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This book was prepared from the authors' lecture notes in a course on cel-
lular neurophysiology that has been given to first-year graduate students 
in neuroscience since 1983. Dan Johnston is primarily responsible for 
chapters 4, 7,11-15, and appendixes A and B, while Sam Wu wrote chap-
ters 1-3, 5, 6, and 8-10. Rick Gray taught the laboratory portion of the 
course, which consisted of computer simulations of neurophysiological 
experiments. Students with widely different backgrounds have taken this 
course successfully. The only prerequisite we have found necessary is for 
the student to have had (fairly recently) a calculus course that includes 
some differential equations. We would therefore expect that this book 
could be used as a text for any course intended for graduate students and 
advanced undergraduates provided that they have the necessary back-
ground in math. 

Because this book is intended primarily as a textbook and not as a gen-
eral review of neurophysiology, we have tried to avoid breaking up the 
text with numerous citations and have instead included a list of suggested 
readings for each chapter at the end of the book. The lists are alphabetical 
and in two parts, one for books and reviews and one for original articles. 
Some of these references will provide background reading for the mate-
rial in the chapter, while others are actually cited within the text. Even 
though the references are grouped by chapter, we have put them all at 
the end of the book so that it will be easier to scan the reference lists for 
all the chapters and find a particular citation. The included references are 
heavily weighted toward books and reviews rather than the original publi-
cations, because we feel these are more appropriate for students. We hope 
that this practice does not offend our colleagues who may find that their 
work is mentioned but not cited as an original publication. We have also 
used many of these original articles, reviews, and books as source material 



xxii Preface 

for equations, figures, and general explanations of concepts throughout 
this book. We are therefore grateful for the efforts of our colleagues for 
without these sources this book would not have been possible. 

One of the major reasons that the course from which this book is de-
rived has been so successful is our emphasis on problem solving. We have 
found that students get out of the course what they put into it. If they are 
compulsive about working the homework problems every week, then they 
usually can master the material successfully. If, instead, they tend to fo-
cus on getting the correct answer to a problem (either from a colleague or 
from an old answer sheet) rather than being sure that they understand the 
material behind the problem, then they are usually much less successful. 
It is difficult to learn the concepts in this book without working through 
the problems and seeing how the principles of neurophysiology are uti-
lized and applied in practice. It is for these reasons that the answers to 
the homework are put into two appendixes—one with short answers that 
the student can consult while trying to work a problem, and the second 
with the complete solutions, which should be consulted only as a last re-
sort. The homework problems should also serve as a rich source of exam 
questions since in many cases they were created for that purpose. 

A major problem we encountered when writing this book was in choos-
ing the proper nomenclature. We found to our distress that there were 
few "standard" practices in neurophysiology. We tried where possible to 
use the practice that is common in physics and engineering and let capital 
letters represent constant or peak values of variables and small letters rep-
resent variables that are functions of time. We nevertheless were forced 
to make a few exceptions to this rule so that the symbols in this book 
would not differ wildly from those in the original papers or from those 
used in other books. 

The authors and reviewers have made a considerable effort to minimize 
mistakes in the equations and homework problems. Nevertheless, it is 
inevitable that in a quantitative book of this sort with so many homework 
problems and solutions to homework problems that many errors are still 
to be found. We want to, first, apologize for any inconvenience these 
errors may cause and, second, encourage readers of this book to notify 
us (or the publisher) of these errors so that they cap be corrected in time 
for the next edition. 

We have many people to thank for helping to make this book a real-
ity. First and above all, we thank Dr. Richard Gray for his heroic effort in 
preparing the figures, many of which resulted from computer simulations 
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of the underlying neurophysiology. His efforts in this regard are recog-
nized by including his name on the front cover even though he is not an 
author. We also want to thank Diane Jensen for typing and editing much 
of the book. Special thanks is reserved for Dr. Nelson Spruston, who gave 
us detailed comments on most of the chapters and solicited help with 
the rest of them from Drs. David Colquhoun, Michael Hausser, Johannes 
Helm, Keiji Imoto, Greg Stuart, Alfredo Villarroel, and Lonnie Wollmuth. 
Their critical feedback has greatly improved the final product and for this 
we are most grateful. Drs. Ted Carnevale and Zach Mainen also gave us 
useful comments on the book. Drs. Jimmy Zhou, Enrico Stefani, and King-
Wai Yau proofread some chapters for us, Ken Tsai made a figure for us 
from unpublished work, and Drs. Peter Saggau and Bill Ross advised us 
on the contents of appendix B. We thank Erik Cook for helping to design 
the front cover. A number of our students have helped a great deal in 
proofreading the text and homework in this book. These students are (in 
alphabetical order): Bob Avery, Erik Cook, David Egelman, David Leopold, 
Jean-Baptiste Le Pichon, Craig Powell, Kris Radcliffe, Saurabh Sinha, and 
Ling-Gang Wu. We also want to express our sincere appreciation to Dr. Jim 
Patrick, the Head of the Division of Neuroscience, for his encouragement 
during the writing of this book. 

This book was written using BTjX and other TjX utilities mnning under 
the NEXTSTEP operating system. We are deeply indebted to Donald Knuth 
for developing T\X and to Leslie Lamport and Tomas Rokicki for writing 
their wonderful utilities. The TjX typesetting language made our job as 
authors enormously easier. We also want to thank Fiona Stevens and 
the staff at The MIT Press for their professional help and enthusiasm in 
the process of making this book a reality. Finally, we want to thank all 
of our professors who taught us neurophysiology and gave us the proper 
foundations in this immense and complicated field. We are only too happy 
to try and pass these foundations along to others. 

We also wish to thank our wives and children for their support and 
patience during the long gestation of this book. 
Daniel Johnston 
Samuel M. Wu 
April 10, 1994 
Houston, Texas 
FCN@mossy.bcm.tmc.edu 
[Errors that have been corrected in the second printing can be obtained 
from http://mft.neusc.bcm.tmc.edu/FCNerrata.] 
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http://mft.neusc.bcm.tmc.edu/FCNerrata


List of Symbols, Units, and Physical Constants 
i 

Symbols (units) 

(The symbols are listed by the chapter in which they first appear.) 

Chapter 1 

I = current (A) 
V = voltage or potential difference (V) 
Na+ = sodium ion 
K+ = potassium ion 
CI" = chloride ion 
Ca2+ = calcium ion 

Chapter 2 

J = ion flux (molecules/sec-cm2) 
J = molar flux (mol/sec-cm2) 
[X] = concentration of substance X 
D = diffusion coefficient (cm2/sec) 
del = electrical conductivity (molecules/V-sec-cm) 
ц = mobility (cm2/V-sec) 
и = ц/ЫА = molar mobility (cm2/V-sec-mol) 
Ei = equilibrium potential of ion species i 
P = permeability (cm/sec) 
& = partition coefficient (unitless) 
log10 = log = logarithm (base 10) 
In = natural logarithm 
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Chapter 3 

RM = specific membrane resistance (Q-cm2) 
GM = specific membrane conductance (S/cm2) 
CM = specific membrane capacitance (F/cm2) 
VM = membrane potential (mV) 
Im = membrane current (A) 
h = ionic current (A) 
Ic = capacitance current (A) 
Er = frest = resting potential (mV) 
Vrev = reversal potential (mV) 
GR = Grest = resting conductance (S) 
^ = slope condutance (S) 
I* = instantaneous current (A) 
100 = steady-state current (A) 
AG = free energy of activation (cal/mol) 
кь fo, fc-i, k-2, p. . . = rate coefficients (sec-1) 
5 = factor of asymmetry of the energy barrier (unitless) 

Chapter 4 

Vi = internal resistance/length of cylinder (Q/cm) 
rm = membrane resistance/length of cylinder (Q-cm) 
cm = capacitance/length of cylinder (F/cm) 
r0 = external resistance/length of cylinder (Q/cm) 
RI = internal resistivity (Q-cm) 

10 = I\n = injected current (A) 
im = membrane current/length of cylinder (A/cm) 
11 = intracellular current/length of cylinder (A/cm) 
ic = capacitance current/length of cylinder (A/cm) 
GN = input conductance (S) 
RN = input resistance (Q) 
Л = length or space constant (cm) 



Symbols (units) xxvii 

p = dendritic to somatic conductance ratio (unitless) 
/ = frequency (Hz) 
со = radial frequency = 2nf (radians) 
a = radius (cm) 
d = diameter (cm) 
x = distance (cm) 
X = electrotonic distance (unitless) 
L = electrotonic length (unitless) 
I = length (cm) 
t = time (msec) 
тт = membrane time constant (msec) 
T = t/rm 

q = electrical charge (C) 
в = conduction velocity (cm/sec) 

Chapters 5, 6, and 7 

у, n, ж, and h = probability of gating particles (unitless) 
т = time constant (sec) 
VH = holding voltage (mV) 
Vc = command voltage (mV) 
Vth = threshold voltage (mV) 
у = single-channel conductance (S) 
Q = gating charge (C) 
9ncl = Na+ conductance as function of time and voltage (S) 
дк = K+ conductance as function of time and voltage (S) 
gi = leakage conductance (S) 
gca = Ca2+ conductance as function of time and voltage (S) 
gci = Cl~ conductance (S) 
g = maximum conductance (S) 
G = a constant conductance (S) 

Refer to Table 7.1, page 208 for list of symbols for different ionic cur-
rents. 
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Chapter 9 

x(t) = random variable (arbitrary unit) 

Цх = mean value of random variable x(t)(x) 
a x

2 = variance (x2) 
\ax\ = standard deviation (x) 
p(x), f ( x ) = probability density function, pdf 
P(x), F(x) = probability distribution function or cumulative distri-
bution function (unitless) 
E[x] = expectation value of x(t){x) 
RX(T) = correlation function of x(t)(x2) 
Cx{T) = covariance function of x(t)(x2) 
S x ( f ) = power spectral density function (x2-sec) 

= number of combinations of к events, choosing from a collection 
of n events 
J = Fourier transform 
% = real part of a complex variable 

Chapter 10 

ргоЬ[Л|Б] = conditional probability 
Pij(t) = transition probability from state i to state j 
P(t) = transition probability matrix 
Q = infinitesimal matrix 
I = identity matrix 
detQ = determinant of matrix Q 
A = eigenvalue (sec-1) 
T0 = mean open time (sec) 
TC = mean closed time (sec) 



Symbols (units) xxix 

Chapters 11-15 

EPP = end-plate potential (mV) 
mEPP = miniature end-plate potential (mV) 
EPSP = excitatory postsynaptic potential (mV) 
IPSP = inhibitory postsynaptic potential (mV) 
EPSC = excitatory postsynaptic current (A) 
IPSC = inhibitory postsynaptic current (A) 
Is = synaptic current (A) 
Ici = clamp current (A) 
IH = holding current (A) 
GS — peak synaptic conductance (S) 
gs = synaptic conductance as function of time (S) 
ES = synaptic equilibrium potential (mV) 
p = probability of release 
m = quantal content 
q = mean quantal size (mV) 
V = mean EPSP size (mV) 
n = number of release sites 
CV = coefficient of variation 
cr2 = variance 
£ = Laplace Transform 
LTP = long-term potentiation 
PTP = post-tetanic potentiation 
Rint = internal resistance of a cylindrical compartment 

Appendix A 

Y = admittance (S) 
Z = impedance (Q) 
RS = series resistance (Q) 
RA = access resistance for voltage clamp (Q) 
RE = microelectrode tip resistance (Q) 
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RF = feedback resistance (fi) 
A = amplifier gain 
e = elementary charge (C) 
/ = frequency (Hz) 

Appendix В 

с = speed of light in a vacuum (m/sec) 
A = wavelength of light (nm) 
v = speed of light in a medium (m/sec) 
n = refractive index 
I = image size (m) 
i = image distance (m) 
О = object size (m) 
о = object distance (m) 
/ = focal length (m) 
M = magnification (unitless) 
NA = numerical aperture of a lens 
R = resolution (ЦТ) 

F = relative fluorescence emission intensity (unitless) 

Other symbols are defined in the text as needed. 

Units 

A = angstrom = Ю"10 m 
с = centi = 10"2 

m = milli = 10"3 

ц = micro = 10~6 

n = nano = 10~9 

p = pico = 10"12 

f = femto = 10"15 

к = kilo = 103 
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M = mega = 106 

G = giga = 109 

nt = newton (kg-m/sec2) 
joule = nt-sec 
V = volt 
A = ampere (C/sec) 
С = coulomb 
CI = ohms (V/A) 
S = 1/Q = siemens (A/V) 
F = farad (sec-A/V) 
db = decibels 
m = meter 
cm = centimeter 
L = liter 
ml = 10"3 L 
ц\ = 10"6 L 
M = molarity 
mol = mole 
sec = second 
Hz = hertz (cycles/sec) 
cal = calories 

Physical Constants 

NA = Avogadro's number = 6.023 x 1023 molecules/mol 
F = Faraday's constant = 9.648 x 104 C/mol 
60 = the permittivity constant = 8.85 x 10"12 F/m 
к = Boltzmann's constant = 1.381 xlO"23 joule/°K 
R = gas constant = 1.987 cal/mol-°K 
e = elementary electrical charge = 1.602 xlO"19 С 
°K = absolute temperature = °C + 273.16 



Foundations of Cellular Neurophysiology 



1 Introduction 

The fundamental task of the nervous system is to communicate and pro-
cess information. Animals, including humans, perceive, learn, think, de-
liver motion instructions, and are aware of themselves and the outside 
world through their nervous systems. The basic structural units of the 
nervous system are individual neurons, and neurons convey neural infor-
mation by virtue of electrical and chemical signals. 

In the human nervous system there are about 1012 neurons. A typi-
cal 1 mm3 cortical tissue contains about 105 neurons. Cells in the ner-
vous system exhibit extraordinary morphological and functional diversi-
ties. Some neurons are as small as a few micrometers {цт), but some bear 
axons as long as one to two meters. Some neurons have large, flamboy-
ant dendrites, whereas others have no dendrites or axons. The number 
of different morphological classes of neurons in the vertebrate brain is 
estimated to be near 10,000. Figure 1.1 illustrates a few examples of 
morphologically distinct classes of neurons. The number of functionally 
different classes of neurons in the brain is probably even higher, because 
neurons of similar morphology (e.g., pyramidal cells in figure 1.1) may 
have different functions. 

Neurons communicate with one another through specialized contact 
zones, the synapses. There are about 1015 synapses in a human brain. 
Synapses can be either electrical (synapses that contain intercellular bridg-
ing pores that allow current flow) or chemical (synapses that release chem-
ical messengers or neurotransmitters). Electrical and chemical synapses 
can be observed with the electron microscope. Electrical synapses are nor-
mally located at the gap junctions, which consist of specialized proteins 
that form channels bridging the interiors of two neurons and allow current 
flow from one neuron to the other. The typical chemical synapse consists 
of synaptic vesicles in the presynaptic neuron and membrane thickening 
in the presynaptic and postsynaptic membranes (active zones). The pat-
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Figure 1.1 Examples of neurons in the nervous system exhibiting various morphology. 
From the upper left in clockwise order: motor neuron from the spinal cord, mitral cell 
from olfactory bulb, pyramidal cell from cortex, horizontal cell from retina, and Purkinje 
cell (front and side views) from cerebellum. (From Nicholls et al. 1992 and Fisher and 
Boycott 1974.) 

terns of synaptic connections in the nervous system are extremely com-
plex. Some neurons make synaptic contacts with other neurons nearby, 
while others send long axons that make synapses up to a meter away. 
Most neurons are polarized: They receive synaptic input at the dendritic 
end and make output synapses at the axonal end (figure 1.2). The num-
ber of synaptic connections made by a neuron can be extraordinarily large. 
The dendrite of a mammalian motor neuron, for example, receives inputs 
from about 104 synapses. Neuronal polarization does not imply, how-
ever, that synapses are always formed in one direction. A large number 
of neurons make reciprocal (feedback) synapses onto their presynaptic 
cells, others make lateral synapses with parallel neurons, and many neu-
rons make serial synapses that form local loops among several neuronal 
processes. 

The primary difference between neurons and most other cells in the 
body (e.g., liver cells) is that neurons can generate and transmit neural 



Introduction 3 

signals. Neural signals, either electrical or chemical, are the messengers 
used by the nervous system for all its functions. It is of paramount impor-
tance to understand the principles and mechanisms of neural signals. De-
spite the extraordinary diversity and complexity of neuronal morphology 
and synaptic connectivity, the nervous system adopts a number of basic 
principles of signaling for all neurons and synapses. The principles of 
neural signaling and the physical laws and mechanisms underlying them 
are the focus of this book. 

Figure 1.2 Neurons convey information by electrical and chemical signals. Electrical 
signals travel from the cell body of a neuron (left) to its axon terminal in the form of action 
potentials. Action potentials trigger the secretion of neurotransmitters from synaptic 
terminals (upper insert). Neurotransmitters bind to postsynaptic receptors and cause 
electric s ignis (synaptic potential) in the postsynaptic neuron (right). Synaptic potentials 
trigger action potentials, which propagate to the axon terminal and trigger secretion of 
neurotransmitters to the next neuron. (Adapted from Kandel et al. 1991 and from L.L. 
Iversen, copyright © 1979 by Scientific American, Inc. All rights reserved.) 

In neurons or other excitable cells, electrical signals are carried primar-
ily by transmembrane ion currents, and result in changes in transmem-
brane voltage. In the nervous system four ion species are involved in 
transmembrane currents: sodium (Na+), potassium (K+), calcium (Ca2+), 
and chloride (СГ), with the first three carrying positive charges (cations) 
and the fourth carrying negative charges (anions). The movement of these 
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ions is governed by physical laws (which are discussed in detail in chapter 
2). The energy source of ion movement is the ionic concentration gradient 
across the membrane, which is maintained by ion pumps whose energy is 
derived from hydrolysis of ATP molecules. These concentration gradients 
set up the electrochemical potential across the membrane, which drives 
ion flow in accordance with the laws of diffusion and drift (Ohm's law). 

Although the energy sources and ion species involved in electrical sig-
nals are relatively simple, the control mechanisms for the passage of ions 
across the membrane are quite complicated. Ions flow across the mem-
brane through aqueous pores formed by transmembrane protein mole-
cules, the ion channels. These channel protein molecules undergo con-
formational changes that under certain conditions allow ion passage (gate 
in the open state), but under other conditions prohibit ion passage (gate 
in the closed state). The principles of ion permeability and channel gat-
ing have been the main focus of neurophysiology for more than 50 years, 
and they are the cornerstones of our understanding of neural signaling. 
We shall spend a large portion of this book describing these principles. 
In chapters 2 and 3, we provide formal definitions of various electrical 
parameters of excitable cells. Membrane permeability and conductances 
are described in terms of current-voltage (I-V) relations. Under certain 
conditions the I-V relations of the membrane are approximately linear 
(constant membrane conductance), whereas under other conditions the 
I-V relations are nonlinear. The linear membrane properties will be de-
scribed in chapters 3 and 4, and the nonlinear properties will be described 
in chapters 5 and 6. 

As noted earlier in this chapter, most neurons are not of regular shapes, 
but exhibit complex morphology. A signal generated at the tip of a den-
drite will excite the cell body differently from a signal generated at the 
cell body itself, because the dendritic signal must travel along the thin 
dendritic processes to the cell body. It is vitally important, therefore, 
to incorporate the morphology and shape of the neuron into any analy-
sis of neural signaling. Under conditions where the membrane is linear, 
electrical signals in one part of a neuron diffuse passively (down the elec-
trochemical gradient) to other parts of the neuron. Principles dealing with 
such signal spreading are embodied in what is called linear cable theory, 
and are described in chapter 4. 

Under the conditions where I-V relations are nonlinear, membrane con-
ductances vary with respect to transmembrane voltage and/or time. These 
time- or voltage-dependent nonlinearities mediate complex signaling be-
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haviors of neurons. Stimulation of a neuron may trigger a sequence of 
these voltage- and time-varying conductance changes, and this may lead 
to the generation and propagation of action potentials, the primary form 
of electrical signal in the nervous system. Mechanisms of voltage- and/or 
time-dependent nonlinearities are described in chapter 5, and principles 
and experiments concerning the generation and propagation of action 
potentials in the squid giant axon (Hodgkin and Huxley's analysis) are 
described in chapter 6. Chapter 7 gives a brief account of the proper-
ties of ion conductances other than Hodgkin and Huxley's Na+ and K+ 

conductances in the squid axon. Although a large number of function-
ally diverse channels exist in the nervous system, the principles used for 
analyzing the squid axon are largely applicable to the analysis of other 
voltage- and time-dependent conductances. 

Our understanding of ion channels up to the mid-seventies was re-
stricted to population analysis: measurements of gross current in the 
whole cell that contains populations of individual channels. In 1976, 
Neher and Sakmann developed the patch-clamp technique, which allows 
recording of current flowing through a single channel. Molecular cloning 
techniques in recent years have facilitated our understanding of the mol-
ecular structure of single ion channel proteins. A brief account of the 
molecular structure and patch-clamp recording of single ion channels is 
given in chapter 8. 

Patch-clamp records of single channel currents reveal that ion channels 
open and close randomly. This means that the behavior of individual ion 
channels cannot be predicted or described by deterministic mathemati-
cal equations. Rather, stochastic analysis must be employed. Chapter 9 
gives a concise description of the basic mathematical tools for stochastic 
analysis. 

The statistical properties of single channels and ensembles of single 
channels are discussed. In chapter 10, a stochastic formulation of chan-
nel mechanisms is described. To avoid tedious mathematical manipula-
tions, we derive the basic differential equation for transition probabilities 
(Chapman-Kolmogorov equation) with the simplest two-state scheme and 
give the generalized rules of this equation for the general n-state scheme 
for any channels. This formulation is intended to help readers to acquire 
the mathematical background for single-channel and whole-cell current 
data analysis. 

Mechanisms of synaptic transmission are described in chapters 11-15. 
Most of what we know about the physiology of synaptic transmission was 
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obtained from studying two classical preparations: the frog neuromuscu-
lar junction and the squid giant synapse. The frog neuromuscular junc-
tion was the preparation used by Bernard Katz and his colleagues when 
they formulated the so-called quantum hypothesis for transmitter release. 
This hypothesis states that transmitter is released in uniform packets or 
quanta from presynaptic terminals. Chapter 11 is devoted to a discussion 
of this quantum hypothesis. The theory and the associated equations for 
analyzing the spontaneous and evoked release of transmitter from a typ-
ical presynaptic ending are derived in this chapter. The methods formu-
lated from this hypothesis are called Quantal Analysis and have been used 
in various ways for almost 40 years to investigate mechanisms of synaptic 
transmission. There are also changes in transmitter release that are de-
pendent on the prior history of activity at a synapse. These changes in 
synaptic functioning are called use-dependent or activity-dependent syn-
aptic plasticities and are discussed briefly in chapters 11,12, and 15. 

Neurotransmitter release requires a rise in [Ca2+] in the presynaptic 
terminal. Chapter 12 discusses the data, derived primarily from the squid 
giant synapse, for another fundamental hypothesis of neurophysiology, 
the Ca2+ hypothesis for transmitter release. Although Ca2+ is known to be 
required for transmitter release, very little is known about the biochemical 
steps between Ca2+ entry and release. The chapter outlines the physiology 
related to Ca2+ entry, transmitter release, and the action of the transmitter 
on the postsynaptic cell, and thus provides a framework for whatever 
these biochemical steps might be. A few of the current ideas for the 
biochemistry of release are also discussed briefly. 

Chapter 13 moves to the postsynaptic side of the synapse. Neurotrans-
mitter molecules released from presynaptic terminals bind to specialized 
receptors and cause the opening of channels. There are many types of 
receptors, some of which produce excitation and some, inhibition. The 
analysis of excitation and inhibition from a macroscopic perspective is 
discussed in this chapter. Reversal potentials, I-V curves, conductances, 
and kinetics are important parameters for investigating and understand-
ing the mechanisms of synaptic transmission. Moreover, most synapses 
occur on dendrites and spines at some distance from the cell body. The 
problems associated with the study of remotely located synapses and the 
effects of spines on synaptic inputs are also discussed in this chapter. 
Although most of the emphasis in chapter 13 is on fast, chemical trans-
mission, some of the mechanisms associated with slower, conductance-
decrease synaptic events and electrical synapses are also presented. 
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The recording of electrical events from intact nervous systems is of-
ten done using extracellular recordings. These recordings are possible 
because the electrical events in single neurons produce electrical fields 
in the extracellular space that can be detected with suitable electrodes. 
Chapter 14 briefly outlines a semiquantitative analysis of extracellular 
field potentials and their measurements. 

The last chapter outlines some of the theories and basic principles in-
volved in trying to understand behaviors such as learning and memory 
from cellular neurophysiology. A basic tenet of learning and memory 
research is that memories are stored as changes in the strength of syn-
aptic connections. Alteration in the structure of dendritic spines has been 
one attractive candidate for a mechanism of such changes in synaptic 
strength. A quantitative analysis of whether morphological changes in 
spines could be a substrate for memory is presented in chapter 15. Also, 
long-term potentiation (LTP), first presented in chapter 11, is discussed 
at some length in chapter 15. LTP is attractive as a possible mechanism 
for a change at a synapse that could underlie memory. Computational 
modeling is a powerful method for trying to understand the behavior of 
ensembles of neurons and how they process and store information. We 
end chapter 15 with an analysis of one particular type of model that has 
some structural similarities with the hippocampus, an area of the brain 
that is important for memory. 

This book also includes four appendixes. The first reviews the operation 
and analysis of simple electrical circuits. If the student using this book 
has no background in basic electrical circuits and circuit elements, then 
this appendix may be useful. Appendix В summarizes some of the optical 
methods in common use in cellular neurophysiology. Most of the chapters 
in this book include an extensive list of suggested homework problems; 
appendix С gives short answers for most problems, and appendix D has 
the complete solutions for the problems. We have separated the solutions 
into two appendixes, so that the student can check his or her answer 
quickly by referring to appendix C, consulting appendix D only as a last 
resort. 

It is not the intention of this book to give a comprehensive account 
of the physiology of the nervous system. We spend little time describing 
specific neurons, synapses, or pathways in the brain. The objective of this 
book is to describe the basic principles that are not neuron or pathway 
specific but are generally applicable to most, if not all, neurons. We also 
recognize that neurophysiology is a fast-growing field, and that new in-
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formation and concepts emerge on a daily basis. For this reason, we have 
usually avoided describing the most recent findings in certain areas (e.g., 
the structure and function of various ion channels or the mechanisms of 
LTP), and have concentrated instead on the basic analytical principles and 
concepts that are applicable in many situations. The only two exceptions 
to this approach are the squid giant axon and the frog neuromuscular 
junction. We describe these two preparations in great detail not only 
because they are historically important, but also because they provide 
general concepts and analytical tools (e.g., the Hodgkin and Huxley gate 
model and the Katz quantal analysis of synaptic transmission) that can 
be applied to other neurons and synapses. 

We believe that one cannot avoid mathematics if one wants to learn 
neurophysiology thoroughly. This is why we attempt to describe most 
physiological principles quantitatively in this book. Additionally, we give 
worked examples in the text, and problems at the end of each chapter. Our 
own and our students1 experiences have taught us that problem solving 
is an indispensable part of learning neurophysiology. 



2 Ion Movement in Excitable Cells 

2.1 Introduction 

Electric signals in humans and animals are carried by dissociated ions: 
K+, Na+, Cl~, and Ca2+. These ions carry positive or negative charges and 
flow from one part of the body to another. In excitable cells, movement of 
ions across the plasma membrane results in changes of electrical potential 
across the membrane, and these potential changes are the primary signals 
that convey biological messages from one part of the cell to another part 
of the cell, from one cell to another cell, and from one part of the body to 
another part of the body. 

Ions in biological systems are not uniformly distributed. Ion concen-
trations in one compartment are quite different from those in other com-
partments. The concentration of K+ ions inside most animal cells, for 
example, is much higher than that in the extracellular space. Such dif-
ferences in ion distribution result in concentration gradients or chemi-
cal potentials in biological systems. Based on thermodynamic principles, 
ions tend to flow from regions of high concentrations to regions of low 
concentrations—-a phenomenon known as diffusion. Physical principles 
of ion diffusion will be described in this chapter. 

Because dissociated ions carry electric charges, their movement is in-
fluenced not only by concentration gradients but also by electric fields. 
In most parts of the body, the net electric charge of biological molecules 
is zero. In other words, the number of positive charges in a given volume 
equals the number of negative charges (known as space-charge neutrality). 
An important exception to this space-charge neutrality occurs within the 
plasma membrane of individual cells. Since most plasma membranes are 
permeable to some ion species but not to others, a separation of charge 
normally occurs across the membrane. This ion separation results in an 
electric field across the cell membrane, which profoundly influences the 



10 Chapter 2. Ion Movement in Excitable Cells 

movement of ions through pores or channels situated in the plasma mem-
brane. Physical principles dictating ion movement in electric fields will be 
discussed in this chapter. 

2.2 Physical laws that dictate ion m o v e m e n t 

In this section, four fundamental physical laws essential for describing the 
movements of ions in biological systems will be discussed. For simplicity, 
we shall consider only the one-dimensional system; that is, we assume 
ions move only along the x-axis. This simplification is adequate for most 
biological systems we will encounter because our primary concern is ion 
movement across the cell membrane. 

The first two laws concern two processes: diffusion of particles caused 
by concentration differences and drift of ions caused by potential differ-
ences. The third law concerns the relationship between the proportional 
coefficients of the first two processes, the diffusion coefficient D and the 
drift mobility ц. The fourth law states the basic principle of separation 
of charges in biological systems. As we will discuss later in this chap-
ter, these four physical laws are the foundations and basic mathemati-
cal tools for deriving fundamental equations in neurophysiology. These 
include the Nernst-Planck, Nernst, Goldman-Hodgkin-Katz, and Donnan 
equilibrium equations. 

2.2.1 Fick's law for diffusion 

/diff = - Я ^ г , (2.2.1) 

where J is diffusion flux (molecules/sec-cm2); D is the diffusion coeffi-
cient (cm2/sec); and [C] is the concentration of ion (molecules/cm3). The 
negative sign indicates that J flows from high to low concentration. Con-
centrations are used for dilute solutions; otherwise the activity of solutes 
should be used. 

Equation 2.2.1 is Fick's first law. It is an empirical law that states that 
diffusion takes place down the concentration gradient and is everywhere 
directly proportional to the magnitude of that gradient, with proportion-
ality constant D. 
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2.2.2 Ohm's law for drift 

Charged particles (e.g., ions) in a biological system will experience an ad-
ditional force, resulting from the interaction of their electric charges and 
the electric field in the biological environment. The flow of charged par-
ticles in an electric field can be described by 

./drift = delE 

where /drift is the drift flux (molecules/sec-cm2), dei is electrical conduc-
tivity (molecules/V-sec-cm), E is electric field (V/cm) = , V is electric 
potential (V), ц is mobility (cm2/V-sec), z is the valence of the ion (dimen-
sionless), and [C] is the concentration. 

Equation 2.2.2 states that drift of positively charged particles takes 
place down the electric potential gradient and is everywhere directly pro-
portional to the magnitude of that gradient, with the proportionality con-
stant equal to pz[С]. 

2.2.3 The Einstein relation between diffusion and mobility 

Einstein (1905) described diffusion as a random walk process. He demon-
strated that the frictional resistance exerted by the fluid medium is the 
same for drift as it is for diffusion at thermal equilibrium, and diffusion 
coefficient and mobility can be related by 

where к is Boltzmann's constant (1.38 x 10"23 joule/0К), T is absolute 
temperature (°K), and q is the charge of the molecule (C). 

This relationship formally states that diffusion and drift processes in 
the same medium are additive, because the resistances presented by the 
medium to the two processes are the same. This relationship greatly sim-
plifies our quantitative descriptions of ion movement in biological sys-
tems, since ions in living cells usually are influenced by both concentra-
tion and electric potential gradients. 

2.2.4 Space-charge neutrality 

dx' (2.2.2) 

(2.2.3) 

In a given volume, the total charges of cations is approximately equal to 
the total charge of anions, i.e., 
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£ z f e [ C i ] = X ^ [ C / ] , (2.2.4) 
i J 

where zf is the valence of cation species i\ zj is the valence of anion 
species j\ e is the charge of a monovalent ion; and [Q] and [Cj] are 
concentrations of ion species. 

Space-charge neutrality holds for most parts of living bodies. The only 
exception is within the cell membrane due to separation of charges. An 
example of the amount of charge separation to establish a membrane 
voltage is given in example 2.1. 

Example 2.1 
The membrane capacitance of a typical cell is 1 /iF/cm2 (i.e., 10~6 

uncompensated coulombs of charge on each side of the 1 cm2 mem-
brane are needed to produce 1 V across the membrane), and the 
concentration of ions inside and outside of the cell is about 0.5 M. 
Calculate the fraction of uncompensated ions on each side of the 
membrane required to produce 100 mV in a spherical cell with a 
radius of 25 ц т . 
Answer to example 2.1 

Surface area = 47га2 = 4тг(0.0025 cm)2 = 7.85 x 10~5 cm2. 

4 4 Total volume = -тга? = -тт(0.0025 cm)3 = 6.5 x 10"8 cm3. 

Number of ions needed to charge up 1 cm2 membrane to 100 mV: 

q x l cm2 _ С - V x 1 cm2 

П e ~ 1.6 x 10"19 С 
_ 10 - 6 (v4* ) (KHVHcm 2 ) 

1.6x10-1® С - ь х ю • 

Therefore, the number of uncompensated ions needed for the cell 

= 6 x 1011 (cm"2) x 7.85 x 10~5 cm2 = 4.7 x 107. 

Total number of ions in the spherical cell 

= [(0.5 x 6.02 x 1023)/1000 ml] x 6.5 x 10~8 ml = 2 x 1013. 

4 7 x 107 
Fractional uncompensated ions = ^ ^ 13 = 2.35 x 10~5 = 0.00235% 
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From example 2.1, it is obvious that the amount of uncompensated ions 
needed to charge the electric field across the membrane is very small. Even 
for the smallest cells, more than 99.9% of all ions are compensated by ions 
of the opposite charge. 

The principle of space-charge neutrality therefore holds in any volume 
in the biological system except within the plasma membrane, where the 
electric field is nonzero. Another way to express this point is Gauss's law, 
which states that the flux of electric field E through any closed surface 
(i.e., the integral J Eda over the surface) equals 4тг times the total charge 
enclosed by the surface. 

J E • da = 4тг J pdv = 4тгц, 

where E is the electric field, a is the oriented area, p is the charge density, 
v is the volume, and q is the total charge in the enclosed surface. E • da 
is the scalar product of E and da. (For reference, see Purcell 1965.) 

Gauss's law says that the electric field at the surface of a given volume, 
no matter what the shape, as long as it is enclosed by the surface, is 
proportional to the total charge the volume contains. Take a spherical cell 
as an example (figure 2.1). The electric field within the plasma membrane 
(hypothetical surface 1 or HSi) is nonzero, because there are net negative 
charges enclosed in surface 1 (example 2.1). The electric field outside the 
plasma membrane (HS2), on the other hand, is zero, because the negative 
charges inside the membrane are compensated by the positive charges 
outside the membrane; thus the total charge inside surface HS2 is zero. 

Figure 2.1 Schematic diagram of a spherical cell. The two hypothetical spherical sur-
faces (HS\ and HS2, dashed lines) enclose different amounts of electric charges. Accord-
ing to Gauss's law, electric field E is nonzero (pointing inward) at HSi • 

HSi 

E 
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2.3 The Nernst-Planck equation (NPE) 

Under physiological conditions, ion movement across the membrane is 
influenced by both electrical field and concentration gradients. This is 
because ion concentrations inside and outside the cell are different, and 
electric field is nonzero within the plasma membrane due to separation of 
charges across the membrane. The concentration differences of various 
ions are caused by active ion transporters (pumps; this is active distribu-
tion of ions) and by selective permeabilities of ions of the plasma mem-
brane (Donnan equilibrium or passive distribution of ions). Details on ion 
distribution will be discussed in section 2.5. Separation of ions across a 
cell membrane is caused by selective permeability, usually to K+, of the 
cell membrane. This allows K+ ions to diffuse out of the cell, down their 
concentration gradient ([K+]m > [K+]out)» resulting in net negative charges 
inside the cell and positive charges outside the cell. Such charge sepa-
ration results in the electric field across the membrane pointing inward 
while the membrane is at rest. 

The ion flux under the influence of both concentration gradient and 
electric field can be written by combining the diffusion and drift flux, i.e., 

J = /drift + Jdiff 

By using Einstein's relation, we can express the diffusion coefficient in 
terms of mobility, and thus simplify the flux equation. 

• Н ^ Х Ш ) . (2.3.5) q 3 x J 

Equation 2.3.5 is the Nernst-Planck equation (NPE) of the ion flux form 
(J is in molecules/sec-cm2). If one divides J by Avogadro's number, one 
can obtain the NPE of the molar form. NPE in molar form: 

I = т,м _ ~Цг[С]дУ цкТд[С] 
J J / A NA DX NAq DX 

-

Since current is the product of ion flux and the charge it carries, the 
NPE of the current density form can be obtained by multiplying the molar 
flux by the total molar charge, zF. NPE in current density form: 
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I = J • zF = (UZ2F[C]^ + UZRT Э[С] (2.3.7) дх 

where J is expressed in mol/sec-cm2; NA is Avogadro's number (6.02 x 
1023/mol); R is the gas constant (1.98 cal/°K-mol); F is Faraday's con-
stant (96,480 C/mol); и is ц/NA : molar mobility (cm2/V-sec-mol); and I 
is A/cm2. 

The Nernst-Planck equation describes the ionic current flow driven by 
electrochemical potentials (concentration gradient and electric field). The 
negative sign indicates that I flows in the opposite direction as f^ and in 
the opposite (same) direction as if z is positive (negative). This equa-
tion describes the passive behavior of ions in biological systems. Ions flow 
down their concentration gradients and the electric fields. It is the equa-
tion that is most widely used for ion flux in neurophysiology. In later 
sections and chapters, we will apply this equation to many physiologi-
cal conditions. Several fundamental equations describing electric current 
flow across the membrane will be derived from this equation. 

The NPE gives the explicit expression of ionic current in terms of con-
centration and electric potential gradients. If one examines the electric 
current across the cell membrane, it is very important to determine un-
der what condition the net cross-membrane current is zero, i.e., the mem-
brane is at rest. This condition can easily be derived from the NPE by 
setting the total cross-membrane current to zero, i.e., 

2.4 The Nernst equation 

/ = (UZ2F[C]J^ + UZRT Э[С] 
дх ) 

dV = -RT 1 Э[С] 
дх ~ zF [С] дх 
Change variables: 

RT Г*2 d[C] 
zF }Xl [C]dx i dx. 

Therefore, 

V2-V1 = (2.4.8) 
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The membrane potential of a cell is defined 

V m
d = f V i n - V o u t . (2.4.9) 

The equilibrium potential of ion i, defined as the cross-membrane poten-
tial at which membrane current carried by ion i equals zero, is therefore 

ET = VM(II = 0) dif Vin - Vout = ^ In ^ j f f i . (2.4.10) 
z F [CJin 

Equation 2.4.10 is the Nernst equation, which gives an explicit expression 
of the equilibrium potential of an ion species in terms of its concentrations 
inside and outside the membrane. 

Equation 2.4.10 also implies that when the membrane is at the equilib-
rium potential of an ion species, the cross-membrane voltage and concen-
tration gradient exert equal and opposite forces that counter each other. 
Take the K+ ions as an example. [K+]in > [K+]out in most cells, and thus 
K+ ions tend to flow outward (down their concentration gradient). The 
equilibrium potential calculated by the Nernst equation gives a negative 
value (e.g., -75 mV; see table 2.1). This negative Vm(= V[n - Vout) re-
sults in an inward-pointing electric field and thus drives the K+ (positively 
charged) ions to flow inward. The two forces, outward chemical gradient 
and inward electric field, thus cancel each other and result in zero cross-
membrane ionic current. 

It is not difficult to show that at T = 20°С and z = +1, 

Ei = 58 mV log10 
[C]out 
[CJin 

(The detailed derivation is given in the answer to homework problem 2.1.) 
For humans or warm-blooded animals, body temperature is about 37°C. 

ET = 62 mV log10 Lv-Jin 
Table 2.1 illustrates the concentrations and equilibrium potentials (calcu-
lated by using the Nernst equation) of major ions in the frog muscle cells, 
the squid giant axon, and typical mammalian cells. 

Although there are species differences, the concentration distribution 
of the four major ions in most animal cells follows the same general 
rules: [K+]in > [K+]out, [Na+]in < [Na+]out, [Cl"]in < [Cl-]out, and [Ca2+]in < 
[Ca2+]out. According to the Nernst equation, these ion distributions result 
in positive En a and £ca, and negative Ек and Ecu The causes of these 
asymmetrical ion distributions across cell membranes will be discussed 
in the next section. 
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Table 2.1 Ion concentrations and equilibrium potentials 
Inside Outside Equilibrium Potential (NE) 
(mM) (mM) r. _ 521 in ICJiaa £t - zF m rciin 

Frog muscle (Conway 1957) T = 20°C = 293°K 
K+ 124 2.25 58 log = -101 mV 
Na+ 10.4 109 58 log = +59 mV 
Cl" 1.5 77.5 -58 log Щ = -99 mV 
Ca2+ 4.9+ 2.1 29log ^r? = +125 mV 
Squid axon (Hodgkin 1964) 
K+ 400 20 58log ^ = -75 mV 
Na+ 50 440 58log = +55 mV 
Cl" 40-150 560 -58log = -66 - (-33) mV 
Ca2+ 0.4+ 10 29 log = +145 mV 
Typical mammalian cell Г = 37°C = 310°K 
K+ 140 5 62 log j | q = -89.7 mV 
Na+ 5-15 145 62 tog ̂  = = +90.7- (+61.1) mV 
CI" 4 110 -62 log ^ = -89 mV 
Ca2+ 1-2+ 2.5-5 31 log ^ = +136- (+145) mV 
+ (10"4) free 

2.5 Ion distribution and gradient maintenance 

Ions in biological systems are not uniformly distributed. The intracellular 
concentrations of Na+, СГ, and Ca2+ in most animal cells are lower than 
those in the extracellular space, whereas the extracellular K+ concentra-
tion is lower than that inside the cells (see table 2.1). These ionic concen-
tration gradients across the cell membrane constitute the driving forces 
(or chemical potentials) for ionic currents flowing through open channels 
in the membrane. In other words, the ionic concentration gradients act 
like DC batteries for cross-membrane currents: the larger the gradients, 
the stronger the currents. The relationship between cross-membrane cur-
rents and concentration gradients of individual ions will be discussed in 
the next chapter. 

Most biological membranes are, to varying degrees, permeable to small 
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ions like K+ and Cl~. This implies that if there were no maintenance mech-
anisms, the concentrations of these ions inside and outside the cells would 
be the same because ions would flow from the high-concentration side to 
the low-concentration side until there were no driving forces (or concen-
tration gradients). However, all living cells manage to maintain their ionic 
concentration gradients although their membranes are permeable to the 
ions. There are two types of maintenance mechanisms, described in the 
next two sections. 

2.5.1 Active transport of ions 

There are proteins in the plasma membrane of most animal cells that are 
capable of pumping ions from one side of the membrane to the other, 
often against their concentration gradients. The actions of such proteins 
often consume energy, which in some cases comes from the hydrolysis of 
ATP molecules, and in other cases from the chemical potential of other 
ions. It is not the intention of this chapter to discuss ion transport in 
great detail. Instead, the basic properties of major ion transporters are 
briefly summarized below: 

Na+-K+ pump This is probably the most important ion transporter in 
biological membranes. This transporter is driven by the energy derived 
from the hydrolysis of ATP (it is therefore an ATPase). Three Na+ are 
pumped out for every two K+ pumped in, thus the net exchange of ions is 
one cation out per pump turnover. This type of pump is called electrogenic 
(discussed in section 2.7.3.3). The pump can be blocked by cyanide, DNP, 
or ouabain. The Na+-K+ pump is ubiquitous in the plasma membrane 
of virtually all animal cells. It is the primary cause of the Na+ and K+ 

concentration gradients across the plasma membrane: [Na+]out > [Na]m 
and [K+]in > [K+]0Ut. 

Na+-Ca2+ exchanger These drive 3 Na+ inward and 1 Ca2+ outward. 
Since Na+ is driven down its concentration gradient, it provides the energy 
source. Therefore, this pump is not directly driven by ATP but rather by 
the Na+ concentration gradient that is maintained by the ATP-driven Na+-
K+ pumps. The primary function of this exchange is to keep [Ca2+]m low. 

Ca2+ pump This is an ATP-driven pump located in the endoplasmic 
reticulum and plasma membrane. It requires Mg2+ as a cofactor and 
drives Ca2+ into the endoplasmic reticulum and out of the plasma mem-
brane to keep the cytosolic Ca2+ low. 

Bicarbonate-Cl" exchanger This exchanger is driven by Na+ influx, and 
it pumps HCOJ in and СГ out of the plasma membrane. This system is 
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inhibited by SITS and DIDS. Its primary function is to keep [Cl"]in low and 
the intracellular pH high. 

Cl~-Na+-K+ cotransporter This is driven by Na+ influx and transports 
Na+ (inward), K+ (inward), and СГ (inward) in a ratio of 1 : 1 : 2. It can be 
blocked by furosemide and bumetamide. 

All the processes listed above are used by living cells to maintain ionic 
concentration gradients across their plasma membranes. Ions whose con-
centration gradients are maintained by such active (energy-consuming) 
processes are said to be actively distributed. 

2.5.2 Passive distribution of ions and Donnan equilibrium 

As well as by active transporters, ion concentration gradients can be main-
tained by the selective permeabilities of the plasma membrane to various 
ions. As mentioned in previous sections, most membranes at rest are 
permeable to K+ and perhaps СГ but are much less permeable to Na+ 

and Ca2+. Moreover, many impermeant anions, such as SO4" and small 
charged proteins, are found inside cells. These differences in ion per-
meability of the cell membrane, as shown below, can result in ion con-
centration gradients across the cell membrane. Since this type of ion 
distribution requires no energy, it is called passive distribution. 

If a cell membrane is permeable to several ion species, and if no active 
transport is present for these ions, the ions are said to be passively dis-
tributed and the membrane potential of this cell should be equal to the 
equilibrium potential (determined by Nernst equation) of each of these 
ions, i.e., 

for all permeable ions. 
Let C+m = cation of valence m\ A~n = anion of valence n. Then 

This is the Donnan rule of equilibrium. 
Taking the example of the frog muscle, where K+ and Cl~ are the two 

permeable ions at rest, then at Donnan equilibrium, 

(2.5.11) 

[ K + W _ [Cl-]in 
[K+]in [Cl-W* 

(2.5.12) 
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In most cells, there are a sizable number of negatively charged molecules 
(A", proteins, etc.) in the cytoplasm that are not permeant to the mem-
brane, and because of space-charge neutrality, 

[K+]in = [CT]ta + [A"]inand[K+]0Ut = [Cl-]out. 

These relations plus the Donnan rule for K+ and CI" yield 

[K+]in
2 = [K+]0W

2
 + [A-] in[K+] in. 

Therefore, 

[K+]in > [K+]0Ut and [Cl-]out > [Cl"]in. 
These results indicate that even without active transporters, the con-

centration of K+ inside is higher than that outside of the cell, and the 
opposite is true for Cl~. These distributions agree qualitatively with the 
direction of concentration gradients of K+ and Cl~ in most animal cells 
(see table 2.1). The origin of these ion distribution differences is the exis-
tence of intracellular impermeable anions. These anions attract more K+ 

into the cell and expel more CI" out of the cell, in accordance with the 
principles of space-charge neutrality. 

In conclusion, the concentration gradients across the membrane of an-
imal cells are maintained by two processes. In some cells, active trans-
porters are abundant and thus ions are mainly distributed actively across 
the membrane. In other cells, where fewer transporters exist, passive 
distribution may take a substantial role in maintaining concentration gra-
dients across the cell membrane. 

Example 2.2 
Consider a hypothetical two-compartment system separated by a mem-
brane permeable to K+ and CI", but not to A"". No active pump is in-
volved. 

I П 
A" 100 0 
K+ 150 150 (in mM) 
c r 50 150 

a. Is the system in electrochemical equilibrium (ЕСЕ)? 
b. If not, in what direction will each ion move? What are the final 

equilibrium levels each ion will reach in I and П? 
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Answer to example 2.2 

a. Each compartment is in space-charge neutrality 

I : 100 + 50 = 150, 
II: 150 = 150, 

but CI" is obviously not in ECE; CI" tends to diffuse from П to I. 

b. Diffusion tends to move 50 mM of СГ from П to I, but then space-
charge neutrality will be violated. 

