leibler term to zero,
and it makes the function F equal to L(G ), the average log likelihood of
the data points. However, the EM algorithm for maximizing F is not ex-
actly the same as likelihood maximization. This is because the function Q
is held constant during the M phase while the parameters G are modified.
Although F is equal to L at the beginning of the M phase, exact equality
ceases to be true as soon as G is modified, making P[v|u;G ] different from
Q. F is equal to L(G ) again only after the update of Q during the follow-
ing E phase. At this point, L(G ) must have increased since the last E phase,
because F has increased. This shows that the log likelihood increases
monotonically during EM until the process converges, even though EM
is not identical to likelihood maximization. One advantage of EM over
likelihood maximization through gradient methods is that this monotonic-
ity holds even if the successive changes to G are large. Thus, large steps
toward the maximum can be taken during each M cycle of modification.
Of course, the log likelihood may have multiple maxima, in which case
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10.2 Density Estimation 11

neither gradient ascent nor EM is guaranteed to find the globally optimal
solution. Also, the process of maximizing a function one coordinate at
a time (which is called coordinate ascent) is subject to local maxima that
other optimization methods avoid (we encounter an example of this later
in the chapter).

For the example of figure 10.1, the joint probability over causes and inputs
is

p[v,u;G ] = γv

2π�v

exp
(
−|u − gv|2

2�v

)
, (10.12)

and thus

F =
〈∑

v

Q[v;u]
(

ln
( γv

2π

)
− ln�v − |u − gv|2

2�v

− ln Q[v;u]
)〉

. (10.13)

The E phase amounts to computing P[v|u;G ] from equation 10.2 and set-
ting Q equal to it, as in equation 10.11. The M phase involves maximizing
F with respect to G for this Q. We leave it as an exercise for the reader
to show that maximizing equation 10.13 with respect to the parameters γv

(taking into account the constraint
∑

v γv =1), gv, and �v leads to the rules
of equation 10.3.

Non-Invertible Deterministic Models

If the generative model is non-invertible, the E phase of the EM algorithm
is more complex than simply setting Q equal to P[v|u;G ], because it is not
practical to compute the recognition distribution exactly. The steps taken
during the E phase depend on whether the approximation to the inverse
of the model is deterministic or probabilistic, although the basic argument
is the same in either case.

The recognition process based on a deterministic approximation results in
a prediction v(u) of the cause underlying input u. In terms of the function
F , this amounts to retaining only the single term v = v(u) in the sum in
equation 10.6, and for this single term Q[v(u);u] = 1. Thus, in this case
F is a functional of the function v(u), and a function of the parameters G ,
given by

F (Q,G ) = F (v(u),G ) = 〈ln P[v(u),u;G ]〉 . (10.14)

The M phase of EM consists, as always, of maximizing this expression
with respect to G . During the E phase we try to find the function v(u)

that maximizes F . Because v is varied during the optimization procedure,
the approach is sometimes called a variational method. The E and M steps variational method
make intuitive sense; we are finding the input-output relationship that
maximizes the probability that the generative model would have simulta-
neously produced the cause v(u) and the input u.
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12 Representational Learning

The approximation that the recognition model is deterministic can be
rather drastic, making it difficult, in the case of visual representations for
example, to account for psychophysical aspects of sensory processing. We
also encounter a case later in the chapter where this approximation re-
quires us to introduce constraints on G .

Non-Invertible Probabilistic Models

The alternative to using a deterministic approximate recognition model is
to treat Q[v;u] as a full probability distribution over v for each input ex-
ample u. In this case, we choose a specific functional form for Q, expressed
in terms of a set of parameters collectively labeled W . Thus, we write the
approximate recognition distribution as Q[v;u,W ]. F can now be treated
as a function of W , rather than of Q, so we write it as F (W ,G ). As in all
cases, the M phase of EM consists of maximizing F(W ,G ) with respect to
G . The E phase now consists of maximizing F(W ,G ) with respect to W .
This has the effect of making Q[v;u,W ] as similar as possible to P[v|u;G ],
in the sense that the KL divergence between them, averaged over the input
data, is minimized (see equation 10.9).

Because each E and M step separately increases the value of F , the EM
algorithm is guaranteed to converge to at least a local maximum of F (ex-
cept in the rare cases that coordinate ascent induces extra local maxima).
In general, this does not correspond to a local maximum of the likelihood
function, because Q is not exactly equal to the actual recognition distribu-
tion (that is, F is only guaranteed to be a lower bound on L(G )). Never-
theless, a good generative model should be obtained if the lower bound is
tight.

It is not necessary to maximize F(W ,G ) completely with respect to W
and then G during successive E and M phases. Instead, gradient ascent
steps that modify W and G by small amounts can be taken in alternation,
in which case the E and M phases effectively overlap.

10.3 Causal Models for Density Estimation

In this section, we present a number of models in which representational
learning is achieved through density estimation. The mixture of Gaus-
sians and factor analysis models that we discuss are examples of invertible
generative models with probabilistic recognition. Principal components
analysis is a limiting case of factor analysis with deterministic recogni-
tion. We consider two other models with deterministic recognition, in-
dependent components analysis, which is invertible, and sparse coding,
which is non-invertible. Our final example, the Helmholtz machine, is
non-invertible with probabilistic recognition. The Boltzmann machine,
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10.3 Causal Models for Density Estimation 13

discussed in chapters 7 and 8, is an additional example that is closely re-
lated to the causal models discussed here. We summarize and interpret
general properties of representations derived from causal models at the
end of the chapter. The table in the appendix summarizes the generative
and recognition distributions and the learning rules for all the models we
discuss.

Mixture of Gaussians

The model applied in the introduction to the data in figure 10.1A is a
mixture of Gaussians model. That example involves two causes and two
Gaussian distributions, but we now generalize this to Nv causes, each as-
sociated with a separate Gaussian distribution. The model is defined by
the probability distributions

P[v;G ] = γv and p[u|v;G ] = N (u;gv,�v) (10.15)

where v takes Nv values representing the different causes and, for an Nu

component input vector,

N (u;g,�) = 1
(2π�)Nu/2 exp

(
−|u − g|2

2�

)
(10.16)

is a Gaussian distribution with mean g and variances for the individual
components equal to �. The function F (Q,G ) for this model is given
by an expression similar to equation 10.13 (with slightly different factors if
Nu �= 2), leading to the M-phase learning rules given in the appendix. Once
the generative model has been optimized, the recognition distribution is
constructed from equation 10.2 as

P[v|u;G ] = γvN (u;gv,�v)∑
v′ γv′N (u;gv′ ,�v′ )

. (10.17)

K-Means Algorithm

A special case of mixture of Gaussians can be derived in the limit that the
variances of the Gaussians are equal and tend toward 0, �v = � → 0. We
discuss this limit for two clusters as in figure 10.1. When � is extremely
small, the recognition distribution P[v|u;G ] of equation 10.17 degenerates
because it takes essentially two values, 0 or 1, depending on whether u is
closer to one cluster or the other. This provides a hard, rather than a prob-
abilistic or soft, classification of u. In the degenerate case, EM consists of
choosing two random values for the centers of the two cluster distribu-
tions, finding all the inputs u that are closest to a given center gv, and then
moving gv to the average of these points. This is called the K-means al-
gorithm (with K = 2 for two clusters). The mixing proportions γv do not
play an important role for the K-means algorithm. New input points are
recognized as belonging to the clusters to which they are closest.
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14 Representational Learning

Factor Analysis

The causes in the mixture of Gaussians model are discrete. Factor analysis
uses a continuous vector of causes, v, drawn from a Gaussian distribution.
As in the mixture of Gaussians model, the distribution over inputs given a
cause is Gaussian. However, the mean of this Gaussian is a linear function
of v, rather than a parameter of the model. We assume that the distribu-
tion p[u] has zero mean (non-zero means can be accommodated simply by
shifting the input data). Then, the defining distributions for factor analysis
are

p[v;G ] = N (v;000,1) and p[u|v;G ] = N (u;G · v,���) (10.18)

where, the extension of equation 10.16 expressed in terms of the mean g
and covariance matrix ��� is

N (u;g,���) = 1
((2π)Nu |det���|)1/2 exp

(
−1

2
(u − g) ·���−1 · (u − g)

)
.

(10.19)

The expression |det���| indicates the absolute value of the determinant of
���. In factor analysis, ��� is taken to be diagonal, ��� = diag(�1, . . . ,�Nu )

(see the Mathematical Appendix), with all the diagonal elements nonzero,
so its inverse is simply ���−1 = diag(1/�1, . . . ,1/�Nu ) and |det���| =
�1�2 . . .�Nu .

According to equation 10.18, the individual components of v are mutu-
ally independent. Furthermore, because ��� is diagonal, any correlations
between the components of u must arise from the mean values G · v of the
generative distribution. The model requires v to have fewer dimensions
than u (Nv < Nu). In terms of heuristics, factor analysis seeks a relatively
small number of independent causes that account, in a linear manner, for
collective Gaussian structure in the inputs.

The recognition distribution for factor analysis has the Gaussian form

p[v|u;G ] = N (v;W · u,���) (10.20)

where expressions for W and ��� are given in the appendix. These do not
depend on the input u, so factor analysis involves a linear relation between
the input and the mean of the recognition distribution. EM, as applied
to an invertible model, can be used to adjust G = (G,���) on the basis of
the input data. The resulting learning rules are given in the table in the
appendix.

In this case, we can understand the goal of density estimation in an addi-
tional way. By direct calculation, as in equation 10.1, the marginal distri-
bution for u is

p[u;G ] = N (u;000,G · GT +���) (10.21)
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10.3 Causal Models for Density Estimation 15

where [GT]ab = [G]ba and [G · GT]ab = ∑
c GacGbc (see the Mathematical

Appendix). Maximum likelihood density estimation requires determining
the G that makes G · GT +��� match, as closely as possible, the covariance
matrix of the input distribution.

Principal Components Analysis

In the same way that setting the parameters �v to zero in the mixture of
Gaussians model leads to the K-means algorithm, setting all the variances
in factor analysis to zero leads to another well-known method, principal
components analysis (which is also discussed in chapter 8). To see this,
consider the case of a single factor. This means that v is a single number,
and that the mean of the distribution p[u|v;G ] is vg, where the vector g
replaces the matrix G of the general case. The elements of the diagonal
matrix ��� are set to a single variance �, which we shrink to zero.

As � → 0, the Gaussian distribution p[u|v;G ] in equation 10.18 ap-
proaches a δ function (see the Mathematical Appendix), and it can only
generate the single vector u(v) = vg from cause v. Similarly, the recogni-
tion distribution of equation 10.20 becomes a δ function, making the recog-
nition process deterministic with v(u) = W · u given by the mean of the
recognition distribution of equation 10.20. Using the expression for W in
the appendix in the limit � → 0, we find

v(u) = g · u
|g|2 . (10.22)

This is the result of the E phase of EM. In the M phase, we maximize

F (v(u),G ) = 〈
ln p[v(u),u;G ]

〉 = K − Nu ln�

2
−

〈
v2(u)

2
+ |u − gv(u)|2

2�

〉
(10.23)

with respect to g, without changing the expression for v(u). Here, K is
a term independent of g and �. In this expression, the only term that
depends on g is proportional to |u − gv(u)|2. Minimizing this in the M
phase produces a new value of g given by

g = 〈v(u)u〉
〈v2(u)〉 . (10.24)

This only depends on the covariance matrix of the input distribution, as
does the more general form given in the appendix. Under EM, equa-
tions 10.22 and 10.24 are alternated until convergence.

For principal components analysis, we can say more about the value of
g at convergence. We consider the case |g|2 = 1 because we can always
multiply g and divide v(u) by the same factor to make this true without
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16 Representational Learning

affecting the dominant term in F (v(u),G ) as � → 0. Then, the g that
maximizes this dominant term must minimize

〈|u − g(g · u)|2〉 = 〈|u|2 − (g · u)2〉 . (10.25)

Here, we have used expression 10.22 for v(u). Minimizing 10.25 with re-
spect to g, subject to the constraint |g|2 = 1, gives the result that g is the
eigenvector of the covariance matrix 〈uu〉 with maximum eigenvalue. This
is just the principal component vector and is equivalent to finding the vec-
tor of unit length with the largest possible average projection onto u.

The argument we have given shows that principal components analysis is
a degenerate form of factor analysis. This is also true if more than one fac-
tor is considered, although maximizing F only constrains the projections
G · u and therefore only forces G to represent the principal components
subspace of the data. The same subspace emerges from full factor analysis
provided that the variances of all the factors are equal, even when they are
nonzero.