1: 100 + 50 + 50 > 150, 
II: 100 < 150. 

Therefore, 50 mM K+ tends to move with СГ from П to I. How-
ever, this will result in imbalance of K+ concentration, and K+ will 
diffuse back from I to П, etc. A simple way to calculate the final 
ECE of this system is to use the Donnan rule: 

[K+]/ _ [Cl~];j 
[K+] / j [ С Г ] / ' 

In order to satisfy space-charge neutrality, equal amounts of K+ 

and CI" must be moved from compartment П to I. 
Let X be the amount of KC1 that must be moved from П to I to 
achieve ECE. Then 

150 + X = 150 - X 
150 - X ~ 50 + X ' 

Solving this equation yields X = 30, so 30 mM of K+ and 30 mM 
of CI" will flow from П to I to achieve electrochemical equilibrium. 
Thus, 

I II 
A- 100 0 
K+ 180 120 (in mM) 
c r 80 120 

V J 
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Answer to example 2.2 (continued) 
To double-check: 

1. Space-charge neutrality: 
I : 100 + 80 = 180. 

II: 120 = 120. 

2. ECE: K = l i = = Ж = ^ ~ V " = -SSlogl.S = 
-10.2 mV. However, the system is in osmotic imbalance: total 
ionic strength in I = 100 + 180 + 80 = 360 > that in II = 120 + 
120 = 240. Thus, water will flow from П to I. 

V J 

2.6 Effects of СГ and K+ on membrane voltage 

In the previous section, we discussed the passive distribution of ions un-
der equilibrium conditions (Donnan equilibrium). We will now describe 
the behavior of membrane potential in response to sudden changes of 
extracellular СГ and K+, the two permeable ions of the cell (nonequilib-
rium conditions). Hodgkin and Horowicz (1959) investigated this problem 
extensively by using the isolated frog muscle fibers. Extracellular concen-
trations of СГ (solid trace at top of figure 2.2) or K+ (dashed trace in fig-
ure 2.2) were abruptly changed [Cl"]0ut : 120 mM - 30 mM;or [K+]out : 
2.5 mM — 10 mM. 

The membrane potential of the muscle in response to these changes is 
shown in the lower portion of figure 2.2. The potential changes at seven 
different instances (a-g) are explained as follows for CI". 

(a) At rest, the cell is permeable to K+ and СГ; thus Vm = Ек = Eci = 
-98.5 mV. (b) When [Cl"]out suddenly drops from 120 to 30 mM, ECi 
becomes -58log Ц = -63.5 mV, but EK is still -98.5 mV. Vm depo-
larizes to a value in between (-77 mV). (c) However, (b) is not at ECE 
since ^ ^ = M = ° - 0 2 ф Щ = rcrw • T h u s ' c l~ a n d K + d i f f u s e o u t 

of the muscle cell until a new Donnan equilibrium is reached: [K+]tn x 
[CHin = [K+]out X [criout = 2.5 x 30 = 75. Because [K+]in » [С1"]ш 
and some H2O flows out to maintain osmotic balance, [K+]in is practically 
unchanged, (d) [Cr] in at (d) « | [ C r ] i n at (a) = \(2A mM) = 0.6 mM, 
because [K+]0UtX [Cl"]0ut at (a) = 2.5 x 120 = 300 = 4x [К+]шх [Cl"]in 
at (d), and therefore ECi = -58log ^ = -98.5 mV = +58logЩ = 
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Figure 2.2 Effects of sudden reduction of extracellular СГ (solid traces) or sudden 
elevation of extracellular K+ (dashed traces) on the membrane potential of the isolated 
frog muscle. (Adapted from Hodgkin and Horowicz 1959.) 

EK. Therefore, Vm = -98.5 mV. (e) When [Cl-]out returns from 30 mM 
to 120 mM, Eci = -58 log ^ = -134 mV, and EK is still at -98.5 mV, so 
Vm hyperpolarizes (overshoot) to a value in between (-112 mV). (f) The 
system again is not in ECE ( ^ j j f - * | cFw)» ^ ^ ® w h e n c l~ a n d K + 

(+ H2O) flow in (space-charge neutrality) to achieve = M = M = 

which is the same as (a). 
Similarly, in response to the change of extracellular K+, the membrane 

potential changes can be described as follows, (a) At rest, the cell is perme-
able to K+ and CI", Vm=EK= ECi = -98.5 mV. (b) When [K+ ]out increases 
from 2.5 to 10 mM, EK = 5 8 1 o g ^ = -59 mV, ECi still = -98.5 mV. 
Vm depolarizes to a value (-73 mV) in between, (c) K+, CI", and H2O 
flow into the cell and move Vm from -73 to -65 mV. (d) Both [K+]m 
and [Cl-]in are increased. -65 mV= 58log ^ = -58log There-
fore, [K+]in « 132, [С1-]ш » 9 mM. (e) At return to [K+]out = 2.5 mM, 
EK = 48 log « -100 mV, but the instantaneous jump at (e) is very 
small as the K+ channel conductance is voltage-dependent (smaller at de-
polarized voltages); and (f) and (g) K+, CI", and H2O slowly move out of 
the cell; the ionic concentrations and Vm return to condition (a). 
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2.7 Movement of ions across biological membranes 

In the previous section, we described the principles of ion movement in 
biological systems. We derived the Nernst-Planck equations, which dealt 
with ion movement under the influences of chemical potential and electric 
field. In this section, we shall employ the Nernst-Planck formulation and 
use it to study the behavior of ion movement within and across biological 
membranes. 

Biological membranes consist of lipid bilayers with protein molecules 
anchored from either side or, often, anchored through the whole thick-
ness of the membrane. Some of the cross-membrane proteins form pores, 
or channels, that allow ions to flow through and result in cross-membrane 
currents. Properties of ion channels are one of the most important topics 
of modern physiology, and we will spend a great deal of time discussing 
them in later chapters. In this section, we shall take a classical view of ion 
flux across the membrane. This view does not address individual ion chan-
nels in the membrane; rather, it makes several assumptions and provides 
a simplified description of the behavior of the whole membrane. This 
classical view of electrodiffusion across biological membranes was first 
formulated by Goldman (1943) and subsequently developed by Hodgkin 
and Katz (1949). It is therefore called the Goldman-Hodgkin-Katz model, 
and because the model assumes constant electric field in the membrane, 
it is also named the constant field model. 

2.7.1 Membrane permeability 

Before we describe the constant field model, we must introduce a very 
important term, the membrane permeability P. P is defined empirically 
by 

J = - Р Д [ С], (2.7.13) 

where J is molar flux (mol/cm2-sec), and P is membrane permeability to 
ion i (cm/sec). From section 2.2, 

Within the membrane, if one assumes that [C] drops linearly with re-
spect to x, ^ ^ can be written as ^ p • /J, where /? is the water-membrane 
partition coefficient for ion i (dimensionless), and I is the thickness (cm) 
of the membrane (see figure 2.3). 
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Figure 2.3 Concentration profile of ions through a membrane. The ordinate represents 
concentration C, and the abscissa represents distance. J is the ionic flux and fi is the 
water-membrane partition coefficient. 

d[ C] A[C]0 
dx I 

D = D*. 

Then 
A[C]D*0 

J = -
Thus, 

D*fi 

I (2.7.14) 

P = I 
D* is the diffusion coefficient for ion i within the membrane (cm2/sec). 

Hence, permeability P is governed by the solubility and diffusion coef-
ficient of ion i in the membrane. By the Einstein relation, 

D* = — и* = U ^ (molar form). q F 
Thus, 

pu*RT 
IF ' 

where u* is the molar mobility of ion i within the membrane (cm2/V-
sec-mol). Equation 2.7.15 illustrates that the membrane permeability to 
a given ion species is proportional to the mobility of the ion in the mem-
brane (u*), the absolute temperature (T), and the relative solubility of the 
ion in the aqueous and membrane phases (ft). It is inversely proportional 
to the thickness of the membrane. 

P = (2.7.15) 
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2.7.2 The Goldman-Hodgkin-Katz (GHK) model 

The Nernst-Planck equation derived in the last section describes ion cur-
rent flow in aqueous media. When ions flow across the membrane, they 
pass through cross-membrane protein molecules that form aqueous pores 
that connect the interior (cytoplasm) and the exterior of the cell. In gen-
eral, ions flowing through open channels may or may not obey the Nernst-
Planck equation (NPE). In the case of simple aqueous pores, ions move 
down their electrochemical gradients and can be described approximately 
by the NPE. In the case where complex energy barriers or blocking sites 
are involved within a channel, NPE fails. In this section, we consider the 
case where NPE holds within the membrane, and the electric field within 
the membrane is constant. This model is called the Goldman-Hodgkin-
Katz (GHK) constant field model and has been widely used to describe 
the ionic current flow across the cell membrane. As described later in 
this book, this model can be used to describe certain electrical proper-
ties of excitable membranes and certain ionic currents. But it falls short 
in describing other membrane properties because they do not follow the 
constant field assumption or the NPE. There are three basic assumptions 
for the GHK constant field model: (1) Ion movement within the membrane 
obeys the Nernst-Planck equation; (2) ions move across the membrane in-
dependently (without interacting with each other); and (3) the electric field 
E in the membrane is constant (i.e., the electric potential drops linearly 
across the membrane; E = = - j ) . 

Based on the first assumption, the ionic current across the membrane 
can be described by the NPE: 

-г— = —, based on assumption 3. dx I 

Recall that the negative sign indicates that I flows in the opposite di-
rection as g j . Now I is defined to be positive when flowing from "in" to 
"out"; thus the first term is positive and the second term is negative (see 
figure 2.4). Therefore, 

/ = (u*z2F[C] 

dV V 

I = u*z2F[C]t " u*zRT^p-. i ax (2.7.16) 
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in membrane out 

Figure 2.4 Concentration and electrical potential profiles of a membrane for the con-
stant field model. The ordinate represents concentration С (upper portion) and electrical 
potential V (lower portion). The abscissa represents distance. J is the ionic flux. P is the 
water-membrane partition coefficient and Ё is the electric field. 

. U*Z2F[C]V Let у = I - . 

Then 
dy = dl u*z2FVd[ C] 
dx dx I dx ' 

and 

^ = 0 because I is in steady state. 

Substituting equation 2.7.16 into the above equation yields 

I dx I zFV dx 

fx=l R T l f y ^ d y ,_RTl I - C]out 

LodX zFV Jy(cx=o) У I - [c]in 
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Note : [C]x=o = 0[C]in, [С]х=г = 0[C]out. Therefore, 

U*Z2FV $ 
I 

-zFV [Clouted - [C] in 
zzFV 

E RT - 1 

= P z n ( | с ы у | ( 2 7 1 7 ) 

(Recall that P = [equation 2.7.15], and define § d= IF RT 
Equation 2.7.17 is called the GHK current equation, which gives the current-
voltage relation (I-V relation) of the membrane or ionic current. 

Because of the assumption of independence (assumption 2), this equa-
tion can be split into two expressions representing the independent, uni-
directional flux: 

efflux : /out = PzFg (2.7.18) 

and 

influx: /in = - P z F g [ ^ ] o u t g / . (2.7.19) 
1 -

Note that the GHK current equation predicts that the membrane current 
(either total or unidirectional) is a nonlinear function of membrane po-
tential (figure 2.5). The current-voltage relation depends on the ratio, 
[C]out/[C]in. As J g p = 1, / = FzFlVClout = P z 2 f f i W , the I-V re-
lation is linear. When ^ ^ < 1, I-V shows outward rectification (slope 
increases with membrane voltages). When ^ ^ > 1, I-V shows inward 
rectification (slope decreases with membrane voltages). The intersecting 
points of these I-V curves with the abscissa (V-axis) are the equilibrium 
potentials of the ion at each concentration ratio: They follow the values 
calculated from the Nernst equation. This is because the Nernst equa-
tion is derived under the condition that the net cross-membrane current 
equals zero (see section 2.4). 

Figure 2.6 shows that, according to the assumption of independence, 
total current can be represented as the sum of inward and outward cur-
rents. 

The GHK current equation gives the I-V relation of ion permeation 
across the membrane under the assumptions stated above. If we know 
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200 

Figure 2.5 Current-voltage relations given by equation 2.7.17 (GHK current equation) 
for various values of [C]0ut/[C]m (indicated by small numbers near each curve). 

the major permeant ions for a cell, under the assumption of no electro-
genic pump, the resting potential of the cells can be calculated by setting 
the total current across the membrane equal to zero. 

For a cell that is permeable to K+, Na+, and Cl~ ions, 

/ = IK+INa + Ici 
p ^ K + ] t o - [ K + ] 0 U t g - S [Na+]m - [ N a + W " * = PKZF$ — — r + PNCLZFS — 

+PcizF% 

= PKZFI 

l - e - 5 
[ c r i i n - t c r w H 

l - e - 5 

l - e - 5 
у -

l - e - 5 1 (2.7.20) 

where 

У = [K+]in + ^ [ N a + ] i n + ^ [ C H o u t , 
PK PK 

w = [K+]out + ^ [ N a + ] 0 U t + ^ [ C l - ] i n . 
PK PK 

At steady state I = 0, then у - = 0. 

5 = w = PKI K+]out + PNA Na+]out + fq[Cl" ]in 
У PKIK+]IN + IWNA+]IN + PCDCTUT ' 
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Figure 2.6 Unidirectional current-voltage relations given by Equations 2.7.18 and 2.7.19 
for [C]0ut/[C]in = 5. The solid curve is the outward current and the dashed curve is the 
inward current. The dotted curve is the total current. 

Therefore, 

_ RT PjdK+W + jWNa + ] 0 U t +Pa[Cl"]in (2 721) 
F Рк[К+]щ + PNa[Na+]in + Pel[СГlout ' 

Equation 2.7.21 is the GHK voltage equation, which describes the steady-
state membrane potential (the resting potential) of a cell. 

The GHK equations give explicit relations between J, V, and [C] and 
between Vrest, P. and [С]. These are important measurable parameters; 
thus, GHK equations have been very powerful and commonly used tools 
for analyzing excitable membranes. 

2.7.3 Applications of GHK equations 

Although the GHK equations are derived from simple assumptions in the 
constant field model, they can be used to describe a wide range of mem-
brane behavior. A number of important membrane properties agree with 
the GHK equations reasonably well. A few examples are given below. 

2.7.3.1 Resting potential Take the squid giant axon as an example. At 
rest, the ratio of permeabilities РК : PNU : PEL = 1 ' 0.03 : 0.1, from the 
GHK voltage equation of the membrane to K+, Na+, and CI": 

v с я w НЮ)+ 0-03(460)+ (0.1)40 
Vrest = 5 8 1 ° g 1(400) + 0.03(50) + 0.1(540) = " 7 ° m V ' 
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Figure 2.7 The effects of extracellular K+ concentration on the membrane potential. The 
solid curve is given by the GHK voltage equations for K+, Na+, and СГ, and the dashed 
line is given by the Nernst equation for K+. 

This gives reasonable agreement with experimental results. Addition-
ally, if one varies the external K+ concentration ([K+]out), the resting po-
tential follows the predictions of the GHK voltage equation very well (solid 
curve in figure 2.7). 

As [K+]out increases, 

v _ RT. PK[K+]out + l W N a + ] o u t + PcdCl'lin 
est F Ш PK[K+]in + PNANa+]in + Pci tCTW 

depends more on K+, so 

V̂ rest 
RT PK[K+]OUT 

F PK[ K+] i n 

= 58 mVlog [K+]out 
[K+]in ' 

which is the Nernst equation (dashed line in figure 2.7). Therefore, at high 
[K+]0ut, the solid curve and dashed line approach each other. 

But at normal [K+]out concentration, [K+]out = 10 mM, and K+ only con-
tributes about one-third of the resting potential. Thus, the GHK voltage 
equation must be used to describe the resting potential. 
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2.7.3.2 Action potential During the action potential Рк : Рыа - Pel 
changes from 1: 0.03 : 0.1 to 1:15 : 0.1, so 

r o l 1(10)+ 15(460)+0.1(40) ^ 
= 5 8 1 ° g 1(400)+ 15(50)+ 0.1(540) = + 4 4 m V" 

2.7.3.3 Effects of electrogenic pumps on membrane potential By us-
ing the GHK voltage equation, we can estimate, for example, the contribu-
tion of the Na+-K+ pump on the membrane potential. This is illustrated 
in the following example. 

Example 2.3 
h : passive current 
IP : current generated by pump 
r : the number of Na+ pumped out for each K+ pumped in 

At steady state, /totai = h+Ip = 0. Therefore, 
IN a + Inclp = 0 

IK +1KP = 0 
ПКР + INUP = 0 

= rIK + INa = 0. 

Use the GHK current equation: 

Y^TF [ГРК ([K+]in - [K+]0Ute-§) + PNU ([Na+]in - [Na+]out<r§)] = 0. 

Therefore, 

V _RT, rPK[K+]out + Pjva[Na+]oUt 

F rPjctK+lm + PATatNa+ljn ' 
As mentioned earlier, r for Na+-K+ pump is 1.5 (3 Na+ out for 2 K+ in). 
Then for squid axon at rest, 
__p _Q1 1 . 5 x 1 x 1 0 + 0.03x440 QQ 

" 5 8 l 0 g 1.5X 1X400 + 0.03X50 = ~ 8 8 m V -
If no pump, or electrically neutral pump, r = 1. Then, 

c o l 1 x 10 + 0.03 x 440 0 0 „ 
- 5 8 l 0 g 1 x 400 + 0.03 x 50 - " 8 2 m V -

Therefore, Vm (Na+-K+ pump) - Vm (neutral pump) = - 8 8 - (-82) = 
- 6 mV. The Na+-K+ pump contributes about - 6 mV (7%) of the resting 
potential of the squid axon. In some mammalian cells, the contribution 
can be 15% of the resting potential. 
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2.8 Review of important concepts 

1. Electric signals in excitable cells are carried by dissociated Na+, K+, 
Cl~, and Ca2+ ions. Movement of ions is dictated by four physical 
laws: Fick's law of diffusion, Ohm's law of charge drift, Einstein's 
relation between diffusion and mobility, and the principle of space-
charge neutrality. 

2. Ion flux (or current) in biological systems can be described by the 
Nernst-Planck equation. The equilibrium potential of an ion species 
across the cell membrane can be expressed in terms of the ratio of 
ion concentrations inside and outside the cell (Nernst equation). 

3. Ionic concentration gradients across the cell membrane are main-
tained by two processes: active distribution (by active transporters) 
and passive distribution (by Donnan's rule of equilibrium). 

4. For membranes where the constant field (Goldman-Hodgkin-Katz) 
assumptions hold, the membrane current can be described by the 
GHK current equation, and the membrane voltage can be described 
by the GHK voltage equation. 

2.9 Homework problems 

1. In this chapter we derived the Nernst equation. Show that 

RT Ь ^ = 5 8 ( M V ) LQGIO ЩР, WHEN T = 20,C> 

Г L^Jin LCJin 

where 
R = ideal gas constant = 1.98 calCK)-1 • mol"1, 
F = Faraday constant = 96,000 C-mol"1. 
Hint: 1 cal = 4.2 joules; 1 V = 1 joule/C. 

2. In this chapter, we mentioned that the space-charge neutrality is a 
very good approximation in excitable cells because very few uncom-
pensated changes are needed to produce large electrical potentials 
across the membrane. If the membrane capacitance is 1 ц¥/ст2 

(i.e., 10~6 uncompensated coulombs of charge on each side of the 
1 cm2 membrane are needed to produce 1 V across the membrane), 
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and the concentrations of ions inside and outside the cell are about 
0.1 M, calculate the fraction of uncompensated ions on each side of 
the membrane required to produce 100 mV 

(a) across a 1 cm2 patch of membrane (fraction of 1 cm3 cyto-
plasm); 

(b) in a spherical cell (10 цт radius); and 
(c) in a cylindrical cell (1 цт radius, 100 цт long). 

3. A membrane is permeable to H2O, K+, and СГ but is not permeable 
to a large organic ion R+. The initial concentrations of RC1 and KC1 
on the two sides of the membrane are given: 

membrane 

RC1 150 mM 
KC1 150 mM 

KC1 300 mM 

(a) What are the final concentrations of R+, K+, and Cl~ on each 
side of the membrane at equilibrium? 

(b) What is Vm at equilibrium? 
(c) Will there be any osmotic pressure? If so, in which direction? 

4. Using the radioisotope tracers, the ion fluxes were measured from 
isolated frog muscle fibers. Results are shown as 

(IN) (OUT) 
[Na+]in = 9.2 mM ^ [Na+]out = 120 mM 

• C - 3 . 5 

[K+] i n=140mM [K+]out = 2.5 mM 
Л-5.4 

at Vm = -90 mV. 
All fluxes were measured in steady state, and they are in 10~12 mol-
cm~2-sec_1. 
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(a) Calculate PK and Рма from the above data. 
(b) What is the resting potential of this cell if the membrane is 

permeable to K+, Na+, and Cl~, and СГ is passively distributed 
across the membrane? 

(c) Repeat (b) for Рк/Рма = 0 and for Pk/PNU = 1-

5. The unicellular organism Paramecium caudatum shows a resting po-
tential (RP) and an action potential (AP) that are similar in many re-
spects to corresponding neural potentials. With the cell in "typical 
pond water," the following measurements were made with an intra-
cellular electrode: 

time (msec) 

If one varies [K+]out only, or [Ca2+]out only, one observes the follow-
ing: 

In the following questions, assume that the membrane of P. cauda-
tum is normally permeable only to K+, Ca2+, and water. 

(a) In the resting state, which of these is true? Explain concisely, 
i- PK > Pea 

ii. PK = Pca 
in. PK < Pea 



36 Chapter 2. Ion Movement in Excitable Cells 

(b) Which is true during the peak of the AP? Explain concisely. 
(c) Compared to the ionic concentrations of "typical pond water," 

is [K+]m greater than, equal to, or less than [K+]out? Explain. 
(d) Compare also [Ca2+]in with [Ca2+]out-
(e) When the posterior end of the organism is mechanically tapped, 

the membrane transiently hyperpolarizes. What permeability 
change(s) might be responsible? Explain. 

6. (a) Briefly state the assumptions for the constant field model. 
(b) Sketch approximately the I-V relations predicted by the con-

stant field model for various ratios of intracellular and extra-
cellular ion concentrations, i.e., when ^ ^ = 0, 0.1, 1, 30, or 
00. 

(c) Using the data provided in the figure below, calculate the ratio 
of PNJPK that predicts the resting potential as a function of 
[K+]out for the Myxicola neuron. Note: [Na + ] o u t = 430 mM, 
[Na+]in = 12 mM, [K+]in = 270 mM, and PC\ = 0. 

[K+]out (mM) 

7. The ionic concentrations inside and outside of a neuron are given 
below: 

Inside (mM) Outside (mM) 
168 6 

Na+ 50 337 
СГ 41 340 

(a) In the presence of K+ and Na+ channel blockers, the neuron is 
permeable only to Cl~. If Cl~ movement across the cell mem-
brane obeys the assumptions of the constant field model, sketch 
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the current-voltage relation of this neuron. Label the axes and 
mark the intersecting point (with appropriate value and unit) 
of this relation with the voltage axis (i.e., when I = 0). Is this 
relation inward rectified or outward rectified? What causes this 
rectification? 

(b) In the absence of K+ and Na+ channel blockers, the neuron is 
permeable to all three ions and the permeability ratio is PK : 
PNA : PCI = 1 : 0.019 : 0.381. What is the membrane potential 
of the neurons under this condition? 

8. The intracellular and extracellular concentrations of K+, Na+, and 
CI" and anion A" of a neuron are given below: 

The plasma membrane of the neuron is permeable to K+ and Cl~ but 
not to Na+ and A". 

(a) Is the neuron in electrochemical equilibrium (ЕСЕ)? Is the prin-
ciple of space-charge neutrality obeyed? 

(b) In what direction will each ion move if the neuron is not in 
ECE? What are the final equilibrium intracellular and extracel-
lular concentrations of each of the four ions listed above? 

(c) What are the values of the final equilibrium potentials of K+, 
Na+, and CI"? What is the resting potential of this neuron? 

9. A large dissociated neuron (with [K+]m = 150 mM, [Na+]in = 10 mM, 
[Cl"]in = 50 mM, anions [A-]in = 110 mM, [Ca2+]in = 10"4 mM) is 
placed in a chamber containing a small volume (about the same vol-
ume as that of the neuron) of culture medium (which consists of 
150 mM K+, 90 mM Na+, 250 mM CI", and 5 mM Ca2+. The perme-
ability ratio of the plasma membrane of the neuron at rest is P* : 
PNa : P c i : Рл : P e a = 1 : 0 : 1 : 0 : 0 . 

(a) Is the neuron in electrochemical equilibrium (ECE) immediately 
after it is placed in the culture medium? Explain concisely. 

Inside (mM) Outside (mM) 
K+ 

Na+ 

Cl" 
A" 

150 
10 
50 

110 

150 
100 
250 

• 0 
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What are the final equilibrium intracellular and extracellular 
concentrations of K+, Na+, Cl~, A", and Ca2+? What is the 
resting potential of this neuron in the culture medium after 
reaching equilibrium? 

(b) After reaching equilibrium, immediately after the onset of a 
sustained stimulus, PK : РыаРсГ- PA : Pea = 1 :10 : 1 : 0 : 0. 
Two seconds after the stimulus onset, РК : РЫА • PEL' PA ' PEA 
= 1 : 1 0 : 1 0 : 0 : 0 . Draw the voltage response of this neuron to 
the sustained stimulus (> 5 sec). Label the membrane voltage at 
rest, immediately after the stimulus onset, and at steady state 
with appropriate values and units. 



3 Electrical Properties of the Excitable 
Membrane 

U.1 Equivalent circuit representation 

Biological membranes exhibit properties similar to those in electric cir-
cuits. It is customary in membrane physiology to describe the electrical 
behavior of biological membranes in terms of electric circuits. The equiv-
alent electric circuit of a typical biological membrane is given in figure 3.1. 
The membrane capacitance represents the membrane dielectric property 
as a whole (mainly from the lipid bilayer), and it is independent of local 
variations of permeation channels. The capacitance per square centimeter 
(specific membrane capacitance) remains quite constant in most neurons, 
with a value very close to 1 jL/F/cm2. The membrane resistance (or its recip-
rocal, membrane conductance) represents ion permeation through cross-
membrane protein molecules (or channels). Unlike membrane capaci-
tance, membrane conductances (or resistances) in excitable cells are often 
highly dependent on cross-membrane voltage and time. The voltage- and 
time-dependent changes in membrane conductance are the primary con-
trollers of the electrical signals in excitable cells; we will focus mainly on 
membrane (or ionic) conductances in this and later chapters. 

From the equivalent circuit representation (figure 3.1) and Kirchhoff's 
laws, one can write the differential equation for the total current flow-
ing across a patch of membrane, Im , which is the sum of the capacitive 
current, Ic, and the ionic current, flowing through the channels. The 
driving force of h is Vm - Er, and the resistance of the channels is Rm. 

т 1 л. т r dv™ • (Vm-Er) lm = lc + 4 = — + ctt Rm 
dV™ 

= C m - ^ + G m ( V m - E r ) . (3.1.1) 

where Vm is the membrane potential; Im is the total membrane current 
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Biological membrane Equivalent circuit representation 

JJn 

i i i f l 
Ш Ш Т 

J* 
Figure 3.1 Equivalent circuit representation of the biological membrane. Parameters 
are given in the text. 

(A/cm2); Cm is the specific membrane capacitance (F/cm2); Rm is the spe-
cific membrane resistance (Q-cm2); Gm is the specific membrane conduc-
tance (S/cm2) = and Er is the resting potential of the cell. If a single "И1 
ion were responsible for then Er would be replaced with the equilibrium 
potential or Nernst potential, Ei of ion i. 

The ionic current in equation 3.1.1 is given as the product of total mem-
brane conductance Gm and its driving force (Vm -Er). As we will describe 
later, ionic currents of a cell can usually be broken down into individual 
ion species, i.e., h = + Ik + lei + • • • +- Each ion species carries a 
current that can be written as the product of the conductance to that ion 
and the difference between the membrane potential and the equilibrium 
potential, e.g., INa = дма(Ут - ENa). 

The driving force is a useful concept that will be used often throughout 
this book. It is the difference between the actual membrane potential (at 
some point in time) and the reversal potential for the current. For the 
case illustrated in figure 3.1 and equation 3.1.1 in which the ionic current 
is driven by the resting potential, the reversal potential (Vrev) is equal to 
the resting potential, £ r , and is simply the value of membrane potential 
at which the current reverses polarity or 

If the current is carried by a single ion, then Vrev in Equation 3.1.2 
becomes the equilibrium potential for that particular ion (Ei). A large 
driving force means a large difference between the membrane potential 
and the energy source (e.g., Ei) driving the ion through the membrane. If 
instead the current is being carried by several ions, then Vrev will be the 
reversal potential of the net current. The concept of a reversal potential is 

(Vm-Er) = (Vm-Vrev). (3.1.2) 
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also used for synaptic potentials and will be discussed again in chapters 
4 and 13. 

The equivalent circuit representation is another important concept that 
will be used frequently in this book. The reader is encouraged to consult 
with appendix A for a review of circuit theory if the principles governing 
current flow in electrical circuits are not familiar. 

3.2 Membrane conductance 

Membrane conductance, Gw, is the reciprocal of membrane resistance 
(Gm = Gm is the sum of all ionic conductances in the cell mem-
brane. In excitable cells, there are many types of ion conductances (ion 
channels). Some of them open when the cell is at rest, and others open 
when the cell is excited. Ionic conductances may stay constant with re-
spect to changes in membrane potential, or they may vary with membrane 
voltage. Ion conductances can be activated by transmembrane voltage 
and by extracellular or intracellular ligands. The activation can be abrupt 
(nearly instantaneous), or it can be slow (time dependent). In view of the 
complexity of ionic conductances in excitable membranes, it is useful to 
define membrane and ionic conductances systematically. The convention 
used in this section follows that used by Jack, Noble, and Tsien (1975). 

3.2.1 Linear membrane 

A linear membrane is one that exhibits a linear relation between mem-
brane ionic current J* and the transmembrane potential (I-V relation is 
always a straight line): 

Ii = Gm(Vm-Ei), 

where Gm is a constant. Two additional definitions need to be introduced 
here: (1) membrane chord conductance = Gw = v

 71F.; and (2) membrane "m 
slope conductance = 

For linear membranes, chord conductance is always equal to the slope 
conductance: 

Gm = h = dIi 
m Vm-Ei dVm' 

It is worthwhile to note that there is no uniform convention in neuro-
physiology for the usage of symbols for membrane or ionic conductances 
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(refer also to chapter 4 and appendix A for discussion of conventions for 
symbols). Some authors use capital letter G, whereas others use small 
letter g. In this book, we use Gm as the membrane conductance and gt (i 
can be Na+, K+, СГ, Ca2+, or leak) as ionic conductances. ^ is used as 
slope conductance. 

3.2.2 Nonlinear membrane 

A nonlinear membrane is one that shows a nonlinear relationship be-
tween membrane ionic current and the transmembrane potential, and/or 
its membrane conductance varies with time. 

Case I Nonlinear membrane; U is a nonlinear function of Vm: 

h 

chord conductance 

slope conductance 

An example is given in figure 3.2. 

Figure 3.2 Chord and slope conductance of a current voltage relation (solid thick curve) 
at various points (A-D). ER : membrane resting potential. Slope of the solid arrows: slope 
conductance. Slope of the dashed lines: chord conductance. (Adapted from Jack et al. 
1975.) 

= F(V), 
F(V) 

(V-ErY 

dV K } 
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At various points, the chord and slope conductances can be listed below: 

chord (Gm) s loped 
A + + 
В + -

С - -

D - + 

Here we can see the difference between the chord and slope conduc-
tances of a membrane: Chord conductance provides a measure of the 
value of ionic current at any given potential, whereas slope conductance 
determines the response to small variations in voltage or current about 
any given point. 

The definition of chord conductance is ambiguous for the case shown in 
figure 3.2: Er may be chosen for any of the three intersecting points with 
the abscissa, and thus the values of chord conductance will be different. 
This ambiguity will be overcome when the I-V relations of individual ions 
are considered (the above I-V relation is for more than one ionic current.) 

Case П Nonlinear membrane; J* is a function of both Vm and t: It = 
f(V,t). 

In cases where h varies with both Vm and time, such as the voltage-
clamp record shown in figure 3.3, membrane ionic currents are usually 
analyzed in the following way. The time dependence of the membrane 
current is measured only at two selected instances: immediately after the 
onset of membrane potential change (instantaneous current, marked with 
* in figure 3.3); and after the current reaches steady-state value (steady-
state current, marked with oo in figure 3.3). These two measurements 
of time are taken before (*) and after (oo) the time-varying current takes 
place, and therefore the currents measured at these two instances do not 
vary with time. In this way, /* and 100 become single variable functions 
(functions only of Vm, but not t), and this simplifies the analysis a great 
deal. Employing this approach, nonlinear membranes whose / varies with 
both Vm and t are characterized in the following components. 

Instantaneous conductance This is achieved by changing V very quickly, 
which does not allow enough time for the time-dependent process to oc-
cur. 

/f = / (V , t* ) , 

where t* is short enough to be considered a constant. This makes If a 
function of V only, and thus, 
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~i 
5 

time (msec) 

I 
10 

l 
15 

Figure 3.3 Membrane current (I) recorded under voltage-clamp conditions to voltage 
steps (V). * indicates the instantaneous current, and oo indicates the steady-state current. 

/* f(V t*) G^ = 1 = iLrr~L^~ instantaneous chord conductance; V — hy V — hy 

dl* 

• jy = / ' (V, t *) instantaneous slope conductance; 

and 
A* = f(V, t*) instantaneous current-voltage relation. 

Steady-state conductance This can be achieved by allowing V to be held 
long enough for steady-state current to be developed: = / (V, t = oo). 
This again makes h not a function of time, but a function only of voltage. 

j00 f {V OO) 

Gmoo = T/
 1 ^ = T7 ' steady-state chord conductance; V — Er V — Er 

dl~ 
-ГГГ = f (V, oo) steady-state slope conductance; aV 
and 

I™ = steady-state current-voltage relation. 
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s : N 

Example 3.1 
The instantaneous and steady-state I-V relations of a neuron obtained 
by voltage-clamp experiments are shown below. The time-dependent 
current follows first-order kinetics with a time constant т = 0.1 second. 

I (пА/цт2) 

v 

L - 2 

a. Draw the membrane ionic current, with respect to time, after the 
membrane voltage is stepped from VH = -40 mV to Vc = 0 mV, 
and to Vc = -80 mV. Label the current and time axes with appro-
priate units. 

b. Draw the membrane ionic current with respect to time after the 
membrane voltage is stepped from Vh = -80mVtoV c = -lOOmV. 
Label the current and time axes with appropriate units. 

c. Plot in approximate scales the instantaneous and steady-state 
slope conductances (i.e., ^ and vs. membrane voltage V. 

\ J 
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Answer to example 3.1 
a) 

s? - 4 0 -
g 

- 8 0 -

-100 -
4 - . 
3 -
2 -
1 -
0 -

- 1 -

c) 

b) 

—I— 
100 

T 
200 

Time (msec) 

dl 

300 
—I— 
100 

I 
200 

Time (msec) 

300 

^ UO"7 S//L/m2) г 0.12 

T" 1 1 1— 
-100 - 8 0 - 6 0 - 4 0 - 2 0 

V (mV) 

—I 
40 

3.3 Ionic conductances 

Ionic current can be written as the product of the membrane conductance 
to ion i (gi) and the driving force (V - £*), where Ei is the equilibrium 
potential of the ion. 

h =di(V -Ei), = 
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All the variables and definitions in section 3.2 may be applied to indi-
vidual ionic currents INCIJKJCI and Jca, etc., so H = t). However, 
two restrictions must be introduced if h is passive (i.e., if I* flows down 
its electrochemical gradient): 

1. h = f(V,Ei, t) = 0 when V = Eit and 
2. h = f(V,Ei,t)>° when V>Ei. 

These two restrictions make the I-V curve of individual ionic current 
cross the voltage axis (J* = 0) once and only once. Additionally, the chord 
conductance gt = у^щ is always positive, whereas the slope conductance 
$ can be either positive or negative. 

It is not too difficult to understand the conceptual implications of the 
two restrictions for individual ionic currents. First, each ion species has 
one and only one equilibrium potential, determined by the concentration 
ratio inside and outside the cell in accordance with the Nernst equation. 
This condition allows the I-V curve to cross the voltage axis only once 
at Vm = Ei (thus, h = gi(Vm - Et) = 0). Second, because ionic current 
flows down its electrochemical gradient (passive current), the chord con-
ductance gt has to be positive. This is obvious when one examines the 
equation Ii = gi(Vm-Ei). When Vm > Eu it is outward (positive) because 
the electrochemical gradient favors outward flux, and gt is therefore pos-
itive; when Vm < Ei, It is inward (negative) because the electrochemi-
cal gradient favors inward flux, thus gt is also positive. Negative chord 
conductance exists only for active ionic currents (those that are actively 
pumped against the electrochemical gradient of the ion). 

3.4 The parallel conductance model 

Electrical properties of excitable membrane in many cases resemble those 
described in electric circuits. For example, the membrane capacitance re-
sembles a capacitor, membrane resistances resemble resistors, and the 
equilibrium potential of individual ions resembles the electromotive force 
(emf). It is customary in electrophysiology to describe the electrical prop-
erties of biological membrane by electric circuit diagrams (equivalent cir-
cuit representation). The equivalent circuit of a biological membrane con-
sisting of K+, Na+, and CI" conductances is shown in figure 3.4. дк, 
and gci are the chord conductances of K+, Na+, and СГ currents. Cm 
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is the membrane capacitance, and Ек, £дга, and Eci are the equilibrium 
potentials for K+, Na+, and СГ. Vm is the transmembrane potential, and 
arrows on дк and g^a indicate that those two conductances vary with Vm 
and time. The total membrane current in figure 3.4 can be written as 

I = lc + IK + INU + Icu 

or 
AV 

I = С — +дк(У- EK) + gNa(V - ENa) + ga(V - Ea). (3.4.3) 

inside 

outside 

Figure 3.4 Parallel conductance model for ionic currents in a membrane. Parameters 
are given in the text. 

dV At rest (steady state), /totai = 0 and Qfc = 0, thus 

V = 9kEK + дыаЕма + gciEq (3.4.4) 
дк + gNa + gci 

Equations 3.4.3 and 3.4.4 are very useful relations. 3.4.3 describes the 
total membrane current through various ionic conductances, and 3.4.4 
gives the resting membrane potential in terms of ionic conductances and 
equilibrium potentials. (Recall that the GHK voltage equation gives the 
resting membrane potential in terms of membrane permeabilities to vari-
ous ions and ion concentrations inside and outside the cell.) We will see 
and use equations 3.4.3 and 3.4.4 many times later in this book. 
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Example 3.2 
The following concentration values (in mM) have been calculated for 
the giant cell of the sea snail Aplysia: 

[К+]ш = 168 [Na+]in =50 [СП* = 41 
[K+]0ut = 6 [Na+]out = 337 [CI" ]out = 340 

and at rest, PK : PNU Pci = 1: 0.019 : 0.381. 

a. What is Vrest as predicted by the GHK equation? 
b. What would be the effect of a tenfold increase in the external 

K+ concentration on the resting membrane potential? 
c. The resting membrane conductances have been measured 

in this cell to be: дк = 0.57 /iS; g^a = 0.11 juS; and д а = 
0.32 цS. What is the resting potential of this cell predicted 
by the parallel-conductance model? 

Answer to example 3.2 

a. Vrest = R T In p * [ K + ] o u t + + Pq[Cl-]in 
F ft [K+lin + Pjva[Na+]in + Pci[Cr]out 

6 + (0.019)(337) + (0.381)(41) 
° g 168 + (0.019H50) + (0.381)(340) 

= -59.6 mV. 

ь I/ c a w 6 0 + (0-019X337) + (0.381)(41) b. Vrest = 58 log 168 + (0.019)(50) + (0.381M340) 
= -32.5 mV. 

The cell is depolarized by 27.1 mV. 
EK = 58log ^ = -83.9 mV 

337 
ENa .= 58 log ^ ^ = +48 mV 

340 Eci = -581og = -53.3 mV. 

r̂est — дкЕк + дыдЕиа + dciEci 
дк + gNa + dCl 

(0.57H-83.9) + (0.11M48.1) + (0.32) (-53.3) 
(0.57 + 0.11 +0.32) 

= -59.6 mV. 



50 Chapter 3. Electrical Properties of the Excitable Membrane 

3.5 Current-voltage relations 

The current-voltage (I-V) relation is the most commonly used tool for 
analyzing membrane conductances. Ionic current density is plotted as 
a function of membrane voltage, and the slope of this relation gives the 
slope conductance of the membrane current. An example of I-V relations 
is given in figure 2.5, where membrane current density is plotted against 
membrane potential, based on the GHK constant field assumptions. In a 
given cell, the I-V relation can be obtained by the voltage-clamp method 
(see appendix A), which allows measurements of membrane current at any 
given "clamped" voltage. The I-V relations obtained with this method are 
usually plotted with current as the ordinate and voltage as the abscissa. 
Alternatively, I-V relations may also be obtained by measuring membrane 
voltages while injecting constant current pulses into the cell, a method 
known as current clamping (see appendix A). Membrane voltages obtained 
with this method are usually plotted as the ordinates and the currents 
as the abscissas. Such plots are sometimes called voltage-current (V-I) 
relations. 

Figure 3.5 I-V relations of ions A and В with equilibrium potentials £д and ЕВ. The 
solid lines show the linear portion and the dashed lines show the nonlinear portion of the 
I-V relations. 

The current-voltage relations of most biological membranes are nonlin-
ear over the entire physiological voltage range (-100 mV to +100 mV). 
Nevertheless, some I-V relations are approximately linear over a finite 
voltage range. In other words, the membrane conductance, or ion con-
ductance, within a certain voltage range is ohmic (Gm is constant) as il-
lustrated by I a and Iв in figure 3.5. 

I A and IB are linear with constant slopes within certain voltage ranges. 

/ 

v 
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The slope is the conductance of the membrane (or a population of ion 
channels; i.e., Gm = = slope conductance = chord conductance = 
constant. Further analysis of linear membrane properties is given in chap-
ter 4. Nonlinear membrane properties are discussed in chapters 5-7. 

3.6 Review of important concepts 

1. Electric properties of biological membrane can be characterized by 
parameters of electric circuits. The dielectric property of the mem-
brane bilayer can be represented by electric capacitance, and the ion 
channels can be represented by electric conductances. 

2. A linear membrane exhibits constant membrane conductance (or re-
sistance), whereas nonlinear membranes exhibit conductances that 
vary with respect to membrane voltage and/or time. 

3. Membrane voltage of a cell is determined by the equilibrium poten-
tials and the relative conductances of permeant ions (parallel con-
ductance model). 

3.7 Homework problems 

1. According to the constant field model, 

/ = PzF%[c]mllz[f]™\ and 
P _ N ZVF R ~ AF » Ь- - RT • 

Show that the membrane slope conductance 

dl _ PF2Z2% [C]out 
dV RT (eS-1) 

for very small current (i.e., I — 0). 
2. The relative conductances for K+, Na+, and chloride of the plasma 

membrane of an invertebrate photoreceptor are given below: 
In darkness: gK : 9N<X : DEL = 1: 0.005 :0.1. 
Under constant light: дк : дыа ' gci = 1: 20 : 0.1. 
The equilibrium potentials of these ions are 
EK = - 9 0 mV, Ejsja = +50 mV, and ECi = - 50 mV. 
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(a) What are the resting potentials of this photoreceptor in dark-
ness and under constant light? 

(b) The photoreceptor receives a synaptic input from a feedback in-
terneuron in the retina, and this interneuron, when stimulated, 
alters the chloride conductance of the photoreceptor. Stimula-
tion of the interneuron in darkness results in a sustained de-
polarization of about 10 mV in the photoreceptor. Does the 
interneuron stimulation cause an increase or a decrease in g a ? 
Why? If the input resistance of the photoreceptor is ohmic with 
a value of 108 Q, what is the value of the change in д а ? 

(c) From the information described in (b), and knowing that д а is 
constant between -100 mV and +50 mV, calculate the ampli-
tude of the voltage response of the photoreceptor to the same 
interneuron stimulation under constant light. 

3. The current-voltage (I-V) relations of ionic currents (ions a and b) at 
resting state are given in the figure as A and В, and those at excitation 
state are given as A' and В'. (A and A! for ion а; В and B' for ion b.) 

(a) What are the ionic conductances (ga and дъ) at rest and at ex-
citation states? Give the values of ga and дъ in appropriate 
units. 

(b) What is the resting potential of the cell? 
(c) What is the peak membrane potential during excitation? 

5 I / (mA) 

4 -

V (mV) 

80 

- 3 J 
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4. The instantaneous and steady-state I-V relations of a neuron ob-
tained from voltage-clamp experiments are shown below: 

The time-dependent current follows first-order kinetics with the time 
constant т = 0.1 sec. 

(a) Draw the membrane current with respect to time after the mem-
brane voltage is stepped from VH = -60 mV to Vc = 0 mV and 
to Vc = - 80 mV. Label the current and time axes with the ap-
propriate units. 

(b) Repeat (a) after the membrane voltage is stepped from VH = 
+ 50 mV to Vc = +100 mV. 



4 Functional Properties of Dendrites 

4.1 Introduction 

In the previous chapter the basic concepts for the electrical properties of a 
linear membrane were presented. In this chapter we will build upon those 
concepts to present what are sometimes called the cable properties of neu-
rons as an aid to understanding the function of neuronal dendrites. As 
we will see in this chapter, it is important to consider the electrical prop-
erties of neurons as they relate to specific geometries. For example, the 
electrical properties of neurons shaped like spheres are quite different 
from those of neurons with branched dendritic trees. Where did the term 
cable properties come from? One of the simplest geometrical shapes ap-
proximated by some parts of a neuron is a cylinder. The cylinder has a 
conductive core surrounded by an outer shell or membrane that has dif-
ferent electrical properties from its core. Many of the simplifications we 
will make will be to allow parts of a neuron, such as its axon or pieces 
of its dendrites, to be represented by such cylinders. The mathematics 
of cylinders in which current flows down the center and across the sides 
(also called core conductors or electrical cables) has been around for many 
years, dating back in some cases to the first transatlantic cable used to 
transmit telegraphy. Any discussion of the cable properties of neurons 
therefore borrows heavily from previous work on electrical cables. 

4.2 Significance of electrotonic properties of neurons 

In general, neurons in the CNS have extensive dendritic trees that re-
ceive thousands of excitatory, inhibitory, and neuromodulatory synaptic 
inputs. Fast inhibitory inputs (e.g., those using y-aminobutyric acid, or 
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GABA, as a transmitter) have traditionally been thought to occur mostly 
on the somatic membranes of neurons, but this notion is an oversimplifi-
cation, because GABA inputs exist on dendrites as well. 

Figure 4.1 illustrates in schematic form a neuron in the CNS. Inhibitory 
synapses are depicted as terminating on the cell body or soma while ex-
citatory synapses are depicted as being distributed throughout the den-
dritic tree. Most excitatory synapses terminate on dendritic spines. Note 
that this diagram is not to scale. Synapses are actually much smaller in re-
lationship to the illustrated size of the soma and dendrites. The dynamic 
interaction of excitatory and inhibitory inputs to both the somatic and 
dendritic membranes determines whether the neuron will be sufficiently 
depolarized to generate one or more action potentials. What role do the 
dendrites play in this dynamic process called synaptic integration?l The 
goal of this chapter is to provide a theoretical framework for understand-
ing the basics of dendritic integration of synaptic inputs on a quantitative 
level. For example, what are the functional differences between a proxi-
mal and a distal synapse? How do synapses on the same or different den-
dritic branches interact? How might spines alter synaptic inputs? These 
are some of the questions that can be answered once we have a theory to 
describe the electrical properties of dendrites. 

The theory we will develop and use to address these and other ques-
tions is core conductor or linear cable theory. To apply this theory to real 
neurons (see, for example, figure 4.2) we will have to make a number of 
critical assumptions, several of which are unlikely to be valid for all sit-

!The term integrate to describe dendritic processing of multiple synaptic inputs is used 
in keeping with the definition "to form, coordinate, or blend into a functioning or unified 
whole" rather than in a mathematical sense. 
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Figure 4.2 Example of a horseradish peroxidase (HRP) stained hippocampal CA3 neuron 
from a rat. Scale bar is 250 ^m. (Kindly provided by M. O'Boyle, R. Gonzales, and B. 
Claiborne.) 

uations, but which nevertheless will provide us with a foundation upon 
which to build a more complete understanding of the functional proper-
ties of dendrites. 

It has been shown that animals raised in a sensorially enriched environ-
ment have CNS neurons with more extensive dendritic trees. Moreover, 
neurons from patients with diseases such as Down's syndrome, epilepsy, 
and certain senile dementias have significantly different dendritic trees 
than normal subjects. There also are interesting developmental changes 
in dendrites. For example, figure 4.3 illustrates dentate granule cells from 
a rat at different stages of development. What are the functional conse-
quences of these changes in dendritic structure? 
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Figure 4.3 Developmental changes in dendritic structure of rat dentate granule cells. (A) 
from a young animal; (B) from an .intermediate-aged animal; (C) from an adult. (Adapted 
from Rihn and Claiborne 1990.) 

There are prominent theories in which it has been proposed that learn-
ing is associated with growth of dendrites, growth of or changes in shapes 
of spines, or growth of or changes in shapes of synapses. Whether or 
not these theories are correct is not known. Without a theoretical frame-
work within which to explore the functional consequences of, for example, 
growth of dendrites or changes in shapes of spines, we would not be able 
to go much beyond correlating such changes with learning. Ideally, we 
would want to know whether the change in structure could be causative 
for the change in the observed behavior. Furthermore, as we will see, an 
understanding of the electrical properties of dendrites is critical for eval-
uating the errors associated with the electrophysiological measurements 
of synaptic function. 

As mentioned above, many excitatory synapses terminate on dendritic 
spines. Given an assumption that memory is stored as a change in syn-
aptic weights, changes in spine shape would be a possible substrate for 
such a process. There are a number of theories for the function of den-
dritic spines: 

1. Chemical and/or electrical isolation (compartmentation) 
2. Attenuation of electrical signal 
3. Amplification of electrical signal 
4. Parking place for synapse (an increase in the surface area of den-

drites) 
5. Impedance matching 
6. Modulation 
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After we have developed cable theory in this chapter and discussed syn-
aptic transmission in chapters 11-14, we will use that information in chap-
ters 13 and 15 to evaluate some of these possible functions for spines. 

Some theoretical framework is needed to address these issues. This 
framework is supplied by linear cable or core conductor theory and is 
used to investigate the passive electrotonic spread of electrical signals in 
dendrites (also called electrotonus). Electrotonic is a rather arcane term 
that is used to describe passive electrical signals, that is, signals (current 
or voltage) that are not influenced by the voltage-dependent properties 
of the membrane. It will become obvious that this theory is too simple 
to explain the complexities of dendrites, but at least it is a good starting 
point. In particular, many dendrites have voltage-gated channels at differ-
ent locations, and these channels will influence the integrative properties 
of the neuron in important ways. Before we can deal with these complex-
ities, however, we must understand the basics. 

Another important reason it is necessary to understand linear cable 
theory, as alluded to above, is for evaluating the electrical measurements 
one may make of synaptic function. Typically, the way in which measure-
ments are made is to record from the soma of a neuron with an electrode 
while stimulating a synaptic input located somewhere in the dendrites. 
This situation is depicted in figure 4.4. What we measure in the soma will 
obviously be a distorted view of what takes place at the site of synaptic 
input. How it will be distorted will depend, in part, on the passive prop-
erties of the dendrites. This issue will be addressed in some detail in this 
chapter and again in chapter 13. 

We will develop linear cable theory and its application to neurons in 
stages. First, we will discuss cable properties in general and derive equa-
tions that will be applied to a number of different physical situations. 
Second, we will apply the theory to infinite and semi-infinite cables. This 
situation is particularly applicable to long axons. Third, we will apply the 
theory to finite cables and then to finite cables with lumped soma. This 
situation represents the application of the theory to dendrites, and we 
will show how a complex dendritic tree can be reduced to a simpler ca-
ble structure. After deriving the appropriate equations for each situation, 
we will apply them to investigate how cable properties influence synaptic 
inputs. 
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Figure 4.4 Diagram of a typical situation in which a recording electrode is in the soma of 
a neuron and the synaptic inputs are remotely located on the dendrites. Current, I\, can 
be passed and voltage, V\, recorded by the microelectrode, while current, /2, is injected 
by the synapses and resulting voltage, V2, is generated in the dendrites. (After Carnevale 
and Johnston 1982.) 

4.3 Isopotential cell (sphere) 

For the first stage of our development and application of linear cable the-
ory to neurons, we will consider the case of a spherical cell in which the 
membrane potential is uniform at all points of the sphere. The cell is thus 
considered to be isopotential The next assumption we will make is that 
the membrane resistance (Rm) is constant and independent of voltage. 
The cell is therefore ohmic (see appendix A). We will also let the rest-
ing potential be zero so that all potentials are referenced to the resting 
potential. 

Referring to figure 4.5, current injected into such an isopotential cell will 
distribute uniformly across the surface of the sphere. The current flowing 
across a unit area of the membrane will be the sum of the capacity current 
and the resistive current, or 

Im = + (4.3.1) at Rm 

where Im is uniform everywhere across the surface. 
By convention, outward current is represented in the upward direction 

in diagrams such as figure 4.5, and inward current in the downward di-
rection. Outwardly applied current from an external circuit will cause a 
depolarization (more positive) of the membrane potential while inwardly 
applied current will make the membrane potential more negative and hy-
perpolarize the neuron. These polarities can be understood easily by re-
membering the polarity of the potential drop across a resistor (i.e., mem-
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the resulting membrane potential are illustrated on the right (see text for details). 

brane resistance) for a given direction of current flow (see appendix A). If 
the current is not externally applied but arises from changes in membrane 
conductance, then the situation is a little different. Inward ionic current 
will cause a depolarization and outward ionic current a hyperpolarization. 
In this situation the inward current does not cause the depolarization di-
rectly the way the externally applied current does in figure 4.5, but merely 
deposits positive charge to the inside of the membrane capacitance. This 
will be discussed more fully in chapters 5, 6, and 7. 

For the case of a finite step of current where Jo goes from zero to a 
steady value at time 0 and then back again at time T, 

Vm = ImRmd ~ e~t/T>») 0 < t < Г, (4.3.2) 

where 

Tm = RmCm- (4.3.3) 

This is simply the solution of the first-order differential equation for cur-
rent flow across the membrane (equation 4.3.1). The derivation of this 
equation is given in appendix A. For the turn off of the current step (or 
the relaxation of the potential), we get a slightly different equation 

Vm = ImRme-t,T™ T < t. (4.3.4) 

For the onset of the current pulse, the change in membrane potential 
is described by a single exponential equation where the time at which Vm 
reaches (1 - e"1), about 63% of its final value, is called т ж , the membrane 
time constant. At the end of the current pulse, the time (measured from 
the end of the pulse) at which Vm has decayed to 37% of its value just 
before the end of the pulse is also equal to т т . If Im is applied for a long 
time (i.e., t — oo), then 

Vm( oo) = ImRm- (4.3.5) 
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This is called the steady-state value of membrane potential during a step 
of current. As stated above, for an isopotential cell the injected current 
distributes uniformly across the surface (i.e., Kirchhoff s current law) so 
we need to derive a relationship for Im in terms of Jo. For a spherical cell 
with Jo injected at the center, Im will be related to the surface area of the 
sphere by 

Im = /0/4тга2, (4.3.6) 

where a is the radius of sphere, and Im has units of current/unit-area. 
The input resistance of a cell (any cell) is defined as 

Я ь ^ - Я ы ^ Щ ^ . (4.3.7) 

This is an important definition that will be used throughout this book. 
The definition of RN does not depend on the geometry of the neuron, nor 
on where the measurement is made, although, obviously, the value of RN 
does. To obtain an expression for the input resistance of a sphere, we 
need to combine equations 4.3.5 to 4.3.7: 

RN = JrnRrn = *m ( 4 3 8 ) 
Im 4тта2 4тта2 

This equation states that the input resistance of a spherical cell varies 
as the reciprocal of the surface area. That is, bigger cells have lower in-
put resistances for any given RM, and vice versa. In other words, adding 
resistors in parallel (i.e., adding more surface area) decreases the total re-
sistance. This is an important concept to keep in mind and, in general, 
is true regardless of the geometry of the neuron. With nonisopotential 
neurons, however, the relationship between input resistance and surface 
area is more complex than that for a sphere. 

4.4 Nonisopotential cell (cylinder) 

With this section we begin the more complex (but also the more interest-
ing) development of linear cable theory as applied to nonisopotential neu-
rons, or parts thereof. The simplest and most useful geometrical structure 
to deal with is a cylinder (see figure 4.6). The parts of a neuron that most 
closely resemble a cylinder would be an axon or sections of dendrites (this 
will be discussed later). 
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Го 

Г т Г ^ С т J ~ J _ r j _ Г ^ 

n 

Figure 4.6 Diagram for current flow in a uniform cylinder such as an axon or segment 
of dendrite. 

The equivalent electrical circuit is shown superimposed on the cylin-
der in figure 4.6. In addition to the parameters of membrane resistance 
and capacitance, we have added the resistance of the cytoplasm, г*, the 
resistance of the extracellular space, r0, and distance along the cylinder, 
x. (The reason for the switch to small letter r will be explained in sec-
tion 4.4.1.) For most of this book, the extracellular space will be con-
sidered isopotential for the sake of simplicity (i.e., r0 = 0). Including r0 
might be important for axons packed tightly together in a nerve trunk or 
for neurons in the CNS where current flow in the extracellular space may 
be significant. We will nevertheless ignore r0 for the time being but will 
try to point out where in the equations it would appear if it were included. 

Current injected into the cylinder will, by Kirchhoff s current law, flow 
both across the membrane (im) and along the inside of the cylinder or 
cable (if). Before we can derive the equations governing the membrane 
potential along a cable, we need to make some key assumptions. 
Assumptions: 

1. The membrane parameters are assumed to be linear and uniform 
throughout. That is, гж , r*, and cm are constants, they are the same 
in all parts of the neuron, and they are not dependent on the mem-
brane potential (i.e., passive). 

2. We assume that current flow is along a single spatial dimension, x, 
the distance along the cable. Radial current is therefore assumed to 
be 0. 

3. As mentioned above, we assume for convenience that the extracel-
lular resistance, r0 , is 0. 
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Referring again to figure 4.6, for current injected at some point along the 
cylinder, Vm is a function of time and distance from the site of injection. 
Along the x-axis 

dVm(x,t) 
dx = -ПЦ. (4.4.9) 

This is just Ohm's law (the decrease in Vm with distance is equal to 
the current times the resistance). The negative sign denotes that voltage 
decreases with increasing x (negative slope). Some of U, however, "leaks" 
out across the membrane (analogous to a leaky hose) through r w and сж , 
so that U is not constant with distance. The decrease in U with distance 
is equal to the amount of current that flows across the membrane or im. 
This follows from Kirchhoff's current law and is stated mathematically as 

§ = (4.4.10) 

Combining equations 4.4.9 and 4.4.10, we obtain 

d2Vm „ дц 
dx2 1 dx 

Recalling from chapter 3, 

(4.4.11) 

9V™ V™ 
im = ic + iionic = + (4.4.12) Ot rm 

we can now combine equations 4.4.11 and 4.4.12 into 
1 d 2 V m = Cm^p- + ТГ1- (4.4.13) 
п dx2 m dt rm 

These fairly simple steps have led us to what has been called the ca-
ble equation. Equation 4.4.13 was derived for a one-dimensional cylinder 
(cable) and is extremely important. We will be using solutions to this 
equation to derive equations that describe a number of specific situations 
(infinite cable, finite cable, and finite cable with lumped soma). There are 
a number of other forms of the cable equation 

where 

A = = (4.4.15) 
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Л is called the space or length constant. The physical meaning of Л will be 
described later. If we needed to include the resistance of the extracellular 
space, Л would be altered as follows: 

where r0 is in Q per unit length of cable (e.g., й/cm). No other equations 
would be changed. As mentioned in the previous section, rm = rmcm = 
RmCm and is called the membrane time constant. 

4.4.1 Units and definitions 

For historical reasons, and for convenience, we will make a distinction 
here and elsewhere between parameters that are geometry specific (that 
is, dependent on a cylinder) and those that are not. The parameters that 
are defined only for a cylinder will be designated by small letters (YU rm, 
and cm) while parameters that are independent of any specific geometry 
will be designated by capital letters (Ru Rm, and Cm). Except for this one 
deviation for cylinder-specific parameters, we will continue to abide by 
the convention for the use of lowercase vs. uppercase letters mentioned in 
chapter 3 and appendix A. For example, lowercase g^ a would be used for 
a conductance that varies as a function of voltage and/or time, while Gr 
would be used for a resting conductance that is constant. Also, capital let-
ters are used for peak values. The definitions for the cylinder-dependent 
parameters are given below. 

1. Yi = axial resistance (Q/cm) 
2. YM = membrane resistance (Q-cm) 
3. cm = membrane capacitance (F/cm) 

All of the above are for a unit length of cable and have meaning only with 
respect to a uniform cylinder. Think of r* as an infinitely thin disk of the 
cytoplasm with the same radius as the inside of the cylinder. Obtaining 
the total resistance of the cytoplasm for a given length of the cylinder 
would be like stacking together these thin disks until you reach length I, 
and would be given by I • Yi. 

In the case of r m and cm , each can be thought of as an infinitely thin 
ring of membrane, again with the same radius as the cylinder. The total 
membrane resistance for a given length of cable would be obtained by 
stacking together these thin rings of membrane and would be equal to 
YM/L- Obtaining the total membrane capacitance would be a similar stack 
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of these thin rings of membrane but they would be equal to I • cm. The 
difference between the calculations for total membrane resistance and for 
membrane capacitance results from the different electrical definitions of 
resistance and capacitance (see appendix A). Increasing the membrane 
area by increasing the length of the cylinder is the same as adding resistors 
in parallel. Total resistance decreases as you add resistors in parallel, and 
hence you divide rm by 1. In the case of capacitance, adding capacitors in 
parallel increases the total capacitance, hence you multiply cm by 1. 

The specific resistivity and capacitance of the membrane are indepen-
dent of geometry and are defined as follows. 

1. Ri = specific intracellular resistivity (Q-cm) 
2. Rm = specific membrane resistivity (Q-cm2) 
3. Cm = specific membrane capacitance (F/cm2) 

The cytoplasmic or intracellular resistivity Ri must be multiplied by the 
length and divided by the cross-sectional area to obtain total resistance 
(that is, Ktotai = Ri • l /A as discussed in appendix A). This parameter is 
in its most general form and can be converted to resistance only if one 
knows the geometry of the conductor. 

The membrane resistivity, Rm, and membrane capacitance, Cm, are the 
values for a unit patch (area) of the membrane. They are converted to 
total resistance and total capacitance by either dividing or multiplying, 
respectively, by the surface area. 

The general forms of the membrane parameters are related to the cable 
specific parameters by the following equations: 

Ri = тта2ги 
Rm = 2ттагш, 
Cm = сш/2тта. 

4.4.2 Solutions of cable equations 

The cable equation can be put into its most general and useful form by 
normalizing by the length constant and time constant. Let X = x / \ and 
T = t/rm. Then equation 4.4.14 becomes 

d2v7 m (4.4.16) dX2 

where X and T are dimensionless. 
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It is desirable to solve the cable equation to get Vm as a function of 
time and space in the cable. This can be done for a number of different 
cases using a variety of methods. We will not attempt to derive a solution 
in this chapter but instead will use general solutions derived by others 
(see Jack, Noble, and Tsien (1975), Hodgkin and Rushton (1946), and Rail 
(1977)) and add the appropriate parameters that allow each solution to 
be applied to a particular experimental situation. For example, differ-
ent equations are obtained when dealing with steady-state vs. transient 
voltage changes. Also, different geometries, for example finite-length vs. 
infinitely long cables, require different boundary conditions that result in 
different equations. We will therefore formulate the applicable equations 
for each of the following specific situations and then use the equations in 
a number of (we hope) interesting examples. 

4.4.2.1 Infinite cable, current step The first experimental situation we 
will deal with is that of a step of current injected into an infinitely long 
cable (figure 4.7). 

I 
-00 Q +00 

Figure 4.7 Current injected into an infinite cable at x = 0. Note that the injected current 
flows in both directions. 

A general solution to the cable equation is 

V™(T,« = ^ r e - " e r f c ( ^ - V f ) (4.4.17) 

- A r t c ^ V f ) ] . 

where erfc(x) = complementary error function (and erf(x) = error func-
tion). This is a formidable looking equation in which some of the terms 
(e.g., erfc) may be unfamiliar. The error function should not be intimidat-
ing, because it has some very simple properties: 

2 f x 2 2 f0 0 2 

erfc(x) = 1 - erf(x) = 1 - Jq e~y dy = J e~y dy, 

where erf(O) = 0, erf(oo) = l, and erf ( -x) = -erf(x) . 
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The error function is just a convenient equation that simplifies the so-
lutions for many differential equations. In the next two sections we will 
modify equation 4.4.17 so that it describes two special cases of interest 
to neurophysiologists: steady-state voltage distribution along the cable 
after a step of current, and the change in voltage as a function of time for 
a step of current. 

Steady-state solution (T —• oo) Using the above definitions for the erfc, 
as T gets large in equation 4.4.17, e r f c ( ^ + VT) becomes 1 -erf(oo) =0, 
while erfc - л/т) becomes 1 - e r f ( - o o ) = 2. Equation 4 .4 .17 then 
reduces to a rather simple exponential equation 

Vm{°o,X) = (4.4.18) 
or 

V w ( o o , x ) = (4.4.19) 

This equation says that the distribution of membrane potential (in the 
steady state) from the site of current injection decays as a single expo-
nential with distance (see figure 4.8). The distance at which the potential 
has decayed to l /e (~0.37) of the value at x = 0 is the space constant 
or Л. Л will be used frequently in the coming sections, so its definition 
needs to be clear. It is defined only in terms of an infinite (or semi-infinite) 
cable and reflects the steady-state properties of the cable. For example, 
if the diameter of the cable increased, A would increase, if the membrane 
resistivity increased, A would increase, and so forth. 

The best analogy to use here is that of a leaky hose. Think of a hose 
with small holes in it (a sprinkler or soaker hose) that extends as far as 
you can see, but with one end attached to a faucet. It is easy to imagine 
that as you get farther from the faucet, there is less water pressure inside 
the hose to force water through the little holes. If you add more holes or 
increase the size of the holes (decrease Rm), then more water leaks out 
and the fall-off in pressure along the length of the hose increases. If the 
diameter of the hose is increased (but keeping the same number of holes 
per unit area or same Rm), then there will be proportionally less water 
leaking out and the decrease in pressure with distance decreases. This 
leaky hose analogy is very useful, and we will resort to it frequently. 

In addition to the description of membrane potential along the cable, we 
will also want expressions for input resistance of the infinite (and semi-
infinite) cable. Remember that input resistance is just the steady-state 
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Figure 4.8 Decay of potential along infinite cable. The site of current injection is at 
x = 0. 

membrane potential, Vm(oo), evaluated at x = 0, divided by the injected 
current, or, from equation 4.4.19 

RN = ЧГ = 
ПЛ = n V r m / n 

2 2 
1 (Rm Ri\ 

VГтП 
2 

1/2 

/^(infinite cable) = 

2 \2тга 7та2 J 
1 ( RmRi \l/2 yJRmRi/2 
2 \2тт2а3) 2тга3/2 ' (4.4.20) 

This equation for the input resistance of an infinite cable is an impor-
tant equation that we will use again in developing the Rail model for a 
neuron. Note the term in the denominator on the right-hand side of the 
equation, that is, the radius of the cable raised to the 3/2 power. The 
input conductance of an infinite cable, GN (= 1 /RN), will therefore be 
directly proportional to the radius of the cable raised to the 3/2 power 
( G n ос a 3 / 2 ) , o r 

Gn (infinite cable) = 2тга3/2 

y/RmRi/2 
(4.4.21) 

Equation 4.4.19 describes the decay of membrane potential from the 
site of current injection (X = 0) to +oo or to -oo. If we are dealing with a 
semi-infinite cable, we will be interested only in the potential distribution 
from X = 0 to +oo, which will be described by equation 4.4.19 except 
for one important difference—the amplitude of the membrane potential 
at X = 0 will be larger, twice as large to be exact. Think of the input 
resistance from X = 0 to +oo as a single resistor to ground and the input 
resistance from X = 0 to -oo as another, identical resistor to ground. 
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Each of these resistors will have a value equivalent to the input resistance 
of a semi-infinite cable, while the input resistance of an infinite cable will 
be equal to the parallel combination of these two resistors. The total 
resistance of two identical resistors in parallel is half of the value of either 
resistor by itself. This fact leads to the equations for the. relationships 
between input resistance (and conductance) of semi-infinite (semi) and 
infinite cables (inf): 

RN{Semi) = 2'RN(inf) = ^ • (4.4.22) 

G n ™ = — - = ( 4 A 2 3 ) 

Transient solution at ж, X=o The other special case for an infinite ca-
ble that we want to derive is the so-called transient solution of the cable 
equation. This solution will describe the change in membrane potential 
with respect to time following the injection of a step of current at X = 0. 
The simplest transient solution of interest is when we let X = 0. From 
equation 4.4.17 and the definitions of the error function, when X = 0 

Vm(T,0) = ^ e r f (л/Г), (4.4.24) 

(remember erfc(-Vf) = 1 + erf(VT) and erfc(VT) = 1 - erf(VT)). 
Equation 4.4.24 describes the change in membrane potential as a func-

tion of time at the site of current injection for an infinite cable. This 
equation, however, also describes the response for a semi-infinite cable 
except for a factor of 2 (i.e., Vm(T, 0 )semi = 2-Vm(T, 0 )mf)- Because most 
of us have little appreciation for the error function, it is best to calculate 
and graph equation 4.4.24 and compare the result to that obtained for the 
response of a spherical cell to a current step (equation 4.3.2). This com-
parison is made in figure 4.9; note that the amplitudes are normalized. 
The result is somewhat nonintuitive, that is, the membrane potential of 
the infinite cable changes faster toward its steady-state value than that 
of the isopotential sphere. The easiest way to explain this result is that 
in the infinite cable, part of the injected current flows down the cable to 
charge distant sites of the cable. The time constants governing the charg-
ing of sites distant from the site of current injection are faster than the 
membrane time constant and contribute to the early phase of the voltage 
by making it change faster than that for the sphere. 

Equation 4.4.24 was an extremely important result of Rail's early work, 
as it demonstrated why early estimates of membrane time constants from 
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Figure 4.9 Comparison of charging curves described by an error function and a single 
exponential function. The dotted line from T = 1 depicts the time at which the exponential 
function has reached 0.63 of its final value and the error function 0.84. Note that if one 
chooses a point of 0.63 on the error function, a time of less than one time constant (i.e., 
T s 0.4) would be obtained (see text for further explanation). (After Jack et al. 1975.) 

neurons were too low. Many investigators had assumed that the mem-
brane potential response to a current step (also called the charging curve) 
would be a single exponential and estimated the membrane time constant, 
т т , from the time to reach 63% of the steady-state value. For a charging 
curve similar to that for an infinite (or semi-infinite) cable, this would re-
sult in an estimated value for r m that was about half of the actual value 
(refer to figure 4.9). At T = 1 the charging curve for an infinite cable has 
already reached 84% of its final value while at 63%, T =* 0.4. 

Transient solution at different X The transient solution of the cable 
equation for an infinite cable at X = 0 given above is extremely useful 
because it describes the charging curve at the site of current injection, the 
usual site of potential measurement. It would also be useful, however, to 
know what the transient change in membrane potential would be at sites 
different from that of current injection, even if we are unable actually 
to measure the membrane potential at those sites. To determine this 
we must use the entire solution given in equation 4.4.17 and reproduced 
below: 

V„(t.x> = ^ 

(4.4.25) 
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t - 00 

Vm(°c>,x) = 
Vm(°°,0)e~*/A 

Figure 4.10 Solution of the cable equation as a function of time and distance for a step 
of current injected at x = 0 into a semi-infinite cable. The length of the cable extends 
along the x axis. 

Equation 4.4.17 was calculated for different times and distances and is 
plotted in three dimensions in figure 4.10. The origin represents the site 
of current injection at t = 0. (The cable is coming out of the page, and 
note that the plots for an infinite and semi-infinite cable are the same, 
the only difference being that the Vmax for each differs by a factor of 2.) 
There are several aspects of figure 4.10 that should be noted. First, at 
large t, the distribution of potential along the cable is simply the steady-
state solution of equation 4.4.17 seen in the previous section. The curve 
is a single exponential described by the equation indicated in the figure. 
Second, at intermediate values of t, between 0 and the steady state, the 
decay of potential with distance along the cable is much greater than at 
the steady state. This is an important concept to which we will return 
later. Third, at x = 0, the charging curve is identical to that plotted for 
equation 4.4.24 in figure 4.9. And fourth, at values of x increasing from 0, 
the charging curves show slower rising phases and reach a smaller steady-
state value. 

Conduction velocity of a passive, decremental wave of membrane po-
tential It is sometimes useful to know how long it takes for a passive 
change in membrane potential to occur at different sites along a cable. 
We can derive a "conduction velocity" for such a passive wave from equa-
tion 4.4.17. This conduction velocity can then be compared to that for an 
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actively propagating action potential (see chapters 6 and 7). The conduc-
tion velocity can be defined as the time to conduct half of the maximum 
steady-state value at X. The first step is to obtain an equation that is 
normalized with respect to the steady-state values at different X. This is 
achieved by dividing Vm(T, X) by Vm X) or 

Уж(Г.Х) ^ H e r f c ( ^ - V f ) - ^ e r f c ( ^ + V f ) ] 
Vw(oo,J»0 nMg-x 

As stated above, the conduction velocity of the decremental wave (pas-
sive spread) can be estimated by calculating the time needed to conduct 
the voltage to the 1/2 maximum value at X. So when 

X = 2T- 0.5, (4.4.26) 

or 

x = - t - 0.5Л. (4.4.27) 
Tm 

Remember from physics that velocity is simply в = dx/dt, so conduc-
tion velocity of the wave is 

0 = ^ = — . (4.4.28) at Tm 
Figure 4.11 plots in two dimensions the charging curves at different 

distances from the site of current injection. These are extracted from 
figure 4.10. When the curves are plotted in this way, it becomes obvi-
ous that the rising phase of the curves is slower at increasing distance 
from the origin. Also, if one measures the time to reach half of the final 
value of each curve, one finds that it also increases with increasing dis-
tance. Figure 4.12 makes this measurement, and the comparison of the 
measurements among the curves, somewhat easier. In this figure we have 
normalized the curves by plotting the ratio V(T,X)/V(T, oo) against T. 
The 0.5 values can readily be determined from these curves. These 0.5 
values are the points that satisfy equation 4.4.26, from which we derived 
the equation for conduction velocity (equation 4.4.28). From figure 4.12 
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T 
Figure 4.11 Charging curves at different distances along the cable from the site of 
current injection. (After Jack et al. 1975.) 

T 
Figure 4.12 Charging curves at different distances along the cable from the site of 
current injection but normalized in amplitude. One can determine the conduction velocity 
of a decremental wave from this figure by looking at the time it takes for each curve to 
reach 0.5 of its final amplitude (indicated by dotted lines). (After Jack et al. 1975.) 

we can see that it takes about 1 time constant for the passive wave to 
travel 1.5 space constants. 

How does fiber size influence conduction velocity of passive spread? 
This can be derived quite easily by expanding equation 4.4.28 as follows: 

i = 2A =
 2_Щ_ = ( — 1 / 2 . (4.4.29) 

тт RmCm \RmRiCm ) 

Thus в ос д/а, the fiber radius, assuming that Rm, Ru and Cm do not vary 
with a. 
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Example 4.1 
To get a feeling for passive conduction velocity, let's work through 
a simple example. Consider two infinite cables with diameters of 
1 and 10 цт but otherwise identical parameters (Rm = 20,000 Cl-
em2, Ri = 100 Q-cm, and Cm = 1 ^F/cm2). Using these values, 
Tw = 20 msec, Ai^m = 7.1 cm, and Аюцт = 22.4 cm. So, 

0щ = 2Ai^/tw = 0.7 cm/msec, 
вюц = 2Aio^/tw =2.2 cm/msec. 

This means that for a 1 цт cable, a passive wave will propagate at 
the rate of less than 1 cm/msec, vs. about 2 cm/msec for the larger-
diameter cable. To calculate distance along the cable traveled by 
the wave in a given time one must use equation 4.4.26. Remember, 
however, that this propagation is highly decremental. Unlike the 
action potential (chapter 6), the amplitude of this passive wave will 
decrease greatly with distance along the cable. 

4.4.2.2 Finite cable, current step Although the derivation for the in-
finite cable allowed us to introduce important concepts such as space 
constant, transient and steady-state distributions of membrane potential 
along a cable, and conduction velocity of a passive wave, the infinite-cable 
solution is of less interest experimentally. This is because there are few 
anatomical structures other than axons that approximate an infinite cable. 
The far more useful solution (which is also more complex mathematically) 
is that for the finite length cable. That solution will be derived in this sec-
tion. 

Steady-state solution The steady-state solution will be derived first. Un-
BVm 
ВТ der steady-state conditions, we can let = 0 so that the cable equation 

can be reduced to 

dX2
 ' 

A general solution for this second-order differential equation is 

Vm(oo,X) = Axex + A2e~x. (4.4.30) 

A cable can usually be considered finite if the length of the cable, I, is 
less than about twice the space constant, or 0 < I < 2A. For such a cable, 
there is an important boundary condition that must be considered—the 
termination at the ends of the cable. The end at the origin (x = 0) will be 
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x = 0 x = / 
Figure 4.13 Diagram of a finite cable used for derivations. 

terminated with a zero-conductance membrane so that no current flows 
in the negative direction. (In a later section we will add a soma to this 
point, but for now assume that all the current injected at x = 0 will flow 
in the positive x direction.) At the far end of the cable there can be either 
of two types of termination, a sealed end or an open end. 

The sealed end can be thought of as simply a disk of membrane that 
caps or seals the end. Because of the high resistivity of the membrane 
and the small surface area at the end of the cable, the resistance of this 
cap or seal can be considered infinite so that no current flows across the 
end of the cable. In electrical terms this would be called an open circuit 
condition. In contrast, the open end type of termination would occur 
if the cable were cut and nothing sealed the end. In this condition the 
extracellular solution would be in direct contact with the cytoplasm, and 
current would flow freely out the end of the cable. This would be called 
the short circuit condition in electrical parlance. As we will see, the type 
of termination chosen will have a dramatic effect on the distribution of 
membrane potential along the cable. 

Before we proceed, two terms should be defined, one of which was in-
troduced previously. These are X and L. X is defined as before (X = x/\) 
and will be called the electrotonic distance along the cable. L is defined as 
I = I/Л and will be called the electrotonic length of the cable. Note that at 
the end of the cable X = I . 

In addition to these terms we also need to introduce two mathematical 
functions that may not be familiar to all readers. These are hyperbolic 
cosine, cosh, and hyperbolic sine, sinh. cosh and sinh are defined below 
and are plotted in figure 4.14. 

cosh(X) 

sinh(X) (4.4.32) 

(4.4.31) 

Using these definitions, we can derive several useful relations: 

sinh(-X) = -sinh(X), 
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Figure 4.14 Plot of hyperbolic sine and cosine functions. 

COSh(-X) 

^ s i n h m 

4 = cosh(X) 

cosh(X), 

cosh(X), 

sinh(X), 

and from figure 4.14, cosh(O) = 1 and sinh(O) = 0. 
The general solution of the cable equation can be rewritten using the 

hyperbolic functions as 

Vm(°°,*) = Bi cosh(X) + B2 sinh(X), 

or 

Vm(oo,X) = Ci cosh(L - X ) + C2 sinh(L - X). (4.4.33) 

From the above equation at X = L, 

Vm(oo,L) =VL = Ci cosh(0) + Сг sinh(0) = C b 

Let BL = CZ/VL and substitute back into equation 4.4.33, so that 

Vm(oo,X) = Vi[cosh(L - X) + BL sinh(I - X)]. (4.4.34) 

Bl is the boundary condition for different end terminations. At X = 0, 

Vm(oo,0) = V0 = VL[cosh(I) +Bisinh(l)], 

or 

VL = Vb/[cosh(I) + BL sinh(I)]. 

Substituting this back into equation 4.4.34, we obtain 
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cosh(I - X) + Bl sinh(I - X) 
V m ( 0 ° ' X ) = Vo cosh(L) + BL sinh(I) ' ( 4 A 3 5 ) 

which is the steady-state solution of the cable equation for a finite-length 
cable. We are now in a position to consider the effects of the two types 
of end terminations. BL is equivalent to the ratio of Gi/Goo, where GL is 
the conductance of the terminal membrane and Goo is the conductance of 
a semi-infinite cable. For the two types of terminations, GL will be 0 for 
the sealed end and oo for the open end. We will consider three cases (only 
two of which are new): 

1. If BL = 1 (that is, GL = Goo), then 

Vm(oo,X) = V0e~x, 

which is the same as for a semi-infinite cable seen in section 4.4.2.1. 
2. If BL = 0 (GL « Goo), then 

i/ / v\ i/ coshd ~ X) , . Уж(оо,Х) = У0 C Q s h ( I ) • (4.4.36) 

This condition occurs when the conductance of the terminal mem-
brane is small (large resistance) compared to the input conductance 
of a semi-infinite cable with the same properties. This is the open 
circuit or sealed-end condition. 

3. If BL = oo (Gl » Goo), then 

т/ / v\ т/ sinh(L - X) Vm(oo,X) = Vq s i n h ( I ) . (4.4.37) 

This condition occurs when the conductance of the terminal mem-
brane is large (small resistance) compared to the input conductance 
of a semi-infinite cable. This is called the short-circuit or open-end 
condition. 

An interesting side issue worth mentioning here is that a voltage clamp 
applied to one end of a cable is mathematically equivalent to a short circuit 
at that end. The use of a voltage clamp will thus fundamentally alter the 
electrotonic structure of a neuron, and the implications of this are dealt 
with in Rail (1969). 

The equations for a finite cable with open or sealed ends at electrotonic 
lengths of 0.5, 1, and 2 are plotted in figure 4.15 along with the equation 
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х/Л 

Figure 4.15 Comparison of voltage decays along finite cables of different electrotonic 
lengths and with different end terminations. Current is injected at x = 0. The solid lines 
are for finite cables with sealed ends, the dashed lines are for finite cables with open ends, 
and the dotted line is for a semi-infinite cable. (After Rail 1959.) 

for a semi-infinite cable. Current is injected into one end of the cable (X = 
0) and the steady-state membrane potential (normalized to the value at 
X = 0) is plotted as a function of distance along the cable. For the sealed-
end condition, note that there is less decay of potential with distance 
along the finite cable compared to the infinite cable. This is an extremely 
important concept to understand. Look, for example, at the cable with 
electrotonic length of 1. At a distance of 1 A, the potential is greater than 
that at the same distance along a semi-infinite cable. Remember that the 
definition of A as the distance at which the potential has decayed to 1/e 
of its initial value holds only for an infinite (or semi-infinite) cable. 

The open-end condition may be easier to understand. The decay of 
potential along the length of the cable is much greater for an open-end 
than for a sealed-end cable and also much greater than for a semi-infinite 
cable. 

The leaky hose analogy may again be useful here. Think of the expected 
pressure of two identical hoses, both extending to infinity. Now take one 
and cut it at a length about 6 feet from the faucet. First, leave the end open 
and try to think about which hose has more pressure at a point 5 feet from 
the faucet. Since you probably can imagine much of the water gushing out 
of the open end, it should be easy to conclude that the pressure will be less 
along the hose with the open end (greater loss of pressure with distance) 
than the infinitely long hose. Now take the hose with the cut end and put 
a cap on it. Which hose now has more pressure 5 feet from the faucet? 
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The water that would have flowed down the length of the infinitely long 
hose now is blocked and instead can contribute to the pressure along a 
shorter length. Therefore, the shorter hose will have greater pressure 
(less loss of pressure with distance) than the long hose. There are more 
precise mathematical descriptions of why the finite, sealed-end cable has 
less attenuation of potential with distance, having to do with reflections, 
but those are beyond the scope of this book. 

Transient solution The derivation of the transient solution for a finite 
cable is formidable, but it does eventually reduce to a fairly simple infinite 
series that should be relatively easy to understand and remember. We go 
back to the original cable equation 

32Vm dVm 

дх* ~ дт 
A general solution of this second-order partial differential equation is 

Vm(T,X) = [Asin(aX) + Bcos(aX)]e~{l+C(2)T. (4.4.38) 

As before, we must establish the boundary conditions. The first condi-
tion is simply that the change in potential with respect to distance at each 
end is zero, or 
3V™ dV™ 

To use these boundary conditions, we must take the first derivative with 
respect to X of equation 4.4.38 and plug in our boundary conditions to 
this derivative, or 

dVrn 
dX 

= [aAcos(aX) - aBsm(aX)]e-{l+(x2)T. 

dV™ At X = 0, ^ x r = 0, so A = 0. oX 

At X = I , aB sin (a l ) = 0, so an = птг/I, (4.4.39) 

where n represents a series of positive integers from 0 to oo, and 
00 

VmCГ,Х) = X BnCOs(nTTX/I)e-(1+(M7T/i)2]T. (4.4.40) 
n=0 
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T 
Figure 4.16 Comparison of normalized charging curves for finite cables of different 
electrotonic lengths. A step of current is injected, and the voltage is measured, at x = 0. 
(After Jack et al. 1975.) 

The above equation represents an infinite series of exponential terms 
that can be further simplified by first expanding 

Vm(T,X) = Boe~T + Bi cos(<XiX)e-(1+ai2)r + 
B2 cos(a2X)e-{1+<*22)T + • • • + 

Bn cos(anX)e~{l+0ln2)T, 

where an = птг/L and 1 + an
2 = т о / т п , so L = П 7 г [ ( т о / т п ) - 1]~1/2. 

Simplifying, 

Vm(t,X) = Boe~t/T° +BiCOs(aiX)e-t,Tl + (4.4.41) 
B2 cos(a2X)e~t,T2 + • • • +Bn cos(anX)e-t/Tn. 

This can also be written as 

Vm(t,x) = C0e~t/To + Cie~tlTl + (4.4.42) 
C2e~t,T2 + • • • + Cne-t,Tn. 

This is the complete solution for a finite-length cable and is important to 
remember. This solution will also describe a semi-infinite cable, which is 
just a special case of the finite cable where L — oo. The charging curve for a 
step of current injected into a finite cable at X = 0 is, by equation 4.4.42, 
the sum of an infinite number of exponential terms. Plots of charging 
curves for cables of different lengths are illustrated in figure 4.16. The 
first term of the equation, Cbe~t/T°, will represent the membrane time 
constant (that is, то = т т ) if the cable has uniform membrane properties. 
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Figure 4.17 Example of space constant (in /urn) as a function of frequency for a repre-
sentative cable. Zero frequency would represent Adc-

Note again that the charging of a finite-length cable is faster than that for 
an isopotential cell. 

Nonsteady-state voltage attenuation Before we leave the general dis-
cussion of finite cables, however, an additional point should be men-
tioned. The steady-state decay of potential along finite and infinite cables 
was illustrated in figure 4.15. It is important to emphasize that the decay 
of potential along a cable will be much different (much greater) if the ap-
plied current is changing with time. We can illustrate this best by showing 
an equation for the so-called AC length constant. The length constant we 
derived previously was for the steady-state (DC) condition only. If the in-
jected current changes with time (AC) a totally different length constant 
is obtained. This is given below and illustrated in figure 4.17. 

where / is frequency in Hz. 
The equation for steady-state voltage attenuation (equation 4.4.36) de-

rived previously must also be modified for applied currents or voltages 
that are changing with time. For alternating sine wave voltage attenuation, 
equation 4.4.36 becomes 

where Vo is the peak amplitude of the sine wave voltage change at the 
site of current injection, Y = I - X (where L and X are calculated using 

(4.4.43) 

(4.4.44) 
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X 
Figure 4.18 Voltage attenuation along a finite-length cable (I = 1) for current injections 
(DC to 100 Hz) at X = 0 (i.e., soma) (RM = 50,000 Q-cm2). 

Л dc), and a and b are the real and imaginary parts of y /TTJcor^ , where 
j = лРТ and со = frequency in radians. Equation 4.4.44 can be solved 
using 

r = yjl + 0)2Тж, 
в = a r c t a n c o ( T M ) , 

a = y/r cos(0/2), 
b = Vrsin(0/2). 

Using this relation, figure 4.15 can be replotted for a sealed-end cable 
of I = 1 at a variety of different frequencies. This is illustrated in fig-
ure 4.18. Note that the decay of potential along a cable is much greater 
for nonsteady-state conditions. This was also noted and discussed in ref-
erence to figure 4.10 (see also Spruston et al. 1993). 
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^ Example 4.2 
Assume that you have a finite-length, sealed-end cable of I = 1 cm 
and 1 = 1. If sufficient current is injected to reach 10 mV at one 
end, what will the potential be at X = 0.6 and X = LI How does this 
compare to that at X = 1 along a semi-infinite cable? 
For a finite cable at X = 0.6, 

v Y\ v c o s h d - X ) Vm(oo,A) = Vo 

= 10 mV 

= 10 mV 

cosh(L) 
cosh(0.4) 
cosh(l) 
1.1 

1.54 
= 7.1 mV. 

For a finite cable at X = I , 

cosh(I - X) Vm(oo,X) = Vo-

= 10 mV 

= 10 mV 

cosh(I) 
cosh(0) 
cosh(l) 

1 
1.54 

= 6.5 mV. 

For a semi-infinite cable at X = 0.6, 

Vm(oo,X) = 10 mV e~x 

= 10 mV e""0,6 

= 5.5 mV. 

For a semi-infinite cable at X = 1, 

Vm(oo, X ) = 10 m V = 10 m V e ' 1 = 3 .7 mV. 

If the current is injected in the form of a 50 Hz sine wave, what will 
the length constant be for this cable? Assume r m = 50 msec. 

Л DC = l/L = 1 cm 

о 
= Adc(0.35) = 0.35 cm. 

V 

A AC = A DC 
\ 1 + д/l + (2tt/Tw)2 
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4.5 Rail model for neurons 

In the previous sections we presented the equivalent circuit representa-
tion of a membrane and then derived expressions for the passive proper-
ties of spherical and cylindrical structures (cables). For cables we demon-
strated the differences between infinite, semi-infinite, and finite-length 
cables. In this section we will use the descriptions for the semi-infinite 
and finite-length cables to derive the Rail model of a neuron. This model 
provides a theoretical framework for understanding the spread of current 
and voltage in complicated dendritic trees. 

4.5.1 Derivation of the model 

Before we can derive the Rail model, we must once again list the underlying 
assumptions. 

1. Uniform Ru Rm, Cw. The membrane properties are independent of 
voltage (i.e., are passive), and the electrical properties are identical 
for all of the membrane comprising the soma and dendrites. (These 
are key assumptions that are almost certainly not true in the strictest 
sense. The assumptions are probably reasonable when looking at 
different parts of the same axon, but it seems highly unlikely that 
identical channel types and channel densities exist in all parts of the 
soma and dendrites of a neuron. This would mean that some amount 
of nonuniformity, in particular of Rmi is likely to exist. Furthermore, 
it is likely that Rm is not strictly passive but displays some amount 
of voltage dependency. Nevertheless, by using this assumption and 
deriving the Rail model we can obtain a "simplest case" from which 
one can explore the effects of nonuniform and nonpassive electrical 
properties in different parts of a neuron.) 

2. Ro = 0. Again, this assumption is for convenience only, as R0 can be 
incorporated into the expressions if desired. 

3. Soma isopotential. We will assume that the soma can be represented 
as an isopotential sphere. 

4. All dendrites terminate at the same electrotonic length. This is an-
other important assumption that is unlikely to be completely true. 
The assumption allows all dendritic branches to be collapsed into 
a single cable. If this were not the case, then individual dendritic 
branches would have to be treated separately. 
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5. Radial current = 0. 

4.5.1.1 Equivalent (semi-infinite) cylinder An imaginary neuron with 
a branched dendritic tree is illustrated in schematic form in figure 4.19. 
Xu X2, and X3 are branch points encountered when traversing along one 
pathway from the soma out to the end of the dendrites; do, d n , d n , etc., 
are the branches at these intersections. The branches attached to X3 (as 
well as the final branch points in all of the other trees) are assumed to 
extend to infinity and thus are semi-infinite cables. One of Rail's major 
contributions was to show how a complicated tree structure such as this 
could be reduced to a single equivalent cable. This is illustrated below. 

Figure 4.19 Schematic of a neuron with a branched dendritic tree, d is the diameter of 
the respective branches and X\, Хг, and X3 are three representative branch points. 

In a previous section we derived an equation for the input conductance 
of a semi-infinite cable. Equation 4.4.23 is repeated here in slightly dif-
ferent form: 

This equation can be simplified if we let К = (TT/2)(RmRi)~l/2. Equa-
tion 4.5.45 then reduces to GN = K(d)3/2. Notice that the input conduc-
tance of a semi-infinite cable is proportional to the diameter of the cable 
raised to the 3/2 power. 

To simplify the branched dendritic tree, we start at the last branch point, 
X3. If the cable d$iц were detached from X$ with a sealed end, its input 
conductance would be 

GN = (n/2)(RmRir1,2(d)3/2. (4.5.45) 

GN(d3ni) =£№ш)3/2. 
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A similar equation exists for cable ^3112. Since total conductance is just 
the sum of all parallel conductances, the attachment of the two cables 
d 3 m and ЙЗП2 to each other would yield a total input conductance of 

GN(X3) = GN(d3111) + GN(d3112) = K[(d3M)3/2 + №ii2)3/2]. 

If instead of a branch point at X3I cable ^211 were extended to infinity 
and detached at the same spot (with a sealed end), its input conductance 
would be 

СМШ1)=Ш2П)3/2. 

Rail's insight was to recognize that if 

then mathematically (and electrically) having the branch point X3 with 
branches d3m and ^3112 is exactly equivalent to extending branch ^211 
to infinity.2 This is illustrated in figure 4.20. 

Figure 4.20 Schematic of the dendritic tree after eliminating branch point X3. 

If we had done the same simplification at the branch point along ^212, 
then at Хг there would be two semi-infinite cables, ^211 and ^212, attached 
to branch d\\. As before, if 

2 In electrical terms this equivalency also means that there is impedance matching at 
all branch points. Without impedance matching there would be reflections of electrical 
signals at branch points. 

№ n ) 3 , 2 = № n i ) 3 , 2 + W3ii2)3/2, 

(<*ll)3 / 2 = (<*21l)3/2 + № 1 2 ) 3 / 2 , 

then 

GN(X2) = GN{d211) + GN(d2IZ) = K(dn)312, 
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and having branch point X2 with semi-infinite cables ^211 and ^212 is ex-
actly equivalent to extending cable dn to infinity. 

If we assume that the same simplifications can be made at all the branch 
points extending from cable d\2 to the end of the dendrites, then at branch 
point X\ there would be two semi-infinite cables attached, DN and D\2. 
Again, if 

GN(X 1) = GN(du) + GN(dl2) = K(d0)3/2, 

and branch point Xo and branches dn and d\2 can be eliminated by ex-
tending branch do to infinity. Our neuron with branched dendrites is 
now exactly equivalent to a single semi-infinite cable with diameter of do 
attached to the soma. This is illustrated in figure 4.21. 

Figure 4.21 Spherical soma and equivalent, semi-infinite cable after simplification of 
the dendritic tree according to the 3/2 power rule. 

For purposes of illustration, we used only two branches at each branch 
point. We could have had any number of branches at each branch point 
as long as the following relationship was true: 

where dp is the parent dendrite and do is the daughter dendrite. Equa-
tion 4.5.46 is the so-called 3/2 power rule. If at all branch points equa-
tion 4.5.46 holds, then the entire dendritic tree can be reduced to an equiv-
alent semi-infinite cylinder. This is a very powerful simplification of an 
otherwise complex geometrical structure. 

If the neuron has more then one dendritic tree, then, as long as each 
tree obeys the 3/2 power rule, the neuron can be reduced to an isopo-
tential soma with multiple equivalent cylinders attached. The multiple 
equivalent cylinders can also be reduced to a single equivalent cylinder 
with diameter equal to (Х4/3 / 2)2 / 3 , where dj represents the diameter of 
each of the equivalent cylinders. 