Figure 10.3 illustrates an important difference between factor analysis and
principal components analysis. In this figure, u is a three-component input
vector, u = (u1, u2, u3). Samples of input data were generated on the basis
of a ‘true’ cause, vtrue according to

ub = vtrue + εb (10.26)

where εb represents noise on component b of the input. Input data points
were generated from this equation by chosing a value of vtrue from a Gaus-
sian distribution with mean 0 and variance 1, and values of εb from inde-
pendent Gaussian distributions with zero means. The variances of the
distributions for εb, b = 1,2,3, were all are equal to 0.25 in figures 10.3A &
B. However, in figures 10.3C & D, the variance for ε3 is much larger (equal
to 9). We can think of this as representing the effect of a noisy sensor for
this component of the input vector. The graphs plot the mean of the value
of the cause v extraced from sample inputs by factor analysis, or the ac-
tual value of v for principal components analysis, as a function of the true
value vtrue used to generate the data. Perfect extraction of the underlying
cause would find v = vtrue. Here, perfect extraction is impossible because
of the noise, and the absolute scale of v is arbitrary. Thus, the best we can
expect is v values that are scattered but lie along a straight line when plot-
ted as a function of vtrue. When the input components are equally variable
(figure 10.3A& B), this is exactly what happens for both factor and princi-
pal components analysis. However, when u3 is much more variable than
the other components, principal components analysis (figure 10.3D) is se-
duced by the extra variance and finds a cause v that does not correspond
to vtrue. By contrast, factor analysis (figure 10.3C) is only affected by the co-
variance between the input components and not by their individual vari-
ances (which are absorbed into ���), so the cause it finds is not significantly
perturbed (merely somewhat degraded) by the added sensor noise.
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Figure 10.3: Factor analysis and principal components analysis applied to 500
samples noisy input reflecting a single underlying cause vtrue. For A B, 〈uiuj〉 =
1 + 0.25δij, while for C & D, one sensor is corrupted by independent noise with
standard deviation 3 rather than 0.5. The plots compare the true cause vtrue with
the cause v inferred by the model.

In chapter 8, we noted that principal components analysis maximizes the
mutual information between the input and output under the assumption
of a linear Gaussian model. This property, and the fact that principal
components analysis minimizes the reconstruction error of equation 10.25,
have themselves been suggested as goals for representational learning. We
have now shown how they are also related to density estimation.

Both principal components analysis and factor analysis produce a marginal
distribution p[u;G ] that is Gaussian. If the actual input distribution p[u]
is non-Gaussian, the best that these models can do is to match the mean
and covariance of p[u]; they will fail to match higher-order moments. If
the input is whitened to increase coding efficiency, as discussed in chap-
ter 4, so that the covariance matrix 〈uu〉 is equal the identity matrix, neither
method will extract any structure at all from the input data. By contrast,
the generative models discussed in the following sections produce non-
Gaussian marginal distributions and attempt to account for structure in
the input data beyond merely the mean and covariance.

Sparse Coding

The prior distributions in factor analysis and principal components analy-
sis are Gaussian and, if the model is sucessful, the distribution of v values
in response to input should also be Gaussian. If we attempt to relate such
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Figure 10.4: Sparse distributions. A) Log frequency distribution for the activity
of a macaque IT cell in response to video images. The number of times that vari-
ous numbers of spikes appeared in a spike-counting window is plotted against the
number of spikes. The size of the window was adjusted so that, on average, there
were two spikes per window. B) Three distributions p[v] = exp(g(v)): double ex-
ponential (g(v) = −|v|, solid, kurtosis 3); Cauchy (g(v) = − ln(1 + v2), dashed,
kurtosis infinite); and Gaussian (g(v) = −v2/2, dotted, kurtosis 0). C) The log-
arithms of the same three distributions. (A adapted from Baddeley et al., 1998.)

causal variables to the activities of cortical neurons, we find a discrepancy,
because the activity distributions of cortical cells in response to natural
inputs are not Gaussian. Figure 10.4A shows an example of the distribu-
tion of the numbers of spikes counted within a particular time window for
a neuron in the infero-temporal (IT) area of the macaque brain recorded
while a monkey freely viewed television shows. The distribution is close
to being exponential. This means that the neurons are most likely to fire
small numbers of spikes in the counting interval, but that they can occa-
sionally fire a large number of spikes. Neurons in primary visual cortex
exhibit similar patterns of activity in response to natural scenes.

Distributions that generate values for the components of v close to zero
most of the time, but occassionally far from zero, are called sparse. Sparsesparse distributions
distributions are defined as being more likely than Gaussians of the same
mean and variance to generate values near zero and also more likely to
generate values far from zero. These occasional high values can convey
substantial information. Distributions with this character are also called
heavy-tailed. Figures 10.4B and C compare two sparse distributions to a
Gaussian distribution.

Sparseness has been defined in a variety of different ways. Sparseness
of a distribution is sometimes linked to a high value of a measure called
kurtosis. Kurtosis of a distribution p[v] is defined askurtosis

k =
∫

dv p[v](v − v)4(∫
dv p[v](v − v)2

)2 − 3 with v =
∫

dv p[v]v , (10.27)

and it takes the value zero for a Gaussian distribution. Positive val-
ues of k are taken to imply sparse distributions, which are also called
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10.3 Causal Models for Density Estimation 19

super-Gaussian or leptokurtotic. Distributions with k < 0 are called sub-
Gaussian or platykurtotic. This is a slightly different definition of sparse-
ness from being heavy-tailed.

A sparse representation over a large population of neurons might more
naturally be defined as one in which each input is encoded by a small
number of the neurons in the population. Unfortunately, identifying this
form of sparseness experimentally is difficult.

Unlike factor analysis and principal components analysis, sparse coding
does not stress minimizing the number of representing units (i.e. compo-
nents of v). Indeed, sparse representations may require large numbers of
units (though not necessarily). This is not a disadvantage when these mod-
els are applied to the visual system because representations in visual areas
are greatly expanded at various steps along the pathway. For example,
there are around 40 cells in primary visual cortex for each cell in the visual
thalamus. Downstream processing can benefit greatly from sparse rep-
resentations, because, for one thing, they minimize interference between
different patterns of input.

Factor analysis and principal components analysis do not generate sparse
representations because they have Gaussian priors. The mixture of Gaus-
sians model is extremely sparse because each input is represented by a
single cause (although the same cause could be deemed responsible for
every input). This may be reasonable for relatively simple input patterns,
but for complex stimuli such as images, we seek something between these
extremes. Olshausen and Field (1996, 1997) suggested such a model by
considering a nonlinear version of factor analysis. In this model, the dis-
tribution of u given v is a Gaussian with a diagonal covariance matrix, as
for factor analysis, but the prior distribution over causes is sparse. Defined
in terms of a function g(v) (as in figure 10.4),

p[v;G ] ∝
Nv∏

a=1

exp(g(va)) and p[u|v;G ] = N (u;G · v,���) . (10.28)

The prior p[v;G ] should be normalized so that its integral over v is one,
but we omit the normalization factor to simplify the equations.

Because it is a product, the prior p[v;G ] in equation 10.28 makes the com-
ponents of v mutually independent. If we took g(v) = −v2, p[v;G ] would
be Gaussian (dotted lines in figures 10.4B & C), and the model would per-
form factor analysis. An example of a function that provides a sparse
prior is g(v) = −α|v|. This generates a double exponential distribution
(solid lines in figures 10.4B & C) similar to the activity distribution in fig- double exponential

distributionure 10.4A. Another commonly used form is

g(v) = − ln(β2 + v2) (10.29)

with β a constant, which generates a Cauchy distribution (dashed lines in Cauchy
distributionfigures 10.4B & C).
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For g(v) such as equation 10.29, it is difficult to compute the recogni-
tion distribution p[v|u;G ] exactly. This makes the sparse model non-
invertible. Olshausen and Field chose a deterministic approximate recog-
nition model. Thus, EM consists of finding v(u) during the E phase, and
using it to adjust the parameters G during the M phase. To simplify the
discussion, we make the covariance matrix proportional to the identity
matrix, ��� = �I. The function to be maximized is then

F (v(u),G ) =
〈
− 1

2�
|u − G · v(u)|2 +

Nv∑
a=1

g(va(u))

〉
+ K (10.30)

where K is a term that is independent of G and v. For convenience in
discussing the EM procedure, we further take � = 1 and do not allow it to
vary. Similarly, we assume that β in equation 10.29 is predetermined and
held fixed. Then, G consists only of the matrix G.

The E phase of EM involves maximizing F with respect to v(u) for every
u. This leads to the conditions (for all a)

Nu∑
b=1

[u − G · v(u)]bGba + g′(va) = 0 . (10.31)

The prime on g(va) indicates a derivative. One way to solve this equation
is to let v evolve over time according to the equation

τv
dva

dt
=

Nu∑
b=1

[u − G · v(u)]bGba + g′(va) (10.32)

where τv is an appropriate time constant. This equation changes v so that
it asymptotically approaches a value v = v(u) that satisfies equation 10.31
and makes the right side of equation 10.32 zero. We assume that the evo-
lution of v according to equation 10.32 is carried out long enough during
the E phase for this to happen. This process is only guaranteed to find a
local, not a global, maximum of F , and it is not guaranteed to find the
same local maximum on each iteration.

Equation 10.32 resembles the equation used in chapter 7 for a firing-rate
network model. The term

∑
b ubGba, which can be written in vector form

as GT · u, acts as the total input arising from units with activities u fed
through a feedforward coupling matrix GT. The term −∑

b[G · v]bGba can
be interpreted as a recurrent coupling of the v units through the matrix
−GT · G. Finally, the term g′(va) plays the same role as the term −va that
would appear in the rate equations of chapter 7. If g′(v) �= −v, this can be
interpreted as a modified form of firing-rate dynamics. Figure 10.5 shows
the resulting network. The feedback connections from the v units to the
input units that determine the mean of the generative distribution, G · v
(equation 10.28), are also shown in this figure.

After v(u) has been determined during the E phase of EM, a delta rule
(chapter 8) is used during the M phase to modify G and improve the gen-
erative model. The full learning rule is given in the appendix. The delta
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Figure 10.5: A network for sparse coding. This network reproduces equa-
tion (10.32) using recurrent weights −GT · G in the v layer and weights connecting
the input units to this layer that are given by the transpose of the matrix G. The
reverse connections from the v layer to the input layer indicate how the mean of
the recognition distribution is computed.

rule follows from maximizing F (v(u),G ) with respect to G. A complica-
tion arises here because the matrix G always appears multiplied by v. This
means that the bias toward small values of va imposed by the prior can be
effectively neutralized by scaling up G. This complication results from the
approximation of deterministic recognition. To prevent the weights from
growing without bound, constraints are applied on the lengths of the gen-
erative weights for each cause,

∑
b G2

ba, to encourage the variances of all
the different va to be approximately equal (see the appendix). Further, it
is conventional to pre-condition the inputs before learning by whitening
them so that 〈u〉 = 0 and 〈uu〉 = I. This typically makes learning faster,
and it also ensures that the network is forced to find statistical structure
beyond second order that would escape simpler methods such as factor
analysis or principal components analysis. In the case that the input is cre-
ated by sampling (e.g. pixelating an image), more sophisticated forms of
pre-conditioning can be used to remove the resulting artifacts.

Applying the sparse coding model to inputs coming from the pixel intensi-
ties of small square patches of monochrome photographs of natural scenes
leads to selectivities that resemble those of cortical simple cells. Before
studying this result, we need to specify how the selectivities of generative
models, such as the sparse coding model, are defined. The selectivities of
sensory neurons are typically described by receptive fields, as in chapter
2. For a causal model, one definition of a receptive field for unit a is the set
of inputs u for which va is likely to take large values. However, it may be
impossible to construct receptive field by averaging over these inputs in
nonlinear models, such as sparse coding models. Furthermore, generative
models are most naturally characterized by projective fields rather than projective field
receptive fields. The projective field associated with a particular cause va

can be defined as the set of inputs that it frequently generates. This con-
sists of all the u values for which P[u|va;G ] is sufficiently large when va

is large. For the model of figure 10.1, the projective fields are simply the
circles in figure 10.1C. It is important to remember that projective fields
can be quite different from receptive fields.
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A

B

projective
field

receptive
field - dots

receptive
field - gratings

Figure 10.6: Projective and receptive fields for a sparse coding network with
Nu = Nv = 144. A) Projective fields Gab with a indexing representational units
(the components of v), and b indexing input units u on a 12 × 12 pixel grid. Each
box represents a different a value, and the b values are represented within the box
by the corresponding input location. Weights are represented by the gray-scale
level with gray indicating 0. B) The relationship between projective and receptive
fields. The left panel shows the projective field of one of the units in A. The middle
and right panels show its receptive field mapped using inputs generated by dots
and gratings respectively. (Adapted from Olshausen and Field, 1997.)
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Projective fields for the Olshausen and Field model trained on natural
scenes are shown in figure 10.6A, with one picture for each component
of v. In this case, the projective field for va is simply the matrix elements
Gab plotted for all b values. In figure 10.6A, the index b is plotted over
a two-dimensional grid representing the location of the input ub within
the visual field. The projective fields form a Gabor-like representation for
images, covering a variety of spatial scales and orientations. The resem-
blance of this representation to the receptive fields of simple cells in pri-
mary visual cortex is quite striking, although these are the projective not
the receptive fields of the model. Unfortunately, there is no simple form
for the receptive fields of the v units. Figure 10.6B compares the projective
field of one unit to receptive fields determined by presenting either dots
or gratings as inputs and recording the responses. The responses to the
dots directly determine the receptive field, while responses to the gratings
directly determine the Fourier transform of the receptive field. Differences
between the receptive fields calculated on the basis of these two types of
input are evident in the figure. In particular, the receptive field computed
from gratings shows more spatial structure than the one mapped by dots.
Nevertheless, both show a resemblance to the projective field and to a typ-
ical simple-cell receptive field.

In a generative model, projective fields are associated with the causes
underlying the visual images presented during training. The fact that
the causes extracted by the sparse coding model resemble Gabor patches
within the visual field is somewhat strange from this perspective. It is diffi-
cult to conceive of images as arising from such low level causes, instead of
causes couched in terms of objects within the images, for example. From
the perspective of good representation, causes that are more like objects
and less like Gabor patches would be more useful. To put this another way,
although the prior distribution over causes biased them toward mutual in-
dependence, the causes produced by the recognition model in response to
natural images are not actually independent. This is due to the structure
in images arising from more complex objects than bars and gratings. It is
unlikely that this high-order structure can be extracted by a model with
only one set of causes. It is more natural to think of causes in a hierarchi-
cal manner, with causes at a higher level accounting for structure in the
causes at a lower level. The multiple representations in areas along the vi-
sual pathway suggests such a hierarchical scheme, but the corresponding
models are still in the rudimentary stages of development.

Independent Components Analysis

As for the case of the mixtures of Gaussians model and factor analysis, an
interesting model emerges from sparse coding as � → 0. In this limit, the
generative distribution (equation 10.28) approaches a δ function and al-
ways generates u(v) = G · v. Under the additional restriction that there are
as many causes as inputs, the approximation we used for the sparse cod-

Draft: December 17, 2000 Theoretical Neuroscience



24 Representational Learning

ing model of making the recognition distribution deterministic becomes
exact, and the recognition distribution that maximizes F is

Q [v;u] = |det W|−1δ(u − W−1 · v) (10.33)

where W = G−1 is the matrix inverse of the generative weight ma-
trix. The factor |det W| comes from the normalization condition on Q,∫

dv Q(v;u) = 1. At the maximum with respect to Q, the function F is

F (Q ,G ) =
〈
− 1

2�
|u − G · W · u|2 +

∑
a

g ([W · u]a)

〉
+ ln |det W| + K

(10.34)

where K is independent of G. Under the conventional EM procedure, we
would maximize this expression with respect to G, keeping W fixed. How-
ever, the normal procedure fails in this case, because the minimum of the
right side of equation 10.34 occurs at G = W−1, and W is being held fixed
so G cannot change. This is an anomaly of coordinate ascent in this partic-
ular limit.

Fortunately, it is easy to fix this problem, because we know that W = G−1

provides an exact inversion of the generative model. Therefore, instead of
holding W fixed during the M phase of an EM procedure, we keep W =
G−1 at all times as we change G. This sets F equal to the average log
likelihood, and the process of optimizing with respect to G is equivalent
to likelihood maximization. Because W = G−1, maximizing with respect
to W is equivalent to maximizing with respect to G, and it turns out that
this is easier to do. Therefore, we set W = G−1 in equation 10.34, which
causes the first term to vanish, and write the remaining terms as the log
likelihood expressed as a function of W instead of G,

L(W) =
〈∑

a

g ([W · u]a)

〉
+ ln |det W| + K . (10.35)

Direct stochastic gradient ascent on this log likelihood can be performed
using the update rule

Wab → Wab + ε
([

W−1]
ba + g′(va)ub

)
(10.36)

where ε is a small learning rate parameter, and we have used the fact that
∂ ln |det W|/∂Wab = [W−1]ba.

The update rule of equation 10.36 can be simplified by using a clever
trick. Because WTW is a positive definite matrix (see the Mathematical
Appendix), the weight change can be multiplied by WTW without affect-
ing the fixed points of the update rule. This means that the alternative
learning rule

Wab → Wab + ε
(
Wab − g′(va) [v · W]b

)
(10.37)
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has the same potential final weight matrices as equation 10.36. This is
called a natural gradient rule, and it avoids the matrix inversion of W as
well as providing faster convergence. Equation 10.37 can be interpreted as
the sum of an anti-decay term that forces W away from zero, and a gen-
eralized type of anti-Hebbian term. The choice of prior p[v] ∝ 1/ cosh(v)

makes g′(v) = − tanh(v) and produces the rule

Wab → Wab + ε
(
[W]ba − tanh(va) [v · W]b

)
. (10.38)

This algorithm is called independent components analysis. Just as the
sparse coding network is a nonlinear generalization of factor analysis, in-
dependent components analysis is a nonlinear generalization of principal
components analysis that attempts to account for non-Gaussian features of
the input distribution. The generative model is based on the assumption
that u = G · v. Some other technical conditions must be satisfied for in-
dependent components analysis to extract reasonable causes, specifically
the prior distributions over causes p[v] ∝ exp(g(v)) must be non-Gaussian
and, at least to the extent of being correctly super- or sub-Gaussian, must
faithfully reflect the actual distribution over causes. The particular form
p[v] ∝ 1/ cosh(v) is super-Gaussian, and thus generates a sparse prior.
There are variants of independent components analysis in which the prior
distributions are adaptive.

The independent components algorithm was suggested by Bell and Se-
jnowski (1995) from the different perspective of maximizing the mutual
information between u and v when va(u) = f ([W · u]a), with a particular,
monotonically increasing nonlinear function f . Maximizing the mutual
information in this context requires maximizing the entropy of the distri-
bution over v. This, in turn, requires the components of v to be as indepen-
dent as possible because redundancy between them reduces the entropy.
In the case that f (v) = g′(v), the expression for the entropy is the same as
that for the log likelihood L(W) in equation 10.35, up to constant factors,
so maximizing the entropy and performing maximum likelihood density
estimation are identical.

An advantage of independent components analysis over other sparse cod-
ing algorithms is that, because the recognition model is an exact inverse
of the generative model, receptive as well as projective fields can be con-
structed. Just as the projective field for va can be represented by the matrix
elements Gab for all b values, the receptive field is given by Wab for all b.

To illustrate independent components analysis, figure 10.7 shows an (ad-
mittedly bizarre) example of its application to the sounds created by tap-
ping a tooth while adjusting the shape of the mouth to reproduce a tune
by Beethoven. The input, sampled at 8 kHz, has the spectrogram shown
in figure 10.7A. In this example, we have some idea about likely causes.
For example, the plots in figures 10.7B & C show high- and low-frequency
tooth taps, although other causes arise from the imperfect recording con-
ditions. A close variant of the independent components analysis method
described above was used to extract Nv = 100 independent components.
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Figure 10.7: Independent components of tooth-tapping sounds. A) Spectrogram
of the input. B & C) Waveforms for high- and low-frequency notes. The mouth
acts as a damped resonant cavity in the generation of these tones. D, E, & F) Three
independent components calculated on the basis of 1/80 s samples taken from the
input at random times. The graphs show the receptive fields (from W) for three
output units. D is reported as being sensitive to the sound of an air-conditioner. E
& F extract tooth taps of different frequencies. G, H, & I) The associated projective
fields (from G), showing the input activity associated with the causes in D, E, & F.
(Adapted from Bell and Sejnowski, 1996.)

Figure 10.7D, E, & F show the receptive fields of three of these components.
The last two extract particular frequencies in the input. Figure 10.7G, H, &
I show projective fields. Note that the projective fields are much smoother
than the receptive fields.

Bell and Sejnowski (1997) also used visual input data similar to those used
in the example of figure 10.6, along with the prior p[v] ∝ 1/ cosh(v), and
found that independent components analysis extracts Gabor-like receptive
fields similar to the projective fields shown in figure 10.6A.

The Helmholtz Machine

The Helmholtz machine was designed to accommodate hierarchical ar-
chitectures that construct complex multilayer representations. The model
involves two interacting networks, one with parameters G that is driven
in the top-down direction to implement the generative model, and the
other, with parameters W , driven bottom-up to implement the recogni-
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v

u
GW

Figure 10.8: Network for the Helmholtz machine. In the bottom-up network,
representational units v are driven by inputs u through feedforward weights W.
In the top-down network, the inputs are driven by the v units through feedback
weights G.

tion model. The parameters are determined by a modified EM algorithm
that results in roughly symmetric updates for the two networks.

We consider a simple, two-layer, nonlinear Helmholtz machine with bi-
nary units, so that ub and va for all b and a take the values 0 or 1. For this
model,

P[v;G ] =
∏

a

(
f (ga)

)va
(
1 − f (ga)

)1−va (10.39)

P[u|v;G ] =
∏

b

(
f
(
hb + [G · v]b

))ub
(
1 − f

(
hb + [G · v]b

))1−ub (10.40)

where ga is a generative bias weight for output a that controls how fre-
quently va = 1, hb is the generative bias weight for ub, and f (g) = 1/(1 +
exp(−g)) is the standard sigmoid function. The generative model is thus
parameterized by G = (g,h,G). According to these distributions, the
components of v are mutually independent, and the components of u are
independent given a fixed value of v.

The generative model is non-invertible in this case, so an approximate
recognition distribution must be constructed. This uses a similar form as
equation 10.40, only using the bottom-up weights W and biases w

Q[v;u,W ] =
∏

a

(
f
(
wa + [W · u]a

))va
(
1 − f

(
wa + [W · u]a

))1−va
. (10.41)

The parameter list for the recognition model is W = (w,W). This distri-
bution is only an approximate inverse of the generative model because it
implies that the components of v are independent when, in fact, given a
particular input u, they are conditionally dependent, due to the way they
can interact in equation 10.40 to generate u.

The EM algorithm for this non-invertible model would consist of alter-
nately maximizing the function F given by

F (W ,G ) =
〈∑

v

Q[v;u,W ] ln
P[v,u;G ]

Q[v;u,W ]

〉
(10.42)

with respect to the parameters W and G . For the M phase of the
Helmholtz machine, this is exactly what is done. However, during the
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E phase, maximizing with respect to W is problematic because the func-
tion Q[v;u,W ] appears in two places in the expression for F . This also
makes the learning rule during the E phase take a different form from that
of the M phase rule. Instead, the Helmholtz machine uses a simpler and
more symmetric approximation to EM.

The approximation to EM used by the Helmholtz machine is constructed
by re-expressing F from equation 10.9, explicitly writing out the average
over input data and then the expression for the Kullback-Leibler diver-
gence,

F (W ,G ) = L(G ) −
∑

u

P[u]DKL(Q[v;u,W ], P[v|u;G ]) (10.43)

= L(G ) −
∑

u

P[u]
∑

v

Q[v;u,W ] ln
(

Q[v;u,W ]
P[v|u;G ]

)
.

This is the function that is maximized with respect to G during the M
phase for the Helmholtz machine. However, the E phase is not based on
maximizing equation 10.43 with respect to W . Instead, an approximate F
function that we call F̃ is used. This is constructed by using P[u;G ] as
an approximation for P[u] and DKL(P[v|u;G ], Q[v;u,W ]) as an approxi-
mation for DKL(Q[v;u,W ], P[v|u;G ]) in equation 10.43. These are likely
to be good approximations if the generative and approximate recognition
models are accurate. Thus, we write

F̃ (W ,G ) = L(G ) −
∑

u

P[u;G ]DKL(P[v|u;G ], Q[v;u,W ]) (10.44)

= L(G ) −
∑

u

P[u;G ]
∑

v

P[v|u;G ] ln
(

P[v|u;G ]
Q[v;u,W ]

)
.

and maximize this, rather than F , with respect to W during the E phase.
This amounts to averaging the ‘flipped’ Kullback-Leibler divergence over
samples of u created by the generative model, rather than real data sam-
ples. The advantage of making these approximations is that the E and M
phases become highly symmetric, as can be seen by examining the second
equalities in equations 10.43 and 10.44.

Learning in the Helmholtz machine proceeds using stochastic sampling to
replace the weighted sums in equations 10.43 and 10.44. In the M phase,
an input u from P[u] is presented, and a sample v is drawn from the cur-
rent recognition distribution Q[v;u,W ]. Then, the generative weights G
are changed according to the discrepancy between u and the generative or
top-down prediction f(h + G · v) of u (see the appendix). Thus, the gener-
ative model is trained to make u more likely to be generated by the cause
v associated with it by the recognition model. In the E phase, samples of
both v and u are drawn from the generative model distributions P[v;G ]
and P[u|v;G ], and the recognition parameters W are changed according
to the discrepancy between the sampled cause v, and the recognition or
bottom-up prediction f(w + W · u) of v (see the appendix). The rationale

Peter Dayan and L.F. Abbott Draft: December 17, 2000



10.4 Discussion 29

for this is that the v that was used by the generative model to create u is a
good choice for its cause in the recognition model.

The two phases of learning are sometimes called wake and sleep because wake-sleep
algorithmlearning in the first phase is driven by real inputs u from the environment,

while learning in the second phase is driven by values v and u ‘fantasized’
by the generative model. This terminology is based on slightly different
principles from the wake and sleep phases of the Boltzmann machine dis-
cussed in chapter 8. The sleep phase is only an approximation of the actual
E phase, and general conditions under which learning converges appro-
priately are not known.

10.4 Discussion

Because of the widespread significance of coding, transmitting, storing,
and decoding visual images such as photographs and movies, substan-
tial effort has been devoted to understanding the structure of this class
of inputs. As a result, visual images provide an ideal testing ground for
representational learning algorithms, allowing us to go beyond evaluating
the representations they produce solely in terms of the log likelihood and
qualitative similarities with cortical receptive fields.

Most modern image (and auditory) processing techniques are based on
multi-resolution decompositions. In such decompositions, images are rep-
resented by the activity of a population of units with systematically vary-
ing spatial frequency preferences and different orientations, centered at
various locations on the image. The outputs of the representational units
are generated by filters (typically linear) that act as receptive fields and are
partially localized in both space and spatial frequency. The filters usually
have similar underlying forms, but they are cast at different spatial scales
and centered at different locations for the different units. Systematic ver-
sions of such representations, in forms such as wavelets, are important
signal processing tools, and there is an extensive body of theory about
their representational and coding qualities. Representation of sensory in-
formation in separated frequency bands at different spatial locations has
significant psychophysical consequences as well.