It is natural to wonder whether the 3/2 power rule actually holds for 
neuronal dendrites. Rail stated that he did not propose this as a "law 

(do)3/2 = (dii)3/2 + (di2)3/2, 

then 

d p 3 / 2 = 2 > 3 / 2 , (4.5.46) 
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of nature," but only as a convenient idealization. Nevertheless, a num-
ber of studies have suggested that the branching in dendrites of spinal 
motor neurons, cortical neurons, and hippocampal neurons closely ap-
proximates the 3/2 power rule. 

4.5.1.2 Equivalent (finite) cylinder Dendrites are usually better repre-
sented by finite-length cables, that is, I is usually < 2 Л for dendrites. 
Thus, a more useful implementation of the Rail model reduces a branch-
ing dendritic structure to an equivalent finite cylinder. The derivation of 
the equivalent finite cylinder follows the derivation given above for a semi-
infinite cylinder, except that the equation for the input conductance of a 
finite-length cylinder must be used instead of that for a semi-infinite cylin-
der. Furthermore, we must make the key assumption that all dendrites end 
at the same electrotonic length, L, and that the tips of the dendrites are 
sealed.3 

The equation for the input conductance of a finite cable is given below.4 

RN = (2 /7T) (R m Ri ) 1 / 2 (dr 3 / 2 coth(L), (4.5.47) 

or 

Gn = (тт/2)(RmRi)~l/2 (d)3/2 tanh(L), (4.5.48) 
where t a n h = ^ H = | ^ . 

As before, we see that the input conductance of a finite-length cable is 
proportional to the diameter raised to the 3/2 power. Equation 4.5.48 can 
be simplified, however, by using the relations Л = (rm/Vi)l/2,Rm = ndrm, 
and RI = TR(d/2)2ru so that 

GN = T^-tanhd) . (4.5.49) 
An 

These equations for input conductance, the 3/2 power rule of the previ-
ous section, and the assumption stated above that the ends of all dendrites 
end at the same I , can be used to reduce the tree of figure 4.19 to a single 
equivalent cylinder of diameter do and electrotonic length L in the same 
step-by-step manner as presented in the previous section. Furthermore, 
we showed previously that I = i/Л so that for the tree of figure 4.19 

^ _ i5L + i l l + fen fein 
Ло Ли Л211 Лзш ' 

3Actually, the dendrites could all end in either the sealed- or open-end condition, but 
the sealed-end condition is the only one that makes any practical sense for real dendrites. 

4For interested readers, the derivation of this equation is given in section 4.8 at the end 
of this chapter. 
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where the Vs represent the length of each of the segments. Note that 
the total length of the different branches can vary. The requirement is 
only that the total electrotonic length (L) be the same at the end of all the 
branches. In the more general case 

I = — + + + 
Ло Ли Л211 

out to one end. 

(4.5.50) 

4.5.1.3 Finite cylinder with lumped soma Some neurons (e.g., hippo-
campal dentate granule cells) can be reasonably represented by a finite 
cable with lumped soma. A better representation for some other neurons 
may be a lumped soma with several finite-length equivalent cylinders. 
If the multiple cylinders are of the same I, however, then they can be 
collapsed into a single cylinder with diameter of (£ d/3 / 2)2 / 3 , as given in 
the previous section. 

Rs 

Figure 4.22 Diagram of finite cable with lumped soma along with the circuit elements 
for the soma. 

The electrical circuit representation for the finite cylinder attached to a 
lumped soma is illustrated in figure 4.22. This is also called the ball-and-
stick model, for obvious reasons. As we will spend some time discussing 
this model, we will need to introduce a new term called the dendritic to 
somatic conductance ratio, or p. p is defined as the input conductance of 
the dendrites (or the equivalent cylinder of the dendrites) divided by the 
input conductance of the soma 

P = 
GD 
GS' 
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Stated another way, when a current is injected into the soma, p is the 
proportion of the current that flows into the dendritic tree relative to that 
which flows across the somatic cell membrane. The total input conduc-
tance of the neuron is simply 

Gn = GD + Gs, 

A dendritic tree of a neuron has the diameter and length of each branch 
indicated in the figure below: 

a. Is the 3/2 power law obeyed? 
b. What is the electrotonic length of the equivalent cylinder? 
c. If all four terminals at the right hand side are sealed, what is the 

input conductance of this dendritic tree? (Let Rm = 2000 Q-cm2 

and Ri = 60 Q-cm.) 

Answer to example 4.3 

a. (d21)3/2 + (d22)312 + (d23)3/2 = 1 + 1 + 1 = 3, 
(dn)3/2 = (2.08)3/2 = 3, 
(dn)312 + (di2)3/2 = 3 + 3 = 6, 
(do)312 = (З.З)3'2 = 6. 
Therefore, 
(dn)312 = №i)3/2 + (d22)3/2 + (d23)3/2, 
(do)3/2 = Wii)3/2 + Wi2)3/2. 
Yes, the 3/2 power law is obeyed. 

4 У 

or 

GN = Gs(l + p). 

Example 4.3 

/21 = 10 /im 
d2i - 1 /im 
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Answer to example 4.3 (continued) 

b. л IdpRm /3.3 ц т -
Л о = V~4kT = V 4 7 1 

2000 Q x 1Q8 ц т 2 

60 Q x 104 ji/m 

= д/27.5 x 104 /im2, 
= 5.24 x 102 /im. 

1/2 • 1 ч 1/2 Л21 
Aq V do 

I _ is. + i l l + i 2 ! 
Ло Ац Л21' 
20 10 10 + 
Ло 0.79Л0 0.55Л0' 
50.84 цт 

Ло ' 
50.84 цт 

5.24 х 102 цт* 
= 0 .1 . 

с. Л = 5.24 х 102 /Ш1. 
г . = Ш ^ т = 7 х 1 0 8 П / с т в 

G0 = T^-tanh(I), 
An 

tanh(I) 
(5.24 x 10"2 cm)(7 x 108 Q/cm)' 

= 2.7 x 10~9 S. 

4.5.2 Experimental determination of I, p, and т ж 

The ball-and-stick model is usually described by the three parameters, 
I , p, and Tw, as well as the input conductance, G^. More information 
is needed to uniquely determine other parameters, for example Ru a, 
and i, but these are not necessary to construct the model. A number of 
methods have been used to determine I , p, т т , and Gn for a neuron. We 
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will present one here in some detail and then give references at the end 
of the chapter for some of the others. 

The typical experimental situation is one in which a recording is made 
from a neuron with either a sharp microelectrode or a whole-cell patch 
electrode. One approach for determining passive properties of a neuron is 
to inject a long ( » To) step of current and record the change in membrane 
potential with respect to time, i.e., the charging curve. 

In a previous section, the transient response of a finite cable to a current 
step was given as (equation 4 .4 .40) 

00 
Vm(T,X) = X Bn cos(mrX/L)e-[l+{niT,L)2]T. 

n=0 

This equation must be modified for the addition of a lumped soma at 
X = 0.5 

The solution for the ball-and-stick model is 
00 

Vm(T,X) = V(oo,X) - X Bn COS [ a n ( I - X ) ] e - ( 1 + " * 2 ) r , (4.5.51) 
n=0 

where 

*•"•<«•»-! + Z°Lml°+kr <4-5-52) 

r - ( 4 ' 5 ' 5 3 ) 

and 

к = -anL cot (anL) = p L coth(L). (4.5.54) 

Note that the a n ' s are not as simple as they were for the finite cable pre-
sented previously, because they are now dependent on both I and p. 

Vm (Г, X) is an infinite series of exponentials that can be rewritten as 

Vm(t,X) = Co<Tt/To + Cie~t/Tl + C2e~t,T2 + • • • + Cne~t,Tn, (4.5.55) 

which was obtained by letting Cn = Bncos [<*n(L - X)] and тп/то = 
1/(1 + a n

2 ) . Also note that 

T 0 > TI > T 2 > . . . > T N , 

5 Details of the derivation are given in section 4.9 at the end of this chapter. 
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and that тт = то in the ideal case of uniform Rm and Cw. As with most 
such series, only the first few terms of equation 4.5.55 are usually neces-
sary to describe Vm adequately. For illustrative purposes, we will assume 
that only the first two terms are relevant and experimentally measurable. 
The membrane potential response to a step of current at X = 0 is then 

Vm(t) = Coe~t/T° + C\e~t,Tl. 

The above equation means that the membrane potential response to a 
step of current consists of two exponential terms. There are a number 
of computer programs that will fit multiple exponentials to an arbitrary 
curve. Let's assume, however, that we do not have access to a computer. 
There is a fairly simple and conceptually revealing method for extracting 
exponential terms from a waveform. It is called peeling. If we take the 
logarithm of the above equation, we obtain 

ln(Vw) = ln(Co<rt/T° + Cie~t/Tl). 

As t gets large, the last term on the right side approaches zero before the 
first term does (remember, TO > TI), SO at large t we are left with 

ln(Vni) = ln(Co) - (1/TO) • t. 

This equation is in the form of у = b + mx, the equation for a straight 
line. Therefore, a plot of the charging curve on semilog graph paper (plot 
of ln(Vm) vs. t) will yield a straight line as t gets large. The slope of this 
line will be - (1 / To) and the intercept will be ln( Co). If we then extrapolate 
this line back to t = 0, subtract it from the rest of the charging curve (i.e., 
Coe~t,T° is subtracted from Vm), and plot this difference, we end up with 
a curve described by the following equation: 

ln(Vm) = ln (C i ) - ( l /TI ) - t . 

This procedure can be repeated if there are more than two exponential 
terms that need to be extracted from the charging curve. The peeling of 
the first term of the charging curve and plotting the difference is illus-
trated in figure 4.23. 

Although this method of "peeling" exponentials need seldom be used 
anymore, it is still a useful exercise as it illustrates the differences in the 
various exponential terms as well as the meaning of the coefficients, Cn's. 
As mentioned previously and as shown by the peeling procedures, the 
higher-order time constants in the series get progressively smaller (show 
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log(Co) 
\ 

log(Ci)-^ 
log(Vm) 

time 

Figure 4.23 Example of the method for peeling exponentials from a multiexponential 
charging curve. The log of the membrane potential in response to a step of current is 
plotted vs. time from a nonisopotential neuron (see text for further explanation). 

faster decay). The coefficients, on the other hand, are essentially ampli-
tudes or weights for each of the exponential terms. The value of Cn deter-
mines how much each exponential term (regardless of its time constant) 
contributes to the charging curve. In general, the Сп 's for n > 2 are quite 
small compared to Co and C\. In many cases even C\ is small compared 
to Co so that the charging curve is dominated by a single exponential, To. 

Another approach for determining the TW'S and Cn 's makes use of a 
brief (< To/20) current pulse instead of a long pulse. With the use of a 
brief pulse, the ratio of C\ to Co (or Сг to Co) is greater than with the long 
pulse and thus there is greater weighting of the higher order exponential 
terms in the charging curve, making them easier to measure. The ex-
ponentials and their coefficients can be determined exactly as described 
above, but now the coefficients determined from the short pulse method 
(Csn's) are related to the coefficients from the long pulse method (CLn's) 
by (Durand et al. 1983) 

where w is the pulse width. One of the problems with this method is that 
any leakage around the recording electrode can cause spurious results. It 
is therefore best to use the brief pulse method in conjunction with whole-
cell patch recordings. 

Regardless of whether one uses the brief or long pulse method, if at 
least two exponentials can be extracted from the charging curve, either 
by peeling or by some other procedure, then the time constants and their 
coefficients can be used to determine the parameters of the ball-and-stick 

CSn = CLn(l-e-w/T») (4.5.56) 
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model for the neuron under study. As seen in figure 4.23, CLO (or Cso) 
and Си (or Csi) are the intercepts and To and T\ can be derived from the 
slopes of the lines. From equation 4.5.52, we get the following 

CLO = B0L 

Си = B\ cos (a i l ) , 

or 
2 CLO TI/TQ 

= cot (aiL)[cot ( a i l ) - l / ( « i l ) ] . (4.5.57) 

1 + (oc\L)2/(k2 + k)" 
Using the relation for к (equation 4.5.54), 

( a i l ) 2 = fc2/[cot(aiI)]2 and к = - a i l c o t ( a i l ) 

so 
CLI 

( 2 C L 0 T I / T 0 ) - C L I 

The above is a transcendental equation in that it has an infinite num-
ber of roots or solutions. Given measurements for CLI,CLO, TI.TO, one 
can usually use equation 4.5.57 to solve for I . The procedure is to first 
guess at I 6 and then iteratively calculate the right side of the equation, 
improving on the estimate of I each time, until the equation converges 
on the correct solution. Once I is calculated, p can be obtained from the 
following:7 

- a i cot ( a i i ) ^ ^ 
' = coth(I) ' ( 4 - 5 ' 5 8 ) 

where 
11/2 

• « i i _ ai - G M 
Assuming that the neuron under investigation can be represented by 

an equivalent cable with lumped soma, the fairly simple procedures of 
injecting a step of current and measuring the resulting charging curve 
can give us RN (from the steady-state Vm/I) and, as shown above, p, I , 
and т т . 

6A good starting guess can be obtained from the solution for L of a finite cable or 

, = 7 R [ ( T 0 / T I ) - L ] ' 

7 see section 4.9 for derivation 
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Figure 4.24 Comparison of charging curves from neurons represented by an isopotential 
soma with a finite cable but with different values for p. (After Jack et al. 1975.) 

How does the charging curve vary as a function of p? We illustrated 
previously the charging curves for different I's, and in figure 4.24 we il-
lustrate charging curves for different p's. The limits are at p = 0, which 
would represent somatic dominance or a large soma attached to a thin 
equivalent cylinder, and at p = oo, which would represent dendritic dom-
inance or a small soma attached to a large diameter equivalent cylinder. 
Note that a p > 5 is barely distinguishable from p = oo. p thus affects the 
shape of the charging curve appreciably only when it is between 0 and 5. 

Early estimates of RM, P, U and то for hippocampal neurons (for de-
scription of САЗ, CA1, and granule cells, refer to chapter 14) were about 
20,000 Q-cm2,1.5, 0.9, and 20 msec, respectively. Unfortunately, only the 
granule cells are well fit by a ball-and-stick model so that many of the as-
sumptions for determining I and p do not hold. Also, the measurements 
were made using sharp microelectrodes, which are known to introduce a 
leak into the soma and make the assumption of uniform Rm invalid (that 
is, то will not be equal to т т and the value of p is artifactually low). Never-
theless, what is clear from these and later estimates is that RN and r m are 
large and I is small (I < 1) for all cell types even though they have quite 
different morphologies. This has led to the idea that cortical neurons are 
electrotonically compact. Although this idea will be discussed more fully 
below and in chapter 13 (also see Spruston et al. 1993), it is worth empha-
sizing that "compactness," as used here with respect to small I and p, is 
only relevant for the steady state (DC) signals. As we saw in the section 
on finite cables, Л can become very small (or large L) when dealing with 
non-steady-state (AC) signals. Since most of the electrical signals of inter-
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est in neurophysiology are changing with time, the term electrotonically 
compact is a bit of a misnomer, because it applies to conditions that are 
unusual for neurons. 

Newer techniques have been used to reevaluate the passive membrane 
properties of hippocampal neurons. Using perforated-patch recording 
methods, RM and To are now believed to be about 135, 104, and 446 MO 
and 66, 28, and 43 msec for САЗ, CA1, and dentate granule cells, respec-
tively (Spruston and Johnston 1992). These To values suggest RM= 66,000, 
28,000, and 43,000 fl-cm2 for the three cell types. Even these measure-
ments of RN and To, however, may have been influenced by spontaneous 
synaptic input, and the values could be as much as 20% higher. These 
and other studies have also made clear that several of the key assump-
tions of the Rail model, such as passive RM and all dendrites ending at 
the same I, may not hold. An understanding of the passive properties of 
neurons is still a useful first step, however, for investigating properties 
of dendrites and how they modify (or integrate) synaptic inputs. These 
topics are discussed in the next two sections and in chapter 13. 

4,5.3 Application to synaptic inputs 

As mentioned earlier, the main reason for studying the electrotonic prop-
erties of neurons is to help us understand the function of dendritic syn-
aptic inputs. Although the mechanisms of synaptic transmission will be 
dealt with in some detail in later chapters, we will discuss here some of 
the ways in which the electrotonic properties of dendrites affect synaptic 
integration. 

In the early 1950s, when the field of neurophysiology was in its infancy, 
scientists believed that the distal dendrites of cortical and spinal motor 
neurons were not functionally connected to the rest of the neuron. In 
other words, they believed that the synaptic inputs to the distal dendrites 
would have little or no effect on the firing properties of the neuron— 
they were just too far away. The function of the distal synaptic inputs 
was obviously not known, and many scientists believed that the synaptic 
potentials recorded in spinal motor neurons must arise from the more 
proximal inputs. 

Rail's development of his neuron model fundamentally changed the way 
neurophysiologists thought about dendritic trees. He estimated that the 
electrotonic length of spinal motor neurons was on the order of 1.5 and 
that distal synaptic inputs would indeed produce measurable signals in 
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Figure 4.25 Shapes of simulated EPSPs measured in the soma resulting from a current 
step injected at three different locations on a ball-and-stick model. The model was imple-
mented as a compartmental model (see chapter 13). 

the soma.8 Even though Rail demonstrated that distal synaptic inputs 
could produce measurable signals in the soma, the synaptic potentials 
were nonetheless attenuated and distorted in shape by the electrical prop-
erties of the dendrites. 

The first example we will use to demonstrate this fact is a ball-and-stick 
model of a neuron with the injection of brief steps of current into the 
soma, into a middle region of the dendrites, and into the distal dendrites. 
The changes in membrane potential measured in the soma in response to 
each of these current steps are illustrated and compared in figure 4.25. 
Assuming that a synaptic input injects a brief step of current into the den-
drites, the results are quite interesting and informative. First, as expected, 
the amplitude of the synaptic potential, or, in the nomenclature of neuro-
physiology, excitatory postsynaptic potential (EPSP), measured in the soma 
in response to distal input is smaller than that from either the middle or 
somatic inputs. In other words, because of the electrical properties of the 

8Rall also showed that the charging curve resulting from a step of current to the soma 
was not a single exponential, as was first believed, and that by peeling, a better (higher) 
estimate of *rm could be obtained. 
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dendrites, distal synaptic signals are attenuated upon reaching the soma. 
Second, the rise time and peak amplitude of the inputs is progressively 
slowed and delayed for inputs at increasing distance from the soma. This 
slowing arises from the distributed resistance and capacitance of the den-
dritic membrane. And third, the final decay time of all the inputs is the 
same. That is, the potential developed from a brief synaptic current injec-
tion cannot dissipate or decay slower than the membrane time constant. 

One can argue (as we will show later) that synaptic inputs do not inject a 
step of current. (In fact, they produce a locally brief conductance change 
that may or may not inject current, but this will be explained later.) A 
better representation for the shape of the current injected by a synapse 
is given by the so-called alpha function. The equation is given below and 
graphically illustrated in figure 4.26. 

time 

Figure 4.26 The alpha function, Is = /o(f/a)e -<xr , is illustrated. The time to peak is 
equal to 1/a. 

Is=W/a)e-clt, (4.5.59) 

where Jo is the maximum current (it could be either positive or negative, 
depending on whether it is being used to represent outward or inward 
current) and 1/a is the time to peak (in sec"1) of the current. The value 
chosen for a determines the shape (rise time and decay time) of the syn-
aptic current. Using this better representation for a synaptic input, a sim-
ilar experiment to that above, where synaptic inputs are placed at three 
different locations on the model, is illustrated in figure 4.27. 

The results are identical, that is, the EPSPs are smaller and slower for 
inputs at increasing electrotonic distances from the soma. In fact, Rail 
has shown that there is a quantitative relationship between electrotonic 
distance and shape of the synaptic potential measured in the soma. This is 
best illustrated by another example. Using the same ball-and-stick model, 



4.5. Rail model for neurons 101 

Vsoma 

time (msec) 

Figure 4.27 Shapes of simulated EPSPs measured in the soma. The synaptic inputs 
were represented by a conductance change in the form of an alpha function (Is = 
GSIT/OOE'^IVM - ES)). /in illustrates the shape of the current injected by the synapse 
at each of the indicated locations in the dendrites. Same compartmental model as in 
figure 4.25. 

figure 4.28 plots the rise time (measured as the time from 10%-90% of 
peak) vs. the half width (measured as the width of the EPSP at 50% of 
peak amplitude) for different a functions injected at different electrotonic 
distances from the soma. This is called a shape index plot. As we saw in 
the previous two figures, the shapes of the EPSPs change in a predictable 
fashion for inputs at different electrotonic distances. In fact, one could, in 
theory, use such a relationship to estimate the electrotonic distance of a 
synapse by first measuring the shape of the EPSP and then finding its value 
on a representative shape index plot for that neuron. This method was 
used by Rail and others for localizing inputs to spinal motor neurons and 
by Johnston and Brown for estimating the electrotonic distance of mossy 
fiber synapses on CA3 pyramidal neurons in hippocampus (figure 4.28). 

Few if any dendrites actually have passive membranes as the above anal-
yses assume. Considerable interest is currently focused on identifying 
and localizing voltage- and ligand-gated ion channels in dendrites and 
then, along with linear cable theory, developing principles of dendritic 
integration. 
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Normalized Rise Time 

Figure 4.28 Shape index plot for mossy fiber EPSPs in a nine-compartment model of 
a CA3 pyramidal neuron (from Johnston and Brown 1983). 1 /a represents the time to 
peak of the synaptic current (varied from 0.5-2.5 msec), and the numbers represent the 
compartments into which the model synapse was placed. The ovals represent the means 
±2 x the SEMs of rise times and half widths of the EPSPs recorded from two different 
neurons. The conclusion from this analysis is that the mossy fiber synapses from these 
two cells were at electrotonic distances equivalent to those of compartments 1 and 2 in 
this model (see also chapter 13). The inset illustrates simulated EPSPs measured from the 
soma compartment (i.e., # 1) when the model synapse was placed in each of the indicated 
compartments (for a=500/sec). 

4.6 Two-port network analysis of electrotonic structure 

As mentioned previously, the Rail model requires assumptions of spatial 
uniformity of membrane properties, voltage independence of Rm, the 3/2 
power rule for branch points, and all dendrites terminating with the same 
I . The latter is a particularly restrictive assumption that is unlikely to 
be true except for a few types of neurons. Without the ability to reduce 
dendritic trees to an equivalent cylinder, even multiple equivalent cylin-
ders, very little can be determined about the electrotonic structure of a 
neuron beyond the measurement of Rn and rm. Since the main reason 
for wanting to know something about electrotonic structure is for ana-
lyzing dendritic synaptic inputs, an alternative approach was developed 
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Figure 4.29 Schematic for the reduction of a neuron with synaptic inputs into a two-
port network. One port represents the soma and the other the site of synaptic input. 
The neuron between the ports can be represented by a three-resistor network called а тт 
network, shown in the lower part of the figure. (Adapted from Carnevale and Johnston 
1982.) 

in the early 1980s and has recently received increased attention. It is the 
so-called two-port network analysis of synaptic inputs. 

The typical recording situation is depicted again in figure 4.29. One 
is usually not as interested in the electrotonic structure of the neuron 
per se, as in how the dendrites distort the synaptic signal. This situation 
can be reduced to two ports or contact points for inputs and outputs. In 
this case, one port is the site of synaptic input and the other is the site 
of recording. The rest of the neuron, at least for the moment, is not of 
interest. We have an input and an output, the synaptic and recording sites, 
respectively; or, conversely, when we inject current into the recording 
site it becomes the input while the synaptic site becomes the output. In 
any event, for this particular synaptic input, we have reduced the neuron 
to a two-port network. No assumptions need be made about branching 
structures of the dendrites or spatial uniformity of membrane properties. 
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The only key assumption remaining is that the membrane properties must 
be passive. 

For the steady-state case, the entire neuron can be reduced to three 
resistors connected in what is called а л network. Using some simple 
methods of circuit analysis (see appendix A), we can derive several useful 
parameters called coupling coefficients (or attenuation factors). For exam-
ple, if one injects steady current into the soma, there will be a potential 
gradient between the soma and the synaptic site, described by 

V 2 = R^TCV- ( 4 - 6 - 6 0 ) 

We will introduce the first coupling coefficient, kn, by rearranging the 
equation 

k " - v r RTVTc- (4-6-61) 

This coupling coefficient describes the steady-state voltage attenuation 
from the soma to a synaptic site. A similar coupling coefficient can be de-
rived for the opposite case, the attenuation of potential from the synapse 
to the soma in response to current injected into the synaptic port. In this 
case, 

, 4 - 6 - 6 2 > 

A very important principle can be seen immediately, that is, k\2 * £21 • 
In other words, voltage attenuation in dendrites is in most cases not sym-
metrical. The attenuation of potential from the soma to the synapse is not 
the same as the attenuation of potential from the synapse to the soma, 
and, in general, k\2 > £21-

There are several other useful relations that can be derived from this 
simple two-port network. We will simply present them here and direct 
the interested reader to the original publications. 

Principle 1: In general, ku * кгь and, in most cases, the voltage attenu-
ation from soma to synapse is less than from synapse to soma (i.e., 
kn > k21). 

Principle 2: Charge transfer from synapse to soma is equal to the voltage 
attenuation from soma to synapse (<?Soma/4synapse = ki2)-

Principle 3: With a voltage clamp to the soma, steady-state current at-
tenuation from synapse to soma is equal to the voltage attenuation 
from SOma tO synapse (isoma/isynapse = ki2). 
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This relatively simple idea of using a two-port description of a neuron 
and deriving coupling coefficients has recently been extended in a clever 
way (Brown et al. 1992; Tsai et al. 1994; Zador 1992). The two-port de-
scription was generalized from the somatocentric view outlined above, 
where one port was always the soma and the other was an arbitrary site 
of synaptic input, to the more general case in which the two ports are any 
two sites on the neuron. In other words, the two ports could be two differ-
ent dendritic sites as well as the soma and one dendritic site. The coupling 
coefficients derived above are now more descriptively called attenuation 
factors (A1 s) so that 

Vi 1 
A\2 = T7~ = T (4.6.63) 

У2 Kl2 
or, more generally, 

Aij = т * (4.6.64) 
K>i 

where the Aij would represent the attenuation of potential from site i to 
j for current injected at site i. 

Zador, Brown, and colleagues recognized that the logarithm of the at-
tenuation ratio is equal to the electrotonic distance Xij for an infinite 
cylinder or 

Xij = In | Aij | (4.6.65) 

for an infinite cable. 
What makes this formulation so appealing is that the ln(attenuation ra-

tios) for different parts of a neuron are additive, regardless of the geom-
etry of the neuron. One can thus construct the electrotonic structure of 
a dendritic tree by adding together the ln(attenuation ratios) for different 
parts of a neuron. This can be done based on the power of the two-port 
network description derived above and without any assumptions other 
than that of passive membrane properties. 

Examples of the resulting morphoelectrotonic transforms are illustrated 
in figure 4.30. In this figure a reconstructed CA1 pyramidal neuron is 
illustrated on the left in normal units of distance (цт). This same neuron 
is redrawn four times on the right with a scale according to the natural 
logarithm of the attenuation ratios (1 In unit). The small neuron diagram 
in the upper middle represents the In of the attenuation for the steady-
state (0 Hz) voltage decay from the soma out the dendrites. The diagram 
in the upper right represents the steady-state voltage decay from different 
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points in the dendrites in toward the soma. The figure in the upper right is 
larger because the attenuation of potential from the dendrites to the soma 
is much greater than the attenuation from the soma out the dendrites. The 
other two figures represent similar measures except that they were done 
for a 40 Hz sine wave. Obviously, there is much greater attenuation (in 
either direction) at the higher frequency. 

Figure 4.30 Morphoelectrotonic transforms. A reconstructed СА1 neuron is shown on 
the left, and the morphoelectrotonic transforms for the decay of potential from the soma 
out the dendrites and from the dendrites toward the soma are illustrated on the right. 
The neuron diagrams on the right are drawn according to a scale that represents the In 
of the voltage attenuation ratios (1 In unit represents voltage attenuation of l / e from the 
site of current injection). The top middle transform represents the ln(attenuation) of a DC 
signal applied to the soma as it decays to different sites in the dendrites. The top right 
transform represents the ln(attenuation) of a DC signal applied to different sites in the 
dendrites as it decays toward the soma. The two transforms at the bottom right represent 
the same measurement as those above but resulting from the application of a 40 Hz sine 
wave signal instead of 0 Hz. (Kindly provided by Tsai, Carnevale, Claiborne, and Brown.) 
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4.7 Summary of important concepts 

1. Equivalent circuit representation of neurons. 
2. Formulation of the cable equation. 
3. Passive properties of neurons (ru rm, cm , Ru Rm, Cm, т т , Л, I, I , p, 

Rn)• 
4. Differences in transient and steady-state attenuation properties be-

tween infinite, semi-infinite, and finite cables. 
5. Rail model. 
6. How to determine I , p, and т т . 
7. Application of cable theory to synaptic inputs and asymmetrical 

voltage attenuation in dendrites. 

4.8 Derivation of the input conductance of a finite-length cable 

/о 

Figure 4.31 Diagram of finite cable with current injected into one end. For derivation 
of input conductance of a finite-length cable. 

Io = it = -(1/п)дУт/дх = -(1/Ап)дУт/дХ, for T-oo. 
RN = Vm/Io = (Vo//o) cosh(L - X)/cosh (I) 

= - [V0Ari/(dVm/dX)]cosh(L - X)/cosh(L). 
9Vm _ Vo cosh (I) • d/dXcosh(L - X) _ cosh ( 1 - Х ) • d / d X c o s h L 
dX " cosh(I)2 cosh(L)2 

Vpsinh ( L - X ) 
cosh(L) 

At X = 0, 
R n = A n ^ ^ = A n C ° t h ( L ) l 

GN = T̂— tanh(L). 
Л n 
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4.9 Derivation of potential distribution along finite cable 
attached to lumped soma 

For current step applied at X = 0 (refer to figure 4.22), 

IO = IS+ID, 

Is = Gs(Vm + dVm/dT), 

/D = - [ i / ( A n ) ] [ A V W / A X ] X = 0 . 

New boundary condition at X = 0 gives 

P = GD/G5 = ™ a t / 0 = 0. 

31/ П 
P = (V™ + tanh(L). dA Jx=o 

A general solution for cable equation is 

Vm(T9 X) = [A sin <x(L - X) + В cos <x(L - X)] e"(1+£x2)r. 

As before, 

requires 

A = 0. 

At X = 0, 

paB sin(<xL)e~(1+oc2 ) r = tanh(I)e~(1+<x2)T[B cos(al) - (1 + <x2)£cos(«I)], 

pas in (a l ) = -<x2 cos(al) tanh(L), 

or 

a l c o t ( a l ) = -pL/tanh(L) = -k . 

Remember: 
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The roots of the equation are a n , and, as before, 

T 19 

The solution is now 
00 

Vm(T,X) = X Bncos [an(L-X)]e-{1+a»2)T, 
n=0 

where 
2Bo Tn/To 

BnCOS («nD - 1 + ( a n I ) 2 / ( k 2 + k) 

at X = 0 for current step. 

4.10 Homework problems 

1. In the text the voltage response in an infinite linear cable to a pro-
longed current step was shown to be 

where 

erfc(x) - 1 - erf(x) = 1 - - Ц * A - ( f k ) ' . 

and 

тт = RmCm. 

(a) Show that 
erfc(oo) = 0, 
erfc(O) = 1, 
e r f c ( - o o ) = 2, 
erf( -x) = -erf(x) . 
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(b) The input resistance RN of a cable is defined as RN = Vm (00, 0) / Jo-
What is the input resistance of an infinite cable if the radius is 
25 цт, the membrane resistivity is 2000 Q-cm2, and the axo-
plasm resistivity is 60 Q-cm? 

(c) What is the steady-state voltage response measured at x = 
0, x = A, x = 10Л, to a prolonged current step of 10 nA in-
jected at x = 0? Use the values of a, Rm, and Ri in (b). 

(d) What is the transient-state voltage response measured at x = 0 
and t = т т / 2 to a prolonged current step of 10 nA injected at 
x = 0, t = 0? Use the values of a, Rm, and Ri in (b). 

2. Show that 

Vm = A!ex + A2e-x, 
Vm = A\ cosh(X) + Аг sinh(X), and 
Vm = Al cosh(I - X) + A2 Sinhd - X) 

are all solutions to the steady-state cable equation Vm = 
3. Assume a semi-infinite cable of diameter 1 цт with Rm = 5000 Q-

cm2 and Ri = 75 Q-cm. 

(a) Calculate the input conductance, Goo, for this cable. 
(b) If the end of this cable is sealed with a disk of membrane with 

the same properties as the cable, calculate the conductance, Gi, 
of the sealed end. 

(c) What is the value of BL for this finite cable? Would you call it 
an open-end or sealed-end termination? 

4. Derive the cable equation using the circuit diagram shown. Give the 
equation in as many forms as you can and define all parameters. 

Го 

X 



4.10. Homework problems 111 

5. For the cables shown below, 
d\ = d,2 = d3 = 1 cm, 
Rmi = Rm2 = Rm3 = 5000 Q-cm2, and 
Rai = Ra2 = Ra3 = 100 Q-cm. 
Assume all terminators can be considered open circuit (sealed end). 

1 1 -Xi =1 
s&- j j infinite 00 

1 1 1 
i i i -X2 = l 

semi-infinite 00 
1 1 1 
i i i - X3 = L = 1 

finite 
i i 

x = o 

(a) Calculate the input resistance at X = 0 for each of the three 
cables. 

(b) If 10 mV is imposed at X = 0, calculate the voltage at X = 1 for 
each of the three cables. 

6. Two infinitely long axons, A and B, are shown below. Both have Na+ 

channels located only at the regions indicated by the dots, while the 
rest of the axonal membranes can be considered passive. A pro-
longed action potential (duration > 3 x тш) is generated in A and В 
at the left. The resting potential of A and В is - 70 mV, and the peak 
of the prolonged AP is +30 mV. The next row of Na+ channels on 
the right is located 2Л from the ones on the left. 

(a) Assuming threshold is - 50 mV, will the prolonged AP in A prop-
agate to the right and produce another AP? Why or why not? 
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(b) In B, extra membrane tightly surrounds the space between the 
Na+ channels. This extra membrane effectively increases the 
membrane resistance and decreases the membrane capacitance 
by a factor of 4. Will the prolonged AP in В propagate to the 
right and produce another AP? Why or why not? 

(c) How would your answers to (a) and (b) change if the diameter 
of A and В were doubled while leaving RM and RI the same? 

7. At each of the three cables shown below, a Na+-dependent EPSP 
(E^a = +30 mV) is located at one end of the cable. You are record-
ing with a microelectrode at the other end and are able to make any 
reasonable type of measurements you wish with the microelectrode 
while activating the synapse. What will be the approximate mea-
sured reversal potential for each cable? Assume a resting potential 
of -70 mV and sealed ends for the cables. 
electrode synapse 

8. You have two unmyelinated axons, identical except that their diam-
eters are 5 цт and 10 цт. (Assume that they are infinite in length.) 

(a) What are the relative conduction velocities (passive wave) of the 
two cables? 

(b) What are the relative input resistances of the two cables? 
(c) What are the relative space constants of the two cables? 
(d) What are the relative time constants of the two cables? 

Show all calculations. 
9. You are recording from a spherical neuron with RM = 25,000 fi-cm2 

and a = 10 цт; 
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(a) What is RN? 
(b) Plot (showing at least 4 time points) the response of this cell 

to a 10 pA step of current. (This should be a detailed plot, not 
just a rough sketch.) 

(c) If we now attach to this cell a semi-infinite cable with Ri = 
100 Q-cm and a = 1 цт, 

i. What is p? 
ii. What is the expected voltage response of this cell with at-

tached cable to the same step of current as before? (Make 
two plots, one with an absolute amplitude scale that in-
cludes this response and the one calculated above, and a 
second plot with a normalized amplitude scale that again 
shows both responses. The time courses of each curve can 
now be less precise than that expected above, but be spe-
cific as to the steady-state values of each and their relative 
shapes.) 

(d) If you added a neurotransmitter to the bath (e.g., GABA) in 
which the receptors for this neurotransmitter were located only 
on the soma, and this addition to the bath reduced Rm by a fac-
tor of 2, what is the new input resistance of this neuron with 
attached cable? What is pi 

10. Answer true or false for each of the following: 

(a) Distal EPSPs have slower rise times than proximal EPSPs. 
(b) Distal EPSPs have slower decay times than proximal EPSPs. 
(c) Proximal EPSPs have longer half widths than distal EPSPs. 
(d) Proximal and distal EPSPs have the same time to peak. 
(e) An EPSP in the soma would affect an EPSP in the distal dendrites 

the same as a distal EPSP would affect an EPSP in the soma. 

11. Given a finite-length cable of 1=1 cm, A =0.5 cm, and rm =100 msec; 

(a) What is the electrotonic length of the cable? 
(b) What is the electrotonic distance for a synapse 0.5 cm from the 

origin? 
(c) What is the ratio of VL/VO for a DC signal (where Vi is at the 

end of the cable and VQ is at the beginning of the cable)? 
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(d) What is the length constant for a 10 Hz signal? How does 
the voltage attenuation of cables differ for DC vs. signals that 
change with time? 

12. For the model neuron shown below (not drawn to scale) assume that 
the 3/2 power law is obeyed and that Rm = 10,000 Q-cm2 and Ri = 
200 Q-cm, ai = аг = 1 цт, and a = 20 цт for the soma. Assume 
also that all ends are sealed and that Ai = Л2 = 500 цт, Ац = Л12 = 
Л21 = Л22 = 400 цт; l\ = 300 цт, h = 200 цт, and 1ц = I12 = 
I21 = I22 = ЮО цт. 

Calculate the following: 

(a) L for each of the branches 
(b) To what extent can this neuron be reduced to a Rail-type model? 
(c) The total input resistance of the neuron 

(e) If the initial resting potential is -70 mV and one applies a steady 
1 nA hyperpolarizing current, what will the final (steady-state) 
potential be if a 2 nA step of depolarizing current is superim-
posed on the hyperpolarizing current? Assume that the neuron 
is passive. 

13. A motor neuron has a spherical soma 60 цт in diameter. Five den-
dritic trees identical to that described in example 4.3 and a long axon 
(which can be considered a semi-infinite cable) of 2 цт in diameter 
are attached to the soma (let Rm = 2000 Q-cm2 and Rt = 60 Q-cm). 

(d) p 

(a) What is the soma conductance? 
(b) What is the total input conductance of the 5 dendritic trees? 
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(c) What is the input conductance of the axon? 
(d) What is the input conductance (GN) of the whole neuron? Use 

the values of RM = 2000 П-cm2, Д* = 60 Q-cm. 
(e) What is the steady-state membrane potential recorded from the 

soma when a constant current step of 10 nA is applied at the 
center? The resting potential of the cell before current injection 
is -70 mV. 

14. You are recording from the soma of a hippocampal neuron and you 
measure the voltage responses to a step of current shown below. 

IM 

VM 

(a) What is the total input conductance of this neuron? 
(b) If you know by some other means that the input resistance of 

the soma is 100 Mft, what is the input conductance of the den-
drites? What is pi 

(c) If you know that the neuron can be represented by an equiva-
lent cable model with lumped soma (i.e., a ball-and-stick) with 
I = 0.01 cm, a = 0.0005 cm, and 1 = 1, calculate the pas-
sive membrane properties of the cell (A, ru rm, Rm, Tw, and the 
radius of the soma, r). If necessary, you can assume CM = 
1 /L/F/СШ2 (most people consider this value for CM a constant 
for all biological membranes), and a sealed end for the cable. 

(d) What would be the voltage at the end of the dendrites if the 
soma were depolarized by 50 mV? (Assume a sealed end for 
the equivalent cable.) 

(e) What would be the voltage at the same point if the end of the 
equivalent cable were terminated by a semi-infinite cable with 
the same membrane parameters? 
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15. You are recording intracellular^ from a neuron and wish to deter-
mine its electrotonic structure. You are able to make all the nec-
essary electrophysiological measurements and want to assume that 
the neuron and its dendrites can be represented by an equivalent 
finite-length cable with lumped soma. List the most important as-
sumptions necessary to allow you to represent this neuron by such a 
model. Each assumption should be written in two sentences or less. 

16. Three cables are attached together as shown below. 

1 mA of steady current is injected at the intersection, d. What are 
the steady-state voltages at d and at one of the ends (a, b, or с)? Make 
any assumptions you need to make, but state them explicitly. Use 
the following values: Ua= Ю cm, Ada= 5 cm, Tda = 42 Q/cm; ldb= 
2 cm, Лdb= 2 cm, гдъ = 1660 Q/cm; Uc= 2 cm, Adc= 3 cm, гдс = 
327 Q/cm. Note that the diagram is not drawn to scale. 

17. (a) State the conditions under which a dendritic tree can be reduced 
to Rail's equivalent cylinder. 

(b) Plot in the approximate scale the steady-state voltage response 
V(oo, X) against X to a current step injected at X = 0 in a finite 
cable when the end of the cable is sealed, infinite, or grounded. 

18. In the figure for problem 16 (which is not drawn to scale) you are 
given a branched cable with the following properties: lad=4 cm, 
Aad=5 cm, riad= 42 Q/cm, aad=0.75 cm, Ub=3.3 cm, A^=3.6 cm, 
adb=039 cm, cm, Л<*с=4.3 cm, and a^c= 0.55 cm. You are asked 
to determine: 

(a) the steady-state input resistance as measured at a. 
(b) the steady-state voltages at a, b, c, and d given a 1 mA steady 

current injected into a. 
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You can assume that all ends are sealed. Justify your methods of 
analysis. 

19. In plots of log Vm vs. t (using semilog graph paper), where Vm is 
the membrane voltage response to a step of current, the "peeled" 
straight lines are used to calculate time constants. Derive an equa-
tion for the time constant as a function of graphical measurements 
Vi, V2, tu t2. 

time 

20. The drawing below illustrates four different theoretical conditions 
(not drawn to scale): an infinite cable, a semi-infinite cable, a finite 
cable (1=1), and a spherical cell. Each has the following properties: 
Rm = 10,000 Q-cm2, R( = 100 Q-cm, a = 1 цт for the three cables, 
and a = 30 ^m for the sphere. Assume sealed ends where relevant 
and that the cells are purely passive. 

x=o x=1 

(a) If a 0.1 nA current is injected at X = 0, draw on a piece of graph 
paper, with as much accuracy as you can (i.e., provide numbers 
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where possible), the voltage responses with respect to time for 
each of the four conditions. Draw each response separately 
and also normalize and combine the four responses on a single 
graph. 

(b) Calculate the conduction velocity of a passive wave for each of 
the three cables and determine the conduction time from X = 0 
to X = 1. 

(c) If an excitatory synaptic input is applied at X = 1 on each of the 
three cables, draw on a piece of graph paper the relative sizes 
and decay time courses of the three responses as measured at 
X = 0. Assume that the amplitude and time course of the EPSP 
at X = 1 for each of the three cables is identical. Be precise in 
your description of the decay phase of each of the EPSPs. 

Vm : V(00,0) 

Vm(°o,x) = 
Vm(°°.0)e~x/A 

(a) Using the figure above and your knowledge of cable theory, an-
swer the following, true or false. 

i. Vm(T,A) < Vm(oo,A) 
u - Vw(oo,2A) ^ Vm(T,2A) 

Vm(3r,A) ^ Vm(3r,2A) 
iv. VM(R/10,0)> Vw(T/5,2A) 

(b) Using the figure below and your knowledge of cable theory, an-
swer the following, true or false. 

i. Vm ( X — 1 ) sealed end cable open end 
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V m ( l ) o p e n end > Vm ( l ) i n f cable 

i i i . VmClJopen end, L=2 > ^ т ( 2 ) 8 е а 1 е а end 

i v . Vm(L)open end = 0 

x/A 

22. Referring to the figure below (not drawn to scale), let d\ = 1 цт, 
= 2 /urn, d3 = 3 цт, d4 = 4 щп, d n = 0.5 jwrn, and d m = 0.3 ji/m. 

Assume that all of the assumptions necessary for the Rail model 
hold. 

(a) If you wanted to represent all of the 4 trees (i.e., 1, 2, 3, and 4) 
by a single equivalent cable attached to the soma, what would 
its diameter have to be? 

(b) If there is a 30% attenuation of the potential from the soma to 
the end of the dendrites, what is the electrotonic length of this 
neuron? 
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(c) If we detached the soma, connected all of the somatic ends of 
the 4 cables together, and sealed those ends, what would the 
voltage attenuation be from the distal ends of the dendrites to 
the soma ends? 

(d) If we then reattached the soma as before, would the attenuation 
of potential from the distal ends of the dendrites to the soma 
be greater than, less than, or the same as the 30% in (b)? 

23. In the figure below (not drawn to scale) the input conductance of 
the soma is 10~9 S, Ri=200 Q-cm, and (in цт) I A = 250, = IA2 = 
80, A A = 500, Ад, = Лд2 = 400, dAl = dAl = 1; IB = 600, lBl = 
Ib2 = 600, AB = 400, Ав1 = Лв2 = 300, ds = 1. Assume sealed ends, 
the 3/2 power law holds at all branch points, and Er = - 7 0 mV. 

(a) Calculate I for each of the dendritic trees A and B. 
(b) Calculate the total input resistance, RN, for this neuron. 
(c) If Es = +10 mV for each of the synapses, what is Vrev for each? 

Calculate Vrev for В using two different equations. (Refer to 
chapter 13 for explanation of Es and Vrev.) 

(d) If the alpha function used to simulate each synapse is the same, 
describe qualitatively the relative magnitudes (i.e., A IB) of the 
amplitudes, rise times, half widths, and decay time constants 
for the inputs as measured in the soma. Assume that they are 
activated individually. 



5 Nonlinear Properties of Excitable 
Membranes 

5.1 Introduction 

In chapters 3 and 4, we considered the situation in which the membrane 
conductance is constant, that is, the current-voltage relation is linear. In 
most excitable cells, however, the voltage range over which the membrane 
may be assumed linear is very restricted. In this chapter, we shall describe 
nonlinear properties of excitable membrane and derive models and equa-
tions applicable to nonlinear membrane conductances. 

5.2 Membrane rectification 

As mentioned in chapter 3, membrane nonlinearity can come from two 
sources: voltage dependence and time dependence. When the membrane 
conductance varies with voltage, the I-V relation becomes nonlinear, and 
the membrane currents (or ionic currents) are said to be rectified. Mem-
brane rectifications are defined in the following ways: (1) outward recti-
fication, a membrane allowing outward current to flow more easily than 
inward current; and (2) inward rectification, a membrane allowing inward 
current to flow more easily than outward current. I-V relations A and 
В in figure 5.1 elucidate outward and inward rectifications. For outward 
rectification (curve A), the slope conductance increases as V is more depo-
larized, whereas for inward rectification (curve B), the slope conductance 
decreases as V is more depolarized. 
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Ев V 

A 

Figure 5.1 Inward and outward rectification. (A) Outward rectification; the slope con-
ductance increases as V increases. (B) Inward rectification; the slope conductance de-
creases as V increases. 

Since most biological membranes have nonlinear I-V relations, it is ex-
tremely important to understand the mechanisms underlying membrane 
rectification and time-varying nonlinearities in excitable cells. In this sec-
tion, we will introduce three models that elucidate how voltage and time 
dependence of membrane currents may occur. Although these three mod-
els will by no means explain all types of membrane nonlinearities, they 
nevertheless are representative and commonly used in many biological 
systems. Additionally, these models can be expanded into more complex 
models that can explain more complicated schemes of membrane nonlin-
earities. For instance, the single-energy barrier model can be expanded 
into multiple-energy barrier models that are suitable for explaining cer-
tain complex ion permeabilities. The gate model may be expanded into 
multiple-state transition schemes that are used to describe the kinetics of 
single-channel activities in excitable cells. The three models presented in 
this section, therefore, not only are extremely useful themselves but also 
serve as foundations for establishing more complex models for analysis 
of membrane nonlinearities. 

5.3 Models for membrane rectification 
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I (mA) 

Figure 5.2 Current-voltage relations given by the GHK current equation (equation 2.2.5) 
for various values of [C]0ut/[C]in. Rectification occurs when concentrations at the two 
sides of the membrane are unequal ([C]0ut/[C]m 1). Direction of rectification follows 
the direction of diffusion of cations (see explanation in the text). 