The projective fields of the units in the sparse coding network shown in
figure 10.6 suggest that they construct something like a multi-resolution
decomposition of inputs, with multiple spatial scales, locations, and orien-
tations. Thus, multi-resolution analysis gives us a way to put into sharper
focus the issues arising from models such as sparse coding and indepen-
dent components analysis. After a brief review of multi-resolution de-
compositions, we use them to consider d properties of representational
learning from the perspective of information transmission and sparseness,
overcompleteness, and residual dependencies between inferred causes.
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Figure 10.9: Multi-resolution filtering. A) Vertical and horizontal filters (left)
and their Fourier transforms (right) that are used at multiple positions and spa-
tial scales to generate a multi-resolution representation. The rows of the matrix W
are displayed here in grey-scale on a two-dimensional grid representing the loca-
tion of the corresponding input. B) Log frequency distribution of the outputs of the
highest spatial frequency filters (solid line) compared with a Gaussian distribution
with the same mean and variance (dashed line) and the distribution of pixel val-
ues for the image shown in figure 10.10A (dot-dashed line). The pixel values of the
image were rescaled to fit into the range. (Adapted from Simoncelli and Freeman,
1995; Karasaridis and Simoncelli, 1996 & 1997.)

Multi-resolution decomposition

Many multi-resolution decompositions, with a variety of computational
and representational properties, can be expressed as linear transforma-
tions v = W · u where the rows of W describe filters, such as those illus-
trated in figure 10.9A. Figure 10.10 shows the result of applying multi-
resolution filters, constructed by scaling and shifting the filters shown in
figure 10.9A, to the photograph in figure 10.10A. Vertical and horizontal
filters similar to those in figure 10.9A, but with different sizes, produce
the decomposition shown in figures 10.10B-D and F-H when translated
across the image. The greyscale indicates the output generated by plac-
ing the different filters over the corresponding points on the image. These
outputs, plus the low-pass image in figure 10.10E and an extra high-pass
image that is not shown, can be used to reconstruct the whole photograph
almost perfectly through a generative process that is the inverse of the
recognition process.

Coding

One reason for using multi-resolution decompositions is that they offer
efficient ways of encoding visual images. The raw values of input pix-
els provide an inefficient encoding of images. This is illustrated by the
dot-dashed line in figure 10.9B, which shows that the distribution over the
values of the input pixels of the image in figure 10.10A is approximately
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Figure 10.10: Multi-resolution image decomposition. A gray-scale image is de-
composed using the pair of vertical and horizontal filters shown in figure 10.9. A)
The original image. B, C, & D) The outputs of successively higher spatial frequency
vertically oriented filters translated across the image. E) The image after passage
through a low-pass filter. F, G, & H) The outputs of successively higher spatial
frequency horizontally oriented filters translated across the image.

flat or uniform. Up to the usual additive constants related to the precision
with which filter outputs are encoded, the contribution to the coding cost
from a single unit is the entropy of the probability distribution of its out-
put. The distribution over pixel intensities is flat, which is the maximum
entropy distribution for a variable with a fixed range. Encoding the indi-
vidual pixel values therefore incurs the maximum possible coding cost.

By contrast, the solid line in figure 10.9B shows the distribution of the
outputs of the finest scale vertically and horizontally tuned filters (fig-
ures 10.10D & H) in response to figure 10.10A. The filter outputs have a
sparse distribution similar to the double exponential distribution in fig-
ure 10.4B. This distribution has significantly lower entropy than the uni-
form distribution, so the filter outputs provide a more efficient encoding
than pixel values.

In making these statements about the distributions of activities, we are
equating the output distribution of a filter applied at many locations on
a single image with the output distribution of a filter applied at a fixed
location on many images. This assumes spatial translational invariance of
the ensemble of visual images.

Images represented by multi-resolution filters can be further compressed
by retaining only approximate values of the filter outputs. This is called
lossy coding and may consist of reporting filter outputs as integer multi- lossy coding
ples of a basic unit. Making the multi-resolution code for an image lossy
by coarsely quantizing the outputs of the highest spatial frequency filters
generally has quite minimal perceptual consequences while saving sub-
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stantial coding cost (because these outputs are most numerous). This fact
illustrates the important point that trying to build generative models of
all aspects of visual images may be unnecessarily difficult, because only
certain aspects of images are actually relevant. Unfortunately, abstract
principles are unlikely to tell us what information in the input can safely
be discarded independent of details of how the representations are to be
used.

Overcomplete Representations

Sparse representations often have more output units than input units.
Such representations, called overcomplete, are the subject of substantial
work in multi-resolution theory. Many reasons have been suggested for
overcompleteness, although none obviously emerges from the require-
ment of fitting good probabilistic models to input data.

One interesting idea comes from the notion that the task of manipulat-
ing representations should be invariant to the groups of symmetry trans-
formations of the input, which, for images, include rotation, translation,
and scaling. Complete representations are minimal, and so do not densely
sample orientations. This means that the operations required to manipu-
late images of objects presented at angles not directly represented by the
filters are different from those required at the represented angles (such as
horizontal and vertical for the example of figure 10.9). When a represen-
tation is overcomplete in such a way that different orientations are rep-
resented roughly equally, as in primary visual cortex, the computational
operations required to manipulate images are more uniform as a function
of image orientation. Similar ideas apply across scale, so that the opera-
tions required to manipulate large and small images of the same object (as
if viewed from near or far) are likewise similar. It is impossible to generate
representations that satisfy all these constraints perfectly.

In more realistic models that include noise, other rationales for overcom-
pleteness come from considering population codes, in which many units
redundantly report information about closely related quantities so that un-
certainty can be reduced. Despite the ubiquity of overcomplete population
codes in the brain, there are few representational learning models that pro-
duce them satisfactorarily. The coordinated representations required to
construct population codes are often incompatible with other heuristics
such as factorial or sparse coding.

Interdependent Causes

One of the failings of multi-resolution decompositions for coding is that
the outputs are not mutually independent. This makes encoding each of
the redundant filter outputs wasteful. Figure 10.11 illustrates such an in-
terdependence by showing the conditional distribution for the output vc of
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Figure 10.11: A) Gray-scale plot of the conditional distribution of the output of a
filter at the finest spatial scale (vc) given the output of a courser filter (vp) with the
same position and orientation (using the picture in figure 10.10A as input data).
Each column is separately normalized. The plot has a characteristic bow-tie shape.
B) The same data plotted as the conditional distribution of ln |vc| given ln |vp|.
(Adapted from Simoncelli and Adelson, 1990; Simoncelli and Schwartz, 1999.)

a horizontally tuned filter at a fine scale, given the output vp of a horizon-
tally tuned unit at the next coarser scale. The plots show gray-scale values
of the conditional probability density p[vc|vp]. The mean of this distribu-
tion is roughly 0, but there is a clear correlation between the magnitude of
|vp| and the variance of vc. This means that structure in the image is coor-
dinated across different spatial scales, so that high outputs from a coarse
scale filter are typically accompanied by substantial output (of one sign or
the other) at a finer scale. Following Simoncelli (1997), we plot the condi-
tional distribution of ln |vc| given ln |vp| in figure 10.11B. For small values
of ln |vp|, the distribution of ln |vc| is flat, but for larger values of ln |vp| the
growth in the value of |vc| is clear.

The interdependence shown in figure 10.11 suggests a failing of sparse
coding to which we have alluded before. Although the prior distribution
for sparse coding stipulates independent causes, the causes identified as
underlying real images are not independent. The dependence apparent in
figure 10.11 can be removed by a nonlinear transformation in which the
outputs of the units normalize each other (similar to the model introduced
to explain contrast saturation in chapter 2). This transformation can lead to
more compact codes for images. However, the general problem suggests
that something is amiss with the heuristic of seeking independent causes
for representations early in the visual pathway.

The most important dependencies as far as casual models are concerned
are those induced by the presence in images of objects with large-scale co-
ordinated structure. Finding and building models of these dependencies
is the goal for more sophisticated and hierarchical representational learn-
ing schemes aimed ultimately at object recognition within complex visual
scenes.
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10.5 Chapter Summary

We have presented a systematic treatment of exact and approximate max-
imum likelihood density estimation as a way of fitting probabilistic gener-
ative models and thereby performing representational learning. Recogni-
tion models, which are the statistical inverses of generative models, spec-
ify the causes underlying an input and play a crucial role in learning. We
discussed the expectation maximization (EM) algorithm applied to invert-
ible and non-invertible models, including the use of deterministic and
probabilistic approximate recognition models and a lower bound to the
log likelihood.

We presented a variety of models for continuous inputs with discrete, con-
tinuous, or vector-valued causes. These include mixture of Gaussians, K-
means, factor analysis, principal components analysis, sparse coding, and
independent components analysis. We also described the Helmholtz ma-
chines and discussed general issues of multi-resolution representation and
coding.
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10.7 Annotated Bibliography

The literature on unsupervised representational learning models is ex-
tensive. Recent reviews, from which we have borrowed, include Hin-
ton (1989); Bishop (1995); Hinton & Ghahramani (1997); and Becker &
Plumbley (1996), which also describes unsupervised learning methods
such as IMAX (Becker & Hinton (1992)) that find statistical structure in
the inputs directly rather than through causal models (see also projection
pursuit, Huber, 1985). The field of belief networks or graphical statistical
models (Pearl (1988); Lauritzen (1996); Jordan (1998)) provides an even
more general framework for probabilistic generative models. Apart from
Barlow (1961; 1989), early inspiration for unsupervised learning models
came from Uttley (1979) and Marr (1970) and the adaptive resonance the-
ory (ART) of Carpenter & Grossberg (see 1991).

Analysis by synthesis (e.g. Neisser, 1967), to which generative and recog-
nition models are closely related, was developed in a statistical context
by Grenander (1995), and was suggested by Mumford (1994) as a way
of understanding hierarchical neural processing. Suggestions by MacKay
(1956); Pece (1992); Kawato, et al., (1993); Rao & Ballard (1997) can be seen
in a similar light.

Nowlan (1991) introduced the mixtures of Gaussians architecture into neu-
ral networks. Mixture models are commonplace in statistics and are de-
scribed by Titterington et al. (1985).

Factor analysis is described by Everitt (1984), and some of the differences
and similarities between factor analysis and principal components analy-
sis are brought out by Jolliffe (1986); Tipping & Bishop (1999); Roweis &
Ghahramani (1999). Rubin & Thayer (1982) discuss the use of EM for factor
analysis. Roweis (1998) discusses EM for principal components analysis.

Neal & Hinton (1998) describe F and its role in the EM algorithm (Baum,
et al., 1970; Dempsteret al., 1977). EM is closely related to mean field meth-
ods in physics, as discussed by Jordan et al. (1996); Saul & Jordan (2000).
Hinton & Zemel (1994); Zemel (1994) used F for unsupervised learning
in a backpropagation network called the autoencoder and related their re-
sults to minimum description length coding (Risannen, 1989). Hinton et
al. (1995); Dayan et al. (1995) use F in the Helmholtz machine and the
associated wake-sleep algorithm.

Olshausen & Field (1996) suggest the sparse coding network based on
Field’s (1994) general analysis of sparse representations, and Olshausen
(1996) develops some of the links to density estimation. Independent com-
ponents analysis (ICA) was introduced as a problem by Herault & Jutten
(1986). The version of ICA algorithm that we described is due to Bell &
Sejnowski (1995); Roth & Baram (1996), using the natural gradient trick
of Amari (1999), and the derivation we used is due to Mackay (1996).
Pearlmutter & Parga (1996) and Olshausen (1996) also derive maximum
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likelihood interpretations of ICA. Multi-resolution decompositions were
introduced into computer vision by Witkin (1983); Burt & Adelson (1983),
and wavelet analysis is reviewed in Daubechies (1992); Simoncelli et al.
(1992); Mallat (1998).
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Mathematical Appendix

The book assumes a familiarity with basic methods of linear algebra, dif-
ferential equations, and probability theory, as covered in standard texts.
This chapter describes the notation we use and briefly sketches highlights
of various techniques. The references provide further information.

Linear Algebra

An operation O on a quantity z is called linear if, applied to any two in-
stances z1 and z2, O(z1 + z2) = O(z1) + O(z2). In this section, we consider linear operator
linear operations on vectors and functions. We define a vector v as an ar- vector v
ray of N numbers (v1, v2, . . . , vN) or equivalantly va for a = 1,2, . . . , N,
which are called its components. These are sometimes listed in a single
N-row column

v =




v1
v2
...

vN


 . (1)

When necessary, we write component a of v as [v]a=va. We use 000 to denote zero vector 000
the vector with all its components equal to zero. Spatial vectors, which are
related to displacements in space, are a special case, and we donate them
by �v with components vx and vy in two-dimensional space or vx, vy, and spatial vector �v
vz in three-dimensional space.

The length or norm of v, |v|, when squared, can be written as a dot product norm

|v|2 = v · v =
N∑

a=1

v2
a = v2

1 + v2
2 + . . . + v2

N . (2)

The dot product of two different N-component vectors, v and u is, dot product

v · u =
N∑

a=1

vaua . (3)
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Matrix multiplication is a basic linear operation on vectors. An Nr by Nc
matrix W is an array of Nr rows and Nc columnsmatrix W

W =




W11 W12 . . . W1Nc
W21 W22 . . . W2Nc

...
WNr1 WNr2 . . . WNrNc


 (4)

with elements Wab for a = 1, . . . , Nr and b = 1, . . . , Nc. In this text, multi-
plication of a vector by a matrix is written in the somewhat idiosyncratic
notation W · v. The dot implies multiplication and summation over a
shared index, as it does for the dot product. If W is an Nr by Nc matrix
and v is a Nc-component vector, W · v is an Nr-component vector with
componentsmatrix-vector

product

[W · v]a =
Nc∑

b=1

Wabvb . (5)

In conventional matrix notation, the product of a matrix and a vector is
written as Wv, but we prefer to use the dot notation to avoid frequent oc-
currences of matrix transposes (see below). We similarly denote a matrix
product as W · M. Matrices can only be multiplied in this way if the num-matrix product
ber of columns of W, Nc, is equal to the number of rows of M. Then, W · M
is a matrix with the same number of rows as W and the same number of
columns as M, and with elements

[W · M]ab =
Nc∑
c=1

Wac Mcb . (6)

A vector, written as in equation 1, is equivalent to a one-column, N-row
matrix, and the rules for various matrix operations can thus be applied to
vectors as well.