5.3.1 Constant field (GHK) model 

The constant field model, which is described in chapter 2, provides non-
linear I-V relations described by the GHK current equation. Refer to fig-
ure 5.2 and recall that 

The GHK model is derived with the Nernst-Planck electrodiffusion for-
mulation and the assumptions of constant field and independence (see 
chapter 2). This model provides I-V curves for cation currents that in-
ward rectify when > 1 (when Er is positive), and outward rectify 
when ^ ^ < 1 (when Er is negative) (see figure 5.2). It is very important 
to understand conceptually why the I-V curves rectify this way. Based on 
the constant field model, ions diffuse down their electrochemical gradi-
ents, and the potential drop in the membrane is linear. When ^ ^ > 1, 
the ion concentration outside is higher than inside, and it is easier for the 
ions to flow from outside to inside, down their concentration gradient. 
Thus, the current is inward rectified. Conversely, when ^ ^ < 1, the ion 
concentration is higher inside, and thus it is easier for the ions to flow 
from inside to outside, and the current is outward rectified. The constant 

(5.3.1) 
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field model has been widely used to describe membrane rectification in 
many biological systems. It gives a satisfactory description for chloride 
conductance in the skeletal muscle and for the instantaneous I-V rela-
tion of the Na+ and K+ channels in myelinated nerves. However, there 
are many membrane conductances that cannot be described by the con-
stant field model. For example, those I-V relations that exhibit inward 
rectification when Er is negative, or exhibit outward rectification when 
Er is positive, do not fit the I-V relations described by the GHK model. 
These nonlinearities fail to obey the constant field assumptions and have 
historically been called anomalous rectifications. 

5.3.2 Energy barrier model (Eyring rate theory) 

An alternative model for nonlinear I-V relations of membrane currents 
other than the Nernst-Planck formulation (i.e., constant field model) is 
the thermodynamic approach in which the rate coefficients for chemical 
reactions are described in terms of energy barriers that must be overcome 
by reactants. This formulation is often called the energy barrier model. 
For ionic currents, a simple application of this model is to assume that 
each ion flowing from one side of the membrane to the other side must 
overcome an energy barrier (thus it is called the single energy barrier 
model; more complex models may involve multiple energy barriers). 

Based on the law of mass action for chemical reactions, the flux of a re-
actant is proportional to the concentration of the reactant, and the propor-
tionality constant is named rate coefficient k. Thus, for ion flux through 
a single energy barrier (figure 5.3), the inward and outward flux can be 
written as 

/inward = fclj8[C]out, (5.3.2) 

where J is the unidirectional ion flux, k\ and кг are rate coefficients, [C]out 
and [dm are concentrations (or activities), and 0 is the partition coeffi-
cient of water-membrane for the ion. At thermodynamic equilibrium, the 
rate coefficients are related to the standard free energy of activation (AG0) 
crossing the membrane by Boltzmann's constant (see Reif 1965). 

/outward = k20[C]i n . (5.3.3) 

k\ = Ae~AG<>/RT. 
кг = Ae~*G°/RT. 

(5.3.4) 

(5.3.5) 

In equations 5.3.4 and 5.3.5 the standard free energies from both direc-
tions are assumed to be the same, so k\ is equal to кг> When an electric 
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Figure 5.3 (A) Free energy and concentration profiles and (B) membrane potential and 
free energy profiles of the cell membrane. Ions move across the membrane by "hopping" 
over a symmetrical barrier of free energy AGo in the absence of membrane potential 
difference (Vin - VW = The energy barrier becomes asymmetrical (dashed barrier 
in B) when a potential difference is present across the membrane (B). See text for detailed 
explanations. 

field is applied to the membrane (figure 5.3), the energy barrier for per-
meable ions is influenced by a factor of 5zFV, where 5 is a factor of 
asymmetry that gives the fractional influence of V on AG. 5 = 1 if the 
energy barrier is on the outside margin of the membrane; and S = 0 if the 
energy barrier is on the inside margin of the membrane, so 0 < 5 < 1. The 
free energy of activation under such conditions is no longer symmetrical, 
and thus fci Under the influence of V the rate coefficient becomes 

fci = Ae-{AG°+(l-6)zFV)/RT = k0e-(1-5)zFV,RT, (5.3.6) 
k2 = Ae-^~SzFV)/RT = koe5zFVIRT, (5.3.7) 

where 

fc0 = Ae-*G«IRT. 

The net current flow across the membrane in this situation (combining 
equations 5.3.6 and 5.3.7 with equations 5.3.2 and 5.3.3) is 

I — z F (/outward — Jinward ) 

= z F p k o [ [ C ] i n e 5 z F V / R T - [ C ] 0 u , e - ( 1 - 5 ) z f V / R T ] . (5.3.8) 
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out 

Vn, 

5 = 1 5 = 0 6=1 5 = 0 

Figure 5.4 Membrane potential and free energy profiles of the membrane with rate-
limiting barriers at the outside (A) and inside (B) margins of the membrane. The solid and 
dashed energy profiles are the barriers in the absence and presence of transmembrane 
voltage, respectively. 

When 5 = 0, i.e., the rate-limiting barrier is at the inside margin, 

I = zFpko [[C]in - [ C ] 0 U t e ~ z F V / R T ] , (5.3.9) 

and the I-V relation is inward rectified (dotted curve in figure 5.5). 
When 5 = 1, the rate-limiting barrier is at the outside margin and the 

I-V relation is outward rectified (dashed curve in figure 5.5). 

I = zFpko [[C]inez5FV,RT - [Clout] • (5.3.10) 

For any fixed value of 5 (e.g., 6 = 0.5), the I-V relations depend on 
the concentration ratio [C]0Ut/[C]in and whether [C]out or [C]m are varying 
(figure 5.6). 

The reason for membrane rectification in this model is obvious: When 
the rate-limiting barrier is at the outside margin (5 = 1), it is more difficult 
for ions to get into the membrane from outside than from inside, resulting 
in outward rectification (easier flow from in to out). The converse is true 
when the rate-limiting barrier is at the inside margin (5 = 0). 

The single energy barrier model has wider applications than the con-
stant field model. Unlike the constant field model, which can only describe 
outward rectification with negative reversal potentials (Er) and inward rec-
tification with positive reversal potentials, the energy barrier model can 
be used to formulate either inward or outward rectified I-V relations with 
positive or negative reversal potentials. 

In biological systems, it is unrealistic to expect that all ions encounter 
only one energy barrier when moving across a cell membrane that is about 
100 A thick. The single energy barrier model is used to analyze situations 
when one of the energy barriers is much greater than the other(s). For 
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<5 = 1.0 
5 = 0.5 
6 = ПП 

4 -

3 -

^ N / = zF^o([C]in-[C]0ut) 
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Г 

-i"5o 100 - 5 0 50 
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Figure 5.5 Current-voltage relations given by single energy barrier model (equa-
tion 5.3.8) for 6 = 1.0, 6 = 0.5, and 5 = 0. [C]0Ut/[C]in = 

multiple energy barriers of nearly equal heights, multiple barrier mod-
els involving more complex mathematical equations should be employed 
(Woodbury 1965, 1971). The detailed mathematical descriptions of such 
models are beyond the scope of this book. Rather, an example of a mul-
tiple energy barrier model will be described qualitatively below. 

Hille (1975a) used a four-barrier model to represent the diffusion path 
of Na+ ions in an open Na+ channel (figure 5.7A). The relative energy levels 
required to pass each barrier are labeled in units of R T at the top of the 
barriers and at the bottom of each well. The possible molecular structures 
responsible for the energy barriers and wells are given in figure 5.7B. The 
barrier between A and В (8.5 RT) is the diffusion barrier for Na+ to arrive 
from the extracellular space to one side of the COO" group. The energy 
well В represents the electrostatic attraction of the COO" group onto Na+ 

(-1.0 RT). The energy barrier С (11.5 RT) represents the energy required 
to pass through the narrow "selectivity filter" region formed between the 
COO" and an oxygen group. Two additional energy barriers (each 9.5 RT) 
must be passed between the selectivity filter and the interior of the cell. 
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Figure 5.6 Current-voltage relations given by single energy barrier model (equa-
tion 5.3.8) for [C]0ut/[C]in = 0.01,0.1,1,10, and 100, with 6 = 0.5 and ко = 1. The 
[C]0ut/[C]in ratio is changed by (A) fixing [C]out and varying [Clin; and (B) fixing [С]ш and 
varying [Clout. 

В 

- 1 . 0 

Figure 5.7 Energy barrier profile (A) and binding sites (B) in Na+ channels. The energy 
levels relative to bulk solutions are labeled in multiples of RT with values appropriate for 
Na+ ions in (A). (From Hille 1975a by copyright permission of the Rockefeller University 
Press.) 
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Example 5.1 
The current-voltage relation for ionic current h in a neuron is shown 
below. 

a. What are the slope and chord conductances at V = -10 mV and 
at V = +100 mV? 

b. What is the ratio of intracellular and extracellular concentrations 
of the ion i? Is h inward or outward rectified? 

c. Can the I-V relation shown above be explained by the constant 
field model? If so, what factor is responsible for the rectification? 

d. Can the I-V relation shown above be explained by the single en-
ergy barrier model? If so, what factor is responsible for the recti-
fication? 

Answer to example 5.1 

a. At V = -10 mV, gs = 1.2nA/20mV= 60 nS, 
gc= 1.2 nA/40 mV = 30 nS. 

At V = +100 mV, ds = 0.4 nA/100 mV = 4nS, 
gc = 1.0 nA/70 mV = 14 nS. 

b. Ei = In = +30 mV (from figure where I = 0), 
zE [CJin 

JClii 
[C] 

^ = [anti log^l 1 = [3.29]"1 = 0.3 (z = +1). 
out L b o j 

Ii is inward rectified because slope conductance decreases as V 
becomes more positive. 

V J 
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Yes, it can be explained by the constant field model. The concen-
tration gradient inside and outside the cell is responsible for the 
rectification: When [CtW > [Cilin, it is easier for ion i to flow from 
outside to inside, and thus it is inward rectified; \yhen [Qlout < 
[Cilin, the converse is true. 
Yes, it can be explained by the single energy barrier model. The 
position of the energy barrier within the membrane is responsi-
ble for the rectification. When the energy barrier is close to the 
inside of the membrane, it is easier for ions to get into the mem-
brane from the outside; thus the membrane is inward rectified. 
The converse is true if the barrier is close to the outside of the 
membrane. 

5.3.3 The gate model (Hodgkin and Huxley's model) 

The constant field and energy barrier models described in previous sec-
tions provide possible mechanisms for voltage dependence (nonlinear I-V 
relations) of membrane conductance. These models cannot, however, deal 
with the second source of membrane nonlinearity, that is, time depen-
dence of ion conductance. In order to describe both voltage and time 
dependence of ion conductances in the squid axon, Hodgkin and Hux-
ley (1952) developed the gate model, which proposed that ion currents 
are flowing through transmembrane channel proteins that form aqueous 
pores through which ions can diffuse down their concentration gradients. 
These pores have "gates" that are controlled by voltage-sensitive gating 
charges or gating particles (see figure 5.8A). The movement of gating par-
ticles within the membrane can be described by the single energy barrier 
model (figure 5.8B). Note that the difference between the gate model and 
the single energy barrier model described in the previous section is that 
the energy barrier in the gate model is for the gating particles restricted 
within the channel protein, whereas that in the single energy barrier model 
is for the cross-membrane ions. The basic assumptions for the gate model 
are given below: 

1. Ionic channels in the membrane undergo conformational change in 
response to variation in electric field. This conformation change will 
cause the channel to move from open to closed states or vice versa: 

0(V) 
open • closed, where <x(V) and B(V) are rate coefficients. 

«(V) 
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2. The reaction between the open and closed states is a first-order re-

Based on these assumptions, the gate model provides descriptions of both 
voltage and time dependence of ionic channels (figure 5.8). 

5.3.3.1 Voltage dependence From figure 5.8, the gate is controlled by 
membrane-bound charged gating particles: у is the probability of a gat-
ing particle in permissive (a or open) state, and (1 - y) is the probability 
of the particle in nonpermissive (b or closed) state. As in the single en-
ergy barrier model, the energy barrier between the two states (and thus 
the probabilities of the gating particle staying at each of the two states) 
is influenced by the transmembrane voltage. In figure 5.8B, membrane 
depolarization (increase in Vm) will lower the energy barrier for the gating 
particle moving from the nonpermissive state to the permissive state, and 
thus increase the probability that the particle will stay in the permissive 
(open) state. Membrane hyperpolarization will do the opposite. Chan-
nels that have such gating particle arrangements are activated (opened) 
by membrane depolarization. Channels with opposite gating particle ar-
rangements, that is, permissive state at the inside margin and nonper-
missive state at the outside margin of the membrane, are activated by 
membrane hyperpolarization. 

Mathematically, the voltage dependence of the rate coefficients <x(V) 
and jS(V) can be derived by similar procedures as the fci and кг in the 
energy barrier model. 

a(V) = Ae~iAG O-6ZFV)/RT 

P(V) = Ae~{AGo+il~5)zFV),RT 

= p0e-{l-S)zFV/RT. 

For first-order kinetics, which we will derive in the next section, the 
steady-state probability for permissive state y«> = Thus, 

action. 

<x0eSzFV/RT 

УОО(У) 
a(V) <x0eSzFVtRT 

<x(V) + P(V) <x0e6zFVtRT + poe-^)zFv/RT 
(Xo 

oto + P 0e~zFV'RT' 
yooiV) 

yooiV) is sometimes called the activation function of a channel. 
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Extracellular 

out 

Voi 

AGQ 

zFV 

6zFV 

gating 
particles 

a — b 
a 

У \ - y 
(permissive) (non-permissive) 

Figure 5.8 (A) Schematic diagram of a voltage-gated channel (from Hille 1992) and (B) 
the energy profile for gating particles in the voltage sensors. The energy barrier for the 
gating particle is similar to that for the single energy barrier model for the permeant ions 
(figure 5.3). у is the probability of the gating particle in the permissive state (a) and 1 - у is 
the probability of the particle in the nonpermissive state (b). a and p are rate coefficients 
for the two-state transition. 
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Note that the rate coefficients a(V) and P(V) are dependent on 6, the 
factor of asymmetry, but yoo(V) does not depend on 6. The values of 
«(V), $(V), and ;yoo(V) are plotted in figures 5.9 and 5.10. 

Figure 5.9 Voltage dependence of the rate coefficients a and P (A) and the steady-state 
probability у» (В) for voltage-gated channels that are activated by membrane depolariza-
tion (or inactivated by hyperpolarization). 

The plots in figure 5.9 represent the case shown in the energy barrier 
model in figure 5.8B, in which the channel is opened or activated (has 
a high probability of being opened) by depolarization (you can also say 
inactivated by hyperpolarization). 

Figure 5.10 Voltage dependence of the rate coefficients a and ft (A) and the steady-state 
probability yoo (В) for voltage-gated channels that are activated by membrane hyperpolar-
ization (or inactivated by depolarization). 

The plots in figure 5.10 represent the case when the positions of a and 
b states in the energy barrier diagram are reversed, that is, the channel 
is opened or activated by hyperpolarization (or inactivated by depolariza-
tion). 

5.3.3.2 Time dependence The gate model assumes a first-order reac-
tion between open and closed states for gating particles. Thus, the prob-
ability of the particle in the open state, у , can be described by 

fi 

a — b 
a 

у ( l - у ) 
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First-order kinetics yields: 

f = «(1 - y ) - f i y . 

At steady state, 

^=0 = <x(l-yoo)-Py« 

Therefore, 
a 

у 00 = a + p' 
Substituting this into the first-order differential equation, 

dy 
-jjr = «d " У) ~ $У = « - (« + Р)У = Уоо(« + P) - (a + $)y 

= (<* + Р)(Уоо -у). 

Therefore, 

f rfy(-l) = ( _ 1 } Г + p ) d t _ ^ = + p ) t + c 

J У oo - У J 

and 

y = y00-Ae-{a+^t. 

Apply boundary condition ;yo = y(t = 0), then 

Уо = У oo - A • 1 - A = усо - Уо-

Therefore, 

у(1)=Уоо-[(уоо-уо)е-(«+Ы] 

or 

y(t) = Уо + [(Уоо - Уо) (l - е-(а+«')]. 

If P independent gating particles are involved in gating a channel, then 
the channel will follow the time course (figure 5.11) 

Y(t) = [y(t)]p = [уоо - (Уоо - у0)е-<«+№]Р. 
The three models described in this chapter elucidate how membrane 

rectification and time-varying nonlinearities may occur. These models 
have also been used as foundations of more complicated models. It is 
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Figure 5.11 Time course of the probability of channel activation: y(t) for channels 
activated by one gating particle, and Y(t) for channels activated by P identical gating 
particles. 

important to note, however, that several other mechanisms may be in-
volved in mediating membrane rectification. One well-studied example is 
the inward rectification made by intracellular magnesium in voltage-gated 
inward rectifier K+ channels (see chapter 7). Readers who are interested in 
detailed discussions of mechanisms underlying nonlinear currents should 
consult Hille (1992). 

^Example 5.2 ^ 
The membrane current of a neuron to a voltage-clamp step shown in the 
figure below consists of a leakage current IL(V) and a time-dependent 
current Iy (V, t). Iy (V, t) is a voltage-gated current following first-order 
kinetics, that is, 

Iy(V,t) =7y(V)y(V,t). 

dy/dt = (y„(V)-y(V,t))/Ty, 
where у (V, t) is the gating variable, y<>o(V) is the steady-state value of 
y(V,t), and Ту is the time constant of у (V, t). The activation curve of 
Iy(V, t) is shown to the right in the figure below. 

i 1 1 1 i — i — г — л — 
0 0.1 0.2 0.3 - 8 0 - 6 0 - 4 0 -20 0 

Time (sec) V (mV) 
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( ~ Л 
a. Is Iy(V,t) activated by depolarization or hyperpolarization? Ex-

plain in one sentence. Is Iy (V, t) an inward or outward current? 
b. What is the approximate value of r y ? ; 
c. What is the amplitude of leakage current when the membrane 

voltage is stepped from - 2 0 mV to - 6 0 mV? 
d. What is the amplitude of the fully activated Iy(V, t), i.e., ly(V)l 
e. What is the steady-state value of Iy(V, t) when the membrane is 

stepped from - 2 0 mV to - 4 0 mV? 

Answer to example 5.2 

a. Iy is activated by hyperpolarization because the y«> curve — 1 at 
hyperpolarized voltage. Iy is inward because an inward current 
is induced by hyperpolarizing voltage pulse. 

b. т « 0.1 sec. 
c. When Vh(-20) - Vc(-60 mV), IL = - 1 nA because no Iy is 

activated at - 2 0 mV; therefore, the jump of current at t = 0 is 
due to leakage. 

d. Iy(V) = 2 nA because VH(-20) - Vc(-60) makes y* = 0 -
УОО = 1. 

e. When VH(-20) - Vc(-40) =» у* = 0 - yoo = 0.5, Iy(-40)oo = 
1 nA. 

4 J 

5.4 Review of important concepts 

1. The current-voltage relation (I-V relation) of a voltage-dependent 
membrane is nonlinear, and the membrane may exhibit inward, out-
ward, or both forms of rectification. 

2. Membrane rectification may be mediated by several mechanisms. 
Membrane rectification mediated by ionic concentration gradients 
can be explained by the constant field (GHK) model. The energy bar-
rier model attributes membrane rectification to the relative locations 
of energy barriers within the membrane. The gate (Hodgkin and Hux-
ley) model attributes membrane rectification to voltage-dependent 
gating of ion channels. 
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3. The gate (Hodgkin and Huxley) model can be used to describe not 
only the voltage dependence but also the time dependence (kinetics) 
of membrane conductances. 

!>.5 Homework problems 

1. (a) Describe concisely the driving forces of ion flux in excitable 
cells. What factors determine the direction of ion flux? 

(b) Sketch the I-V relations of Na+ and K+ conductances of a cell 
([K+]0ut/[K+]in = 0.1, [Na+]out/[Na+]in = 10) if bothions follow 
the assumptions of the constant field model. You are not re-
quired to make a quantitative plot; just sketch the general shape 
(inward or outward rectification) and give the value (in mV) of 
the intersections of the I-V curves with the voltage axis. Explain 
why the two I-V curves rectify in the direction you sketch. 

2. The figure below shows a family of curves (a-i) generated by the 
computer according to the "energy barrier model." 

(a) What is the concentration ratio [C+]0Ut/[C+]in of the ion in-
volved? 

(b) Assign appropriate values of 6 for each curve. Draw the posi-
tion of the energy barrier for a, e, and i in a membrane. 
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(c) Write the expression of I as a function of V and 5 for this family 
of curves. 

3. The I-V relations of an ionic current measured at different ratios of 
ionic concentrations are shown below (curves A-K). 

(a) What is the most likely ion that carries this current? Justify 
your answer in one sentence. 

(b) What are the values of ад, ас, CLF, and а^? 
(c) What model(s) can be used to explain the rectification shown in 

this figure? Give a brief intuitive account of the causes of such 
membrane rectification. 

4. The I-V relations A-E of the ionic conductances (for ions a-e, respec-
tively) in a cell membrane are plotted below. 
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(a) Assign one of the following choices to each I-V relation (A-E): 
constant field model; single energy-barrier model; either; nei-
ther. 

(b) What is the value of for ion A if the valence of this ion is 
- 1 ? 

(c) What is the valence of ion E if ^ ^ = 24? 
(d) Under a given condition, the membrane becomes permeable 

only to ions A, B, and D, and the permeability ratio for these 
ions is PA : РВ : PD = 1 : 10 : 0.5. If [CA]in = 10 mM, [CB)M = 
[Colin = 100 mM, ZA = -1 , and ZB = ZD = +1, what is the 
resting potential of this cell? 

5. The membrane constant of a neuron to a voltage-clamp step shown 
on the left in the figure below consists of a leak current IL(V) and 
a time- and voltage-dependent current Iy (V, t) = lyy(V, t) that fol-
lows first-order kinetics. The activation curve of yoo(V) is given on 
the right. Iy(V,t) is carried by an ion whose equilibrium potential 
is - 7 0 mV. 

Time (sec) V (mV) 

(a) Is Iy(V,t) activated by depolarization or hyperpolarization? Is 
Iy(V9t) an inward or outward current? Explain your answers 
in two sentences. 

(b) What is the value of fully activated g y (V, t), i.e., gy)? What is 
the approximate value of r y ? 

(c) Under physiological conditions (no voltage clamping), the rest-
ing potential of the neuron is - 6 0 mV. The neuron is spherical 
with a diameter of 20 цт, the input resistance is 108 Q, and the 
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membrane capacitance (Cm) is 1 juF/cm2. A 0.5 sec current step 
of +0.4 nA is injected into the center of the neuron. Draw the 
voltage response of the neuron to this current step on graph 
paper. Give the amplitude and time course of each component 
of this voltage response. 

6. Briefly describe the basic assumptions of the single energy barrier 
model for ion permeation. How does transmembrane voltage affect 
ion permeation? What factor is responsible for inward or outward 
rectification of ion currents? What physical entity in the channel 
constitutes the energy barrier? 

7. The voltage-clamp records of a voltage- and time-dependent current 
Iy(V,t) are given in the figure below (all other currents are elimi-
nated). 

- 4 0 -
- 6 0 -

V - 8 0 -
(mV) -100 -

-150 J 

0.6 -, Vc = -20 

I 
(mA/cm2) 

0 
0.4 

0.2 -

0 

0 
0.2 

0 V c = - 8 0 

V c = - 1 0 0 

0 2 3 4 5 6 7 

time (ms) 
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Iy(V, t) can be written as Iy(V, t) = y(V, - Ey), 
= 10 mS/cm2, and y(V,t) follows first-order kinetics, i.e., 

a 
1 - у У 

and 

(a) Estimate the values of т and loo at each Vc. What is the value of 
Eyl 

(b) Plot у oo, a, and /J as functions of V. 

8. The plasma membrane of a sensory neuron (Si) at rest is permeable 
only to Na+ and K+, and the I-V relations for these ions are shown 
as dashed lines in the figure below. Immediately after a sustained 
stimulus, the I-V relations for Na+ and K+ become the solid lines, 
and these I-V relations are maintained throughout the entire stim-
ulation. 

(a) What is the resting potential of this sensory neuron (Si)? What 
is the membrane potential of this sensory neuron (Si) during 
the sustained stimulus? Draw the voltage response of Si to the 
sustained stimulus. 
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Another sensory neuron (S2) has the exact same membrane prop-
erties as Si except that it has a population of voltage- and time-
dependent Ca2+ channels in its plasma membrane Uca2+ (V, t)). The 
activation curve of ICais given in the top of the figure below, and 
Ica2+ follows first-order kinetics with a time constant of 1 sec. The 
fully activated I-V relation of Ica*+ (when Уса2+ (V. oo) = l) is given 
as a dotted line in the plot at the bottom of the figure. 

(b) What is the resting potential of 52? What is the membrane po-
tential of S2 immediately after the onset of the stimulus (same 
stimulus as that for Si)? What is the membrane potential of 
S2 10 sec after the onset of the sustained stimulus? Draw the 
voltage response of S2 to the sustained stimulus. 



5 Hodgkin and Huxley's Analysis of 
the Squid Giant Axon 

6.1 Introduction 

Electric signals in excitable cells are transmitted from one part of the cell 
to another in two ways: the passive spread of graded potentials and the 
propagation of all-or-none action potentials. Graded potentials are nor-
mally observed in interneurons that transmit signals over short distances, 
whereas action potentials are used by neurons that bear far-reaching pro-
cesses (axons), carrying signals over long distances. 

Graded potentials are carried by ions that diffuse down their electro-
chemical gradients, and the magnitude of the signal varies with the ionic 
currents. Action potentials, on the other hand, are carried by voltage-
and time-dependent conductances that generate transient all-or-none po-
tential changes (spikes or nerve impulses) that propagate from one part 
of the cell to another. The purpose of this chapter and part of the next 
chapter is to describe the basic mechanisms underlying the generation 
and propagation of action potentials. The best-studied preparation for 
action potentials is the squid giant axon, and the analytical tool is the 
gate model of Hodgkin and Huxley. 

6.2 Voltage-clamp experiments of the squid axon 

6.2.1 Voltage-clamp systems and reasons for voltage clamping 

In order to analyze the nonlinear properties of ion conductances underly-
ing action potentials, Hodgkin and Huxley performed a series of voltage-
clamp experiments on the squid giant axon. Voltage-clamp experiments 
usually involve inserting two electrodes (in the case of the squid axon, two 
silver wires) into the axon, one for recording the transmembrane voltage 
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and the other for passing current into the axon to keep the transmem-
brane voltage constant (or clamped). The basic circuitry of the voltage-
clamp experiment is shown in figure 6.1 and is discussed in appendix A. 

Figure 6.1 Schematic diagram of the two-wire voltage-clamp experiments on the squid 
axon. One wire is used for monitoring the membrane potential and the other for passing 
current. The voltage clamp amplifier injects or withdraws charges from the interior of 
the squid axon in order to hold the membrane voltage constant (voltage is clamped at the 
command voltage, Vc). 

The reason for voltage-clamping the axon is threefold: (1) By keeping 
the voltage constant, one can eliminate the capacitive current, that is, 
Ic = C^p = 0; (2) by keeping the voltage constant, one can measure the 
time-dependent characteristics of ion conductances without the influence 
of voltage-dependent parameters; and (3) by inserting two silver wire elec-
trodes into the axon, one can space-clamp it so that the whole length of 
the axon is isopotential (silver wires short-circuit the interior of the axon). 

6.2.2 Voltage-clamp records 

Under voltage-clamp conditions, the current responses to voltage steps re-
flect the change of ion currents flowing across the membrane. Figure 6.2 
shows the current records of the squid axon when the voltage is stepped 
from a holding voltage (VH) to a command voltage (Vc) of various levels. 
When Vc is above - 3 0 mV, a transient inward current followed by a sus-
tained outward current is observed. The amplitude of the early inward 
current first increases and then decreases as Vc becomes more positive, 
whereas that of the late outward current increases monotonically with Vc. 

So that the current record can be examined closely, current traces in 
response to Vc = 0 mV and Vc = -120 mV are given in the left part of 
figure 6.3. I с is the capacitive current elicited by the transitions of volt-
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3 4 s 
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Figure 6.2 Currents measured with voltage clamp of squid axon. Membrane potential 
was held at - 6 0 mV and then stepped (at 0 msec) to various potentials (shown at the right 
of each trace) for 8 msec before stepping back to - 6 0 mV. 

age from VH to Vc. The membrane current consists of an early transient 
inward current and a late steady outward current. The I-V relations of 
the early and late currents are shown in the right part of figure 6.3. 

It can be shown experimentally that the two currents are mediated by 
two separate conductances. If one removes extracellular Na+ (which elim-
inates the driving force of the inward Na+ flux) or adds tetrodotoxin (TTX, 
which blocks Na+ channels), one can eliminate the early transient inward 
current mediated by Na+ channels. On the other hand, if one removes in-
tracellular K+ or adds tetraethylammonium (TEA, which blocks K+ chan-
nels), one can eliminate the late outward current mediated by K+ channels. 
The separation of the two currents is illustrated in figure 6.4. 

6.2.3 Instantaneous current-voltage relation 

The voltage-clamp analysis of the squid axon discussed in the previous 
section shows that INU and IK can be measured independently. The next 
step is to determine g^a and How is /дга (IK) related to дыАдк)? 
Do they follow Ohm's law (i.e., Iua = gNa(V - EW))? In order to obtain 
answers to these questions, Hodgkin and Huxley performed the following 
experiments. Two voltage pulses were applied to the axon. Vi activates 
the early (Na+) current I\ (• in figure 6.5). While the Na+ conductance was 
turned on at Vi = -29 mV, the potential was suddenly stepped to V2, and 
the instantaneous current I2 (° in figure 6.5) was recorded. By measuring 
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Figure 6.3 Early and late currents of a squid axon when the voltage is stepped from 
- 6 0 mV to 0 mV or -120 mV (A); and the current-voltage relations of the early and late 
currents (B). 

Figure 6.4 Separation of membrane current (solid trace) into Na+ (dashed trace) and K+ 

(dotted trace) currents. IK is obtained in the presence of TTX or when [Na+]out = 0; IN a is 
obtained in the presence of TEA. The voltage is stepped from - 6 0 mV to 0 mV for 8 msec. 

I2 - 1 \ as a function of V2 - Vi, one can estimate the I-V relation of the 
Na+ channels without time-dependent influence on the current. 

For voltage pulse Vb INai (Vi, ti) = gNa(Vi, h)(Vi - £N a) . Then a sud-
den second voltage pulse V2, lNa2(V2,tf) = gNa(V2i tf)(V2 - ENa) = 
gNa(Vi,ti)(V2 - ENa) (gNa(Vi,ti) = gNa(V2,t*) because gNa does not 
have enough time to change). Therefore, I2- h = gNa(Vi, t\)(V2 -V\). 
gNa(Vu h) is a constant at a fixed voltage V\ and fixed time t\. Thus, 
Ohm's law predicts that (I2 - h) and (V2 - V\) are linearly related. Experi-
mental results, shown in figure 6.5, indicated that this is true for the squid 
axon. I2 vs. V2 is a straight line, which implies that (I2 - I\) vs. (V2 - V\) 
is a straight line because Ji(Vi) and V\ are constants. Note that h and 
I2 intersect at two points. The left intersecting point is obviously Vi, the 
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Figure 6.5 Instantaneous current-voltage relation (B) obtained with voltage clamp for the 
early inward channel (A). Closed circles indicate normal peak inward current for various 
depolarizations. Open circles indicate variation of h with Vz as shown in the intersection 
on right. I2-I1, instantaneous step of current produced by voltage step V1-V2. Duration 
of first pulse = 1.5 msec. (After Hodgkin and Huxley 1952b.) 

first voltage pulse; the right intersecting point is f^a , because I\(V) = 
g(V,ti)(V-ENa)(. in figure 6.5),and/2(V,Vbt1*) = g(Vitf)(V-ENa)(o 
in figure 6.5). I\(V) = h(V,Vi,t*) only under two conditions: (1) V = 
Vi, thus g(V,ti) = giVuh) = g(V\,t*) (left intersecting point); or (2) 
V = Ема> thus V - ENa = 0, therefore, h(V) = / 2 (V,V l t t \ ) = 0 (right 
intersecting point). 

The right intersecting point of I\ and /2 is EN A, but it does not lie on 
the V-axis (I = 0). This indicates that I\ is not totally mediated by Na+, 
because if it were so, I\ should be 0 when V = Ема• The explanation for 
the nonzero /1 at V = E^a is that at t = t\ = 1.53 msec, IK is nonzero 
although its value is far from the steady-state maximum level (8 msec). 
11 (= INU + IK) is therefore shifted toward more positive values in the I-V 
plot. 

Similar experiments were performed for the late (K+) channels, and the 
results are shown in figure 6.6. V\ is about +20 mV (right intersecting 
point of 11 and /2), and Ек is about - 8 0 mV (left intersecting point). The 
instantaneous K+ current is also linear. 

The above experiments show that INUUK) and дыа(дк) are related by 
Ohm's law in the squid axon. Thus by measuring INA and IK experimen-
tally, Hodgkin and Huxley were able to determine g^a and дк by simply 
dividing the currents by their driving forces, (V - EN a) and (V -Ек). 

It is worth noting, however, that not all excitable cells exhibit linear 
instantaneous I-V relations for Na+ and K+ channels; for example, nodes 
of Ranvier do not. 
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Figure 6.6 Instantaneous current-voltage relation obtained with voltage clamp for the 
late outward current. Similar protocols are used for the late current as for the early current 
(see figure 6.5). 

6.2.4 g^a and дк of the squid axon 

From the analysis described in the last section, it can be seen that the 
instantaneous Na+ and K+ conductances in the squid axon are linear. This 
allowed Hodgkin and Huxley to obtain дыЛУ, t) and дк(У, t) by dividing 
lNa(V, t) and IK (У, t) (from their voltage-clamp data) by (V - and 
(V - EK), respectively. The procedures and results are shown in figure 6.7. 

v 
(mV) 

(mA/cm2) 

time (msec) time (msec) 

Figure 6.7 Time course of дк (dashed traces) and дыа (solid traces) at various voltages 
(Vc) obtained from IK and IN a traces, according to Ohm's law. 
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(>.3 Hodgkin and Huxley's model 

Using the experimental results of gNa(V, t) and дк(У,Ь) described in the 
previous section and the gate model in the last chapter, Hodgkin and Hux-
ley proposed a landmark model that quantitatively described the behavior 
of Na+ and K+ channels, nerve excitation, and conduction. First, they used 
the parallel conductance model to describe the major ionic conductances 
in the squid axon. 

outside 

inside 

Figure 6.8 Parallel conductance model for the squid axon, дк and дна are voltage 
and time dependent, and gi is constant. The total membrane current is described by 
equation 6.3.1. 

Im = Сж— + IK + iNa + hi 

where II = leak current, which is carried mainly by СГ and other ions, 
since all currents obey Ohm's law. Thus, 

dV 
Im = Cm— +gK(V,t)(V-EK)+gNa(V,t)(V-ENa) 

+gb(V -EL). (6.3.1) 

Hodgkin and Huxley proposed that the Na+ and K+ conductances were 
controlled by gating particles, and thus дк and g^ a can be written as 
products of gating variables and maximum conductances: 

gK(V,t) = YK(V,t)gK, 

and 

0Na(V,t) = YNa(V,t)gNa, 

where Yk and Y^a are gating variables between 0 and 1, and gK and g N a 
are maximum conductances. 
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From the time course of the measured дма and дк (see the previous 
section), Hodgkin and Huxley found that YK and Ysa do wot follow simple 
exponentials (thus not a single у (t); see gate model in chapter 5). Instead, 
they follow power functions of the exponential. Thus Hodgkin and Huxley 
proposed: 

gK(V,t) = YK(V,t)gK = n*gK, 

and 

gNa(V,t) = YNa(V,t)gNa = m3hgNa, 

where n, m, and h are the gating variables (y(t), see chapter 5) in the gate 
model and follow first-order kinetics (exponential time course). Recalling 
the kinetics of the gating variable y(t), one can write n(t), m(t), and h(t) 
the same way: 

^ = a n ( l - n) -1Зпп, Поо = „ , r n = j" /з • (6.3.2) dt an + Pn ocn + pn 

^тг = ocmi 1 - m ) - pmm, m* = „ , т ж = 1 . (6.3.3) a t СХЖ + Pm OCm + Pm 

at «h + Ph (*h + Ph 

Equations 6.3.2, 6.3.3, and 6.3.4 yield the following solutions: (see gate 
model in the last chapter for y(t)): 

n(t) = nо - [(n0 - Поо) (l - e~t/Tn)], 

m(t) = m 0 - [(mo - moo) (l - e" t / T m)] , 

and 

fc(t) = h0 - [(h0 - hoo) ( l - e~t/T»)], 

or 

h(t) = hoo + [(ho - hoo)e~t,Th]. 
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Figure 6.9 Time courses of n, л4, m, m3, h, and m3h following a depolarizing voltage 
step (from - 7 0 mV to 0 mV; duration of the step is 3 msec), n and m follow the (1 -
e~t/T) time course (activated by depolarization), whereas h follows the e~t,T time course 
(inactivated by depolarization). 

Note that n and m are in (1 - e~t,T) form and h is in the form e~t,T be-
cause of the difference in boundary conditions. That is, ho > fc<x>, whereas 
Поо > no, ж oo > жо. n and m are activated by depolarization, whereas h 
is inactivated by depolarization. One can then substitute the solutions of 
n(£), m(t), and h(t) into gK(t) and gNa(t): 

дк(Ь) = gKn4 = gK [n0 - (n0 - Поо)(1 - e" t / T n)]4 . (6.3.5) 
gNa(t) = gNam3h 

= 9NCL [m0 - (mo - "looHI - e~t,Tm)]3 [h* + (h0 - hoo)e~t/Th] 

= dNamlho (l - e~t/T™)3 e~t,Th, (6.3.6) 

because mo and fi«> are neglectably small. The time course of дк and g^ a 
described by equations 6.3.5 and 6.3.6 fitted the experimental data very 
well (see figure 6.7; smooth lines are equations 6.3.5 and 6.3.6, and circles 
are data points). The gate model also provides a quantitative description 
of the voltage dependence of дк and g^ a as follows. 
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Figure 6.10 Measurement of тп and Лоо from дк traces at two voltages ( -2 mV and 
22 mV). 

Hodgkin and Huxley determined all of the above parameters from their 
experimental data in the following way. They first measured тп , тш , т ь 
Поо, Шоо, and hoo from the time records of дк and g^a at various voltages 
(an example is given in figure 6.10 for measuring r n and Поо at two volt-
age levels), and then they calculated a n , «ж, Pm, «ь, and Ph by the 
following relationships: 

« n = Поо/Tn Pn = (1 - Поо/Тп), 
« ж = Шоо/Тщ = (1 — Ж о о ) / Т ж , 
a h = /loo/Th Ph = (1 - hoo)/Th . 

Hodgkin and Huxley plotted the values of a and P against transmem-
brane voltage and found that they can be fitted by the following empirical 
equations: 

[-V+10 ~i 
e - ro- - i ] , (6.3.7) 
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PN(V) = 0.125ew, (6.3.8) 

a m (V) = 0.1(-V + 2 5 ) / ( e = T ^ - l ) , (6.3.9) 

jS w (V)=4ew, (6.3.10) 

ah(V) = 0.0 7e%, (6.3.11) 

/Jfc(V) = l / ( e ^ + l ) . (6.3.12) 

Figure 6.11 Voltage dependence of the rate coefficients of the Hodgkin and Huxley 
model. 

These plots are shown in figure 6.11. It is important to note that the a 's 
and /J's in figure 6.11 follow the function A(V) and F}(V) predicted by the 
gate model (figures 5.9 and 5.10). a n and a m increase with membrane 
depolarization because n and ж particles are activated by membrane de-
polarization. ан decreases with membrane depolarization because the h 
particle is inactivated by depolarization. 

Using the equations given above, the values of Поо, Жоо, hoo, тп , т т , and 
Th are calculated and plotted in figure 6.12. The Жоо, hoo, and n«> also 
follow the уоо function predicted by the gate model (figures 5.9 and 5.10). 
The Поо (V) , Жоо, and hoo are called the steady-state activation curves. They 
give the voltage range and slope of activation for voltage-gated channels. 

Equations 6.3.2-6.3.12, shown in the last section, are called the Hodgkin 
and Huxley equations. By putting them in equation 6.3.1, one obtains 

Im = CM^R + GKN4(V - EK) + gNam3h(V - ENA) +GL(V- EL). 
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Figure 6.12 Steady-state activation curves (n<x>, m,», and hoo) and the voltage dependence 
of the time constants of the Hodgkin and Huxley model. 

Using numerical methods, Hodgkin and Huxley solved these equations 
and obtained remarkable fits between the recorded and the calculated ac-
tion potentials (figure 6.13, left). Moreover, the calculated voltage-clamp 
records (figure 6.13, right) fit the experimental data very well. 

Figure 6.13 (A) Calculations, above, and experimental records, below, for propagating 
impulse on fast time scale, left, and slow scale, right; and (B) the ionic membrane currents 
after the indicated potential increase as calculated from the Hodgkin-Huxley equations. 
(From Cole 1968.) 

Hodgkin and Huxley's model is certainly a triumph of classical bio-
physics in answering fundamental biological questions. Not only does 
it give quantitative accounts of Na+ and K+ fluxes, voltage- and time-
dependent conductance changes, and the waveforms of action potentials, 
but also, as we will see next, it accounts for the conduction of action po-
tentials along nerve fibers. 



6.4. Nonpropagating and propagating action potentials 155 

6.4 Nonpropagating and propagating action potentials 

6.4.1 Hodgkin and Huxley equations for nonpropagating and propa-
gating action potentials 

For cells that are space-clamped and for which the membrane can be ex-
cited uniformly, cable properties are not involved, and the action potential 
is nonpropagating: 

dV 
Im = Cm— + IK + IN A + II (nonpropagating). 

However, under physiological conditions, neurons are not voltage- or 
space-clamped, and action potentials initiated at one point will propagate 
along the axon. To describe action potential propagation, one should first 
derive the cable equation that illustrates how ions diffuse along the axons. 

The equivalent circuit of a cable is given in figure 6.14 (see also chap-
ter 4). Vm is now a function of time and distance. 

X 
Figure 6.14 Schematic diagram illustrating current flow along a cylindrical axon (see 
figure 4.7). 

Some of iu however, leaks out across the membrane through rm and cw , 
so U is not constant with distance. 

dt 

Ai .v. • dVm(x9t) Along the x-axis, = - щ * . (6.4.13) 

(6.4.14) 

Combining equations 6.4.13 and 6.4.14, 

Thus, 
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. _ 1 d2Vm 
lm " п dx2 • 

(6.4.15) 

From linear cable theory (chapter 4), the membrane current Im along a 
cable is given by 

Combining equation 6.4.1 with the equation for current in the parallel 
conductance model, we have 

This is a second-order partial differential equation, which is very diffi-
cult to solve. It is known, however, that action potentials propagate with 
a constant speed (at least in axons with constant diameter), so one can 
use the wave equation 

д2У = 1 d2V 
dx2 " в2 at2' 
where в = conduction velocity (cm/sec). This would simplify the propa-
gating Hodgkin and Huxley equation to 

This is a second-order ordinary differential equation, which is relatively 
easy to solve. From this wave equation, one can obtain 

К is a constant which is experimentally estimated to be 10.47 (msec-1). 
Hodgkin and Huxley calculated conduction velocity and obtained 

в = y]Ka/2RiCm = 18.8 m/sec, 

while the experimentally measured value of conduction velocity in the 
squid axon is 

в = 21.2 m/sec. 

The Hodgkin and Huxley equations therefore give a very good fit to the 
experimental data. 

_ a d2V 
lm~ 2Ri dx2' 

Im= = Cm— + IK + Inu + h-

a ar\ av 
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Figure 6.15 Voltage and current responses calculated for a nonpropagating action po-
tential initiated by a brief square pulse current. The top diagram shows the potential 
change as a function of time. The second diagram shows the capacity current, /с, given 
by CmdV/dt. The initial, nearly square, wave is attributable to the applied current. 
The third diagram shows the K+ and Na+ components of the ionic current. Note that 
Im = Ic + Ik + iNa• (After Jack et al. 1975.) 

6.4.2 Variations in voltage and currents during nonpropagating and 
propagating action potentials 

Under certain conditions, the membrane of a cell or a portion of a cell 
can be excited uniformly and the cable complications can be eliminated. 
This can be achieved experimentally by space-clamping the cell (e.g., by 
inserting a long metal wire along the axon) or in cases where the cell 
is short enough for the membrane to be uniformly polarized during the 
action potential. In such circumstances, the relation between ion current 
flow across the membrane and the membrane potential is quite simple: 
All ionic current (if) is used to charge the local membrane capacitor, and 
none flows as local circuit (cable) current (figure 6.15). Im is the stimulus 
current that initiated the action potential by depolarizing the cell above 
the threshold. Im is zero during the action potential, thus 

dV 
Im = Ic + Ii = Cm— + h = 0; hence 

J 
i 1 1 1 1 1 
0 1 2 3 4 5 
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Figure 6.16 Calculated voltage changes and currents during an action potential propa-
gated along an axon. The traces in each family of curves are separated by 0.1 msec. The 
top curve shows the membrane potential. Below are shown the changes in IC, IK and IN a-
The wave is propagating from right to left and, as noted in the text, the abscissa may also 
be regarded as time since x = et. (After Jack et al. 1975.) 

dV h = -1с = f° r nonpropagating action potentials. 

In the case of propagating action potentials, cable properties have to be 
considered. Figure 6.16 shows that an action potential is conducting from 
right to left. Upon arrival, the action potential depolarizes the local mem-
brane, which causes an increase of g^a and results in a net inward ionic 
current. This current enters the cell and diffuses laterally forward (left) 
and backward (right) along the axon and forms local circuit loops. The 
forward current depolarizes the local membrane and causes an increase 
of дыа, which results in more inward current at that location. This pro-
cess continues, causing the action potential to propagate in the forward 
direction. The backward current also depolarizes the local membrane, but 
since the action potential has just passed that location, the threshold is 
high (g^a is low and дк is high), and the action potential is not generated. 
The ionic current h in the propagating action potential not only charges 
the local membrane capacitor but also flows longitudinally and results in 
conduction of the action potential from one part of a cell to another. 
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6.5 Noble's model for nerve excitation: simplified I-V relations 

In order to illustrate the characteristics of nerve and muscle excitation 
without going into too much mathematical detail, Noble (1966) made 
simplifying assumptions and provided a semiquantitative account of ex-
citable membrane. This model is extremely useful for an intuitive un-
derstanding of membrane excitation. Assumptions: (1) m is significantly 
faster than n and h, so m will reach its steady-state value almost instanta-
neously at each potential. Since it is not, strictly speaking, instantaneous, 
we call it the momentary I-V relation for In a- (2) The instantaneous K+ 

I-V relation is linear, as shown in squid axon (but not necessarily true in 
other cells). The momentary I-V relation of excitable membrane can be 
written as Ii = I^a + Ik, which can be plotted as in figure 6.17. 

Figure 6.17 Diagram illustrating the form of simplified (momentary) current-voltage 
relation, /, = I^a + IK, obtained by allowing fast Na+ activation reaction (m) to be in a 
steady state while slower reactions (h and n) are held constant. 

When the squid axon is at rest, the membrane is permeable primarily 
to K+; thus the resting potential Vr (/ = 0, the leftmost intersecting point) 
is very close to Ек. The slope conductance at this intersecting point is 
positive. This positive slope conductance makes VY a stable point, because 
if a positive perturbation in Vm occurs, the I-V relation gives rise to an 
increment of positive (outward) current, which hyperpolarizes the cell and 
brings Vm back to Vr. For a negative Vm perturbation, the I-V relation 
gives rise to a negative (inward) current, which depolarizes the cell and 
brings Vm back to Vr. 
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Figure 6.18 Diagram illustrating changes in momentary current-voltage relations with 
time on depolarization. 