Square matrices are those for which Nr = Nc = N. An important squaresquare matrix
matrix is the identity matrix I with elementsidentity matrix

[I]ab = δab (7)

where the Kronecker delta is defined asKronecker delta

δab =
{

1 if a = b
0 otherwise .

(8)

Another important type of square matrix is the diagonal matrix, defineddiagonal matrix
by

W = diag(h1, h2, . . . , hN) =




h1 0 . . . 0
0 h2 . . . 0

...
0 0 . . . hN


 , (9)
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which has components Wab = haδab for some set of ha, a = 1,2, . . . , N.

The transpose of an Nr by Nc matrix W is an Nc by Nr matrix WT withtranspose
elements [WT]ab = Wba. The transpose of a column vector is a row vector,
vT = (v1v2 . . . vN). This is distinguished by the absence of commas from
(v1, v2, . . . , vN) which, for us, is a listing of the components of a column
vector. In the following table, we define a number of products involving
vectors and matrices. In the definitions, we provide our notation and the
corresponding expressions in terms of vector components and matrix ele-
ments. We also provide the conventional matrix notation for these quanti-
ties as well as the notation used by MATLAB, a computer software package
commonly used to perform these operations numerically. For the MAT-
LAB notation (which does not use bold or italic symbols), we denote two
column vectors by u and v, assuming they are defined within MATLAB by
instructions such as v =[v(1) v(2) . . . v(N)]’.

Quantity Definition Matrix MATLAB

norm |v|2 = v · v = ∑
a v2

a vTv v’∗v

dot product v · u = ∑
a vaua vTu v’∗u

outer product [vu]ab = vaub vuT v∗u’

matrix-vector product [W · v]a = ∑
b Wabvb Wv W∗v

vector-matrix product [v · W]a = ∑
b vbWba vTW v’∗W

quadratic form v · W · u = ∑
ab vaWabub vTWu v’∗W∗u

matrix-matrix product [W · M]ab = ∑
c Wac Mcb WM W∗M

Several important definitions for square matrices are:

Operation Notation Definition MATLAB

transpose WT WT
ab = Wba W’

inverse W−1 W · W−1 = I inv(W)

trace trW
∑

a Waa trace(W)

determinant det W see references det(W)

A square matrix only has an inverse if its determinant is nonzero. Square
matrices with certain properties are given special names:

Property Definition

symmetric WT = W or Wba = Wab

orthogonal WT = W−1 or WT · W = I

positive-definite v · W · v > 0 for all v 	= 000

Töplitz Wab = f (a − b)
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where f (a − b) is any function of the single variable a − b.

For any real-valued function E(v) of a vector v, we can define the vector
derivative (which is sometimes called del) of E(v) as the vector ∇E(v) withdel operator ∇
components

[∇E(v)]a = ∂E(v)

∂va
. (10)

The derivative of E(v) in the direction u is thendirectional
derivative

lim
ε→0

(
E(v + εu) − E(v)

ε

)
= u · ∇E(v) . (11)

Eigenvectors and Eigenvalues

An eigenvector of a square matrix W is a non-zero vector e that satisfieseigenvector

W · e = λe (12)

for some number λ called the eigenvalue. Possible values of λ are deter-eigenvalue
mined by solving the polynomial equation

det(W − λI) = 0 . (13)

Typically, but not always, this has N solutions if W is an N by N matrix,
and these can be either real or complex. Complex eigenvalues come in
complex-conjugate pairs if W has real-valued elements. We use the index
µ to label the different eigenvalues and eigenvectors, λµ and eµ. Note that
µ identifies the eigenvector (and eigenvalue) to which we are referring; it
does not signify a component of the eigenvector eµ.

If e is an eigenvector, αe is also an eigenvector for any nonzero value of
α. We can use this freedom to normalize eigenvectors so that |e| = 1. If
two eigenvectors, say e1 and e2, have the same eigenvalues λ1 = λ2, they
are termed degenerate, Then, αe1 + βe2 is also an eigenvector with thedegeneracy
same eigenvalue, for any α and β that are not both zero. Apart from such
degeneracies, an N by N matrix can have at most N eigenvectors, although
some matrices have fewer. If W has N non-degenerate eigenvalues, the
eigenvectors e1, . . . ,eN are linearly independent, meaning that

∑
µ cµeµ =linear independence

000 only if the coefficients cµ = 0 for all µ. These eigenvectors can be used to
represent any N component vector v through the relation

v =
N∑

µ=1

cµeµ , (14)

with a unique set of coefficients cµ. They are thus said to form a basis.basis

The eigenvalues and eigenvectors of symmetric matrices (for which WT =
W) have special properties, and for the remainder of this section, we con-symmetric matrix

Peter Dayan and L.F. Abbott Draft: December 17, 2000



5

sider this case. The eigenvalues of a symmetric matrix are real, and the
eigenvectors are real and orthogonal (or can be made orthogonal in the
case of degeneracy). This means that, if they are normalized to unit length,
the eigenvectors satisfy orthonormal

eigenvectors
eµ · eν = δµν . (15)

This can be derived by noting that, for a symmetric matrix W, eµ · W = W ·
eµ = λµeµ. Therefore, allowing the matrix to act in both directions we find
eν · W · eµ = λµeν · eµ = λνeν · eµ. If λµ 	= λν, this requires eν · eµ = 0. For
orthogonal and normalized (orthonormal) eigenvectors, the coefficients in
equation 14 take the values

cµ = v · eµ . (16)

Let E = (e1 e2 . . . eN) be an N by N matrix with columns formed from the
orthonormal eigenvectors of a symmetric matrix. From equation 15, this
satisfies [ET · E]µν = eµ · eν = δµν. Thus, ET = E−1, making E an orthogo-
nal matrix. E generates a transformation from the original matrix W to a
diagonal form, which is called matrix diagonalization, matrix

diagonalization
E−1 · W · E = ET · diag(λ1e1, . . . , λNeN) = diag(λ1, . . . , λN) . (17)

Conversely,

W = E · diag(λ1, . . . , λN) · E−1 . (18)

The transformation to and back from a diagonal form is extremely use-
ful because computations with diagonal matrices are easy. Defining L =
diag(λ1, . . . , λN) we find, for example, that

Wn = (E · L · E−1) · (E · L · E−1) · · · (E · L · E−1)

= E · Ln · E−1 = E · diag(λn
1 , . . . , λn

N) · E−1 . (19)

Indeed, for any function f that can be written as a power or expanded in
a power series (including, for example, exponentials and logarithms),

f (W) = E · diag( f (λ1), . . . , f (λN)) · E−1 . (20)

Functional Analogs

A function v(t) can be treated as if it were a vector with a continuous label. functions as vectors
In other words, the function value v(t) parameterized by the continuously
varying argument t takes the place of the component va labeled by the
integer-valued index a. In applying this analogy, sums over a for vectors
are replaced by integrals over t for functions,

∑
a → ∫

dt . For example, the
functional analog of the squared norm and dot product are∫

dt v2(t) and
∫

dt v(t)u(t) . (21)
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The analog of matrix multiplication for a function is the linear integral
operator linear integral

operator∫
dt′ W(t, t′)v(t′) (22)

with the function values W(t, t′) playing the role of the matrix elements
Wab. The analog of the identity matrix is the Dirac δ function δ(t − t′)
discussed at the end of this section. The analog of a diagonal matrix is a
function of two variables that is proportional to a δ function, W(t, t′) =
h(t)δ(t − t′), for any function h.

All of the vector and matrix operations and properties defined above have
functional analogs. Of particular importance are the functional inversefunctional inverse
(which is not equivalent to an inverse function) that satisfies∫

dt′′ W−1(t, t′′)W(t′′, t′) = δ(t − t′) , (23)

and the analog of the Töplitz matrix, which is a linear integral operator
that is translationally invariant and thus can be written astranslation

invariance
W(t, t′) = K(t − t′) . (24)

The linear integral operator then takes the form of a linear filter,linear filter ∫
dt′ K(t − t′)v(t′) =

∫
dτ K(τ)v(t − τ) (25)

where we have made the replacement t′ → t − τ.

The δ Function

Despite its name, the Dirac δ function is not a properly defined function,
but rather the limit of a sequence of functions. In this limit, the δ function
approaches zero everywhere except where its argument is zero, and there
it grows without bound. The infinite height and infinitesimal width of this
function are matched so that its integral is one. Thus,∫

dt δ(t) = 1 (26)

provided only that the limits of integration surround the point t=0 (oth-
erwise the integral is zero). The integral of the product of a δ function with
any continuous function f is∫

dt′ δ(t − t′) f (t′) = f (t) (27)

for any value of t contained within the integration interval (if t is not
within this interval, the integral is zero). These two identities normally
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provide enough information to use the δ function in calculations despite
its unwieldy definition.

The sequence of functions used to construct the δ function as a limit is not
unique. In essence, any function that integrates to one and has a single
peak that gets continually narrower and taller as the limit is taken can be
used. For example, the δ function can be expressed as the limit of a square
pulse

δ(t) = lim
�t→0

{
1/�t if −�t/2 < t < �t/2
0 otherwise (28)

or a Gaussian function

δ(t) = lim
�t→0

1√
2π�t

exp

[
−1

2

(
t

�t

)2
]

. (29)

It is most often expressed as δ function
definition

δ(t) = 1
2π

∫ ∞

−∞
dω exp(iωt) . (30)

This underlies the inverse Fourier transform, as discussed below.

Eigenfunctions

The functional analog of the eigenvector (equation 12) is the eigenfunction
e(t) that satisfies ∫

dt′ W(t, t′)e(t′) = λe(t) . (31)

For translationally invariant integral operators, W(t, t′) = K(t − t′), the
eigenfunctions are complex exponentials,∫

dt′ K(t − t′)exp(iωt′) =
(∫

dτ K(τ)exp(−iωτ)

)
exp(iωt) , (32)

as can be seen by making the change of variables τ = t − t′. Here i = √−1,
and the complex exponential is defined by the identity complex

exponential
exp(iωt) = cos(ωt) + i sin(ωt) . (33)

Comparing equations 31 and 32, we see that the eigenvalue for this eigen-
function is

λ(ω) =
∫

dτ K(τ)exp(−iωτ) . (34)

In this case, the continuous label ω takes the place of the discrete label µ

used to identify the different eigenvalues of a matrix.
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A functional analog of expanding a vector using eigenvectors as a basis
(equation 14) is the inverse Fourier transform, which expresses a function
in an expansion using complex exponential eigenfunctions as a basis. The
analog of equation 16 for determining the coefficient functions of this ex-
pansion is the Fourier transform.

Fourier Transforms

As outlined in the previous section, Fourier transforms provide a useful
representation for functions when they are acted upon by translation in-
variant linear operators.

The Fourier transform of a function f (t) is a complex function of a real
argument ω given byFourier transform

f̃ (ω) =
∫ ∞

−∞
dt f (t)exp(iωt) . (35)

The Fourier transform f̃ (ω) provides a complete description of the original
function f (t) because it can be inverted through,inverse Fourier

transform

f (t) = 1
2π

∫ ∞

−∞
dω f̃ (ω)exp(−iωt) . (36)

This provides an inverse because

1
2π

∫ ∞

−∞
dω exp(−iωt)

∫ ∞

−∞
dt′ f (t′)exp(iωt′) (37)

=
∫ ∞

−∞
dt′ f (t′)

1
2π

∫ ∞

−∞
dω exp(iω(t′ − t)) =

∫ ∞

−∞
dt′ f (t′)δ(t′ − t) = f (t)

by the definition of the δ function in equation 30. The function f (t) has to
satisfy regularity conditions called the Dirichlet conditions for the inver-
sion of the Fourier transform to be exact.