When the membrane potential reaches threshold Vth (I = 0, the mid-
dle intersecting point), the slope conductance is negative. This makes the 
I-V relation unstable because positive voltage perturbation results in neg-
ative (inward) current, which further depolarizes the cell and brings the 
potential further away from Vth- Negative voltage perturbation results in 
positive (outward) current, which further hyperpolarizes the cell. There-
fore, when the membrane potential reaches Vth, it either depolarizes to 
generate an action potential, or hyperpolarizes back to Vr. Membrane 
potential never stably stays at Vth-

The rightmost intersecting point Vpeak is the peak potential level an ac-
tion potential can reach (when gNa » gк)- The slope conductance at this 
point is positive, and therefore the voltage should be stable in principle. 
However, the stability at Vpeak is only transient because depolarization 
activates n and h, which increases Ik and decreases I^a- This results in 
an outward shift of the I-V relation, and the time course of this shift is 
shown in figure 6.18 (A — В — С — D). Consequently, Vpeak will become 
more negative and eventually disappear (when IK > INO, at all potentials; 
С and D). Action potentials cannot be generated at instances С and D, and 
the membrane potential will spontaneously repolarize back to Vr. 

By using these simplified I-V relations, one can explain the following 
important characteristics of actions potentials: 
Threshold: Depolarizing current is needed to bring the membrane from 
a positive slope conductance region (Er) to a negative slope conductance 
region for regenerative membrane potential change (dep — /inward — dep 



6.6. Gating current 161 

Ward - - -), which sets off the all-or-none action potential. Depolariza-
tion below threshold will result in repolarization back to Vr-
Accommodation: (Slow stimulus current is less effective than a rapid ris-
ing current to elicit excitation, and if the current is slow enough, excitation 
may not occur at all.) When the membrane is depolarized rapidly, the I-V 
relation will follow curve A because n and h do not have time to change 
appreciably, and thus the threshold will be at VthA- If the depolarization 
occurs slowly, then curve В will be followed because n increases and h 
falls, and the threshold will be at VthB> a higher value. If the depolar-
ization occurs even more slowly, the I-V relation will follow curve С and 
there will be no threshold, and excitation will not occur. Anode break (an 
action potential observed at the offset of a hyperpolarizing current step) 
can be explained similarly. 
Refractory period: During the action potential, the system moves from 
A to С and D, so that at the end of the action potential, the membrane 
is inexcitable (this is the absolute refractory period). After the action po-
tential, the system moves back to В (relative refractory period—threshold 
high; Vth is more positive) and then to A (normal excitability). 

6.6 Gating current 

Hodgkin and Huxley (1952d) pointed out in their gate model that every 
voltage-dependent step must have an associated charge movement. Take 
the Na+ channel as an example. Hodgkin and Huxley assumed that the 
Na+ conductance is proportional to the probability of some gating parti-
cles that are near the outside of the membrane, that is, 

dNa = выаУout, (6.6.16) 

where 

Ут + Уоих = 1. (6.6.17) 

The gating particle can be in either of the two positions: 
Ут = probability of gating particle on the inside, and 
yout = probability of gating particle on the outside. 

Assuming the gating particles move independently in the membrane, 
then the probabilities of their being at any given state are proportional 
to e~^,kT where £ is the energy of the particle in the state (Boltzmann's 
distribution). Thus, 
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(permissive) (non-permissive) 
Уоы Ут 

Figure 6.19 Energy profiles of a gating particle in the membrane under the influence 
of the electric field. yout is the probability of the particle near the outside margin of the 
membrane and yin is the probability of the particle near the inside margin. (See also legend 
for figure 5.9.) 

Ут °c е~*т/кТ, yom ос е -* о т / к Т , 

when a transmembrane voltage (V) is developed (see figure 6.19). 

yin ос е~^,кт Уоих °c e-^-zeV)!kTm 

Therefore, 

= £-(5out-5in )/kT+zeV/kT = e(w+zeV)/kT 
Ут 

where w = - ( § 0 u t - 5in) and is the work required for a particle to move 
across the membrane when V = 0, z = number of charges on the gating 
particle, e = elementary electric charge, V = membrane potential, к = 
Boltzmann's constant, and T = absolute temperature. 

Combining equations 6.6.16 and 6.6.17, we get 

_ e(w+zeV)/kT 
dNa = 9Nal_e{yn.zev)ikT' (6.6.18) 

When V is large and negative, w « zeV and e
{ w + z e V ) , k T <<1. 

выа = gNaezeVlkT = gNaezVI25imV). (6.6.19) 
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Figure 6.20 Peak дыа (A) and steady-state дк (В) are measured during depolarizing 
voltage steps under voltage clamp. Symbols are measurements from several squid gi-
ant axons, normalized to 1.0 at large depolarizations, and plotted on a logarithmic scale 
against the potential of the test pulse. Dashed lines show limiting equivalent voltage sen-
sitivities of 3.9 mV per e-fold increase of дыа and 4.8 mV per e-fold increase of дк for 
small depolarizations. (From Hille 1992, adapted from Hodgkin and Huxley 1952a.) 
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Figure 6.21 Na+ ionic and gating currents in squid axon, produced during depolariza-
tions under voltage clamp. The upper traces show currents recorded in an artificial sea wa-
ter with only one fifth of the normal Na+ concentration, for depolarizations from - 7 0 mV 
to -20, 0, and +20 mV. The initial brief outward current is gating current, followed by 
the much larger inward Na+ ionic current. The lower set shows the gating currents alone, 
after blockage of the Na+ ionic currents with TTX. K+ currents were eliminated by using 
K+-free solutions for both internal and external media. (From Aidley 1989, adapted from 
Bezanilla 1986.) 
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Experimentally, Hodgkin and Huxley showed that for large negative po-
tentials, дма << ~9ыа (figure 6.20A), and the semi-log plot shows that g^a 
increases by e-fold for every 4 mV (3.9 mV) increase in membrane voltage. 

Thus, 

дма ос ev/4{mv\ (6.6.20) 

Comparing equations 6.6.19 and 6.6.20 yields that z = 6. Therefore, 
in order to open one Na+ channel, 6 charges must move across the mem-
brane or 3 dipoles must be reversed. 

The movement of this gating charge is outward for depolarizing volt-
age pulse, and it gives rise to a small outward current However, this 
outward gating current is masked by the inward Na+ current and the out-
ward capacitive current. In order to remove these currents, Armstrong 
and Bezanilla (1974) used Na+-free solutions + TTX (blocks Na+ chan-
nels) + Cs+ internally to block K+ channels. In addition, to eliminate the 
linear capacitive current, they averaged the responses to an equal number 
of positive and negative steps of potential from a negative holding level. 
The resultant average current is shown in figures 6.21 and 6.22A. 

(A) "ON" CURRENT 

EM -

(B) "OFF" CURRENT 

OmV 

70 

-140 

Figure 6.22 Gating current {Ig) and INQ recorded by adding responses to symmetrical 
positive and negative pulses applied to the squid giant axon. Ig was measured in Na+-free 
solutions with TTX to block Na+ channels and internal Cs+ to block K+ channels. Since Ig 
is small, 50 traces had to be averaged in the recording computer to reduce the noise. INQ 
is measured in normal artificial sea water without TTX. (A) Depolarization from rest elicits 
an outward "on" Ig that precedes opening of Na+ channels. (B) Repolarization elicits an 
inward "off" Ig coinciding with closing of channels (a different axon). (From Hille 1992, 
adapted from Armstrong and Bezanilla 1974 by copyright permission of the Rockefeller 
University Press.) 
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Vc 

Figure 6.23 Integral of the gating current (shaded area) gives the net gating charge 
transfer during the voltage step. 

Gating current is not blocked by TTX, which blocks In a- Both lg and JW 
are blocked by ZnCb, predepolarization, or glutaraldehyde. 

The net charge transfer in gating during a single voltage clamp step is 
given by Q = zeD, where z = number of charges on one gating particle, 
e = elementary electric charge, and D = density of gates (1/^m2). 

The integral of the time course of the gating current (shaded area, fig-
ure 6.23) gives the net charge transformed during a single voltage-clamp 
step. Experimental results showed Q = 1882е/цт2. Kinetic and phar-
macological studies attribute almost all mobile gating charges in axons to 
gating of Na+ channels. From earlier analysis, 6 charges were thought to 
be required to open 1 Na+ gate. Therefore, 

_ 1882е/цт2 _lyl . 2 D = Q/ze = -r—— = 314 gates/^m. be 

Experimentally, Hodgkin and Huxley estimated that = 1200 pS/jL/m2. 
Thus, the single-channel conductance for Na+ channels 

^ _ 1200 pS/fim2 _ 
У " D " 3 1 4 gates/щп2 " 

The Na+ gating current shown on the previous page was obtained with 
short voltage pulses (~ 0.75 msec), which do not elicit much inactivation 
of the Na+ channels. Therefore, the total charge transfer at the offset 
(B, time integral of the inward gating current) is approximately equal to 
that at the onset, that is, Q o n = Qoff, showing that activation is quick and 
reversible. 

For longer voltage-clamp pulses, the total charge transfer at the offset 
is less than that at the onset (figure 6.24). After a 10 msec voltage pulse, 
Qoff may be only 30% of Q o n , showing that 70% of the gating particles are 
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Figure 6.24 Comparison of the time course of inactivation of 1ма (solid line) with the 
immobilization of gating charge (circles) in the squid axon. Gating-charge movement is 
determined by integrating the rapid "on" and "off' l g for test pulses of different durations. 
The fraction of charge returning quickly at the "off' step decreases with increasing pulse 
length (but not offset of right scale) in parallel with inactivation of Na+ channels. (From 
Hille 1992, adapted from Armstrong and Bezanilla 1977 by copyright permission of the 
Rockefeller University Press.) 

immobilized. Immobilization occurs with the same time course as Na+ 

channel inactivation (see figure 6.24). 
The gating current of K+ channels is much more difficult to detect than 

the gating current of Na+ channels. This is because of the lower den-
sity of K+ channels and their slower activation. Gilly and Armstrong 
(1980) discovered a prominent slow phase of the gating current that is 
insensitive to the local anesthetic dibucaine (which reduces Na+ gating 
current) in the squid axon. White and Bezanilla (1985) found that the 
maximum charge transfer associated with the K+ gating current is about 
490e/^m2 (figure 6.25), and according to the Hodgkin and Huxley mea-
surement of дк (figure 6.20В), дк ev / 5 ( m v ) . Similar to equation 6.6.19, 
0K = GKEZV,2S{MY) and z = 5; therefore 5 charges must be moved to open 
one K+ channel. 

K+ channel density, D, can be estimated by 

This is a high estimate of D: others assume that z for K+ channel gating 
is 7-13 e, which makes D = 36 - 70 channels/jum2. 

Q _ 49Qg/jL/nr 
ze ~ 5e 

, 2 

D = = 98 channels /pm2. 
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Figure 6.25 K+ gating current in a perfused squid axon. The internal solution contained 
impermeant organic cations to eliminate the K+ ionic current, and the external solution 
contained Tris nitrate, TTX, and dibucaine to eliminate the Na+ ionic current and reduce 
the Na+ gating current. The gating currents were produced by a 6 msec depolarization 
from -110 to 0 mV, followed by a return to - 6 0 mV. The "on" response consists of 
a very brief Na+ gating current followed by a more slowly changing K+ gating current. 
In the "off response these two components are even more distinct, and the Na+ gating 
current (arrow) is smaller. (From Aidley 1989, adapted from White and Bezanilla 1985 by 
copyright permission of the Rockefeller University Press.) 

It is difficult to study the kinetics and charge mobilization of K+ gating 
current in the squid axon because it is often masked by the Na+ gating cur-
rent (figure 6.25). This problem was overcome recently by studying the 
gating current of the Shaker K+ channel expressed in Xenopus oocytes, 
which do not contain voltage-gated Na+ channels (Bezanilla et al. 1991). 
Figure 6.26 shows the gating currents recorded in normal Shaker K+ chan-
nels that exhibit inactivation (A) and mutant Shaker K+ channels that do 
not exhibit inactivation (B). The gating charge transfer (time integral of the 
gating current) at the voltage step offset (Q0ff) for the normal Shaker K+ 

channel (A) is much less than the gating charge transfer at the voltage step 
onset (Qon). For the mutant channels in which inactivation is removed (B, 
similar to the K+ channels in the squid axon), Q0ff = Qon although the 
time course of the gating current at the voltage offset is slower than that 
at the voltage onset. 
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Example 6.1 (continued) 

/ j 
"I 

; 10 itA/cm̂ J 

t 

V 

5*A/cro*j 

/N a On он/ r-

a. Explain why Ig is outward at the pulse onset and inward at the 
pulse offset. Why is the amplitude of the Ig at the offset smaller 
than that at the onset? 

b. Why is there a transient inward 1ма at the offset of the voltage 
pulse? 

c. Under what condition do you expect to observe symmetrical Ig at 
the onset and offset of the voltage pulse? 

Answer to example 6.1 

a. Ig is outward at pulse onset because the depolarization results in 
an increase of an outward electric field, which pushes the gating 
particles outward. At pulse offset, the electric field changes in 
the opposite direction, and thus Ig is inward. Ig is smaller at 
the offset because a substantial fraction of Na+ channels is in the 
inactivated state after the voltage pulse is maintained for about 
3.25 msec. 

b. The inward transient JWa at offset is caused by the instantaneous 
voltage drop (from - 20 to - 70 mV), which results in a much larger 
driving force (V - £jva), and the time-dependent closure of Na+ 

channels. (Na+ channels do not have enough time to close imme-
diately after the pulse offset.) 

c. Ig will be symmetrical if the voltage pulses are shorter than 1 msec, 
which is not long enough for significant inactivation to take place. 
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6.7 Review of important concepts 

1. The Na+ and K+ conductances mediating the action potentials in the 
squid axon were studied by Hodgkin and Huxley (1952a-d) by using 
the voltage-clamp technique and the gate model. 

2. The instantaneous I-V relations of the Na+ and K+ channels in the 
squid axon are linear. Voltage-clamp results suggest that the Na+ 

channel is activated by three gating particles (m) and one inacti-
vating particle (ft), and the K+ channel is activated by four gating 
particles (n). 

3. The voltage- and time-dependent parameters of the Na+ and K+ con-
ductances were quantitatively described by the Hodgkin and Huxley 
equations. The simulated action potential based on these equations 
is in excellent agreement with the recorded action potential. The 
propagation and conduction velocity of action potentials can also 
be described by these equations. 

4. Mechanisms mediating various dynamic features of action potentials 
such as threshold, refractory period, and accommodation can be 
described by changes of I-V relations of the Na+ and K+ currents in 
the cell. 

5. The gating currents of the Na+ and K+ channels were recorded by 
eliminating all ionic currents and the capacitive current. From the 
charge transfer of the gating currents, one can estimate the number 
of gating particles per charge, channel density, and single-channel 
conductance in the membrane. 
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6.8 Homework problems 

1. Ionic currents involved in the action potential of a cardiac mus-
cle fiber have been studied by the voltage-clamp technique. When 
membrane potential is stepped from its resting value of - 7 7 mV to 
-50 mV, an initial inward current is seen, which is carried by Na+. 

(a) Assume internal Na+ concentration is normally 30 mM, and ex-
ternal Na+ concentration is normally 150 mM. Draw to approx-
imate scale the initial current traces for a step to -50 mV when 
external Na+ concentration is normal; and when external Na4" 
concentration is reduced to 30 mM, to 10 mM, and to 1 mM by 
replacement of Na+ with an impermeant cation. 

(b) If the peak inward Na+ current with normal Na+ concentration 
is 1 mA/cm2, calculate the peak Na+ current in each of the other 
cases. 

(c) External Na+ concentration is adjusted so that the initial in-
ward current during a voltage clamp step to -50 mV is abol-
ished. However, when the membrane potential is stepped from 
- 7 7 mV to -20 mV, a longer-lasting inward current is recorded. 
Can this be due to the opening of further Na+ channels at this 
membrane potential? Explain in one sentence. Assuming that 
internal and external K+ and Cl~ concentrations are compara-
ble to those of frog muscle, could it be due to the opening of 
K+ channels or of СГ channels? Explain each answer. 

(d) The suggestion has been made that Ca2+ carries this current. If 
external Ca2+ concentration is 2.5 mM and internal Ca2+ con-
centration is less than 10"2 mM, in what range is £ca? Would 
the Ca2+ current at a membrane potential of - 2 0 mV be in the 
right direction to account for the observed current? Justify your 
answer. 

2. After a particular step depolarization in Hodgkin and Huxley's squid 
axon, the parameter n follows the curve 
n = 0.891 - 0.376<r t /L7(msec). 
t is in msec, and gK is known to be 24.3 mS/cm2. 
Plot дк as a function of time, using 1 msec steps for 10 msec. What 
is the steady-state дк (i.e., дкоо)? 
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3. After the same depolarization as in problem 2, the parameters m 
and h follow the curves m = 0.963 (l - e-t/o.252<msec))f a n d h = 

0.605e~ t /a84(msec). t is in msec, and gNa = 70.7 mS/cm2. 
Plot дыа as a function of time using 0.5 msec steps for 5 msec. What 
is the largest value of дма reached? 

4. Using the figure below (from Hodgkin and Huxley 1952d), calculate 
the steady-state K+ current (IK™ ) after the axon is stepped from rest-
ing potential (-60 mV) to 0 mV (in the Hodgkin and Huxley paper, 
from 0 to -60 mV). gK is given to be 36 mS/cm2, and the equilib-
rium potential of K+ is -72 mV. 

5. An alga Char a globularis is known to generate positive-going action 
potentials. The major ions in both its cytoplasma and the pond 
water it lives in are Na+, K+, and CI", and their concentrations are 
as follows: 

Cytoplasma (mM) Pond water (mM) 
Na+ 57 0.031 
K+ 65 0.046 
CI" 112 0.040 

The resting potential of the cell is -182 mV, and the peak amplitude 
of the action potential is +198 mV. 

(a) What is (are) the primary permeable ion(s) for this cell at rest? 
(b) What is (are) the primary permeable ion(s) for this cell during 

the peak of an action potential? 
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(c) In a pump that pumps both Na+ and СГ into the cell at a ratio 
of 1 : 1, what is the contribution of this pump to the resting 
potential of the cell? 

(d) The voltage-clamp analysis of this cell reveals the following re-
sults: 

What are the values of да and gNa at Vm = -50 mV and at 
Vm = +150 mV? 

6. Currents measured with voltage clamp of squid axon are shown in 
the figure below. Membrane held at VH = -60 mV was stepped to 
potentials Vc shown in the right-hand side of each current trace. 

(a) What caused the small sustained inward current measured after 
the membrane was stepped to Vc = -12 5 mV? Give your answer 
in one sentence. 

(b) The peak amplitude of the early inward current increased when 
Vc was varied from - 3 0 mV to - 5 mV. Why? 

(c) The peak amplitude of the early inward current decreased when 
Vc was varied from - 5 mV to +57 mV. Why? 

(d) Give the approximate threshold (Vth) of this axon. Justify your 
answer in one sentence. 

(e) If the early inward current is carried by Na+, what is the approx-
imate equilibrium potential for Na+ in this axon? Explain. 

(f) If the late outward current is carried by K+ ions and Ек is known 
to be closed to -65 mV, why is there no reversal of the late 
outward current in these measurements? 

Im 2-1 

Im 
(mA/cm2) 

- 3 J 

time (msec) 
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4 - | 
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- 5 0 
- 7 0 
-125 

7. When a normal, healthy squid axon is voltage-clamped in artificial 
sea water, one obtains the following membrane current record in re-
sponse to a step change in membrane potential from Vm = - 70 mV 
to Vm = 0 mV. 

Vm 
(mV) 

Im 
(mA/cm2) 

°]J 
—70 —I 1 
-70 

2-i 

0 -

- 2 -

~l—Г 
1 2 

I I 
3 4 

1 1 1 1 1 
7 8 9 10 11 

time (msec) 

Draw similar plots of Im vs. t (when Vm is stepped from - 7 0 mV to 
0 mV) when the recordings are made under each of the following ex-
perimental conditions. For each of your plots, explain in one or two 
sentences how and why your graph differs from that drawn above. 



6.8. Homework problems 175 

(a) TTX is added to the bath surrounding the axon. 
(b) TEA is added to the interior of the axon. 
(c) [Na+]out is adjusted so that [Na+]out = [Na+]in. 
(d) [K+]out is adjusted so that [K+]out = [K+]in. 
(c) Ouabain, a specific inhibitor of the Na+-K+ pump, is added to 

the bath five minutes before the experiment. 

8. Using the normal data in the figure below, plot the current at 0.5 and 
4.5 msec after the start of the stimulus vs. membrane potential. On 
the same graph, plot the corresponding currents in Na+-free solu-
tion. Does the replacement of external Na+ affect the late outward 
current? 
For a depolarization to - 4 mV, measure and tabulate the current 
in the figure below in normal and Na+-free solutions vs. time, using 
0.25 msec intervals. From these data, plot Ik and I^a vs. time on the 
same graph. Assume E^a = +60 mV and Ек = -70 mV. Calculate 
and plot дма and дк (in mS/cm2) vs. time. 

4 52 
I 

(mA/cm2) 2 36 
24 0 
10 

- 4 
- 1 8 
- 2 2 
- 4 8 

- 1 0 2 

0 1 2 3 4 5 0 1 2 3 4 5 

time (msec) time (msec) 

9. The momentary I-V relations of IK, and /* = INCI+IK of the squid 
giant axon are given below: 
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(a) What are the conductance ratios дк!дш of this axon 
i. at rest, 
ii. at threshold of action potential, and 
iii. at the peak of an action potential? 

(b) If Ijsja shown in the above figure does not change with time (i.e., 
h particles are inactivated), but дк becomes 5 times larger a I 
time Г, draw the I-V relation of IK, INU, and h at time T on graph 
paper. What are the resting potential, threshold potential, and 
peak voltage of an action potential of the axon at time 77 

10. Records of IK obtained by voltage- and space-clamping of the squid 
giant axon in the presence of TTX are given below. The holding po-
tential is - 8 0 mV and the Vc are 25 mV, 60 mV, 85 mV, and 100 mV. 
gK = 83 mS/cm2, and EK = -80 mV. 
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(a) From the above data and what you have learned about Hodgkin 
and Huxley's experiments, estimate the values of дкoo at each 

(b) What are the values of an and /Jn at each Vc? 

11. In an excitable cell, the membrane conductance is mediated by cal-
cium and chloride channels only. Using Ca2+ and Cl~ channel block-
ers, one can measure Ca2+ and СГ currents separately. The current 
traces and I-V relations obtained under voltage-clamp conditions 
are shown below. 
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(a) Draw the I-V relation of the total membrane current (/ca2+ +Ici-) 
at t = 1 msec and at t = 10 msec in the left figure. Estimate the 
threshold voltage (Vth) and the peak action potential voltage 
(Vpeak) of this cell. 

(b) What are the intracellular concentrations of Ca2+ and CI" in this 
cell if the extracellular concentrations of calcium and chloride 
are 5 mM and 50 mM, respectively? 

12. The gating current Ig obtained by averaging equal numbers of pos-
itive and negative voltage-clamp steps of equal amplitude (in the 
presence of agents that block all ionic currents) is shown below. 

Vm 

(mV) 

h 
(^A/cm2) 

time (msec) 

This gating current is known to be associated with opening K+ chan-
nels in the cell, and 5 gating particles (each carries charge e = 1 
electronic charge) are required to open one K+ channel. 

(a) What is the density (in channels/cm2) of K+ channels in this cell 
membrane? 

(b) If the peak K+ conductance gK of this cell is 0.2 S/cm2, what is 
the single-channel conductance of the K+ channels? 

(c) Is the K+ current activated by depolarization or by hyperpolar-
ization? Explain in one sentence. 

13. The gating current Ig obtained by averaging voltage-clamp currents 
elicited by equal numbers of positive and negative voltage steps of 
equal amplitude (in the presence of agents that block all ion currents) 
is as shown: 
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h 2 -

(цА/ст2) i -

0 -

0 1 2 3 4 5 6 7 8 

time (msec) 

This gating current is known to be associated with opening Na+ chan-
nels in a snail neuron, and 2 gating particles (each carries charge 
e = 1 electronic charge; e = 1.6 x 10"19 C) are required to open one 
Na+ channel. In the absence of Na+ channel blocker, the activation 
curve of the Na+ channel is shown below: 

l.o- ^ ^ 
0.8- / 

9Na
 0 6 " / 

(S/cm2) 0 4 _ / 

0.2 - / 

o.o-l 1 I 1 1 
-80 -60 -40 -20 0 20 40 

Vm (mV) 

(a) What is the density (channel/cm2) of Na+ channels in the mem-
brane of the snail neuron? 

(b) What is the single-channel conductance of the Na+ channels in 
the snail neuron? 

(c) Assuming the Na+ channels do not inactivate, redraw figure A 
on the graph paper, and add the gating current trace after the 
offset of the voltage-clamp steps (from 4 msec to 8 msec along 
the time scale). 

14. The I-V relation of the Na+ channels in the node of Ranvier is given 
in figure A, and the current records of the two-pulse voltage-clamp 
experiment carried out in this preparation are given in figure B. Fig-
ures A and В are obtained while other conductances (such as дк) are 
totally blocked. 
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(a) Redraw figure A on graph paper, and plot the instantaneous I-V 
relation of the Na+ channels on the same graph, based on the 
records given in figure B. Mark E^a on your graph. 

(b) Is the instantaneous дма ohmic? If not, what model(s) can be 
used to explain the nonlinearity? 

(c) Repeat (a) if figures A and В are obtained while дк is not blocked. 
дк (at t = 0.5 msec) = 1 mS/cm2 апйдк is approximately linear. 
EK = -80 mV. 

15. The time course of immobilization of "off' gating charges of Na+ 

channels is given in figure A, and macroscopic Na+ current IN a and 
the Na+ gating current (Ig) evoked by a brief depolarizing pulse are 
given in figures В and C, respectively. 

в 

Vc 
(mV) 
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(a) Draw all components of I^a and Ig with appropriate values (on 
figures В and C) for voltage pulses of the same amplitude (VH = 
-100 mV, Vc = 50 mV) but longer durations: 4 msec and 9 msec. 
Label explicitly the values of /Naoff and the approximate values 
of Igotf with appropriate units. 

(b) What is the major difference in the current waveforms between 
Hodgkin and Huxley's prediction and the actual experimental 
results? What does this difference imply in evaluating the 
Hodgkin and Huxley model? 



7 Functional Diversity of 
Voltage-Gated Conductances 

7.1 Introduction 

In the last two chapters we presented the classical description of the 
nerve membrane derived from the work of Hodgkin and Huxley and based 
largely on experiments from squid axon. Although the type of analysis 
used by Hodgkin and Huxley for characterizing voltage-gated ionic cur-
rents is extremely useful, their representation of the nerve membrane in 
terms of two voltage-gated conductances, Na+ and K+, is inadequate for 
describing excitable membrane in other parts of a neuron, for example, 
the cell body, dendrites, and presynaptic terminal. In this chapter we will 
present an abbreviated survey of the major classes of voltage-gated con-
ductances. We will also show how the quantitative model of Hodgkin and 
Huxley, the very general gate model presented in chapter 5, can be modi-
fied and used to describe many types of voltage-gated conductances. The 
different ionic conductances will be distinguished based on their ion se-
lectivity, current-voltage relationships, activation/inactivation properties, 
and sensitivity to pharmacological agents. 

It is worth mentioning here what we are not going to do in this chapter, 
namely, discuss the molecular diversity of ion channels. With modern 
techniques of gene cloning, we now know that within each family of ion 
channel (both voltage-gated and ligand gated), there is a great molecular 
diversity. That is, there are many different genes that express each of 
the subunits that comprise the channel. The functions of these different 
genes are, in many cases, not known, and this is an extremely active and 
rapidly changing area of research. 

This chapter will instead emphasize the functional diversity of mem-
brane currents with a view toward the whole cell rather the single channel. 
In fact, it is the functional diversity of conductances at the whole-cell level 
that has enabled molecular physiologists to classify channels into broad 
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functional classes, for example, delayed-rectifier or A-type K+ channels. 
As we will see, some of this classification is based on pharmacology and 
on the responses of different membrane currents to neurotransmitter ag-
onists and antagonists. 

Although this chapter is meant to be somewhat of a survey, it will re-
quire that you be able to use quantitative information (e.g., I-V curves 
and activation/inactivation parameters) to understand and predict how a 
particular ionic current might affect the electrophysiological functioning 
of a neuron. For the most part, we will restrict the discussion to voltage-
gated ionic currents measured in neurons and, in particular, mammalian 
cortical neurons. 

7.2 Cellular distribution of ion channels 

Two important questions that form the basis of much research by neuro-
scientists are: What types of ion channels are present in a particular neu-
ron, and where are they located? The types of ion channels and their dis-
tribution largely determine the electrophysiological behavior of a neuron. 
Unfortunately, the distribution of voltage-gated ion channels throughout 
a cortical neuron is currently unknown. A few general principles, how-
ever, can be gleaned from the present state of knowledge. First, axons 
are electrophysiologically simple compared to other parts of the neuron. 
The main role of the axon is to conduct a nondecrementing action po-
tential (AP) from one point to another. The major types of ion channels 
present in axons produce a fast inward Na+ current and a delayed out-
ward K+ current. Given that Hodgkin and Huxley did their experiments 
on the squid axon, it is not surprising that they described only two types 
of voltage-gated currents, Na+ and K+. In myelinated axons, there are pri-
marily only fast Na+ channels (at high density) and K+ (and maybe CI") 
leak channels at individual nodes of Ranvier. Repolarization of the AP 
occurs through Na+ inactivation and current flow through K+ selective 
leak channels rather than from the activation of a delayed-rectifier type 
K+ current. 

Second, the number of different types of ion channels in the soma is 
large. Functionally distinct Na+ currents, many different types of K+ cur-
rents, Ca2+ currents, and a few СГ and nonspecific cation currents have 
been measured in the cell bodies of cortical neurons. 

Third, not much is known about dendrites and presynaptic terminals 
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Figure 7.1 Heterogeneous distribution of ion channel types in soma, dendrites, and 
axon. 

other than that they are probably at least as complex as the cell body 
in terms of their complement of different types of ion channels. For ex-
ample, the synapse is the site of neurotransmitter release, and thus the 
message passed to the next neuron is dependent in part on the types of 
voltage-gated ion channels present in the presynaptic terminal. We know 
that there are at least one or two types of Ca2+ and K+ channels in the 
terminal, but the extent of the channel diversity in the terminal is not yet 
known. This is also true for dendrites, and, as we saw in chapter 4, the 
types of channels present in dendrites can have important effects on the 
ways in which a neuron responds to the thousands of synapses distributed 
throughout the dendritic tree. Ca2+ and K+ channels are located in most 
dendritic trees, but it is not clear which types. Also, some dendritic trees 
appear to have Na+ channels and are capable of propagating all-or-none 
action potentials while others are not. Thus, dendritic trees are clearly 
not passive but contain (at least) several different types of voltage-gated 
ion channels. In conclusion, there is a well-recognized heterogeneous dis-
tribution of different types of ion channels in a neuron, at least in terms 
of the axon vs. the rest of the cell. It would be surprising if there weren't 
also a heterogeneous distribution of both types and densities of ion chan-
nels in soma, dendrites, and synaptic terminals. The distribution of these 
channel types will have important functional implications for dendritic 
integration of synaptic inputs as well as for neurotransmitter release at 
the synapse. 

7.3 Propagation of the action potential in myelinated axons 

In chapter 6 we discussed the local circuit theory for the propagation of 
the action potential and derived equations for the conduction velocity of 
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the action potential in unmyelinated axons. A simplified diagram of the 
local circuits for the propagation of an action potential in unmyelinated 
axons is shown in figure 7.2. In the case of myelinated axons, conduction 
velocity depends critically on the myelination. For unmyelinated axons re-
call from chapter 6 that conduction velocity is proportional to the square 
root of the fiber diameter, or в ос yfd. 

X 
Figure 7.2 Local-circuit currents (rectangular arrows) established along an unmyelinated 
axon when an action potential is initiated. The direction of propagation is indicated by 
the arrow at the bottom, and the site of the action potential is at the location of inward 
current. 

In figure 7.3 a myelinated axon is schematized to illustrate the param-
eters d (diameter of axon), D (diameter of axon + myelin), I (length of in-
ternodal region), and n (length of node). Because the myelin acts as an in-
sulator, it reduces transmembrane resistive and capacitive currents in the 
internodal region.1 An action potential generated at one node therefore 
causes a local-circuit current to flow only from one node to the next until 
threshold is reached at the next node. This causes the action potential to 
jump literally between nodes and is called saltatory conduction (saltare 
means "to leap" in Latin). Given this different mode of propagation in 
myelinated axons, what parameters determine conduction velocity? 

If we assume that d/D = constant (this is approximately true, although 
the constant (around 0.6) may be different for peripheral and central 
fibers), then from previous discussions of conduction velocity, в will de-
pend on d and thus on D. Because the action potential propagates only 
from node to node, velocity must also be dependent on the distance be-
tween nodes or 1. In order for propagation to occur from node to node, the 
local-circuit current must be sufficient to reach threshold at each node. 
This means that the distance between nodes must not be too large. The 
maximum length of the internodal region in order for threshold to be 

^ a c h layer of myelin adds resistance and capacitance in series with the transmembrane 
resistance and capacitance of the axon. Recall from appendix A that resistors in series 
sum while capacitors in series sum as reciprocals. This leads to an effective increase in 
transmembrane resistance but a decrease in transmembrane capacitance in the internodal 
region. 
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Figure 7.3 Schematic diagram of a myelinated axon (above) and the local-circuit currents 
(below) during the propagation of an action potential (see text for explanation of symbols). 

reached from an action potential in an adjacent node will depend on the 
diameter D or D oc i. This makes sense because with a larger D comes 
a larger d as well as more layers of myelin—each of which reduces the 
loss of current between nodes. I can therefore be longer and still allow 
for propagation of the action potential from one node to the next. Exper-
imentally this has been shown to be approximately true, that is, a plot of 
D vs. I for many different fibers is close to a straight line. 

For myelinated axons the time for an action potential to travel a given 
distance is directly proportional to I. For example, think of a 1 cm length 
of unmyelinated axon. Take that same 1 cm length of axon and break it 
up into 10 pieces and put 1 cm of an internodal region in between each 
of those 10 segments (or nodes). The time it takes an action potential to 
travel from one end of this fictitious myelinated axon is roughly the same 
as that for the intact unmyelinated axon (the length of the unmyelinated 
portion has not changed), except that now the entire axon is about 10 
times longer. Therefore the conduction velocity increases by a factor of 
10 (the ratio of internodal length to node length, or I In). Since D oc i, then 
в ос D for myelinated axons. More thorough treatments of this subject 
can be found in Rushton (1951) and in Jack, Noble, and Tsien (1975). 

7.4 Properties of different membrane currents 

Please refer to table 7.1 (page 208) while reading this section. 
In the sections that follow (adapted from Brown et al. 1990), we will 

describe the different types of voltage-gated ionic currents in nerve mem-



188 Chapter 7. Functional Diversity of Voltage-Gated Conductances 

branes. The different types will be distinguished on the basis of ion se-
lectivity, electrophysiological properties—primarily from voltage-clamp 
(or whole-cell) measurements—and pharmacology (blockers). It should 
be stressed that within each class or family of channel (for example, Na+ 

channels or A-type K+ channels), there maybe large numbers of genes ex-
pressing different channels (different at least on the basis of sequence). 
The functions of the different channels within each family are not fully 
understood, and thus it is possible that each of the classes will eventually 
be further subdivided based on channel function, location of a channel 
within a neuron, location of a channel within the brain, or developmental 
sequence of channel expression. 

7.4.1 Sodium currents fast) and /дга(slow) 

Two functionally distinct Na+ currents have been recorded in cortical neu-
rons. Both currents are sensitive to TTX, but they differ in their inacti-
vation properties. They are called INA(fast) and INA(slow). INU(fast) is es-
sentially the Na+ current, described in previous chapters, that is respon-
sible for the action potential. /Na(siow), on the other hand, is a non- or 
slowly inactivating Na+ current that plays a role in repetitive firing and 
subthreshold behavior of the cell. INMslow) may represent a separate type 
of channel or a separate gating mode of the same channel. It is also pos-
sible to have a subthreshold or noninactivating Na+ current from I^aifast) 
if the Woo and hoo curves are shifted toward each other along the voltage 
axis leading to a significant degree of overlap of the two curves. 1ма(slow) 
could therefore be called a window current and is illustrated in figure 7.4. 

The idea behind a window current is that within the voltage region of the 
overlap, both the ш» and hoo parameters have nonzero values. Remember 
that ж*, is just the value of the activation variable after a long period of 
time. If one steps the membrane potential into this region of overlap of 
the two curves, for example, to -50 mV in figure 7.4, the value of m«> is 
about 0.2 and that of hoo is also about 0.2. Using the equation for Na+ 

conductance presented in the last chapter, 

9NCL = m3h• gNai 

then 

gNa = ( 0 . 2 ) 3 ( 0 . 2 ) • gNa « 0.002gNa, 

a small but finite conductance. A similar calculation at - 4 0 mV gives a 
steady-state дма of about 0.006 g N a , while at -70 mV it gives about 0.0001. 
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Figure 7.4 Overlap of m«> and hoo curves (shaded area) produces a "window" current 
(see text for explanation). 
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Figure 7 .5 Voltage-clamp measurements of slow)- Note that there is very little inac-
tivation at - 5 5 and - 6 0 mV. Vm is in mV, and Im is in nA. 

Negative to about -70 mV the steady-state activation parameter is too 
small to give much conductance, while at potentials above about -30 mV 
the steady-state inactivation parameter is too small. Within the region of 
overlap, however, a significant amount of steady-state Na+ conductance 
could be present to produce this window current. 

A voltage-clamp experiment in which a slow Na+ current is revealed 
is illustrated in figure 7.5. Voltage steps to membrane potentials in the 
range of -60 to -50 mV elicit inward currents that do not fully inactivate. 
Steps to more positive potentials, however, produce inward currents that 
do inactivate completely, as was seen for the fast Na+ current in the last 
chapter. Another type of voltage-clamp experiment in which a voltage 
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ramp is used in place of a step is shown in figure 7.6. The use of a ramp 
command can be helpful: It is possible to construct a complete I-V curve 
from one ramp command. The slope of the ramp, however, is critical 
because the resulting current from any particular slope will depend on 
the activation and inactivation kinetics of the currents. In the case of a 
slow Na+ current, a reasonably slow ramp command (i.e., 10 mV/sec) will 
reveal a region of negative slope in the resulting I-V curve. This area of 
negative slope simply means that a slowly inactivating inward current is 
present in this voltage region that will tend to depolarize the neuron. If 
a slower ramp (i.e., 1 mV/sec) were given to the neuron, then the ramp 
would only elicit an outward K+ current, because the Na+ current would be 
mostly inactivated by the slow ramp. A fast ramp, however, would activate 
the fast Na+ current just as would a step command. This is illustrated in 
figure 7.6. 

20 n 
0-

-20-
- 4 0 -

- 6 0 -

- 8 0 -

I (nA) ^ 1 mV/sec 

10 mV/sec 

V (mV) 

- 8 0 - 6 0 

100 mV/sec 

- 5 - 1 

Figure 7.6 Ramp voltage clamp of a neuron with /NA(SIOW) . INO(fast)» AND H(DR) • A slow 
ramp command (1 mV/sec) will activate mainly outward current (i.e., IK(DR) )• An interme-
diate ramp (10 mV/sec) will reveal a region of negative slope due to the slow inactivation 
of 1ыа(slow) in this voltage range, while a faster ramp (100 mV/sec) will activate 1ма(fast) 
producing a much larger inward current (see text for further explanation). 
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Figure 7.7 Amplification of EPSPs by INA(Si0W). EPSPs are shown with and without 
lNa(slow) present in the neuron. The bottom set of traces are with the neuron hyper-
polarized from rest. With INA(slow) present the EPSP appears larger. At the normal resting 
potential (upper traces) the presence of I^aislow) allows the EPSP to trigger APs. Vm is in 
mV. 

What would the function of a slow Na+ current be? Because the slow 
Na+ current is activated near resting potentials, it would tend to amplify 
small depolarizations. For example, a small EPSP might activate this cur-
rent and produce a larger depolarization than would be obtained with the 
EPSP alone. An example of this is shown in figure 7.7. Another possible 
function of this current might be to sustain repetitive firing in a neuron 
or to help initiate a burst of action potentials. 

As mentioned in the introduction, the location of voltage-dependent 
Na+ currents in a neuron is not known precisely. Na+ currents are cer-
tainly present in the axon and soma of most neurons. Some neurons also 
have Na+ currents in their presynaptic terminals and in at least parts of 
their dendritic trees. For example, no Na+ currents appear to be present 
in cerebellar Purkinje cell dendrites, while in hippocampal pyramidal neu-
rons, Na+ currents have been found in proximal areas of their dendritic 
trees. Na+ channels are also phosphorylated by several protein kinases 
including protein kinase С and the cAMP-dependent kinase, PKA. 
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7.4.2 Calcium currents 

Ca2+ currents have some similarities and some differences from Na+ cur-
rents. They are similar in that both are activated by depolarization, both 
are inward currents at normal membrane potentials, and both have some 
degree of inactivation, depending on the type of Ca2+ or Na+ current be-
ing measured. They differ in that Ca2+ channels are selective for Ca2+ 

while Na+ channels are selective for Na+. Also, the circuit model for ionic 
current used for describing Na+ (and K+) currents does not hold for Ca2+ 

currents. The general equation for ionic current 

h = di(Vm - Ei) 

will not adequately represent Ca2+ currents. The internal Ca2+ concentra-
tion of neurons is exceedingly low, on the order of 10~8 M. The predicted 
reversal potential of Ica using the chord conductance model given above 
and the Nernst equation for Ca2+ would therefore be about +150 mV. Be-
cause of the low internal concentration of Ca2+, however, there is no real 
reversal potential for Ca2+ currents (figure 7.8). Most reversal potential 
measurements of Ca2+ currents are actually contaminated by outward K+ 

currents. One can think of the lack of a reversal potential as being due 
to the fact that there are insufficient numbers of intracellular free Ca2+ 

ions to carry the current in the outward direction. This is not an entirely 
accurate description, as it also depends on the mechanisms for ion per-
meation through the channel. Nevertheless, the steady-state Ca2+ current 
is better represented by the GHK current equation (see chapter 2), which 
predicts the rectification of the I-V curve at depolarized potentials: 

4F2 / [Ca2+]jng(2VF/J*r) - [Ca2"l"]out\ IcaiV) = PcaJfV ^ e{2VF,RT) _ X J ' <7A1) 

where Pea is the Ca2+ permeability. 
Several measurement difficulties result because of this rectification. 

First, extrapolation of the I-V curve will grossly underestimate the Ca2+ 

equilibrium potential. Second, the concept of a chord conductance is not 
very meaningful for Ca2+ currents at positive potentials. Third, any out-
ward current measured at extreme positive potentials is probably due to 
contamination from K+ currents. 

At least four functionally and pharmacologically distinct, broad classes 
of Ca2+ currents have been observed in neurons. These are the L-, T-, N-, 
and P-type currents, and they will be described below. 



7.4. Properties of different membrane currents 193 

0 5 10 15 20 25 

time (msec) 

Figure 7.8 I-V curve (right) from whole-cell measurements of L-type Ca2 + currents (left). 
Vm is in mV, and Im is in nA. The numbers to the right of each current trace are the 
command potentials (in mV) for that trace. 

7.4.2.1 High-threshold calcium current Ica(L)- The high-threshold (L 
for Long-lasting) Ca2+ current was for many years the main Ca2+ current 
measured from neurons and heart muscle. Although Llinas in 1981 sug-
gested that there might be another Ca2+ current operating near rest, it 
wasn't until 1984 that the work of Carbone and Lux (1984) firmly estab-
lished the existence of another, low-threshold, Ca2+ current. The high-
threshold Ca2+ current has a number of interesting properties. As the 
name implies, it is activated at potentials quite depolarized from rest (half 
maximal activation at around -15 mV); it shows inactivation that is depen-
dent on [Ca2+]m but not voltage; and it is modulated by several different 
protein kinases. It is blocked by many divalent cations, especially by low 
concentrations of Cd2+. It is also blocked by dihydropyridines such as ni-
modipine, but the block is voltage dependent in that the block is greater 
at more depolarized membrane potentials. The pharmacological tools 
used for separating the L channel from other Ca2+ channels, at least in 
vertebrate neurons, are the dihydropyridine agonist Bay K8644 and the 
dihydropyridine antagonists nimodipine or nifedipine. Bay K8644 greatly 
increases channel open time, resulting in a big increase in total Ca2+ cur-
rent (see figure 7.9). The L channel contributes to Ca2+ spikes in neurons, 
and may also be involved in Ca2+ signaling in dendrites. Its single chan-
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Figure 7.9 Effects of Bay K8644 on high-threshold Ca2+ currents. Note the increase in 
the current with Bay K8644. Vm is in mV, and lm is in nA. 

nel conductance is about 25 pS in isotonic Ba2+, which is about 3x that 
measured in normal extracellular [Ca2+]. 

Using a Hodgkin-Huxley type formulation (see chapter 6) and equa-
tion 7.4.1 above, the L-type Ca2+ current can be reasonably represented 
by2 

Ica(L) = m2hCa • Ica(L)(V), (7.4.2) 

where m is the activation variable that is dependent on voltage and time 
and hca is the inactivation variable that is dependent on [Са2+]щ but not 
voltage or time. 

7.4.2.2 Low-threshold calcium current Icaen - The low-threshold (T for 
Transient) type Ca2+ current is activated at potentials near rest (half max-
imal activation around - 4 0 mV). It shows strong voltage-dependent (but 
not Ca2+-dependent) inactivation at depolarized potentials and thus is 
also called a transient current. Its activation and inactivation parameters 
are similar to the fast Na+ current; it is modulated by muscarinic recep-
tors. The low-threshold Ca2+ current appears to be important for spon-
taneous burst firing of neurons and for subthreshold activity, because it 
exhibits only partial inactivation near the resting potential. By holding the 
membrane potential negative to rest and stepping to positive potentials, 
one can separate the low-threshold from the high-threshold Ca2+ current 
(see figure 7.10). The low-threshold current is insensitive to dihydropy-
ridines and currently known toxins, but is sensitive to Ni2+ at relatively 

2We will depart somewhat from the nomenclature of chapter 6 and use the symbols m 
and h as the activation and inactivation state variables, respectively, for all of the different 
ionic currents. Their meaning for each of the currents will be explained as needed. 
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Figure 7.10 Separation of high- and low-threshold Ca2+ currents. Voltage steps from a 
negative holding potential (VH = - 8 0 mV) reveals an inward current that partly inactivates 
with time. The inactivating portion of this current (the low-threshold Ca2+ current) is 
obtained (lower left panel) by taking the difference between the currents measured from 
holding potentials of - 8 0 mV and - 6 0 mV. The I-V curves represent the measurements 
made at holding potentials of - 8 0 mV (top right) and - 6 0 mV (middle right), and the 
difference between the measurements made at - 8 0 and - 6 0 mV (bottom right). Vm is in 
mV, and Im is in nA. 

low concentrations (10-50 цМ). It can be reasonably represented by 

Icam =m2hv- Icam (V), (7.4.3) 

where m is as above and hy is dependent on voltage and time but not 
[Ca2+]in- The single channel conductance for the T-type channel is 8-10 pS 
using either Ba2+ or Ca2+ as the charge carrier. 

The differences in the inactivation properties of low- and high-threshold 
Ca2+ currents are illustrated in figure 7.11. 

7.4.2.3 High-threshold Ca2+ current Ica(N). Another Ca2+ current, 
which has several properties that are intermediate between the L and 
T currents, has been described in a number of different neurons. It is 
called the N-type current, for Neither L nor T, and has a single channel 
conductance of 12-16 pS in isotonic Ba2+ (about 2.5 x higher than in 
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ramp is used in place of a step is shown in figure 7.6. The use of a ramp 
command can be helpful: It is possible to construct a complete I-V curve 
from one ramp command. The slope of the ramp, however, is critical 
because the resulting current from any particular slope will depend on 
the activation and inactivation kinetics of the currents. In the case of a 
slow Na+ current, a reasonably slow ramp command (i.e., 10 mV/sec) will 
reveal a region of negative slope in the resulting I-V curve. This area of 
negative slope simply means that a slowly inactivating inward current is 
present in this voltage region that will tend to depolarize the neuron. If 
a slower ramp (i.e., 1 mV/sec) were given to the neuron, then the ramp 
would only elicit an outward K+ current, because the Na+ current would be 
mostly inactivated by the slow ramp. A fast ramp, however, would activate 
the fast Na+ current just as would a step command. This is illustrated in 
figure 7.6. 