The convolution of two functions f and g is the integralconvolution

h(t) =
∫ ∞

−∞
dτ f (τ)g(t − τ) . (38)

This is sometimes denoted by h = f ∗ g. Note that the operation of mul-
tiplying a function by a linear filter and integrating, as in equation 25, is
a convolution. Fourier transforms are useful for dealing with convolu-
tions because the Fourier transform of a convolution is the product of the
Fourier transforms of the two functions being convolved,

h̃(ω) = f̃ (ω)g̃(ω) . (39)
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To show this, we note that

h̃(ω) =
∫ ∞

−∞
dt exp(iωt)

∫ ∞

−∞
dτ f (τ)g(t − τ) (40)

=
∫ ∞

−∞
dτ f (τ)exp(iωτ)

∫ ∞

−∞
dt g(t − τ)exp(iω(t − τ))

=
∫ ∞

−∞
dτ f (τ)exp(iωτ)

∫ ∞

−∞
dt′ g(t′)exp(iωt′) where t′ = t − τ ,

which is equivalent to equation 39. A related result is Parseval’s theorem, Parseval’s theorem∫ ∞

−∞
dt f (t)2 = 1

2π

∫ ∞

−∞
dω | f̃ (ω)|2 . (41)

If f (t) is periodic, with period T (which means that f (t + T)= f (t) for all periodic function
t), it can be represented by a Fourier series rather than a Fourier integral. Fourier series
That is

f (t) =
∞∑

k=−∞
f̃k exp(−i2πkt/T) (42)

where f̃k is given by:

f̃k = 1
T

∫ T

0
dt f (t)exp(i2πkt/T) . (43)

As in the case of Fourier transforms, regularity conditions have to hold for
the series to converge and to be exactly invertible. The Fourier series has
properties similar to Fourier transforms, including a convolution theorem
and a version of Parseval’s theorem. The real and imaginary parts of a
Fourier series are often separated giving the alternative form

f (t) = f̃0 +
∞∑

k=1

(
f̃ c
k cos(2πkt/T) + f̃ s

k sin(2πkt/T)
)

(44)

with

f̃0 = 1
T

∫ T

0
dt f (t) , f̃ c

k = 2
T

∫ T

0
dt f (t) cos(2πkt/T) ,

f̃ s
k = 2

T

∫ T

0
dt f (t) sin(2πkt/T) . (45)

When computed numerically, a Fourier transform is typically based on
a certain number, Nt, of samples of the function, fn = f (nδ) for n =
0,1, . . . Nt − 1. The discrete Fourier transform of these samples is then discrete Fourier

transformused as an approximation of the continuous Fourier transform. The dis-
crete Fourier transform is defined as

f̃m =
Nt−1∑
n=0

fn exp (i2πnm/Nt) . (46)
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Note that f̃Nt+m = f̃m. An approximation of the continuous Fourier trans-
form is provided by the relation f̃ (2πm/(Ntδ))≈δ f̃m. The inverse discrete
Fourier transform is

fn = 1
Nt

Nt−1∑
m=0

f̃m exp (−i2πmn/Nt) . (47)

This equation implies a periodic continuation of fn outside the range
0≤ n< Nt, so that fn+Nt = fn for all n. Consult the references for an analysis
of the properties of the discrete Fourier transform and the quality of its ap-
proximation to the continuous Fourier transform. Note in particular that
there is a difference between the discrete-time Fourier transform, which is
the Fourier transform of a signal that is inherently discrete i.e. is only de-
fined at discrete points) and the discrete Fourier transform, given above,
which is based on a finite number of samples of an underlying continu-
ous function. If f (t) is band-limited, meaning that f̃ (ω)=0 for |ω| > π/δ,
the sampling theorem states that f (t) is completely determined by regularsampling theorem
samples spaced at intervals 1/δ.

Fourier transforms of functions of more than one variable involve a direct
extension of the equations given above to multi-dimensional integrals. For
example,

f̃ (ωx, ωy) =
∫

dx
∫

dy f (x, y)exp(i(ωxx + ωy y)). (48)

The properties of multi-dimensional transforms are similar to those of one-
dimensional transforms.

Finding Extrema and Lagrange Multipliers

An operation frequently encountered in the text is minimizing a quadratic
form. In terms of vectors, this typically amounts to finding the matrix W
that makes the product W · v closest to another vector u when averaged
over a number of presentations of v and u. The function to be minimized
is the average squared error 〈|u − W · v|2〉, where the brackets denote aver-
aging over all the different samples v and u. Taking the derivative of this
expression with respect to W gives the equationminimization of

quadratic form

W · 〈vv〉 = 〈uv〉 or
N∑

c=1

Wac〈vcvb〉 = 〈uavb〉 . (49)

Many variants of this equation, solved by a number of techniques, appear
in the text.

Often, when a function f (v) has to be minimized or maximized with re-
spect to a vector v there is an additional constraint on v that requires an-
other function g(v) to be held constant. The standard way of dealing with
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this situation is to find the extrema of the function f (v) + λg(v) where λ is
a free parameter called a Lagrange multiplier. Once this is done, the value Lagrange

multiplierof λ is determined by requiring g(v) to take the required constant value.
This procedure can appear a bit mysterious when first encountered, so we
provide a rather extended discussion.

The condition that characterizes an extreme value of the function f (v) is
that small changes �v (with components �va) in the vector v should not
change the value of the function, to first order in �v. This results in the
condition

N∑
a=1

fa�va = 0 (50)

where we use the notation

fa = [∇ f ]a = ∂f
∂va

(51)

to make the equations more compact. Without a constraint, equation 50
must be satisfied for all �v, which can only occur if each term in the sum
vanishes separately. Thus, we find the usual condition for an extremum

fa = ∂f
∂va

= 0 (52)

for all a. However, with a constraint such as g(v) = constant, equation
50 does not have to hold for all possible �v, only for those that satisfy the
constraint. The condition on �v imposed by the constraint is that it cannot
change the value of g, to first order in �v. Therefore,

N∑
a=1

ga�va = 0 (53)

with the same notation for the derivative used for g as for f .

The most obvious way to deal with the constraint equation 53 is to solve
for one of the components of �v, say �vc, writing

�vc = − 1
gc

∑
a 	=c

ga�va . (54)

Then, we substitute this expression into equation 50 to obtain

∑
a 	=c

fa�va − fc

gc

∑
a 	=c

ga�va = 0 . (55)

Because we have eliminated the constraint, this equation must be satisfied
for all values of the remaining components of �v, those with a 	= c, and
thus we find

fa − fc

gc
ga = 0 (56)
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for all a 	= c. The derivatives of f and g are functions of v, so these equa-
tions can be solved to determine where the extremum point is located.

In the above derivation, we have singled out component c for special treat-
ment. We have no way of knowing until we get to the end of the calcula-
tion whether the particular c we chose leads to a simple or a complex set of
final equations. The clever idea of the Lagrange multiplier is to notice that
the whole problem is symmetric with respect to the different components
of �v. Choosing one c value, as we did above, breaks this symmetry and
often complicates the algebra. To introduce the Lagrange multiplier we
simply define it as

λ = − fc

gc
. (57)

With this notation, the final set of equations can be written as

fa + λga = 0 . (58)

Before we had to say that these equations only held for a 	= c because c was
treated differently. Now, however, notice that the above equation when a
is set to c is algebraically equivalent to the definition of equation 57. Thus,
we can say that equation 58 applies for all a, and this provides a symmetric
formulation of the problem of finding an extremum that often results in
simpler algebra.

The final realization is that equation 58 for all a is precisely what we would
have derived if we had set out in the first place to find an extremum of the
function f (v) + λg(v) and forgot about the constraint entirely. Of course
this lunch is not completely free. From equation 58, we derive a set of
extremum points parameterized by the undetermined variable λ. To fix
λ, we must substitute this family of solutions back into g(v) and find the
value of λ that satisfies the constraint that g(v) equals the specified con-
stant. This provides the solution to the constrained problem.

Differential Equations

The most general differential equation we consider takes the form

dv
dt

= f(v) (59)

where v(t) is an N-component vector of time-dependent variables, and
f is a vector of functions of v. Unless it is unstable, allowing the abso-
lute value of one or more of the components of v to grow without bound,
this type of equation has three classes of solutions. For one class, called
fixed points, v(t) approaches a time-independent vector v∞ (v(t) → v∞)fixed point
as t → ∞. In a second class of solutions, called limit cycles, v(t) becomeslimit cycle
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periodic at large times and repeats itself indefinitely. For the third class
of solutions, the chaotic ones, v(t) never repeats itself but the trajectory ofchaos
the system lies in a limited subspace of the total space of allowed configu-
rations called a strange attractor. Chaotic solutions are extremely sensitive strange attractor
to initial conditions.

We focus most of our analysis on fixed-point solutions. For v∞ to be a
time-independent solution of equation 59, which is also called an equilib-
rium point, we must have f(v∞) = 0. General solutions of equation 59 equilibrium point
when f is nonlinear cannot be constructed, but we can use linear tech-
niques to study the behavior of v near a fixed point v∞. If f is linear, the
techniques we use and solutions we obtain as approximations in the non-
linear case are exact. Near the fixed point v∞, we write

v(t) = v∞ + εεε(t) (60)

and consider the case when all the components of the vector εεε are small.
Then, we can expand f in a Taylor series, Taylor series

f(v(t)) ≈ f(v∞) + J · εεε(t) = J · εεε(t) (61)

where J is the called the Jacobian matrix and has elements Jacobian matrix

Jab = ∂fa(v)

∂vb

∣∣∣∣
v=v∞

. (62)

In the second equality of equation 61, we have used the fact that f(v∞) = 0.

Using the approximation of equation 61, equation 59 becomes

dεεε
dt

= J · εεε . (63)

The temporal evolution of v(t) is best understood by expanding εεε in the
basis provided by the eigenvectors of J. Assuming that J is real and has N
linearly independent eigenvectors e1, . . . ,eN with different eigenvalues
λ1, . . . , λN , we write

εεε(t) =
N∑

µ=1

cµ(t)eµ . (64)

Substituting this into equation 63, we find that the coefficients must satisfy

dcµ

dt
= λµcµ . (65)

This produces the solution

εεε(t) =
N∑

µ=1

cµ(0)exp(λµt)eµ (66)
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where εεε(0) = ∑
µ cµ(0)eµ. The individual terms in the sum on the right

side of equation 66 are called modes. This solution is exact for equation 63, modes
but is only a valid approximation when applied to equation 59 if εεε is small.
Note that the different coefficients cµ evolve over time independently of
each other. This does not require the eigenvectors to be orthogonal. If the
eigenvalues and eigenvectors are complex, v(t) will nonetheless remain
real if v(0) is real, because the complex parts of the conjugate pairs can-
cel appropriately. Expression 66 is not the correct solution if some of the
eigenvalues are equal. The reader should consult the references for the
solution in this case.

Equation 66 determines how the evolution of v(t) in the neighborhood of
v∞ depends on the eigenvalues of J. If we write λµ = αµ + iωµ,

exp(λµt) = exp(αµt)
(
cos(ωµt) + i sin(ωµt)

)
. (67)

This implies that modes with real eigenvalues (ωµ = 0) evolve exponen-
tially over time, and modes with complex eigenvalues (ωµ 	= 0) oscillate
with a frequency ωµ. Recall that the eigenvalues are always real if J is
a symmetric matrix. Modes with negative real eigenvalues (αµ < 0 and
ωµ = 0) decay exponentially to zero, while those with positive real eigen-
values (αµ > 0 and ωµ = 0) grow exponentially. Similarly, the oscillations
for modes with complex eigenvalues are damped exponentially to zero if
the real part of the eigenvalue is negative (αµ < 0 and ωµ 	= 0) and grow
exponentially if the real part is positive (αµ > 0 and ωµ 	= 0).

Stability of the fixed point v∞ requires the real parts of all the eigenval-
ues to be negative (αµ < 0 for all µ). In this case, the point v∞ is a stable
fixed-point attractor of the system, meaning that v(t) will approach v∞ if itattractor
starts from any point in the neighborhood of v∞. If any real part is positive
(αµ > 0 for any µ), the fixed point is unstable. Almost any v(t) initially inunstable fixed point
the neighborhood of v∞ will move away from that neighborhood. If f is
linear, the exponential growth of |v(t) − v∞| never stops in this case. For
a nonlinear f , equation 66 only determines what happens in the neighbor-
hood of v∞, and the system may ultimately find a stable attractor away
from v∞, either a fixed point, a limit cycle, or a chaotic attractor. In all
these cases, the mode for which the real part of λµ takes the largest value
dominates the dynamics as t → ∞. If this real part is equal to zero, the
fixed point is called marginally stable.marginal stability

As mentioned previously, the analysis presented above as an approxima-
tion for nonlinear differential equations near a fixed point is exact if the
original equation is linear. In the text, we frequently encounter linear equa-
tions of the form

τ
dv

dt
= v∞ − v . (68)

This can be solved by setting z = v − v∞, rewriting the equation as dz/z =
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−dt/τ and integrating both sides

τ

∫ z(t)

z(0)

dz′ 1
z′ = ln

(
z(t)
z(0)

)
= − t

τ
. (69)

This gives z(t) = z(0)exp(−t/τ) or

v(t) = v∞ + (v(0) − v∞)exp(−t/τ) . (70)

In some cases, we consider discrete rather than continuous dynamics de-
fined over discrete steps n = 1,2, . . . through a difference rather than a
differential equation. Linearization about equilibrium points can be used
to analyze nonlinear difference equations as well as differential equations,
and this reveals similar classes of behavior. We illustrate difference equa-
tions by analyzing a linear case, difference equation

v(n + 1) = v(n) + W · v(n) . (71)

The strategy for solving this equation is similar to that for solving differ-
ential equations. Assuming W has a complete set of linearly independent
eigenvectors e1, . . . ,eN with different eigenvalues λ1, . . . , λN , the modes
separate, and the general solution is

v(n) =
N∑

µ=1

cµ(1 + λµ)neµ (72)

where v(0) = ∑
µ cµeµ. This has characteristics similar to equation 66.

Writing λµ = αµ + iωµ, mode µ is oscillatory if ωµ 	= 0. In the discrete
case, stability of the system is controlled by the magnitude

|1 + λµ|2 = (
1 + αµ

)2 + (
ωµ

)2
. (73)

If this is greater than one for any value of µ, |v(n)| → ∞ as n → ∞. If it is
less than one for all µ, v(n) → 000 in this limit.

Electrical Circuits

Biophysical models of single cells involve equivalent circuits composed
of resistors, capacitors, and voltage and current sources. We review here
basic results for such circuits. Figures 1A & B show the standard symbols
for resistors and capacitors, and define the relevant voltages and currents.
A resistor (figure 1A) satisfies Ohm’s law, which states that the voltage
VR = V1 − V2 across a resistance R carrying a current IR is Ohm’s law

VR = IRR . (74)
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R C

IR IC

V1 V1

V2 V2

A B
V

I1

R1

Ie

I2

R2

C

I2

R2

I1 R1
V1 V2

D

+QC

-QC

Figure 1: Electrical circuit elements and resistor circuits. A) Current IR flows
through a resistance R producing a voltage drop V1 − V2 = VR. B) Charge ±QC

is stored across a capacitance C leading to a voltage VC = V1 − V2 and a current
IC. C) Series resistor circuit called a voltage divider. D) Parallel resistor circuit. Ie

represents an external current source. The lined triangle symbol at the bottom of
the circuits in C & D represents an electrical ground, which is defined to be at zero
voltage.

Resistance is measured in ohms (�) defined as the resistance through
which one ampere of current causes a voltage drop of one volt (1 V = 1
A × 1 �).

A capacitor (figure 1B) stores charge across an insulating medium, and the
voltage across it VC = V1 − V2 is related to the charge it stores QC by

CVC = QC (75)

where C is the capacitance. Electrical current cannot cross the insulating
medium, but charges can be redistributed on each side of the capacitor,
which leads to the flow of current. We can take a time derivative of both
sides of equation 75 and use the fact that current is equal to the rate of
change of charge, IC = dQC/dt, to obtain the basic voltage-current rela-
tionship for a capacitor,V-I relation for

capacitor

C
dVC

dt
= IC . (76)

Capacitance is measured in units of farads (F) defined as the capacitance
for which one ampere of current causes a voltage change of one volt per
second (1 F × 1 V/s = 1 A).

The voltages at different points in a circuit and the currents flowing
through various circuit elements can be computed using equations 74 and
76 and rules called Kirchoff’s laws. These state that: 1) voltage differencesKirchoff’s laws
around any closed loop in a circuit must sum to zero, and 2) the sum of
all the currents entering any point in a circuit must be zero. Applying
the second of these rules to the circuit in figure 1C, we find that I1 = I2.
Ohm’s law tells us that V1 − V2 = I1R1 and V2 = I2R2. Solving these gives
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V1 = I1(R1 + R2), which tells us that resistors arranged in series add, and
V2 = V1R2/(R1 + R2), which is why this circuit is called a voltage divider.

In the circuit of figure 1D, we have added an external source passing the
current Ie. For this circuit, Kirchoff’s and Ohm’s laws tells us that Ie =
I1 + I2 = V/R1 + V/R2. This indicates how resistors add in parallel, V =
IeR1R2/(R1 + R2).

Next, we consider the electrical circuit in figure 2A, in which a resistor and
capacitor are connected together. Kirkoff’s laws require that IC + IR = 0.
Putting this together with equations 74 and 76, we find

C
dV
dt

= IC = −IR = −V
R

. (77)

Solving this, gives

V(t) = V(0)exp(−t/RC) (78)

showing the exponential decay (with time constant τ = RC) of the initial
voltage V(0) as the charge on the capacitor leaks out through the resistor.

R C R C

V V
IR IC IR IC

Ie

E

A B

Figure 2: RC circuits. A) Current IC = −IR flows in the resistor-capacitor circuit
as the stored charge is released. B) Simple passive membrane model including a
potential E and current source Ie. As in figure 1, the lined triangles represent a
ground or point of zero voltage.

Figure 2B includes two extra components needed to build a simple model
neuron, the voltage source E and the current source Ie. Using Kirchoff’s
laws, Ie − IC − IR = 0, and the equation for the voltage V is

C
dV
dt

= E − V
R

+ Ie . (79)

If Ie is constant, the solution of this equation is

V(t) = V∞ + (V(0) − V∞)exp(−t/τ) (80)

where V∞ = E + RIe and τ = RC. This shows exponential relaxation from
the initial potential V(0) to the equilibrium potential V∞ at a rate governed
by the time constant τ of the circuit.
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For the case Ie = I cos(ωt), once an initial transient has decayed to zero,
we find

V(t) = E + RI cos(ωt − φ)√
1 + ω2τ2

(81)

where tan(φ) = ωτ. Equation 81 shows that the cell membrane acts as a
low pass filter, because the higher the frequency ω of the input current, the
more the attenuation of the oscillations of the potential due to the factor
1/

√
1 + ω2τ2. The phase shift φ is an increasing function of frequency that

approaches π/2 as ω → ∞.

Probability Theory

Probability distributions and densities are discussed extensively in the
text. Here, we present a slightly more formal treatment. At the heart of
probability theory lie two sets; a sample space, � and a measure. We be-sample space

probability measure gin by considering the simplest case in which the sample space is finite. In
this case, each element ω of the full sample space � can be thought of as
one of the possible outcomes of a random process, for example one results
of rolling five dice. The measure assigns a number γω to each outcome ω,
and these must satisfy 0 ≤ γω ≤ 1 and

∑
ω γω = 1.

We are primarily interested in random variables (which are infamouslyrandom variable
neither random nor variable). A random variable is a mapping from a
random outcome ω to a space such as the space of integers. An example is
the number of ones that appear when five dice are rolled. Typically, a capi-
tal letter, such as S, is used for the random variable, and the corresponding
lower case letter, s in this case, is used for a particular value it might take.
The probability that S takes the value s is then written as P[S = s]. In the
text, we typically shorten this to P[s], but here we keep the full notation
(except in the following table). P[S = s] is determined by the measures of
the events for which S = s and takes the value

P[S = s] =
∑

ω with
S(ω)= s

γω . (82)

The notation S(ω) refers to the value of S generated by the random event
labeled by ω, and the sum is over all events for which S(ω) = s.

Some key statistics for discrete random variables include:

Quantity Definition Alias

mean 〈s〉=∑
s P[s]s s, E [S]

variance var(S) = 〈s2〉 − 〈s〉2 =∑
s P[s]s2 − 〈s〉2 σ2

s , V [S]

covariance 〈s1s2〉−〈s1〉〈s2〉=∑
s1s2

P[s1, s2]s1s2−〈s1〉〈s2〉 cov(S1, S2)
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where S1 and S2 are two random variables defined over the same sample
space. This links the two random variables, in that

P[S1 = s1, S2 = s2] =
∑

ω with
S1(ω)= s1,
S2(ω)= s2

γω , (83)

and provides a basis for them to be correlated. Means are additive,

〈s1 + s2〉 = 〈s1〉 + 〈s2〉 , (84)

but other quantities are typically not, for example

var(S1 + S2) = var(S1) + var(S2) + 2cov(S1, S2) . (85)

Two random variables are independent if P[S1 = s1, S2 = s2] = P[S1 = independence
s1]P[S2 =s2] for all s1 and s2. If S1 and S2 are independent, cov(S1, S2) = 0,
but the converse is not generally true.

Sample spaces can be infinite or uncountable. In the latter case, there are continuous
random variabletechnical complications that are discussed in the references, but all the

sums in the expressions for discrete sample spaces turn into integrals. Un-
der suitable regularity conditions, a continuous random variable S, which
is a mapping from a sample space to a continuous space such as the real
numbers, has a probability density function p[s] defined by probability density

p[s] = lim
�s→0

(
P[s ≤ S ≤ s + �s]

�s

)
. (86)

Quantities such as the mean and variance of a continuous random variable
are defined as for a discrete random variable but involve integrals over
probability densities rather than sums over probabilities.

Some commonly used discrete and continuous distributions are:

Name Range of s Probability Mean Variance

Bernoulli 0 or 1 ps(1 − p)1−s p p(1 − p)

Poisson positive integer αs exp(−α)/s! α α

Exponential s > 0 α exp(−αs) 1/α 1/α2

Gaussian −∞ < s < ∞ N [s; g,�] g �

Cauchy −∞ < s < ∞ β

π((s−α)2+β2)
α ∞

where

N (s; g,�) = 1√
2π�

exp
(
− (s − g)2

2�

)
. (87)

Here, we use � to denote the variance of the Gaussian distribution, which
is more often written as σ2. The Cauchy distribution has such heavy tails
that the integral defining its variance does not converge.
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The Gaussian distribution is particularly important because of the central
limit theorem. Consider m continuous random variables S1, S2, S3, . . . Smcentral limit

theorem that are independent and have identical distributions with finite mean g
and variance σ2. Defining

zm = 1
m

m∑
k=1

Sk , (88)

the central limit theorem states that, under rather general conditions,

lim
m→∞ P

[√
m(zm − g)

σ
≤ s

]
= 1√

2π

∫ s

−∞
dz exp(−z2/2) (89)

for every s. This means that, for large m, zm should be approximately
Gaussian distributed with mean g and variance σ2/m.
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Most of the material in this chapter is covered in standard texts on math-
ematical methods such as Mathews & Walker (1971); Boas (1996). Dis-
cussion of relevant computational techniques, and code for implementing
them, is available in Press et al. (1992). Linear algebra is covered by Strang
(1976); linear and non-linear differential equations by Jordan & Smith
(1977); probability theory by Feller (1968); and Fourier transforms and the
analysis of linear systems and electrical circuits by Siebert (1986); Oppen-
heim & Willsky (1997). Mathematical approaches to biological problems
are described in Edelstein-Keshet (1988); Murray (1993). Modern tech-
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clude, for statistics, Lindgren (1993) and Cox & Hinckley (1974); and, for
information theory, Cover & Thomas (1991).
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Exercises

Chapter 1

1. Generate spike sequences with a constant firing rate r0 using a Pois-
son spike generator. Then, add a refractory period to the model by
allowing the firing rate r(t) to depend on time. Initially, r(t) = r0.
After every spike, set r(t) to zero. Allow it to recover exponentially
back to r0 by setting r(t + �t) = r0 + (r(t) − r0)exp(−�t/τref) after
every simulation time step �t in which no spike occurs. The con-
stant τref controls the refractory recovery rate. Initially, use τref = 10
ms. Compute the Fano factor and coefficient of variation, and plot
the interspike interval histogram for spike trains generated without
a refractory period and with a refractory period determined by τref
over the range from 1 to 20 ms.

2. Plot autocorrelation histograms of spike trains generated by a Pois-
son generator with A) a constant fire rate of 100 Hz, B) a constant
firing rate of 100 Hz and a refractory period modeled as in exer-
cise 1 with τref = 10 ms, and C) a variable firing rate r(t) = 100(1 +
cos(2πt/25 ms)) Hz. Plot the histograms over a range from 0 to 100
ms.

3. Generate a Poisson spike train with a time-dependent firing rate
r(t) = 100(1 + cos(2πt/300 ms)) Hz. Approximate the firing rate
from this spike train by making the update rapprox → rapprox +1/τapprox
every time a spike occurs, and letting rapprox decay exponentially,
rapprox → rapprox exp(−�t)/τapprox), if no spike occurs during a time
step of size �t. Make a plot the average squared error of the esti-
mate,

∫
dt(r(t)− rapprox(t))2 as a function of τapprox and find the value

of τapprox that produces the most accurate estimate for this firing pat-
tern.

4. Using the same spike trains as in exercise 3, construct estimates of
the firing rate using square, Gaussian, and other types of window
functions to see which gives the most accurate estimate.

5. For a constant rate Poisson process, every sequence of N spikes oc-
curring during a given time interval is equally likely. This seems
paradoxical because we certainly do not expect to see all N spikes
appearing within the first 1% of the time interval. Yet this seems as
likely as any other pattern. Resolve this paradox.

6. Build a white-noise stimulus. Plot its autocorrelation function and
power spectrum, which should be flat. Discuss the range of relation
of these results to those for an ideal white-noise stimulus given the
value of �t you used in constructing the stimulus.

7. Construct two spiking models using an estimate of the firing rate
and a Poisson spike generator. In the first model, let the firing rate
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be determined in terms of the stimulus s by rest(t) = [s]+. In the
second model, the firing rate is determined instead by integrating the
equation (see Appendix A of chapter 5 for a numerical integration
method)

τr
drest(t)

dt
= [s]+ − rest(t) (1)

with τr = 10 ms. In both cases, use a Poisson generator to produce
spikes at the rate rest(t). Compare the responses of the two models
to a variety of time-dependent stimuli including approximate white-
noise, and study the responses to both slowly and rapidly varying
stimuli.

8. Use the two models constructed in exercise 7, driven with an ap-
proximate white-noise stimulus, to generate spikes, and compute
the spike-triggered average stimulus for each model. Show how the
spike-triggered average depends on τr in the second model by con-
sidering different values of τr.

Chapter 2

1. Build a model neuron (based on the electrosensory lateral-line lobe
neuron discussed in chapter 1) using a Poisson generator firing at a
rate predicted by equation ?? with r0 = 50 Hz and

D(τ) = cos
(

2π(τ − 20 ms)
140 ms

)
exp

(
− τ

60 ms

)
Hz .

Use a Gaussian white noise stimulus constructed using a time inter-
val �t = 10 ms with σ2

s = 10. Compute the firing rate and spike train
for a 10 s period. From these results, compute the spike-triggered av-
erage stimulus C(τ) and the firing rate-stimulus correlation function
Qrs(τ) and compare them with the linear kernel given above. Ver-
ify that the relations in equation ?? hold. Repeat this exercise with a
static nonlinearity so that the firing rate is given by

r(t) = 10
∣∣∣∣r0 +

∫ ∞

0
dτ D(τ)s(t − τ)

∣∣∣∣
1/2

Hz

rather than by equation ??. Show that C(τ) and Qrs(−τ) are still pro-
portional to D(τ) in this case, though with a different proportionality
constant.