2 0 - I 

Vrr, 

10 mV/sec 

100 mV/sec 

- 5 - 1 

Figure 7.6 Ramp voltage clamp of a neuron with INA(SIOW), INQ(fast)» and IK(DR) • A slow 
ramp command (1 mV/sec) will activate mainly outward current (i.e., IK(DR))• An interme-
diate ramp (10 mV/sec) will reveal a region of negative slope due to the slow inactivation 
of Inq(slow) in this voltage range, while a faster ramp (100 mV/sec) will activate I^aifast) 
producing a much larger inward current (see text for further explanation). 
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Figure 7.12 I-V curves and m«> and hoo for the L-, T-, and N-type Ca2+ currents. The 
P-type current has activation and inactivation properties similar to that of L. 

The cellular distribution of the L, T, N, and P channels is not known. 
Certainly, some type(s) of Ca2+ channels exist in presynaptic terminals. 
One possibility is that N and P channels are responsible for fast trans-
mitter release (e.g., glutamate and GABA) and L channels are responsible 
for slower release of neurotransmitters such as catecholamines and neu-
ropeptides. There are also other classes of Ca2+ channels, some of which 
are just beginning to be described (e.g., Q-type and R-type), whose cellular 
distribution is not yet known. Ca2+ spikes have been recorded from iso-
lated dendrites and therefore some type(s) of Ca2+ channels exist there 
as well. It remains to be determined whether transmitter release and/or 
Ca2+ signaling in dendrites can be accounted for by L-, T-, N-, and P-type 
channels or if there are unique channels in these structures. A compari-
son of the activation and inactivation properties and I-V curves of the L-, 
T-, and N-type currents is illustrated in figure 7.12. 

7.4.3 Potassium currents 

The greatest diversity of voltage-gated channels selective for one type of 
ion may be that for K+ channels. There are at least four types of voltage-
gated K+ currents in neurons, two types of Ca2+- and voltage-gated K+ 

currents, one type of hyperpolarization-gated K+ current, and at least 
three "other" types. Functionally, K+ currents can be thought of as falling 
into three broad classes: those that contribute to the resting potential; 
those that are activated at subthreshold potentials (low-threshold K+ cur-
rents); and those that are activated by action potentials and contribute 
to afterpotentials and repetitive firing (high-threshold K+ currents). Al-
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though the grouping of these many types of K+ currents is somewhat 
arbitrary, we will follow the usual practice of discussing first the voltage-
gated currents, then the Ca2+- and voltage-gated currents, and then the 
other types of K+ currents. 

i—i—i—i 
10 15 20 25 

Time (msec) 

- 1 0 0 

Figure 7.13 Activation of IK(DR) using step commands. A representative I-V curve is 
shown on the right. VM is in mV, and Im is in nA. 

7.4.3-1 Voltage-gated K+ currents 

Delayed-rectffier current IK(DR) This delayed rectifier current is simi-
lar to that described previously by Hodgkin and Huxley. In hippocampal 
pyramidal neurons, however, it has been reported to have relatively slow 
activation, with a time to peak of some 50-100 msec and even slower in-
activation. Such a slow activation would make it ill suited to participate 
in the repolarization of the AP. Data from dentate granule cells, however, 
suggest activation time constants of around 5 msec (figure 7.13), more 
in line with the current being involved with AP repolarization. Neverthe-
less, other K+ currents may also take part in the AP. IK{DR) is sensitive to 
high concentrations of tetraethylammonium (TEA) and may show a slow 
voltage-dependent inactivation. An equation that can describe IK(DR) in 
cortical neurons is 

IK(DR) = m3hgKU)R) (VM - EK), (7.4.5) 
where m and h depend on voltage and time. 

Transient (A) current 1кш This transient K+ current is prominent in 
cortical neurons. It activates within 5-10 msec, inactivates with a time 
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constant of 20-30 msec, and can usually be separated from IK(DR) by sub-
traction, It is insensitive to TEA, but is blocked by 4-aminopyridine (4-AP) 
at > 100/JM concentrations. This current likely participates in spike repo-
larization and contributes to the resting potential (note the overlap of the 
moo and hoo curves near rest in figure 7.14). Because this current activates 
rapidly and then inactivates, it prevents neurons from responding to fast 
depolarizations (see figure 7.22). An equation to describe IKW is 

IK(A) = MHGKIA) (VM -EK), (7.4.6) 

where m and h depend on voltage and time. 

time (msec) VM (mV) 

Figure 7.14 The properties of IK(A) and the separation of IK(A) from IK(DR) using dif-
ferent holding potentials are indicated. The activation and inactivation curves for IK(A) 
are shown on the right. VM is in mV, and IM is in nA. (Adapted from Connor and Stevens 
1971b.) 

Slowly inactivating "delay" current IK(D) This current is similar to the 
A-type current described above in that it activates rapidly and inactivates 
completely. It differs from the A current because 1) it shows slower in-
activation (several sec); 2) its activation and inactivation curves are 15-
20 mV more negative, and thus it is mostly inactivated at rest; and 3) it is 
more sensitive to 4-AP (<100 цМ) (see figure 7.15). It is also sensitive to 
dendrotoxin (DTX). Only a small portion of this current is likely to con-
tribute to the resting potential. Both of the transient K+ currents (IKW 
and IK(D)) participate in spike repolarization. It has been suggested that 
an IK(D)-like current is present in presynaptic terminals because in many 
preparations transmitter release is sensitive to very low concentrations of 
4-AP (~ 10 juM). 
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Figure 7.15 Properties of Ik(D)- Note the slower inactivation compared to that of 1кш-
Vm is in mV, and Im is in nA. 

Muscarine-sensitive current or M current 1кш) The M current is a true 
voltage-gated K+ current, although it was first discovered because of its 
sensitivity to agonists for muscarinic cholinergic receptors. IK{M) is a non-
inactivating, subthreshold K+ current that is blocked by activation of mus-
carinic receptors. It is slowly activated at potentials depolarized to rest 
(Tact about 50 msec). It contributes to spike accommodation, repetitive 
firing, and a medium duration after hyperpolarization (see figure 7.22). 
It is blocked by Ba2+ and may be sensitive to several other neurotrans-
mitters through direct G-protein coupling (see figures 7.16 and 7.17). An 
equation to describe IK(M) is 

Ikw) = mgK{M) (Vm ~ EK), (7.4.7) 

where m is dependent on voltage and time. 

Voltage-gated (hyperpolarization) currents There are a number of mem-
brane currents that are activated by hyperpolarization and undergo no 
inactivation. These include a K+-selective current (IKVR), or inward rec-
tifier), a nonselective monovalent cation current IQ (also called If and 
IH in some preparations), and а СГ-selective current ICHV). The inward 
rectifier is so named because it passes K+ ions in the inward direction 
better than in the outward direction. It has first-order activation kinetics, 
and its voltage range for activation shifts as a function of [K+]out (see fig-
ure 7.18). The voltage dependency of these hyperpolarization activated 
currents is due to a block by Mg2+ ions from the inside of the neuron, 
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- 1 0 0 - 8 0 - 6 0 - 4 0 - 2 0 0 j i ~ i 

Time (sec) 

Figure 7.16 Properties of IK(M) • This current is measured by holding at positive poten-
tials (—30 mV) to fully activate IK(M) and then stepping negative. IK(M) deactivates during 
each command, causing a relaxation of the clamp current (/c/). The kinetics of IK(M) can 
be determined in this fashion. Also, when I(V) is plotted vs. the different step commands 
(Vc), the total membrane conductance when IK{M) is activated can be determined. This 
consists of the leakage conductance plus that associated with IK(M)- hs represents the 
total membrane current when IK(M) has been turned off by the steps. The difference be-
tween I{V) and Iss is a measure of IK(M)> and their intersection is the reversal potential 
for IK(M) • V is in mV, and I is in nA. (After Brown and Adams 1980.) 

which is removed with hyperpolarization. The function of these currents 
is not clear, although they may contribute partly to the resting potential, 
and also law) has been proposed to affect the passive properties of den-
drites. It is important to recognize that because of these conductances, 
hyperpolarization of a neuron will frequently result in a decrease in the 
input resistance and thus a rectification of the V-I and I-V relationships 
for that neuron (see figure 7.19). 

7.4.3.2 Calcium-gated K+ currents There are at least two important 
Ca2+-gated K+ currents for which information is available. We will discuss 
them below. There are also at least two Ca2+-gated "other" currents con-
sisting of a Ca2+-gated Cl~ current Icuca) and a Ca2+-gated nonselective 
cation current. These will not be discussed further. One problem with de-
termining the time course of these Ca2+-gated currents is that their decays 
depend on the time course of changes in intracellular [Ca2+], which is not 
uniform in different parts of a neuron, and on the location of the channels 
with respect to the sites of Ca2+ entry. For example, a change in intracel-
lular [Ca2+] will decay slower in the soma than in the dendrites because of 
a larger surface to volume ratio, and therefore the time course of a given 
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control 
-53 mV 

+1 цМ muscarine 

JF 

10 mV 
[2nA 
50 ms 

-80 m V 

20 mV 
[2nA 
50 ms 

Figure 7.17 The effects of muscarine on membrane properties measured under current • 
clamp conditions. At potentials depolarized to rest (top sets of traces, upper voltage, 
lower current), a hyperpolarizing current step turns off IK(M) . resulting in a depolarization 
during the step. This is blocked by muscarine. With prior hyperpolarization (bottom 
sets of traces, upper voltage, lower current), however, there is no effect of IK(M) (or of 
muscarine) during the step because IK(M) is already deactivated. The traces with and 
without muscarine are superimposed on the right. (From Williams and Johnston 1990.) 

Ca2+-gated current might also be longer in the soma. The characteristics 
of a Ca2+-gated current observed from the soma depends critically on the 
site of origin of the current. 

Fast, calcium-gated potassium current IK(C) This is a large current thai 
is activated rapidly (within 1-2 msec) by the combination of Ca2+ and de-
polarization (see figure 7.20). It deactivates in 50-150 msec, depending on 
the membrane potential, and is very sensitive to TEA. In some neurons it 
is also blocked by charybdotoxin, a peptide from scorpion venom. These 
channels are likely to be very close to Ca2+ channels and probably partic-
ipate in spike repolarization. They also play a role in repetitive firing. An 
equation to describe IK(C) is 

h(C) = Т{у+са)ДК(С)(ут - Ек), (7.4.8) 

where the activation variable, m(v+ca), is dependent on voltage, time, and 
[Ca2+]in-
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Figure 7.18 Properties of IK(IR) at different concentrations of extracellular K+. The 
dashed line represents the membrane I-V curve in the absence of IK(IR)- V is in mV, and 
I is in nA. (After Hagiwara et al. 1976.) 

After-hyperpolarization current IK(AHP) IK(AHP) is a smaller current that 
is activated more slowly following Ca2+ entry than is 1К(СЬ The IK(AHP) 
channels are therefore probably more remote from Ca2+ channels than are 
the IK(C) channels. IK(AHP) is also relatively voltage insensitive and is not 
blocked by TEA. IK(AHP) generates a long, slow hyperpolarization follow-
ing a single action potential, but this slow (s)AHP is even more prominent 
after a train of APs (see figures 7.21 and 7.22). This current plays an im-
portant role in repetitive firing and spike accommodation, is modulated 
by a number of neurotransmitters, and is blocked in some neurons by 
the bee venom apamin. One suggestion for the slow activation kinetics of 
this current is that the channels might be located at some distance from 
the site of Ca2+ entry. In contrast, the channels responsible for IK(C) are 
likely to be quite close to Ca2+ channels. IK(AHP) can be described as 

IK(AHP) = WlCadKiAHP) (Ут ~ Ек), (7.4.9) 

where mca is dependent on [Ca2+]m only. 

7.4.3.3 Other K+ currents The most prominent and important of the 
other currents is, of course, the leak current. The leak current is de-
fined as a linear, voltage-independent current. As mentioned earlier, K+ 

leak channels are particularly important for spike repolarization at the 
nodes of Ranvier. There may also be other leak channels that are selec-
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Figure 7.19 The effects of IKUR) and JQ in current clamp and the measurement of a 
hyperpolarization current in voltage clamp. A hyperpolarizing step of current activates 
Iкию and JQ and decreases the effective input resistance in a time-dependent manner. 
This results in the "sag" or "droop" of the membrane response. In voltage clamp a hyper-
polarizing step command elicits a time-dependent increase in an inward current due to 
I K ( I R ) a n d J Q . V M i s i n m V , a n d I M i s i n n A . 

tive for other ions, for example, CI". The actual leak current in neurons 
is probably much smaller than previously assumed, because much of the 
measured leak current was artificially induced by microelectrodes. 

An ATP sensitive K+ current may play a role in cortical neurons. This 
is a channel that is normally closed, but opens when the internal ATP 
concentration falls, for example during periods of anoxia. 

A Na+ activated K+ current has been described by Schwindt, Spain, and 
Crill (1989). This current, however, may be at least partly a Ca2+-gated K+ 

current, because internal Na+ is known to cause the release of intracellular 
Ca2+. 

Stretch-activated channels have been observed in a variety of prepa-
rations. Although they may not be important for cortical neurons, they 
probably form the basis of mechanotransduction in sensory receptors. 
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Figure 7.20 Voltage and Ca2+ dependence of IK(C)- The activation curves at different 
internal Ca2+ concentrations are shown on the left with the resulting I-V curves indicated 
on the right. 

7.4.4 Nonselective cation currents 

There are a number of other currents, some activated by hyperpolar-
ization, some by depolarization, and some by increases in intracellular 
[Ca2+]m, that are characterized by their nonselectivity to cations. The 
properties and functions of these currents are not well understood. 

The role of each of the major types of K+ currents in an action potential is 
illustrated in figure 7.22. Note that the A- and D-type K+ currents prevent 
the neuron from being rapidly depolarized, while A-, D-, C-, and DR-type 
currents participate in repolarization of the action potential. C-, M-, and 
AHP-type currents are involved in afterhyperpolarizations and thus affect 
the repetitive firing properties of a neuron. 

Examples of the voltage-clamp responses to a step depolarization re-
sulting from each of the major currents discussed in this chapter are 
schematized in figure 7.23. Note that no Ca2+-dependent inactivation and 
only one voltage level is illustrated. The relative differences in activation 
kinetics of the different K+ currents are also illustrated. For example, 
IKW activates rapidly and would thus tend to filter out high-frequency 
changes in membrane potential in the depolarizing direction, while IKW) 
activates slowly and would thus tend to filter out low-frequency signals. 

7.5 Functions of different membrane currents 
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Figure 7.21 Properties of I K ( A H P ) • H ( A H P ) affects the firing frequency during a current 
step (/m, bottom traces) and produces a slow hyperpolarization after a train of action 
potentials. I K ( A H P ) disappears in the absence of extracellular Ca2+. VM is in mV, and Im 
is innA. 

The repetitive firing properties of a cortical neuron are illustrated in 
figure 7.22. The roles of the different K+ currents in the firing properties 
are indicated. Refer also to figure 7.21. 
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Figure 7.22 Effects of the various K+ currents on different phases of an action potential 
in a cortical neuron. The current step is at the bottom. (Adapted from Storm 1990.) 

Figure 7.23 Comparison of the time courses of a number of different voltage and Ca2+-
dependent currents in hippocampal neurons. The voltage commands used to elicit each 
current are indicated at the top of each set of traces. (Adapted from Storm 1990.) 



Table 7.1 Voltage-gated ionic currents in cortical neurons 
Current Symbol Ion Vth Inactivation Blocked by Modulation Fimction 
1. Voltage-gated (depolarization) 
Na+ currents 
Fast lNa{ fast) Na+ -50 Fast TTX spike 
Slow In a (slow) Na+ -65 Slow TTX prepotential 
Ca2+ currents 
High-threshold ICa(L) Ca2+ -15 Slow Cd2+ NE (+) spike High-threshold 

Ca2+-dep DHP ACh(-) 
Low-threshold ICa(T) Ca2+ - 4 0 Fast Ni2+ ACh (+) burst firing ICa(T) 

V-dep 
High-threshold I Ca(N) Ca2+ -25 Medium Cd2+ NE (+,-) spike (?) High-threshold I Ca(N) 

V & Ca2+-dep coCTX-GVIA Aden. (-) 
Others (-) 

presyn. (?) 

High-threshold I Ca(P) Ca2+ -20 Slow coAga-IVA presyn. (?) 
K+ currents 
Delayed rectifier IK(DR) K+ -40 Slow TEA(lOmM) 
Transient h(A) K+ -60 Fast 4-AP ACh(-) spike h(A) 

(> 0.1 mM) repolar. 
Delay current IK(D) K+ -75 Slow 4-AP DTX delayed Delay current IK(D) 

(< 0.1 mM) firing, spike 
repolar. 

M current IK(M) K+ -65 None Ba2+ ACh(-) spike train IK(M) 
5-HT (-) 
Somato. (+) 

accommod. 
шАНР 



Current Symbol Ion Inactivation Blocked by Modulation Function 
2. Voltage-gated (hyperpolarization) 
Slow inward 
rectifier Jq , /h, If Na + K -60 None C s \ THA rest Vm 
Fast inward 

Jq , /h, If 

rectifier IKVR) K+ -80 Slow Cs+, Ba2+ 
GO (+) 

Time-depend. 
CI" currents Icuv) Cl" -20 None Cd2+ PBs dendrites (?) Icuv) 

Cl" -60 None Cd2+ 

3. Ca -gated 
Fast K+ current H(C) K+ -40 None TEA (1 mM) spike 

repolar. 
f&m AHP 

Slow K+ current H(AHP) K+ None None Ba2+ ACh (-) spike train H(AHP) 
NE(-) accommod. 
5-HT (-) 5AHP 
Hist. (-) 

CI" current I CKCa) Cl" 
Cation current Na + K ACh (+) AHP (?) 
4. Other currents 
Leak (?) I K(L) K + None None Ba2+ ACh (-) rest Vm 
Cl" Ici Cl" 
Anoxic IK(ATP) K + hyperpol. 
Na+ Act. K+ 

iK(Na) K+ 

Stretch Na + K mechanorec. 
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7.6 Summary of important concepts 

1. Heterogeneous distribution of ion channels. 
2. Saltatory conduction. 
3. Window current. 
4. General description of membrane currents in terms of Hodgkin-

Huxley parameters. 
5. General features of different membrane conductances. 
6. Function of different currents in firing behavior of neuron. 

7.7 Homework problems 

1. You are recording from a giant axon that contains only one type 
of voltage-gated ion channel in its membrane (a Na+ channel). Its 
resting potential is -100 mV, and the maximum Na+ conductance 
(if all channels were open) is 100 nS. The Na+ equilibrium potential 
is +50 mV. 

VM( mV) 

(a) Using the hoo and m«, curves provided, calculate and then plot 
the steady-state I-V curve for this axon. 

(b) Describe the types of experiments that might have been used 
to determine the hoo and ntoo curves. 

(c) What effects would this current have on the properties of the 
axon in current clamp? 

(d) Plot the new I-V curve that would result if the hoo and Жоо 
curves were each shifted by 20 mV (hoo in the hyperpolarizing 
direction; m*, in the depolarizing direction). 
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2. You are recording from a neuron (assume it is isopotential) with an 
input resistance (at its resting potential of -80 mV) of 100 Mfi, and 
you inject a step of 0.5 nA depolarizing current. Plot the approxi-
mate membane potential of this neuron vs. time assuming that the 
only voltage-gated current is an A-type K+ current. Make a similar 
plot of the same neuron but with the A-type current blocked with 
4-AP. Compare the two graphs. 

3. What would you predict the shape of the action potential to be in 
a hippocampal neuron if you could specifically block 1к(с)? Draw a 
picture to illustrate your answer. 

4. What would you predict would happen to the repetitive firing ability 
of a neuron if you could block IK(AHP)? Draw a picture to illustrate 
your answer. 

5. (a) Describe the experiments that you would perform, in as much 
detail as necessary, to distinguish a low-threshold from a high-
threshold Ca2+ current. 

(b) Given the attached I-V curve for a neuron with a single type of 
Ca2+ channel, calculate the chord conductance at +40 mV, as-
suming a reversal potential of +80 mV. Is there anything wrong 
with doing this for a Ca2+ channel? Explain. 

6. The graphs shown below illustrate activation and inactivation curves 
for three different types of voltage-gated K+ conductances. Assume 
that EK = -100 mV and that the conductances follow first-order 
kinetics for activation and inactivation. 

VM( mV) 

- 6 0 - 4 0 - 2 0 0 2 0 4 0 6 0 8 0 1 0 0 1 2 0 
4 — * 

" 4 0 /(nA) 
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VM (mV) 

(a) If GK = 100 nS, plot the steady-state I-V curves for the three 
conductances. 

(b) If the time constant for activation is much faster than that for 
inactivation, draw the peak I-V curve for the three conduc-
tances. 

(c) Which of the known K+ conductances matches most closely the 
three conductances shown here? 

(d) A completely different voltage-gated conductance happens to 
have an identical activation curve as that shown in (c). This is 
а СГ conductance. Draw the I-V curve for this conductance, 
assuming Ea = -40 mV and g c i = 50 nS. 

7. You are voltage clamping an isopotential neuron in which the total 
membrane current is given by the following equation: 

IRN = 0 1 (Vin - EL) + gxmh(VM - EX). 
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(a) Outline the experiments you would do to determine gif El, g x , 
Ex, Жоо, ft oo. Be specific and provide as much detail as neces-
sary. 

(b) If EL = -70 mV, GI = 10 nS, and GX is the muscarine-sensitive 
K+ conductance with GX = 20 nS and EX = -100 mV, draw the 
expected current responses for step commands from -100 mV 
to 0 mV for 1 sec and back to -100 mV, and then in a separate 
experiment from 0 mV to -50 mV for 1 sec and back to 0 mV. Be 
precise in your drawings by indicating the amplitudes of the ex-
pected current responses and their approximate time courses. 
Assume that m^ is 1 at 0 mV and 0.5 at -50 mV. Also, assume 
first-order kinetics with a time constant of 100 msec. 

(c) Show the results from an identical experiment to that above but 
with an ED50 concentration of muscarine in the bath. 

8. (a) Using the figure for problem 1, plot the steady-state I-V curve 
for an ionic current (IX) in which GX = 50 nS and EX = + 50 mV. 

(b) If, under voltage clamp, one steps from - 8 0 mV to -40 mV, 
plot the instantaneous I-V curve (using tail currents) one would 
obtain upon stepping from -40 mV back to different potentials. 

(c) Again, using the figure for problem 1, plot another steady-state 
I-V curve for an ionic current (IY) in which GY = 20 nS and 
EY = -100 mV. 

(d) Repeat (b) but for Iy . 
Assume that Ix and I y follow first-order kinetics. 

9. Discuss briefly the functional differences between INa(fast) and 
lNa(slow). Include in your answer how each is measured and how 
each might influence the firing behavior of a neuron. 

10. Equations for three different Ca2+ currents were given in the text as 

Ica,\ = mtllvhcalccniV), 
Ica2 = m2hvICa2(V), 
Ica3 = m2hCaIca3(V). 
Discuss briefly each term in each of the above equations. How are 
each of the currents likely to be different from each other? Based 
on your knowledge of Ca2+ currents, what are the common names 
of the above Ca2+ currents and what are their likely functions in a 
cell? 
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11. Given the activation curve shown and its equation of 

Ix = mgx(Vm-Ex), 

what kind of membrane current is this likely to be? Give as many 
examples of real currents with this sort of activation curve as you 
can. What are some possible functions for a current such as this? 
Assume a resting potential of - 60 mV. 

VM (mV) 

12. Which membrane currents participate in the different phases of the 
waveform illustrated here? 
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Currents of Ion Channels 

8.1 Introduction 

In previous chapters we described the properties of ion conductances re-
sponsible for membrane permeabilities at resting states and during exci-
tation. Ion conductances are mediated by populations of individual chan-
nels, and the gross membrane currents reflect the behaviors of individual 
single channels in the plasma membrane. Therefore, it is extremely impor-
tant to study the properties of single ion channels in excitable membranes. 
Ion channels are transmembrane macromolecular pores that allow ions to 
diffuse down their electrochemical gradients. It has historically been dif-
ficult to study the structure and function of single ion channels because of 
their complex molecular structure and the tiny amount of current flow-
ing across each channel. Two technical breakthroughs in recent years 
have greatly enhanced the speed of research into single ion channels: the 
recombinant DNA and patch-clamp techniques. The former helps to de-
termine the molecular structure of single ion channels, whereas the lat-
ter enables the direct measurement of ion current flowing through single 
open channels. 

It is beyond the scope of this book to provide a complete account of 
the structure and function of all ion channels known to date. Readers 
interested in this topic should consult Hille (1992). In this chapter, we 
will briefly describe the structure of two representative channels, the Na+ 

channel (voltage-gated) and the nicotinic acetylcholine channel (ligand-
gated), so that readers can acquire some general ideas of the molecular 
configurations of channel molecules. Additionally, we will give exam-
ples of typical single-channel currents (unitary current) carried by both 
voltage-gated (Na+, K+, and Ca2+) and ligand-gated (ACh- and GABA-gated) 
channels. The kinetics and functional characteristics of the unitary cur-
rents will be described briefly. 
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8.2 Molecular structure of ion channels 

As described earlier, there are two types of ion channels. One is gated by 
transmembrane voltage (voltage-gated channels) and the other is gated 
by intracellular or extracellular ligands (ligand-gated channels). A single 
channel is a protein molecule that resides in the lipid bilayer and forms 
an aqueous pore that allows ions to pass through. A typical example of 
the voltage-gated channels is the Na+ channel. In the electric eel, the Na+ 

channel protein is a single large polypeptide with a molecular weight of 
about 260 kD. In the rat brain, the Na+ channel consists of three subunits: 
a large a subunit similar to the 260 kD peptide in the electric eel, and two 
smaller subunits, f$\ and fc, with molecular weights of 39 kD and 37 kD 
respectively (figure 8.1 A). The voltage-gated Na+ channel is formed by the 
a subunit, whereas the /J subunits are believed to be involved in regulat-
ing channel kinetics and stability. The a subunit is a 1820 (electric eel) 
and a 2005 to 2009 (rat brain) amino acid protein containing four homol-
ogous domains, each of which has six (S1-S6) transmembrane segments 
(figure 8.IB). SI and S3 have some negatively charged residues, whereas 
S5 and S6 are nonpolar. The S2 segments contain negative charges and are 
believed to line the walls of the pore permeable to cations (figure 8.1С). S4 
is highly conserved and has an amphipathic structure in which every third 
amino acid is either a lysine or an arginine, the most positively charged 
amino acid residues. This segment is believed to be the voltage sensor 
of the Na+ channel. Catterall (1986,1992) proposed a sliding helix model 
for the S4 segment in response to changes in transmembrane voltage (fig-
ure 8.ID). This model suggests that the S4 segments respond to membrane 
depolarization by rotating 60° and moving outward by about 5 A. Since 
each positively charged residue in S4 is about 5 A apart from another pos-
itively charged residue, the rotating movement results in translocation of 
charge equivalent to moving one charge across the whole membrane. Cat-
terall also suggests that the S4 segments of the III and IV domains move 
two steps (10 A) outward, whereas S4 of the I and II domains moves one 
step. The total charge movement is six charges per channel, a number 
that agrees perfectly with the conclusion from the gating current data 
(chapter 6). 
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Figure 8.1 Subunit structure of brain Na+ channel. (A) View of a cross section of a 
hypothetical Na+ channel consisting of a single transmembrane «-subunit of 260 kD in 
association with a 01-subunit of 36 kD and a 02-subunit of 33 kD. The 01-subunit is 
associated noncovalently, whereas the 02-subunit is linked through disulfide bonds. All 
three subunits are heavily glycosylated on their extracellular surfaces, and a-subunit has 
receptor sites for the «-scorpion toxins (ScTx) and tetrodotoxin (TTX). The intracellular 
surface of the a-subunit is phosphorylated by multiple protein kinases (P). (B) Primary 
structures of a- and fil-subunits of a Na+ channel illustrated as transmembrane folding 
diagrams. The bold line represents polypeptide chains of a- and 01-subunits; the length 
of each segment is approximately proportional to its true length in rat brain Na+ channel. 
Cylinders represent probable transmembrane a helices. Other segments that are proba-
bly membrane associated are drawn as loops in extended conformation like the remainder 
of the sequence. Sites of experimentally demonstrated glycosylation, ф\ cAMP-dependent 
phosphorylation, P in a circle; protein kinase С phosphorylation, P in a diamond; amino 
acid residues required for tetrodotoxin binding (small circles with +, - , or open fields 
depict positively charged [Lys1422], negatively charged, or neutral [Ala1714] residues, re-
spectively); amino acid residues that form inactivation particles, h in a circle. (C) View 
of Na+ channel from extracellular side illustrating formation of transmembrane pore in 
center of a-subunit. (D) Sliding helix model of voltage-dependent activation. Left: ball-
and-stick, 3-dimensional representation of S4 helix of domain IV of Na+ channel. Dark-
ened circles represent a-carbon of each amino acid residue. Open circles specify amino 
acids in single letter code and show direction of projection of side chain away from core 
of helix. Positively charged amino acids are indicated in bold letters. Right: movement of 
S4 helix in response to depolarization [change in voltage (ДV)]. Transmembrane helix S4 
is represented as a cylinder with a spiral ribbon of positive charge. At resting membrane 
potential (left), all positively charged amino acid residues are paired with fixed negative 
charges on other transmembrane segments of channel, and the S4 segment is maintained 
in that position by the force of negative internal membrane potential. Depolarization re-
duces the force, holding positive charges in their inward position. The S4 helix is then 
proposed to undergo a spiral motion through a rotation of - 60° and outward displace-
ment of ~ 5 A. This movement leaves an unpaired negative charge on the inner surface of 
membrane and reveals an unpaired positive charge on the external surface of membrane 
to give a net gating charge transfer (Д Q) of +1. (From Catterall 1992.) 
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A typical example of a ligand-gated channel is the nicotinic acetylcholine 
receptor channel (ACh channel). It is a 2305 amino acid protein containing 
five subunits. The probable arrangement of the subunits in the membrane 
is shown in figure 8.2. 

Figure 8.2 Subunit arrangement of the ACh receptor channel. (A) The four membrane-
spanning components of one subunit (labeled M1-M4). (B) A hypothetical folding ar-
rangement for one subunit in the channel with the M2 segment facing the channel. (С) A 
hypothetical arrangement of the five subunits forming an aqueous channel, with the M2 
segment always on the inside forming the lining of the channel. (From Kandel et al. 1991.) 

The five subunits of the ACh channel are made of four different poly-
peptides—a, /J, y, and 5—each of which is a glycoprotein of about 55 kD 
that transverses the membrane. The ACh channel consists of two a sub-
units and one each of y, and 6 subunits, with a total molecular weight 
of about 275,000. The five subunits are arranged symmetrically about a 
central transmembrane pore. The diameter of the pore is about 65 A on 
the extracellular side and about 20 A on the cytoplasmic side. Ion selec-
tivity experiments suggest that a portion of this ion passage pore is as 
narrow as 5-10 A in diameter. 

The binding sites of ACh are believed to be located in the N-terminal 
domain (near cysteine 192) of the a subunits. Two ACh molecules (one for 
each a subunit) must bind to each ACh receptor to fully open the channel. 
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8.3 Patch-clamp records of single-channel currents 

In order to record the current flow through a single ion channel, Neher 
and Sakmann (1976) developed the patch-clamp technique, which involves 
sealing a small area of membrane with polished glass electrodes and al-
lowing voltage clamping of that small sealed area of membrane so that 
current flow through individual channels can be measured directly. If the 
sealed area is small enough and the channel density is low enough, one 
can obtain a sealed patch of membrane that contains only one active ion 
channel, and the opening and closing of this channel can be directly mon-
itored by measuring the unitary current. The circuitry of the patch-clamp 
recording system is given in appendix A. The various configurations of 
patch clamping are given in figure 8.3. The four recording configurations 
are: cell-attached, whole-cell recording, outside-out patch, and inside-out 
patch. The upper left diagram is the configuration of a pipette in simple 
mechanical contact with a cell, as used for single-channel recording (Neher 
et al. 1978). With slight suction, the seal between the membrane and the 
pipette increases in resistance by two to three orders of magnitude, form-
ing a cell-attached patch. This leads to two different cell-free recording 
configurations (the outside-out and inside-out patches). Voltage-clamp 
currents from whole cells can be recorded after disruption of the patch 
membrane (Hamill et al. 1981). 

The perforated-patch technique (figure 8.4) uses nystatin, a pore-
forming antibiotic, in the patch electrode to provide electrical access to 
the interior of the cell. The nystatin pore allows permeation only of 
small monovalent cations, with the advantage that intracellular modu-
latory molecules are not washed out. Specifically, washout of Ca2+ cur-
rents is a problem common in whole-cell recordings in which the patch of 
membrane under the electrode is ruptured and mixing of intracellular and 
electrode solutions occurs. The use of nystatin eliminates this problem 
and allows long-duration recording of Ca2+ currents in small cells. 

Unitary currents and ensemble averages of Na+, K+, and Ca2+ currents 
are shown in figures 8.5 and 8.6, respectively. Each of these channels 
opens and closes abruptly and randomly, with higher opening probability 
when the membrane is depolarized. Na+ channels open briefly with short 
delays after the onset of the depolarizing voltage step, and the openings 
are clustered early in each trace. The ensemble average of many of these 
traces gives a smooth, transient inward current that resembles the macro-
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Figure 8.3 Configurations of patch clamping. 

scopic (whole-cell) current described by Hodgkin and Huxley (see chapter 
6). The K+ channels open with longer delay and durations, and the open-
ings are maintained throughout the duration of the voltage step. The en-
semble average gives a smooth, sustained outward current that resembles 
the Hodgkin and Huxley whole-cell K+ current. The unitary T-type Ca2+ 

channels exhibit short early openings that give transient inward ensem-
ble average currents. The unitary L-type Ca2+ channels exhibit openings 
throughout the duration of the voltage step, and the ensemble average is 
more sustained. 

Unitary currents of nicotinic ACh channels and GABA channels are given 
in figure 8.7. These channels also open and close abruptly in a random 
fashion, with higher opening probabilities when ligands are present. A 
common characteristic of these ligand-gated channels is that the opening 
probability can be increased not only by the natural ligand (ACh or GABA) 
but also by a number of analogues of the natural ligands. These analogues 

cell-attached 
recording 

whole-cell 



8.3. Patch-clamp records of single-channel currents 221 

cell-attached 
recording 

perforated-patch 
recording 

Figure 8.4 Perforated-patch configuration. 

open the same channels, but they usually give different opening kinetics 
(including opening frequency and duration, bursting behavior, etc.). 

From the examples described above and ovemhelming evidence else-
where, we know that all ion channels open and close in a random and 
abrupt fashion. In other words, the channels vary between conductive 
and nonconductive states stochastically, with opening (or closing) proba-
bilities controlled by transmembrane voltage or by ligand binding. Math-
ematically, this type of behavior is nondeterministic, and it cannot be de-
scribed by exact and explicit mathematical equations. Stochastic analysis 
is needed to deal with such behavior. 

The behavior of the sum of many single channels of the same type, or 
the ensemble average, on the other hand, can be approximated by ex-
plicit mathematical expression. The sum of many single-channel currents 
gives rise to the macroscopic current (sometimes called whole-cell cur-
rent if it is the sum of all channels in a given cell). It is worth noting 
that the ensemble averages of the unitary Na+ and K+ currents given in 
the examples above exhibit similar waveforms as those of the 1ма and 
IK obtained by Hodgkin and Huxley from the whole squid axon. There-
fore, it is possible to explain macroscopic currents in terms of unitary 
currents. Additionally, analyzing the behavior of single-channel currents 
can provide detailed molecular mechanisms of channel gating, channel 
structure-function relationships, and gating kinetics that are beyond the 
information capacity of macroscopic current records. 
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Figure 8.5 Unitary currents (upper 8 traces) and the ensemble average of unitary cur-
rents (lowest trace) of a Na+ (A) and K+ (B) channel. The membrane voltage is stepped 
from VH = - 8 0 mV to VC = - 3 0 mV for (A) and from VH = -100 mV to 0 mV for (B). 
Records in (A) are simulated after data from Horn and Vandenberg (1984), and records in 
(B) are simulated with the reaction scheme shown in figure 10.1. 

Example 8.1 
The figure below shows the single-channel current of the ACh-gated 
channel in the muscle end plate. The voltage across the patch of mem-
brane was clamped at various voltages (Vc). 
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• o n 
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Figure 8.6 Unitary currents (upper 8 traces) and the ensemble average of unitary cur-
rents (lowest trace) of a T-type (A) and L-type (B) calcium channel. The membrane voltage 
is stepped from VH = - 7 0 mV to Vc = - 5 mV for (A) and from VH = - 4 0 mV to Vc = 5 mV 
for (B). Records are simulated after data from Fisher et al. 1990. 

Example 8.1 (continued) 

a. Plot the current-voltage relation of this channel. 
b. What is the equilibrium potential of the ionic current flowing 

through this channel? 
c. What are the slope and chord conductances of this channel at 

Vm = -60 mV? 
d. If this channel is permeable to K+ and Na+ ions only, and EK = 

-80 mV and E^a = +50 mV, what is the relative conductance (i.e., 
9к!дна) of this channel when it is open? 

ч ; J 
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Figure 8.7 Unitary currents from an ACh-gated channel (A) and a GABA-gated channel 
(B). Records in (A) are simulated after data from Colquhoun and Sakmann 1985, and 
records in (B) are simulated after data from Gray and Johnston 1985. 

Answer to example 8.1 

a. See figure below. 
I (PA) 

- 8 0 - 4 0 
I > I > I 1 I 

40 80 

b. From the figure above, the equilibrium.potential E « +7.5 mV. 
c. Since the I-V relation is linear, the slope conductance = chord 

conductance, which is represented by 

= 0.029 x 10~12 x 103 S = 29 pS. 52 mV 

d. E = 7.5 = (gK/gNaH-80)+ (+50) 
i + (дк/дыа) 

Therefore, дк/дма = 0.486. 
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8.4 Review of important concepts 

1. The molecular structures of both voltage-gated and ligand-gated 
channels are determined by recombinant DNA techniques. Subunits, 
voltage sensors, transmembrane helices, configurations of aqueous 
pores, and ligand binding domains of individual channels are iden-
tified. 

2. Unitary (single-channel) currents are recorded with the patch-clamp 
technique developed by Neher and Sakmann (1976). Unitary cur-
rents of both voltage- and ligand-gated channels show that ion chan-
nels open and close randomly and abruptly. The opening and closing 
probabilities are controlled by transmembrane voltage or by ligand 
binding. 



9 Stochastic Analysis of 
Single-Channel Function 

9.1 Introduction 

In the previous chapter we described the behavior of single ion channels 
and concluded that individual channels, gated either by voltage or by lig-
ands, open and close stochastically. One cannot, for example, predict 
exactly when a channel is going to make a transition (open — closed or 
closed — open). Instead, one can only give the probability of the occur-
rence of a transition within a certain period of time. Mathematically, this 
type of behavior is called nondeterministic, or random (stochastic) data. 

Experimental data can be classified into two types: (1) Deterministic 
data are those that can be described by an explicit mathematical relation-
ship. An example is a rigid body of mass m suspended from a fixed point 
by a linear spring of spring constant fc, released from a position A away 
from the equilibrium point at t = 0. The exact location of the rigid body 
at any time t > 0 can be described by x(t) = A c o s ^ t . (2) Nondetermin-
istic data are those that cannot be described by any explicit mathematical 
relationship because each observation of the phenomenon will be unique. 
In other words, any given observation will represent only one of many 
possible results that might have occurred. These data are called random 
data or stochastic data. An example is the voltage output of thermal noise 
generators. Simultaneous recordings from two identical generators give 
two different time history records (see figure 9.1). 

In order to analyze single-channel data that are nondeterministic, new 
mathematical tools unfamiliar to most physiologists have to be intro-
duced. Stochastic analysis has been used by physicists and engineers for 
many years, and its application to neurophysiology has proven to be es-
sential and very fruitful. The objectives of applying stochastic analysis to 
ion channels are at least fourfold: (1) to provide a quantitative, probabilis-
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Figure 9.1 Voltage output of two identical thermal noise generators. 

tic description of single-channel behaviors that cannot be formulated by 
deterministic equations; (2) to provide quantitative models describing the 
molecular mechanisms underlying channel gating and transition kinetics 
of conformation states of individual channels; (3) to establish a quan-
titative relationship between single-channel function and the molecular 
structures responsible for the function; and (4) to establish quantitative 
relationships between macroscopically measured parameters (e.g., from 
whole-cell currents) and the microscopic parameters (e.g., from single-
channel models), so that ion conductances of whole cells can be explained 
by molecular events. 

In this section, we briefly describe the basic mathematical tools for analyz-
ing random data. We follow the conventions used by Bendat and Piersol 
(1986). Readers who are familiar with these tools can skip this section 
and go to section 9.3. 

Four types of statistical functions are generally used to describe the 
properties of random data. 

9.2.1 Mean square values 

1. Mean square value: Yx
2, which furnishes the general intensity of 

any random data, is the average of the square values of the time 
history of the random process x(t), or 

9.2 Basic descriptive properties of random data 
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where T is the duration of the sample. |YX| is called the root mean 
square or rms value. 

2. Mean value: цх, which describes the static or time-invariant com-
ponent of the data, is the average of all values over the sampling 
time: 

1 f r 
цх = lim - x(t)dt. T-OO j Jo 

3. Variance: crx
2, which describes the dynamic or fluctuating compo-

nent of the data, is the mean square value about the mean value: 

9.2.2 Probability functions 

1. Probability density function (pdf) p(x) , / (x) : The pdf furnishes 
information about data in the amplitude domain. The pdf of ran-
dom data describes the probability that the data will assume a value 
within some defined range Дх at any instant of time, or 

\ax\ is called the standard deviation. Note that 

1 f orx
2 = Ит -г-oo Г Jo 
2 = Ит \ f T \x2(t) - 2Х(1)цх + Цх2] = Чх2 - 2цх

2 + Цх2 = Ъ2 - »х2. г-оо Г Jo L J 

р(х) = lim 
Д х - 0 

Prob [х < x(t) < х + Ах] 
Дх 

A sample time history record x(t) is given in figure 9.2. 
Then 

T 
Prob[x < x(t) < x + Дх] = 

thus, 
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Figure 9.2 Probability measurement of a time history record x{t). 

Therefore, p(x) gives the fractional time that event x(t) spends 
between x and x + Ax when Ax — 0. 

2. Probability distribution function or cumulative distribution function 
(cdf) P(x), F(x): The cdf describes the probability that the data will 
assume a value between oo and x, or 

F(x) = P(x) = Prob[x(t) < x]. 

Recall the definition of pdf—it is obvious that 

F ( x ) = P ( x ) = and = 

Therefore, P(x) equals the integral of p(x) from -oo to x (or the 
total area under p(x) from -oo to x). 
The relationship between / ( x ) and F(x) is given in figure 9.3. The 
median M, and the lower and upper quartiles 0\ and Оз are such 
that F(M) = F(Oi) = 5, F(03) = and, for example, the 57th 
percentile is the value x for which F(x) = 0.57. From the definitions, 
it is easy to see the following: 
P(a) < P(b) if a < b, 
P(-00) =0 , 
P(00) = l, and 
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Figure 9.3 Probability density function (pdf), fix) and cumulative distribution function 
(cdf), Fix). 

The expected value (average value) of any real single-valued contin-
uous function g(x) of the random variable x(t) is given by 

In other words, E[g(x)] is the sum of the function g(x) weighted 
by its pdf p(x) over all values of x. Therefore, 

the mean value \xx = E[x(t)] = 

the mean square value Yx
2 = E[x2(t)] = x2p{x)dx, and 

the variance ax
2 = E [(x(t) - цх)2] = J (x - px)2p{x)dx. 
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/ - ; ^ 
Example 9.1 
Consider a random variable X with an exponential distribution, i.e., pdf 
is 

Г Л<гА* if x > О 
if x < О 

where Л is a positive constant. 

о 

a. Verify that / ( x ) satisfies the condition for a pdf. 
b. Show that Цх = \ and <тх

2 = x?. 
c. Find the median. 

d. Show that the cdf is Fix) = 1 - e~Ax (for x > 0), 

Answer to example 9.1 
/•OO 

a. fix) > 0 and Jo Лe~Xxdx = [~e~Ax]™ = (0) - (-1) = 1. 

b. To find the mean and variance, we use integration by parts. We 
also need to use the results that xe~A* and x2e~Ax tend to zero 
a s x - + o o . 

<t QO oo 1 

цх = j o x\e~Xxdx = [x(-e"A*)]~ - ( 1 )(-e~Ax)dx = ± 

Yx
2 = ^ x2Ae~*xdx = [x2(-e_A*)]o - J"(2x)( -e~ X x )dx 

, Г . х 2 г -Д« .Ь£ г -Ад: . 2 _ 2 
L Л Л̂  Jo Д̂  

°"*2 = F"(x)
 =Ь 
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Answer to example 9.1 (continued) 

c. If m is the median, then P(X > m) = \. 

\ = Г Лe~*xdx = Г-<ГА*Г = (0) - (~<TAw) = <ГЛш, 
2 Jm L Jm 

i.e., eXm = 2, the median, m = 
d. I f x > 0, thecdfis 

F(x) = J AeAxdx = + C. 

Now JF(0) = P(X < 0) = 0, so 0 = - 1 + C, i.e., С = 1. 
Hence the cdf is 

о 
X 

Note that as x - oo, F(x) - 1 - 0 = 1. 
V J 
9.2.3 Covariance function С(т) and correlation function R(т) 

The covariance and correlation fimctions furnish information about data 
in the time domain. They give the relationships between the probabilities 
of events occurring at a certain time and those occurring before and after 
that time. 

1. Covariance function of a random process x(t) is defined 
Сх(т) = E[(x(t) - nAt))(x(t + Т) - vAt + T))] , 

rOO 

where jux(t) = E[x(t)] = xp(x)dx (mean value). 
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Figure 9.4 Time histories (x(t)) and correlation functions (R(T)) of a sine wave (upper 
traces) and random noise (lower traces). (From Bendat and Piersol 1986. Copyright © 
1986 John Wiley & Sons, Inc. Reprinted by permission of John Wiley & Sons, Inc.) 

2. Correlation function of a random process x(t) is defined 
RX( т) =£[x( t )x( t + T)]. 
Thus, 

Cx( т) = £ [ (x ( t ) - / ix ( t ) ) (x ( t + T)-*i x ( t + T))] 
/•00 r oo 

= x(t)x(t + r)p(x)dx - \ x(t)p(x)fjxs(t + r)dx 
J— 00 J —00 

/•00 Г 00 
- x(t + T)p(x)Vx(t)dx+ p(x)lix(t)llx(t + T) 

J— 00 J — 0 0 

= Rx(T) - ЦХ
2 -ЦХ

2 +ЦХ
2. 

Therefore, СХ(Т) = RX(R) - ЦХ
2. 

It is evident that the RX(R) (also called autocorrelation function) is 
equivalent to Сх(т) when the mean value цх = 0. 
RX(T) [or CX(T)] establishes the influences of values at any time 
over values at a future time. Sine functions (figure 9.4, first row) 
or any deterministic data have RX(R) that persists over all time dis-
placements. Random data, on the other hand, have RX(R) 0 for 
large displacements (figure 9.4, second row). Thus RX(R) or Cx(т) 
measurements can be used as a tool for detecting deterministic data 
that might be masked in a random background. 

9.2.4 Power spectral density function S ( f ) 

S ( f ) furnishes information of random data in the frequency domain. This 
function gives the relationship of the weights of noise (variance) at each 
frequency, and it can be obtained by two independent methods: the ex-
perimental and the theoretical approaches. 
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9-2.4.1 Experimental approach Since S(f) of a random process de-
scribes the general frequency composition of the data in terms of the 
spectral density of its mean square value, the mean square value of a sam-
ple history in a frequency range between f and / + Д / may be obtained 
by filtering the sample record with a bandpass filter having sharp cutoff 
characteristics, and computing the average of the squared output of the 
filter. This averaged square value approaches the exact mean square value 
Yx

2 as T — oo. in equation form 

•*2(/,ДЯ = Ит ± С x2(t,f,Af)dt, Г-00 i Jo 

where x ( t , / , A/) is the portion of x(t) in the frequency range between 
/ and / + Д/ . 

The power spectral density function (pdf) is defined: 

Sx(f) = lim Y 2 ( f ' . A / ) = Inn -L Гщп I Г Х
2 ( Г , / , Af)dt] . 

А/—О Д / Д/—0 Д / [г-оо Г Jo J 
ExperimentaUy, S(f) of random data x(t) is estimated by the Fast 

Fourier Transform (FFT) algorithm. Detailed descriptions of FFT are given 
in Press et al. (1992). 