2. For a Gaussian random variable x with zero mean and standard de-
viation σ, prove that

〈xF(αx)〉 = ασ2〈F′(αx)〉
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where α is a constant, F is any function, F′ is its derivative,

〈xF(αx)〉 =
∫

dx
1√
2πσ

exp
(
− x2

2σ2

)
xF(αx) ,

and similarly for 〈F′(αx)〉. By extending this basic result first to mul-
tivariant functions and then to the functionals, the identity ?? can be
derived.

3. Using the inverses of equations ?? and ??

ε = ε0
(
exp(X/λ) − 1

)
and a = −180◦(ε0 + ε)Y

λεπ
,

map from cortical coordinates back to visual coordinates and deter-
mine what various patterns of activity in the primary visual cortex
would ’look like’. Consider straight lines and bands of constant ac-
tivity extending across the cortex at various angles. Ermentrout and
Cowan (1979) used these results as a basis of a mathematical theory
of visual hallucinations.

4. Compute the integrals in equations ?? and ?? for the case σx = σy = σ

to obtain the results

Ls = A
2

exp
(
−σ2(k2 + K2)

2

)(
cos(φ − �)exp

(
σ2kK cos(�)

)
+ cos(φ + �)exp

(−σ2kK cos(�)
))

.

and

Lt(t) = α6|ω|√ω2 + 4α2

(ω2 + α2)4 cos(ωt − δ) .

with

δ = arctan
(ω

α

)
+ 8 arctan

(
2α

ω

)
− π .

and verify the selectivity curves in figures ?? and ??. In addition, plot
δ as a function or ω. The integrals can be also be done numerically to
obtain these curves directly.

5. Compute the response of a model simple cell with a separable space-
time receptive field to a moving grating

s(x, y, t) = cos (Kx − ωt) .

For Ds use equation ?? with σx = σy = 1◦, φ = 0, and 1/k = 0.5◦.
For Dt use equation ?? with α = 1/(15 ms). Compute the linear esti-
mate of the response given by equation ?? and assume that the actual
response is proportional to a rectified version of this linear response
estimate. Plot the response as a function of time for 1/K = 1/k = 0.5◦
and ω = 8π/s. Plot the response amplitude as a function of ω for
1/K = 1/k = 0.5◦ and as a function of K for ω = 8π/s.
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6. Construct a model simple cell with the nonseparable space-time re-
ceptive field described in the caption of figure ??B. Compute its re-
sponse to the moving grating of exercise 4. Plot the amplitude of
the response as a function of the velocity of the grating, ω/K, us-
ing ω = 8π/s and varying K to obtain a range of both positive and
negative velocity values (use negative K values for this).

7. Compute the response of a model complex cell to the moving grating
of exercise 5. The complex cell should be modeled by squaring the
linear response estimate of the simple cell used in exercise 5, and
adding this to the square of the response of a second simple cell with
identical properties except that its spatial phase preference is φ =
−π/2 instead of φ = 0. Plot the response as a function of time for
1/K = 1/k = 0.5◦ and ω = 8π/s. Plot the response amplitude as a
function of ω for 1/K = 1/k = 0.5◦ and as a function of K for ω =
8π/s.

8. Construct a model complex cell that is disparity tuned but insensi-
tive to the absolute position of a grating. The complex cell is con-
structed by summing the squares of the responses of two simple
cells, but disparity effects are now included. For this exercise, we
ignore temporal factors and only consider the spatial dependence of
the response. Each simple cell response is composed of two terms
that correspond to inputs coming from the left and right eyes. Be-
cause of disparity, the spatial phases of the image of a grating in the
two eyes, �L and �R, may be different. We write the spatial part of
the linear response estimate for a grating with the preferred spatial
frequency (k = K) and orientation (� = θ = 0) as

L1 = A
2

(cos(�L) + cos(�R))

assuming that φ = 0 (this equation is a generalization of ??). Let the
complex cell response be proportional to L2

1 + L2
2 where L2 is similar

to L1 but with the cosine functions replaced by sine functions. Show
that the response of this neuron is tuned to the disparity, �L − �R,
and is independent of the absolute spatial phase of the grating, �L +
�R. Plot the response tuning curve as a function of disparity. (See
Ohzawa et al, 1991).

9. Determine the selectivity of the LGN receptive field of equation ??
to spatial frequency and of the temporal response function for LGN
neurons, equation ??, to temporal frequency by computing their in-
tegrals when multiplied by cosine functions of space or time respec-
tively. Use σc = 0.3◦, σs = 1.5◦, B = 5, 1/α = 16 ms, and 1/β = 64 ms.
Plot the resulting spatial and temporal frequency tuning curves.

10. Construct the Hubel-Wiesel simple and complex cell models of fig-
ure ??. Use difference-of-Gaussian and Gabor functions to model the
LGN and simple cell response. Plot the spatial receptive field of the
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simple cell constructed in this way. Compare the result of summing
appropriately placed LGN center-surround receptive fields (figure
??A) with the results of the Gabor filter model of the simple cell that
uses the spatial kernel of equation ??. Compare the responses of a
complex cell constructed by linearly summing the outputs of simple
cells (figure ??B) with different spatial phase preferences with the
complex cell model obtained by squaring and summing two simple
cell responses with spatial phases 90◦ apart as in equation ??.

Chapter 3

1. Suppose that the probabilities that a neuron responds with a firing
rate between r and r + �r to two stimuli labeled plus and minus are
p[r|±]�r where

p[r|±] = 1√
2πσr

exp

(
−1

2

(
r − 〈r〉±

σr

)2
)

.

Assume that the two mean rate parameters 〈r〉+ and 〈r〉− and the sin-
gle variance σ2

r are chosen so that these distributions produce nega-
tive rates rarely enough that we can ignore this problem. Show that

α(z) = 1
2

erfc
(

z − 〈r〉−√
2σr

)
and β(z) = 1

2
erfc

(
z − 〈r〉+√

2σr

)

and that the probability of a correct answer in a two-alternative forced
choice task is given by equation ??. Derive the result of equation ??.
Plot ROC curves for different values of the discriminability

d′ = 〈r〉+ − 〈r〉−
σr

.

By simulation, determine the fraction of correct discriminations that
can be made in a two-alternative forced choice task involving dis-
criminating between plus-then-minus and minus-then-plus presen-
tations of two stimuli. Show that the fractions of correct answer for
different values of d′ are equal to the areas under the corresponding
ROC curves.

2. Model the responses of the cercal system of the cricket by using the
tuning curves of equation ?? to determine mean response rates and
generating spikes with a Poisson generator. Simulate a large num-
ber of responses for a variety of wind directions randomly, use the
vector method to decode them on the basis of spike counts over a
predefined trial period, and compare the decoded direction with the
actual direction used to generated the responses to determine the
decoding accuracy. Plot the root-mean-square decoding error as a
function of wind direction for several different trial durations. The
results may not match those of figure ?? because a different model of
variability was used in that analysis.
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3. Show that if an infinite number of unit vectors �ca is chosen from a
probability distribution that is independent of direction,

∑
(�v · �ca)�ca ∝

�v for any vector �v. How does the sum approach this limit for a finite
number of terms?

4. Show that the Bayesian estimator that minimizes the expected av-
erage value of the the loss function L(s, sbayes) = (s − sbayes)

2 is the
mean given by equation ?? and that the median corresponds to min-
imizing the expected loss function L(s, sbayes) = |s − sbayes|.

5. Simulate the response of a set of M1 neurons to a variety of arm
movement directions using the tuning curves of equation ?? with
randomly chosen preferred directions, and a Poisson spike genera-
tor. Choose the arm movement directions and preferred directions to
lie in a plane so that they are characterized by a single angle. Study
how the accuracy of the vector decoding method depends on the
number of neurons used. Compare these results with those obtained
using the ML method by solving equation ?? numerically.

6. Show that the formulas for the Fisher information in equation ?? and
also be written as

IF(s) =
〈(

∂ ln p[r|s]
∂s

)2
〉

=
∫

dr p[r|s]
(

∂ ln p[r|s]
∂s

)2

or

IF(s) =
∫

dr
1

p[r|s]

(
∂p[r|s]

∂s

)2

.

Use the fact that
∫

dr p[r|s] = 1.

7. The discriminability for the variable Z defined in equation ?? is the
difference between the average Z values for the two stimuli s + �s
and s divided by the standard deviation of Z. The average of the
difference in Z values is

〈�Z〉 =
∫

dr
∂ ln p[r|s]

∂s
(
p[r|s + �s] − p[r|s]

)
.

Show that for small �s, 〈�Z〉 = IF(s)�s. Also prove that the average
value of Z,

〈Z〉 =
∫

dr p[r|s]
∂ ln p[r|s]

∂s

is zero and that the variance of Z is IF(s). Computing the ratio, we
find from these results that d′ = �s

√
IF(s) which matches the dis-

criminability ?? of the ML estimator.
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8. Extend equation ?? to the case of neurons encoding a D-dimensional
vector stimulus �s with tuning curves given by

fa(�s) = rmax exp
(
−|�s − �sa|2

2σ2
r

)

and perform the sum by approximating it as an integral over uni-
formly and densely distributed values of �sa to derive the result in
equation ??.

9. Derive equation ?? by minimizing the expression ??. Use the meth-
ods of Appendix A in chapter 2.

10. Use the electric fish model from problem 1 of chapter 2 to generate
a spike train response to a stimulus s(t) of your choosing. Decode
the spike train and reconstruct the stimulus using an optimal linear
filter. Compare the optimal decoding filter with the optimal kernel
for rate prediction, D(τ). Determine the average squared error of
your reconstruction of the stimulus. Examine the effect that various
static nonlinearities in the model for the firing rate that generates the
spikes have on the accuracy of the decoding.

Chapter 4

1. Show that the distribution that maximizes the entropy when the fir-
ing rate is constrained to lie in the range 0 ≤ r ≤ rmax is given by equa-
tion ?? and its entropy for a fixed resolution �r is given by equation
??. Use a Lagrange multiplier (chapter 12) to constrain the integral
of p[r] to one.

2. Show that the distribution that maximizes the entropy when the mean
of the firing rate is held fixed is an exponential, and compute its en-
tropy for a fixed resolution �r. Assume that the firing rate can fall
anywhere in the range from zero to infinity. Use Lagrange multi-
pliers (chapter 12) to constrain the integral of p[r] to one and the
integral of p[r]r to the fixed average firing rate.

3. Show that the distribution that maximizes the entropy when the mean
and variance of the firing rate are held fixed is a Gaussian, and com-
pute its entropy for a fixed resolution �r. To simplify the mathemat-
ics, allow the firing rate to take any value between minus and plus
infinity. Use Lagrange multipliers (chapter 12) to constrain the inte-
gral of p[r] to one, the integral of p[r]r to the fixed average firing rate,
and the integral of p[r](r − 〈r〉)2 to the fixed variance.

4. Using Fourier transforms solve equation ?? to obtain the result of
equation ??.
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5. Suppose the filter Ls(�a) has a correlation function that satisfies equa-
tion ??. We write a new filter in terms of this old one by

L′
s(�a) =

∫
d�c U(�a, �c)Ls(�c) . (2)

Show that if U(�a, �c) satisfies the condition of an orthogonal transfor-
mation, ∫

d�c U(�a, �c)U(�b, �c) = δ(�a − �b) , (3)

the correlation function for this new filter also satisfies equation ??.

6. Construct an integrate-and-fire neuron model, and drive it with an
injected current consisting of the sum of two or more sine waves
with incommensurate frequencies. Compute the rate of information
about the injected current contained in the spike train produced by
this model neuron the method discussed in the text.

Chapter 5

1. Write down the analytic solution of equation ?? when Ie(t) is an arbi-
trary function of time. The solution will involve integrals that cannot
be performed unless Ie(t) is specified.

2. Construct the model of two, coupled integrate-and-fire model neu-
rons of figure ??. Show how the pattern of firing for the two neurons
depends on the strength, type (excitatory or inhibitory), and time
constant of the reciprocal synaptic connection (see Van Vreeswijk et
al, 1994).

3. Plot the firing frequency as a function of constant electrode current
for the Hodgkin-Huxley model. Show that the firing rate jumps dis-
continuously from zero to a finite value when the current passes
through the minimum value required to produce sustained firing.

4. Demonstrate postinhibitory rebound in the Hodgkin-Huxley model.

5. The Nernst equation was derived in this chapter under the assump-
tion that the membrane potential was negative and the ion being
considered was positively charged. Rederive the Nernst equation,
??, for a negatively charged ion and for the case when E is positive
to verify that it applies in all these cases.

6. Compute the value of the release probability Prel at the time of each
presynaptic spike for a regular, periodic, constant-frequency presy-
naptic spike train as a function of the presynaptic firing rate. Do this
for both the depression and facilitation models discussed in the text.
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7. Verify that the state probabilities listed after equation ?? are actually
a solution of these equations if n satisfies equation ??. Show that an
arbitrary set of initial values for these probabilities, will ultimately
settle into this solution.

8. Construct and simulate the K+ channel model of figure ??. Plot the
mean squared deviation between the current produced by N such
model channels and the Hodgkin-Huxley current as a function of N,
matching the amplitude of the Hodgkin-Huxley model so that the
mean currents are the same.

9. Construct and simulate the Na+ channel model of figure ??. Com-
pare the current through 100 such channels with the current pre-
dicted by the Hodgkin-Huxley model at very short times after a
step-like depolarization of the membrane potential. What are the
differences and why do they occur?

Chapter 6

Chapter 7

Chapter 8

Chapter 9

Chapter 10

Chapter 11

Chapter 12
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