9.2.4.2 Theoretical approach Another approach to obtain psd S(f) is 
by the Wiener-Khinchin theorem, which states that the power spectral 
density function is the Fourier transform of the covariance function. 

S(f) [J (C(T))] where J = Fourier Transform 
= 2 П , C(T)ei27TfTdr. 

Therefore, one can calculate S(f) from the C(t) or R(t) (figure 9.5), and 
this is the theoretical approach to obtain the psd. AppHcation of the power 
spectral density analysis on physiological channels will be described in 
chapter 10. 

9.3 Statistical analysis of channel gating 

Single-channel recordings have revealed that individual ion channels in 
excitable ceUs open and close randomly, and thus the behavior of popu-
lations of single channels in whole cells has to be dealt with statistically. 
In this section, we wiU discuss the statistical tools that can be used to de-
scribe the behavior of populations of N identical channels, each of which 
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Rxx(t) 
S(f) 

Figure 9.5 Correlation function {R{т)) and power spectral density function (S(f)) of a 
sine wave and random data. (From Bendat and Piersol 1986. Copyright © 1986 John 
Wiley & Sons, Inc. Reprinted by permission of John Wiley & Sons, Inc.) 

opens and closes randomly. From this analysis, one can obtain informa-
tion on individual channel properties, such as single-channel conductance 
(y) and the number of channels (N), from data obtained from whole cells 
(population of single channels). This approach is important because it 
provides a tool to correlate whole-cell data with the single-channel data. 
Additionally, since it is sometimes difficult to record single-channel cur-
rent in certain preparations, either because the channels are inaccessible 
to the patch electrodes or because the single-channel conductances are 
too small, this population approach may be essential for studying chan-
nel behavior. 

Consider N independent two-state channels. 

closed ^ open a 
state # 

probability 
2 

Рг 
1 

Pi 

(9.3.1) 

Pi and P2 are probabilities that the channel is at open (1) or closed (2) 
states, respectively. Pi(oo) is equivalent to у (oo) in the gate model (sec-
tion 5.3.3.2), thus 

Pl(oo) = p2( 00) = a 
a + p <х + /Г 

The probability that к channels out of N are open at time t is: 

PF(T) = [PI(t)]k [P2(t)]N~k к = 0 , 1 , . . . 

(9.3.2) 

(9.3.3) 
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This is a binomial distribution, which is simply derived from the combi-
natorics for independent channels and the fact that these channels have 
two conductance states (open and closed). For those having three con-
ductance states, a trinomial distribution would be appropriate. 

When N >> 1, the binomial distribution can be approximated by the 
Gaussian (normal) distribution. 

pk(t) _ rNpkpN-k ~ 1 _0-(k-NPi)2/2NPiP2 (9.3.4) 

Let к = NP\ (mean number of open channels), (9.3.5) 

AN
2 = (FE - K)2 = NPXP2 (variance), and (9.3.6) 

x = k-k, (9.3.7) 

Therefore, 

P*(t) = — j = e - x 2 / 2 ( r 2 . (9.3.8) 

When Pi is small (Pi << 1) and к = NP\ « N, then the binomial distri-
bution can be approximated by the Poisson distribution: 

Pf(t) = C?PkqN-k = ^ f r e ~ ( 9 . 3 . 9 ) 

Since mean ionic current щ through N channels is I\k, where h is the 
current flow across one open channel, then 

щ = JiNPi. (9.3.10) 

At steady state, i.e., t - o o , P i ( t ) = P i (oo ) = 

n _ h N f i yN(V — Ej)f$ 

where Ii(V) = y(V - Ei), and у = single-channel conductance. 
The variance of current through N channels is 

07N
2 = Var[/N(t)] = H2AN

2 = H2NPIP2 = I\2NP\(1 - Px) 
= hm-M2/N. (9.3.12) 
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At steady state, 

t - 00, ?!(«,) = -JL-, p2(oo) = oc-t-0' ' a + 0' 

A , N
D = / I ' N P I ( O O ) P 2 ( O O ) = 
2 _ 2Nap Ny2(V-Ei)2<xP 

(« + 0)2 (oc + 0)2 

Liiy(V-Ei)<x 
(X + /} (9.3.13) 

(9.3.14) dpi 

h = slope of (Tin
2(vi) at щ = 0, (9.3.15) 

and 

* V -Ei 

At aiN
2 maximum, -y—(ai2) = 0. ащ 

This yields 

N = (9.3.16) 
h 

Sigworth (1980a, b) applied tliis approach to analyze the noise of whole-
cell Na+ current at the frog node of Ranvier. The whole-cell currents (INA) 
are given in the top portion of figure 9.6, the noise (1ма - щ) in the middle 
portion, and the variance (a2) in the lower portion. He then plotted a 2 

vs. ft, which is given in figure 9.7. By equation 9.3.14, the current carried 
by a single Na+ channel I\ can be estimated by the slope of the a 2 / щ plot 
at щ = 0, and the number of Na+ channels contributing the whole-cell 
current (N) can be estimated by measuring ц™ and by equation 9.3.16, 
Ar = 2|iP/Ji. 
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Figure 9.6 Na+ current fluctuations at the frog node of Ranvier, using the nonstationary 
(or ensemble) analysis method. Trace {a) shows six successive current records produced 
by clamped depolarizations to - 5 mV. (b) shows the deviations of the individual currents 
in (a) from their mean, (c) shows the variance of 65 such groups of records. (From 
Sigworth 1980a.) 

Figure 9.7 Variance-mean plot from nonstationary fluctuation analysis of the Na+ cur-
rents at a frog node of Ranvier. The inserts show the mean Na+ current I (lower trace, 1 nA 
per small division) and its variance var(/) (upper trace, 2 x Ю~22Л2 per small division). 
(From Sigworth 1980b.) 
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9-4 Probability density function of channel gating 

Pk (t) in the last section describes the probability that к channels out of N 
are open at time t. It is the probability function of the number of channels, 
but not of the time course of channel gating. 

To express the probability functions as a function of time, we need to 
view them differently: Suppose time is divided into At-sized parcels and 
that the probability (or frequency) that an open channel will close during 
At is aAt (note that a is the probability of an open channel being closed at 
unit time). If к successful transitions occur out of N trials (each molecular 
"stretch" of a channel driven by random thermal energy can be considered 
as one binomial trial) during At, then к = aAt, and the probability that к 
successful transitions occur out of N trials during At is 

Pk(At) = С^ШАП]к[Р2Ш)]м~к 

because 

Pi (At) << 1, and k«N(N » 1012/sec,fc« 103/sec). 

Pk(At) represents a Poisson process. Thus, 
р * ( Д 0 я 

Let F(t) be the probability distribution function (cumulative) (cdf) of a 
channel of lifetime (dwell time) < t. Then, 

F(t) = 1 - prob (channel open time > t) 
= 1 - prob (no closing transition occurs between 0 and t) 

The probability density function 

л ю - л а ) - ^ - f t ( i - . - ) - « - . 

Therefore, fi(t) = Pi(t) = <xe~at (t > 0). 
Similar procedures for pdf for channel closing yield 

f2(t) = РгИ) = fie-* (t> 0). 
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The pdf of channel opening f\ (t) = ae'011 and the pdf of channel clos-
ing /2(f) = give the probability density of the time that the channel 
is in the open and closed states, respectively. In other words, these pdfs 
give the dwell time distributions of the channel once it enters the open or 
closed states. This can be illustrated by the single-channel current record 
shown in figure 9.8. 

i (PA) 

1000 

time (msec) 

Figure 9.8 Single-channel current record illustrating the random open and closed times 
of the channel. t% indicates open time, and t„ indicates closed time. n = 1,2,3, 

If one measures time lengths of each opening segment (t£) and each 
closing segment in the trace and plots a histogram for opening and 
one for closing, one usually observes the results shown in figure 9.9. 

a -
a о •с се 

й <v & 
* 

f 
Ti = 1 / a 

д о 
се 
а тз 
<и сл 
U 

Р-

ТГП1тпт1т^ 

time 

•V 

Т2 = ИР 
time 

Figure 9.9 Probability density functions of the channel open lifetime (ft (f)) and closed 
lifetime ( f t (0) . The continuous solid curves are ft (f) = <xe~at and ft(t) = Ре~&*. 

As demonstrated in the example in section 9.2, 
r OO pOO 

fi(t)dt = <xe~atdt = 1, 
Jo Jo 

Г f2{t)dt= f00 fie~ptdt = 1. 
Jo Jo 
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So the areas underneath the two pdfs are identical; that is, they both are 
equal to 1. Additionally, the same examples show that 

г00 I 
mean open time = E[t] = tae atdt = —, 

Jo « 

Г00 1 mean closed time E[t] = tfie'^dt = —. 
Jo P 

Conceptually, it is quite obvious that if a > /J, that is, the transition rate 
from open to closed is higher than that of the reverse process, then the 
probability that the channel dwells in the open state is lower than that in 
the closed state. Thus, the mean open time = ^ is shorter than the mean 
closed time = 

The fact that channel open and closed lifetimes follow exponential dis-
tributions indicates that channel gating is a memoryless random process. 
Mathematically, "memoryless" is expressed as follows: 

Prob [channel open lifetime > t + t\ | channel open lifetime > t\ ] 
= Prob [channel open lifetime > t], where 

Prob[B|A] = — — ( C o n d i t i o n a l probability). Prob [Л J 
This equation states that the probability that a channel keeps open for 

an additional t seconds, given that the channel has already been open 
for t\ seconds, equals the probability that the channel keeps open for t 
seconds starting from t = 0. Thus, the probability that the channel keeps 
open for an additional t seconds is the same regardless of how long the 
channel has already been open. 

To prove that the exponential distribution of channel opening or closing 
is "memoryless," one can write 

Prob [channel open lifetime > t + t\ | channel open lifetime >t\] 

_ Prob [(channel open lifetime > t + t\) f | (channel open lifetime > t\)] 
Prob [channel open lifetime > t\] 

_ Prob [channel open lifetime > t + t\] (Since second term in 
Prob [channel open lifetime > ti] numerator is redundant) 

_ 1 - Prob[channel open lifetime <t + t\] 
1 - Prob [channel open lifetime < t\] 
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l - h - e - a U + t i ) ] 
= , L

 r , = e a t . [See exponential cdf F(t) above.] 
1 - Ll - e~atl J 

Also, Prob [channel open lifetime > t] 

= 1 - Prob [channel open lifetime < t] 

= [See exponential cdf F{t) above.] 

Therefore, 

Prob [channel open lifetime > t + t\ I channel open lifetime > t\] 
= Prob [channel open lifetime > t ] 

provided that the channel open lifetime is exponentially distributed—that 
is, that F(t) = 1 - e~at. A similar analysis can be done for the channel 
closed lifetime. 

This section shows that the open and closed lifetime of the channel 
follows exponential random distribution and thus it is a memoryless ran-
dom process. In other words, the probability of transition from one state 
to another (e.g., open — closed, which causes termination of the open 
lifetime, or closed — open, which causes termination of the closed life-
time) does not depend on the past history, but only depends on the state 
immediately before the transition (e.g., for open - closed, the transition 
probability requires only that the channel be at open state immediately 
before the moment of transition). This type of memoryless random pro-
cess is also called the Markov process. The theory of the Markov process 
is the foundation of stochastic analysis for many computer and communi-
cation systems, and—more importantly for neuroscientists—it has been 
the main mathematical tool for analyzing behaviors of single-channel cur-
rents. 

9.5 Review of important concepts 

1. Single-channel data are nondeterministic, and stochastic analysis 
must be adopted to describe such data. The basic descriptive tools 
of stochastic processes are the mean square values, probability den-
sity function, cumulative probability function, covariance function, 
and power spectral density function. 
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2. Based on stochastic principles, the single-channel current and the 
number of channels in a cell can be estimated by the noise (variance 
vs. mean) of the whole-cell (contains N identical channels) current. 

3. The transition of a single channel from one state to another is a 
memoryless random process or a continuous-time Markov process: 
The probability that a channel stays in a given state for an additional 
t seconds is independent of how long the channel has been in that 
state. 

4. Because the transition is a Markov process, the probability density 
function of the dwell time of a channel in a given state is exponential. 

9.6 Homework problems 

1. A random variable x has the rectangular distribution between 2 and 
6. Find, and sketch, the cdf F(x). 

1.00 -i 

0.75 -

fix) 0.50 -

0.25 - . ....................I 

o.oo H 
0 2 x 6 

x 
2. A random variable x has pdf 

f _ f | * ( 3 - x ) if 0 <лг < 3 
* { О otherwise 

Find the cdf F(x), and use it to find P(x > 2). 
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3. A random variable x has pdf 

/ ( * ) = -
0 if x < 0 
f x if 0 < x < 1 . 

Find a. the cdf F(x) 
b. P ( i < % < 2 ) 
c. the median and the semi-interquartile range. 

2.0 n 

A neuron contains N identical channels that are gated by the neuro-
transmitter glutamate. Glutamate opens these channels and results 
in an inward Na+ current (Ема = +50 mV). The glutamate-induced 
currents in this neuron under voltage-clamp conditions (Vp = 10 mV) 
are given in the following diagram: 
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0 -
-1 -
- 2 -

- 3 -
- 4 -

IN (nA) - 5 -
- 6 -

- 7 -
- 8 -

- 9 -
- 1 0 -

3 - ] 
[Giu] до) \: 

0 — 

(a) Plot the variance (o/N
2) as a function of mean current щ on 

graph paper. 
(b) Estimate the single-channel conductance and the total number 

of glutamate-gated channels in the neuron. 

5. A neuron contains N voltage-gated Na+ channels = +50 mV) 
that follow the two-state transition scheme with voltage-dependent 
transition rate constants. 

P(V) 
closed ^ 

<x(V) 
state number 2 

<x(V) = 500e-v/so mV (sec"1), 
P(V) = 50e+ v /2 5 m v (sec"1). 

(a) What is the steady-state probability of each of these channels 
being open with the cell voltage-clamped at -100 mV, -50 mV, 
and 0 mV? 

(b) If the main steady-state current of the whole cell is -100 nA 
when the cell is clamped at - 50 mV, and if the conductance 
of a single open Na+ channel is 25 pS, what is the minimum 
number of Na+ channels in this cell? 

(c) What is the steady-state Na+ current of the whole cell when it 
is clamped at -100 mV and 0 mV? 

open 

1 
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(d) What are the amplitudes of noise for the whole-cell Na+ current 
when it is clamped at -100 mV, -50 mV, and 0 mV? Noise 
amplitude = |crN|. 

6. Explain, by using probability density functions for channel gating, 
why single-channel gating transitions can be treated as a memoryless 
Markov process. 



10 Formulation of Stochastic Channel 
Mechanisms 

10.1 Introduction 

From the examples given in chapter 8, it is evident that all ion channels, 
either voltage-gated or ligand-gated, open and close randomly. Addition-
ally, some channels exhibit bursting behavior and others do not. The 
random behaviors of ion channels require probabilistic descriptions. In 
this chapter, we derive a stochastic formulation for random channel be-
havior. The purpose of this effort is to provide a quantitative tool for 
physiologists to correlate measurable random data parameters such as 
mean channel open time, with channel mechanisms such as conforma-
tional states and transition schemes. A number of rules can be derived 
from the stochastic equations. These rules give explicit mathematical re-
lationships between quantities obtained from single-channel or whole-cell 
data and transition coefficients of conformation transitions in individual 
channels. Consequently, one can gain insights on the molecular mech-
anisms of individual ion channels by analyzing random channel data in 
accordance with the rules derived from the stochastic formulation. 

The probability distributions of channel opening and closing (i.e., the 
lifetime distributions) described in the last chapter show that channel gat-
ing is a memoryless Markov process. The time remaining at a given state 
once it is entered (lifetime) is exponentially distributed. This property of 
channel gating allows us to formulate a mathematical description of state 
transitions and channel kinetics in terms of the theory of continuous-time 
Markov chains: Each time the channel enters a state i (e.g., open state), an 
exponentially distributed state occupancy time 7* is selected. When the 
time is up, the next state j is selected (i.e., closed state) according to a 
discrete-time Markov chain (memoryless transition) with transition prob-
abilities Pij. Then the new exponentially distributed state occupancy time 
Tj is selected, and so on. This description scheme is suitable not only for a 
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simple two-state process (for example, closed ^ open), but also is applica-
ble to complex n-state processes (e.g., C\ - Сг - Сз... С* - Oi — O2...), 
which reflect the gating mechanisms of many channels in a biological sys-
tem. 

In this chapter we shall derive the major matrix differential equation 
(Chapman-Kolmogorov equation) for transition probabilities by using the 
simplest transition scheme, the two-state model. This avoids the tedious 
mathematical efforts in dealing with matrix differential equations of the 
nth order. (Readers who are interested in a detailed description of nth or-
der derivations should consult Colquhoun and Hawkes, 1977 and 1981). 
Since the Chapman-Kolmogorov equation can be used to describe Markov 
processes of the nth order, we will list the general properties of the equa-
tion that are applicable to transition probabilities of the n-state model. 
These general properties (or rules) are extremely useful for analyzing 
the single-channel records in biological systems because they can help 
to extract kinetic parameters of single-channel transition states and to 
correlate single-channel parameters with whole-cell current records. The 
derivation of the stochastic equations in this chapter follow the conven-
tions of Colquhoun and Hawkes (1983) and Tuckwell (1989). 

10.2 Derivation of the Chapman-Kolmogorov equation 

For channels that exhibit only two transition states, the open and closed 
states, the transition scheme can be written as follows. 

Scheme I, two-state scheme: 

closed open 
С ^ О 

a (10.2.1) 
state number: 2 1 

probability P2(t) Pi(t). 

Pi(t) and РгИ) are probabilities of the channel at state 1 (open) and 
state 2 (closed), respectively, a and /5 are rate constants in determinis-
tic theories (e.g., first-order chemical reactions). However, in stochastic 
analysis, they are defined by the following equations: 

Prob[channel open at t - closed at t + At] = aAt + o(At), (10.2.2) 
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Prob [channel closed at t - open at t + At] = jSAt + о (At), (10.2.3) 

where о (At) (remainder term) is the probability that more than one tran-
sition occurs during At, thus Цтд^о0(ДО = 0. Hence, equations 10.2.2 
and 10.2.3 can be rewritten as 

aAt = [Prob(channel closed between t and t + At | open at t)] (10.2.4) 

fiAt = [Prob(channel open between t and t + At \ closed at t)] (10.2.5) 

where Prob[B|A] = ^ ^ (conditional probability). Prob|AJ 

Using the same definition and logic, 

1 - aAt = [Prob(channel open between t and t + At \ open at t)], 
(10.2.6) 

1 - f$At = [Prob(channel closed between t and t + At \ closed at t)]. 

(10.2.7) 

If we define the transition probability Pij(t) as 

Pij(t) = Prob [channel at state j at t\ at state i at 0], (10.2.8) 
then equations 10.2.4-10.2.7 will give the transition probabilities during 
At for the two-state model: 

Pn(At) = 1 -aAt, 
Pn(At) = aAt, (10.2.9) 
P 2 i ( A t ) = 0 Д t, 

Р22Ш) = l-iв At. 

For transition between 0 and t, 

Pn(t) = Prob[open at t\ open at 0] 

For transition between 0 and t + At, the probability of a channel being 
open at 0 and t + At, Рц (t + At), is equal to the probability of a channel 
open at 0, open at t, and open at t + At, plus the probability of the channel 
open at 0, closed at t, and open at t + At, i.e., 



252 Chapter 10. Formulation of Stochastic Channel Mechanisms 

Pn (t + At) = Prob[open at t + At| open at 0] 
= Prob[open at t + At\ open at t]-

Prob[open at t\ open at 0]+ 
Prob[open at t + At\ closed at t]-

Prob[closed at t\ open at 0] 
= [Pn(At)] • [Pn(t)] + [P2i(At)l • [Pi2(t)J. 

Equation 10.2.9 makes 

Pn(t + At) = (1 -aAt)Pn(t) + 0AtPi2(t) 
= Pii(t)-[aPn(t)-pPi2(t)]bt. 

Thus, as 1ипд^о, 

limPn(t + At)-Pn(t) = 
At—0 At 

By the definition of derivative, 

dP]}}l) = -<xPu(t) + pPn(t). (10.2.10) at 
Similar procedures can be applied to Pi2(t),P2i(t), and P22U), and the 
results are: 

^ ^ = (xPn(t) - pPl2(t), (10.2.11) at 

dP2i(t) 
dt 

dP22(t) 

= -<xP2i(t) + pP22(t), (10.2.12) 

= <xP2l(t) - 0P22(t). (10.2.13) dt 
Equations 10.2.10-10.2.13 can be put in matrix form: 

Pn(t) Pn(t) 1 Г -aPn(t) + pPn(t) <xPn(t) - fiPn(t) ] 
dt[P2i(t) P22W \ [ -<xP21(t) + PP22(t) <xP2i(t) - fSP22(t) J 

• [ 2 S 2 8 ] [ 7 
In matrix notation, equation 10.2.14 can be written as 

^ P - = P(t)Q (Chapman-Kolmogorov equation), (10.2.15) 
at 
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where P(t) is the transition matrix [Py(t)]. Q = [qtj] is called the in-
finitesimal matrix, which is formally defined as 

Q = l i m (10.2.16) At—0 At 
where I is an identity matrix, 

• - а д - о { 

Here we have derived the Chapman-Kolmogorov equation from the sim-
ple two-state model. The power of the Chapman-Kolmogorov equation is 
that it is applicable to the Markov process of n states (i.e., channel transi-
tion probabilities x)f multiple states). In the following sections, we will list 
the generalized rules derived from the Chapman-Kolmogorov equation 
for n-state channels and use the two-state model to verify these rules. 

10.3 Chapman-Kolmogorov equation for n-state channels 

Evidence in recent years has pointed out that the majority of ion channels 
in biological membranes, either voltage or ligand gated, do not follow the 
simple two-state transition scheme. Instead, most channels have more 
than two states. For example, some channels may go to blocked, inacti-
vated, or desensitized states in addition to the open and closed states. 
Others may have multiple closed or open states. A good example for 
multiple-state channels is the K+ channel in the squid axon. Although 
Hodgkin and Huxley use the two-state scheme to model each gating par-
ticle, their proposal of four gating particles for the channel is kinetically 
indistinguishable from the five-state scheme shown in figure 10.1. 

4<xn 3<x„ 2an «я 
Co • Ci • C2 • C3 • О Pn 2pn 4 Pn 
Figure 10.1 Kinetic scheme for the Hodgkin-Huxley K+ channel. Со-з represent 4 closed 
states, and О is the open state of the channel. 

Since all gating particles are independent and kinetically indistinguish-
able, all states with the same number of particles at closed states may be 
lumped together as one state with rate coefficients equal to the sum of 
individual rate coefficients. Therefore, the Hodgkin and Huxley n 4 model 
can be simplified to the state diagram in figure 10.1 with rate coefficients 
4 a, 3a, 2a, a (from left to right) and 4)8, 3)8, 2j8, and j8 (from right to left). 
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The same argument leads to an eight-state scheme for the Hodgkin and 
Huxley Na+ channel gating, which is kinetically indistinguishable from the 
Hodgkin and Huxley m3h model (see figure 10.2). 

Co 

«Л 

Io 

3a„ 

fim 

fih 

3a«i 
fin 

<*h 

2 <Xm 
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fih 

2<хП[ 

2 fin 

c 2 
am 
3 fim 

fih 

О 

«h fih 

am 
3 fim 

Figure 10.2 Kinetic scheme for the Hodgkin-Huxley Na+ channel. Co-2 represent 3 
closed states, and О is the open state of the channel. I0-3 represent the 4 inactivated, 
nonconducting states. 

It is therefore very important to develop mathematical tools that can 
help in analyzing multiple-state single-ion-channel data. The Chapman-
Kolmogorov equation of the nth order can be used to describe transition 
probabilities and kinetic parameters of n-state single channels. The rules 
listed below are general properties of n-state Markov processes that sat-
isfy the Chapman-Kolmogorov equations. We will list them and verify 
each of them with the two-state model. In the next section, we will apply 
these rules to more complex transition schemes involving more than two 
states. Because of the relative simplicity of the two-state model, it is im-
portant to understand the essence of the transition parameters and the 
relationship between whole-cell current and single-channel current asso-
ciated with this model. Such understanding can serve as a conceptual 
guide for comprehending the parameters of the multiple-state channels, 
which are sometimes much more difficult to picture. 
Rule 1: If [x(t) > 0] represents the states of a Markov process of an 
n-state channel, {1,2,3,. . . , n} =5 , with the matrix P(t) of channel tran-
sition probabilities 

Pij(t) = Prob [(x( to + t) = j)\(x(t0) = i)L 

where i,jeS, and to ^ 0. P(t) will satisfy the Chapman-Kolmogorov equa-
tion 

m a 

Verification with the two-state model: done in the previous section, equa-
tions 10.2.1-10.2.15. 
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Rule 2: The infinitesimal matrix of nth order will satisfy the following 
expressions: 

P(At)-l Q = lim 
At-* 0 At 

Q = [aij] 
Hij = - (sum of transition rates leading away from the state) i = j 

= + (transition rate from state i to state j) i Ф j. 

Verification with the two-state model: From equations 10.2.9 and 10.2.16, 

Q = lim At—0 
P(At) - 1 

At = lim 
At-0 

- aAt aAt 
pAt 1 - pAt 

At 

= lim • 
At-0 

From rule 2, 

С ^ О 
2 « 1 

-aAt aAt 1 
PAt -pAt J [ - « « I 

At [ P -P 

n _ Г 411 412 1 Г -<X « 1 
U L «21 422 J I P -P J ' 

Rule 3: The time interval spent by the channel in any state once entered is 
exponentially distributed with mean (mean lifetime in that state) = -qu~ l . 
Verification with the two-state model: From chapter 9, the pdf for open 
lifetime = ae~at. Thus, mean open lifetime 

T0 

rOO 

Jo 
tae~at = - = -41Г 1 . a 

The pdf for closed lifetime = j t h u s mean closed lifetime 

- J o > ~ " = Г - О * " ' 

Rule 4: Q is a singular matrix. That is, determinant Q (det Q) = 0. 
Verification with the two-state model: 

det Q = -a a 
P -P 

= (ар - ap) = 0. 
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Rule 5: Since Qis a singular matrix, it has only n - 1 nonzero eigenvalues. 
Eigenvalue A is defined by det(Q - Л1) = 0. (For readers unfamiliar with 
linear algebra, consult Noble 1969.) 
Verification with the two-state model: 

det(Q - AI) = -a - A a 
P - jS -A = 0. 

(a + A)(/J + A) - a/J = 0. 

ар + a\ + p\ + A2 - ap = 0. 

A(a + p + A) = 0. 

A = 0, A = -{<x + P). 

Rule 6: The general solution of the Chapman-Kolmogorov equation can 
be written in two forms: 

P (t) = = I + Q t + (Qt)2/2! + • • •, 

and 

Ptj(t) = pj(oo) + wxeAlt + w2eA2t + • - •, (10.3.17) 

where pj(oo) is the equilibrium probability that the channel is in state j . 
Ai, Л2,..., are nonzero eigenvalues of the matrix Q. 
Verification with the two-state model: 

Pn(t) = Pi(oo) +wieM. 

Since only one nonzero eigenvalue exists, which is - (A 4- j8), and since 

P n ( 0 ) = P i ( 0 ) = p i (oo) +Wie°, 

then 

w = P i ( 0 ) - p i ( o o ) . 

Therefore, 

P n ( t ) = Pi(oo) + ( P l ( 0 ) - p i (oo ) ) 
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Since 
dPn(t) 

dt = -aPxj( t ) + pPnit) (equation 10.2.10); 

at t — oo, steady state, 

dPn(oo) 
dt 

Therefore, 

P l l ( o o ) = P i ( o o ) = 

= - а Р ц ( о о ) + p[i - Р ц ( о о ) ] = 0. 

p 

a + p' 
and 

Pn(t) = P 
A + P 

Similar procedures yield 

P 2 2 ( t ) = 
a 

oc + p + e-(<x+P)t_ 

Rewrite equations 10.3.18-10.3.21 in matrix form: 

Pll(t) Pl2(0 
Pit) = 

P21 (0 P22(t) 

(10.3.18) 

(10.3.19) 

(10.3.20) 

(10.3.21) 

+ ( f t <0>" «J?) в " ( " + Л ' + ( f t (0) •" ;£,) e~(«+li)t 

Since Pi2(0) = Pi(0), P2i(0) = P2(0). 

Note that all Py it) in the above matrix follow the form of 

У it) = у» - [(y« - Уо)е~{а+p)t]. 
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This form is identical to the time dependence of the gating variable in 
the gate model of previous chapters, because they are all solutions of the 
first-order differential equations. 

Graphically, 

P (t) = 
P n ( t ) Pn(t) 

fti(t) P22U) 
(10.3.22) 

1 -1 1 -1 
p2(0) 

Pl(oo) 
p2(oo) 
Pi(0) 

t 

p2( 0) 
Pl(oo) 
P2( oo) 
Pi(0) 

--P2( 0) 
•-Pl(oo) 

- p 2 ( 00) 
--Pi(O) 

P2( 0) 
Pl(oo) 
p2(°0) 
Pi(0) 

t t 

Figure 10.3 Graphic description of the time courses of Рц, Pi2l P2i, and P22. 

Note that eachPij (t) transition follows the same exponential time course 
oc where -A = (a + 0) = т = ^ is called the relaxation time 
constant, and a + /? is called the relaxation rate constant. Therefore, the 
eigenvalues A* are negative reciprocals of the relaxation time constants. 
The relaxation time is also the decay time of the macroscopic current 
(whole-cell current, N channels of the same type), as illustrated by fig-
ure 10.4. 
Rule 7: The power spectral density function S ( f ) of the current noise 
mediated by N k-state channels (Q matrix has к - 1 eigenvalues) can be 
fitted by к - 1 Lorentzians. 
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Figure 10.4 (A) Postsynaptic whole-cell current evoked by presynaptic nerve stimula-
tion. The decay of the current can be fitted with a single exponential, which indicates that 
the postsynaptic channel kinetics can be approximated by a two-state scheme. (B) Proba-
bility density function of the channel open lifetime of a two-state channel. (C) Simulated 
behavior of five individual two-state channels that are open at t = 0. The channels stay 
open for a random (exponentially distributed) length of time with a mean of 3.2 msec. (D) 
Sum of the five records in (C). The total number of open channels decays exponentially 
with a time constant of 3.2 msec. (From Colquhoun 1981.) 

Verification with the two-state model (fc = 2); 
Since the power spectral density function, according to the Wiener-Khin-
chin theorem, is the Fourier transform of the covariance function of the 
whole-cell current, we first have to derive the covariance function for one 
channel, then for N channels, and then take the Fourier transform. 

For a stationary two-state channel, the mean current over a long period 
of time is equal to 

№ = £ [ / ( « ] =/ iPi (oo)= 
a + /Г 

and the variance is equal to 

a / 2 = / i P i ( o o ) / 1 p 2 ( o o ) = h 2 ( X P (cx + j8)2' 

The covariance function 

C( T) = g-<«+fi)T 

For N two-state channels, covariance function СДГ(Т) is N times C I ( T ) . 

C a K T ; ~ (<x + j8)2e <x + p e 
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The power spectral density function for N two-state channels S { f ) can 
be obtained by the Fourier transform of CN(T), according to the Wiener-
Khinchin theorem (chapter 9). 

S ( f ) = R ( J [ C A T ( T ) ] ) = % ( Г Г 

\ J-00 (X + p J 

4my{V-Ei)(x 0{ -н j8 CC + fi ( « + ^ ) 2 + ( 2 Т Г / ) 2 -

5 ( Л = 4 ц,у(У-Е1)аш Si0) 
* ( J ) Л 2 + ( 2 Т Г / ) 2 1 + (2тг//Л)2 ' U U . ^ 

where 

5(0) = and Л = - ( « + P). (10.3.24) 

This form of S( f ) is called single Lorentzian. 
One can define corner frequency ( f c ) as the frequency at which S ( f ) is 

equal to half of its maximum value, that is, 

S(fg) 1 _1 
S m 1 + (2тт/с/Л)2 2" 

Thus, 

The power spectral density analysis of physiological channels was first 
applied by Katz and Miledi (1970,1972) while studying the ACh-induced 
noise in the neuromuscular junction. Anderson and Stevens (1973), using 
the voltage clamp technique, showed that the ACh-induced current noise 
in the frog neuromuscular junction could be fitted by a single Lorentzian 
(figure 10.5). Based on equation 10.3.23, the single-channel conductance 
у can be obtained by 

S( 0)(a + p)2 S(0)a rf ал 

Since S(0) and щ are determined by experimental data (figure 10.5), 
the value у can be obtained. Additionally, from the corner frequency in 
figure 10.5 and equation 10.3.25, one can estimate the value of a + 

The ACh-gated current noise gives an example of channels whose tran-
sition can be approximated by the two-state model. For n-state channels, 
S { f ) can be fitted by n - 1 order Lorentzians in the form of 
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Figure 10.5 Currents measured from a frog muscle under voltage clamp. The currents 
are displayed at low gain (A) and at much higher gain (B). In the resting end plate, the low-
gain record shows a zero net current. The high-gain record shows low noise and a single 
inward current transient, which is a miniature end-plate current from the spontaneous 
discharge of a single presynaptic transmitter vesicle. When a steady low concentration 
of ACh is applied iontophoretically to the end plate, the low-gain record shows a large, 
steady, inward end-plate current. The high-gain record reveals fluctuations due to the 
superimposed stochastic opening of many channels. (C) Spectral density curve (or power 
density spectrum) of current fluctuations produced at the end plate by acetylcholine. The 
membrane potential was clamped at - 6 0 mV. (Adapted from Anderson and Stevens 1973.) 

с m - S(0) _ v 1 Sj(0) 

n»[ i • (¥) ' ] 
where Л*(= -2тгfCi) are the nonzero eigenvalues of the Q matrix. The 
corner frequency (fCi) equals the nonzero eigenvalue of the Q matrix di-
vided by -2tt. 

^Example 10.1 
A cell contains 105 voltage-gated Na+ channels, and each of them follows 
the two-state transition scheme with voltage-dependent transition rate 
constants. 

i л closed — open 
a(V) 

state number 2 1 

The voltage-dependence of a is known to be 

A(V) = 380e~v/40 mV (sec"1), 

but that of j8(V) is unknown. The power spectral density functions of 
, the whole-cell Na+ current at VC = - 8 0 mV and +20 mV are given below. \ 1 > 
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Example 10.1 (continued) 
Ю-20 H 

" Vc = 20 mV 

"Л 

S(f) 

(A2 sec) 

10-23 —,—,—j—, , , , i | i i—| 
1 2 5 10 100 1000 10000 

io-21 

Vc = - 8 0 mV 

frequency (Hz) 

a. Write the Q matrices for this transition scheme (in sec""1) at Vc = 
-80 mV and at Vc = +20 mV. 

b. What are the steady-state whole-cell currents (assume the cell has 
Na+ channels only) when the cell is voltage-clamped at - 8 0 mV 
and at +20 mV? (yNa = 20 pS, ENa = +50 mV.) 

c. Draw the whole-cell current trace in appropriate units (of current 
and time) when the cell is stepped from - 8 0 mV to +20 mV for 
10 msec and then stepped back to - 8 0 mV. Label the time con-
stants (T) (with appropriate values and units) of the current at the 
onset and cessation of the 10 msec voltage step. 

Answer to example 10.1 

a. Vc = -80 mV, 
<x(V) = 380e+80/4° = 2808 (sec"1). 
From the figure, fc « 470 Hz, taken from S(fc) = ^ f 1 . 
Since a + /} = 2тг/с, therefore 

P = 2rr / c-<x = 2952 - 2808 = 144 sec^1. 

Therefore, 

Q = 
- 2 8 0 8 2808 

144 -144 j (sec""1). 

Vc = +20 mV, 
<x(V) = 380e~20/4° = 230 sec""1. 

ч 
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Answer to example 10.1 (continued) 

From the figure, fc « 56 Hz. 
jg = 2тTf c - a = 352 - 230 = 122 sec"1. 

-230 230 
122 - 1 2 2 ) 4 7 $ ) - ( 

b. Steady-state whole-cell current 

Ш = NPl(oo)h = 10s У(У ~ ENa) 

(sec-1) 

At Vc = -80 mV and +20 mV, 

144 
Ш = Ю5 ( 2 8 Q g 4

+
4

1 4 4 ) 20 x 10~12(-80 - 50) x 10"3 = -12.7nA. 

Ш = Ю5 ( 2 3 Q 2
+ \ 2 2 ) 20 x 10"12 (20 - 50) x 10"3 = -20.8 nA. ,230 + 122 

c. At Vc = - 80 mV and +20 mV, 

1 
T - 8 0 = 

Vc (mV) 

a + p 

LIT 
] 

= 0.34 msec, and т+20 = <x + p = 2.8 msec. 

Thus, the current trace 
+ 2 0 -

- 8 0 -

Ш (nA) 

On 
- 1 0 

- 2 0 -

- 3 0 -
-40 
-50 
- 6 0 

-70 

0.63 

I 1 Г 
0 2.8 5 

1 
10.34 

-I 
15 

time (msec) 
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10.4 Stochastic analysis of n-state channels 

10.4.1 Channels involving three-state transition schemes 

In the last section, we described the rules derived from the Chapman-
Kolmogorov equation that are applicable to n-state channels. In this 
section, we will apply these rules to two three-state transition schemes 
(schemes II and III). These two three-state schemes are extremely impor-
tant in single-channel data analysis because numerous channels under 
physiological conditions can be described by them. These are the blocked 
and agonist binding schemes. 

Scheme II, blocked scheme: (Example: ACh-gated channels in the pres-
ence of channel blocker gallamine. Colquhoun and Sheridan 1981.) 

XB + 
0 kB closed — open — blocked 
« k-B 

state number: 3 1 2 

where XB is the concentration of the blocker molecule В. 
blocked r— 

state open 

closed 

closed 

M M 
gaps within 

burst 

burst gap between bursts burst 

Figure 10.6 Schematic diagram illustrating transitions between various states (top) and 
observed single-channel currents (bottom) for the blocked scheme. 

Scheme HI, agonist binding scheme: (Example: ACh-gated channels in 
neuromuscular junction. Castillo andKatz 1957.) 
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k+1 0 
A + R — AR — АД* 

bi « 

state number: 3 2 1 

xa is the concentration of the agonist molecule A. 

AR I— 

AR 

t t 
gaps within 

burst 

burst gap between bursts burst 
open 

closed 

Figure 10.7 Schematic diagram illustrating transitions between various states (top) and 
observed single-channel currents (bottom) for the agonist binding scheme. 

Next, we will use the generalized rules described in the last section to 
analyze schemes II and III. More rules will be derived during the analysis, 
and they can be applied to more complex schemes. 

As stated in rule 1 (see section 10.3), the transition probabilities for both 
schemes should satisfy the Chapman-Kolmogorov equation. We do not 
derive this here because it is mathematically tedious. Readers interested 
in the complete derivation should consult Colquhoun and Hawkes (1981, 
1982). 

From rule 2, the infinitesimal matrices for the two schemes can be writ-
ten as 

Qu = 

-(а + квхв) kBxB a 

к-в -к-в 0 

P 0 -P 

(XB : concentration of blocker B. 
Based on the law of mass action, 
the transition coefficient for open 
to blocked can be written as квХв.) 

QHI = 

-a a 0 

P -(P + fc-i) fc-i 

0 k\XA -k\XA 

(XA ' concentration of agonist A. 
Law of mass action gives k\XA for 
transition coefficient 3 — 2.) 
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From rule 3, the mean lifetimes in each state can be expressed as follows: 

1. Scheme II, blocked scheme: 

Mean open lifetime = m0 = -Q\i~l = т . (10.4.26) a + kBxB 

Mean blocked lifetime (gap within a burst) = m w 

= - < ? 2 2 - 1 

= - L . (10.4.27) 
K-B 

Mean closed lifetime (gap between bursts) =ть = ~4зз = 4-
P 

The means of durations of various quantities characteristic of the 
burst can also be derived. 
Number of openings per burst: 
Define TX^ =Prob[channel at state i will, as its next transition, be at 
state j]. 
Then, 

л• = 412 = kBxB 
12 <Ii2 + lis « + kBxB

 1 

4i3 a ТГ13 
412+^13 а + квхв' 

„ 421 k-B , 7721 = = 1 = 1. 
421 + 423 к-в + 0 

Therefore, 
p (1) = Prob[one opening per burst] 

= Prob[channel once open, then closed] 
= TT\3 

p(2) = Prob[two openings per burst] 
= Prob[channel open once, then blocked] • 

Prob[blocked, then open] • Prob[open, then closed] 
= 77"i2 • ТГ21 ' ТГ13. 
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The extension of this argument gives 
p (r) = Prob[r openings per burst] 

= (ТГ12 • TT2l)r'lTTl3 

P(r) =(ТГ12-1)Г-1(1-ТГ12). 
Mean number of openings per burst (mr): 

00 1 mr = £ r p ( r ) = <x + kBxB 

Г-1 - ^ a 
(10.4.28) 

Combining equation 10.4.28 with equations 10.4.26 and 10.4.27, we 
can obtain 

Mean open time per burst = mr • m0 
a + kBxB 1 

ex a + kBxB 
I 
a' (10.4.29) 

Mean closed time per burst = (mr - 1) • 

kBxB = CB_ 
к-Ва a ' 

(10.4.30) 

where 

cB = ^r = KB = and(m r - 1) = # of gaps/burst. лд K-B lcB 

Adding equations 10.4.29 and 10.4.30 gives 

mean burst length = mean open time per burst + 
mean closed time per burst 

I + £® = 1 + Cg 

« а а 

2. Scheme Ш9 the agonist binding scheme: Mean open lifetime = m0 = -qn"1 = 
Mean AR lifetime (gap within a burst) = m w = -q22~ l = р+ь^ • 

Mean closed lifetime (gaps between bursts) = т ь * -4зз - 1 = ij^j-
(* because closed time is made of time spent in two closed states) 
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Number of openings per burst 

421 P 
ТГ21 

«21 +423 P + k-1 
= 1 - 77*23. 

p(r) = Prob[r openings per burst] 

= (7721 Г-17723-

Mean number of openings per burst mr: 

OO 00 I B 
m r = X r P ( r > = X ^ (^21)^41 - TT2i) = = Vе- + 1. 

r=0 r=0 1 7 1 2 1 

Меял open time per burst = mr • m0 
k-i + p 1 

fc_i « 

fl + fc-i 
ak-1 

Mean closed time per burst = (mr - 1) • mw 

- ш (?) 
к-Г 

Adding equations 10.4.31 and 10.4.32 gives 

P + k_i 1 a + P + k-1 mea/i burst length = afc- ock-i 

Rule 4 predicts det Q// = 0, det Q/л = 0. 

-(а + квхв) квхв ос 
detQn = к-в -k-B 0 

P 0 -p 
= -(a + квхв)к-вр + аРк-в + Рквк-вхв = 0. 

(10.4.31) 

(10.4.32) 

(10.4.33) 

(10.4.34) 
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-a a 0 
detQm = P -(jS + fc-i) k_i (10.4.35) 

0 к\Хл -k\XA 
= -ак\ХА(Р + k-i) + ak-\k\xA + ocpkiXA = 0. (10.4.36) 

Therefore, rule 4 holds. 
Eigenvalues for Qц and Qm' 

det(Qи - A/7) = 
-((х + квхв) - Л квхв ос 

к-в -к-в- Л 0 
Р 0 - р - \ 

= 0 

-(а + квхв + Л)(к_в + \)(р + Л) + аР(к-в + Л) + 
(Р + \)к-вквхв = 0 

Л [(Дк_в + ак-в + квхвР) + (к-в + а + р + квхв)К + А2] = 0. 

Л = 0. 

Л2 + (а + Р + квхв + к_в)Л + ак-В f 1 + — + у ^ - х в ) = 0. V ex К-В& / 

Л2 + (а + 0 + квхв + к-в) А + ак-в [ l + + Ц)] = 0. 

Ai + Л2 = -b = а + Р + fefiXB + к-в. (10.4.37) 

(10.4.38) 

Similarly, 

deUQjn - Л/я) = 
- а - Л а О 

р -(р + к- О-Л k_i 
О fel^A -klXA - Л 

= 0. 

Ai + Л2 = - а - Р - к-\ - kixA. (10.4.39) 

Л1Л2 = txk-i + kiXA<x + к\ХлР- (10.4.40) 
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1 jlS | l_f 
2 ~U 
3 l _ J 
4 ~ U U 

51Л—I I I I—Г 
6 Л Л I 

Figure 10.8 Schematic illustration to show how bursting behavior of single channels 
may result in biphasic relaxation. (A) Simulated behavior of seven individual ion channels 
in the presence of an ion-channel-blocking drug. Channels are supposed to be opened 
nearly synchronously at time zero. Each channel produces only one burst of openings 
before it finally shuts (as marked on channel 1, which has two blockages and therefore 
three openings before it shuts). (B) Sum of all seven records shown in (A). The initial 
decline is rapid (time constant ту) as open channels become blocked, but the current 
thereafter declines more slowly (time constant Ts). The continuous line is the sum of two 
exponential curves (shown separately as dashed lines) with time constants Т/ and Ts. The 
slow time constant, under these conditions, reflects primarily the burst length rather than 
the length of an individual opening. (From Sakmann and Neher 1983.) 

The openings and closings of seven single channels following the blocked 
scheme and their ensemble averages are given in figure 10.8. 

The general solutions for transition probabilities also follow the result 
in rule 6 (equation 10.3.17), Pij(t) = pj(oo) + w\eKlt + w2eA2t, with eigen-
values Ai and Л2 obtained in the previous section. 

The relaxation time course of each transition Py (0 is biphasic (two ex-
ponentials). Also, the decay time of the whole-cell current induced by ACh 
in the presence of blockers can be fitted by two exponentials (figure 10.9). 

I(t) = J( 00) + w[eAlt + w'2eK2t. 

The power spectral density function for the blocked scheme, for exam-
ple, can be fitted by two Lorentzians, according to Rule 7. Experimental 
results show that S(f) of the current noise induced by ACh in the pres-
ence of gallamine (blocker) can be fitted by two Lorentzians (figure 10.10). 
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Figure 10.9 Postsynaptic current mediated by channels following a three-state transition 
scheme (ACh-gated channels in the presence of channel blocker gallamine). The decay of 
the current can be fitted with two exponentials. (From Colquhoun and Sheridan 1981.) 

Frequency (Hs) 

Figure 10.10 Power spectral density function of the fluctuation by the postsynaptic 
current mediated by channels following a three-state transition scheme (ACh-gated chan-
nels in the presence of channel blocker gallamine). Data points can be fitted with two 
Lorentzians (dashed curves). (From Colquhoun and Sheridan 1981.) 

S(f) = 5 l ( 0 )
 2 + 5 2 ( Q )

 2 (double Lorentzian), 

where -Ai = 2nfc\, and -Л2 = 2TT/C2. The relationships between Ль 
Л2, and a, /J, кв, and к-в are given explicitly by equations 10.4.37 and 
10.4.38. 
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Example 10.2 
The figure below shows the transitions between three states of the 
agonist-binding scheme of a channel. 

AR, 
ARl 

1 1 1 1 1 
0 5 10 15 20 

time (msec) 

1. Draw the transition trace of a single-channel current trace. 
2. Assume this record is representative of channel activity for 

long periods of time. What are the approximate values of j8 
and k-1? 

Answer to example 10.2 
open 

closed 
openC _ _ П Л Л ПП ПП ПЛЛ 

I 1 1 1 1 
0 5 10 15 20 

time (msec) 

Mean AR lifetime (gaps within a burst) = 
(0.3 + 0.4 + 0.3 + 0.5 + 0.5 + 0.2) | 
= 0.37 msec 
_ l 
" fi+k-i 

0 + fc_i = 2703 sec"1. 
Mean closed time per burst = (equation 10.4.32). 
(0.7 + 0.3 + 0.5 + 0 .7)\ = 0.55 msec 

i_ 
-

fc-i = 1818 sec"1. 
P = 2703 - 1818 = 885 sec"1. J 

10.4.2 Channels involving many-state transition schemes 

The three-state schemes are useful for analyzing channels with simple 
binding or blocked states. Nevertheless, these schemes are often not ad-
equate for describing channel mechanisms. For example, mechanisms in-
volving more than one open state or several closed or inactivated states, 
or involving cyclic reactions, are quite common. These schemes usually 
involve as many as tens of discrete states, and it is tedious to extract ki-
netic parameters without the assistance of a computer. Since the same 
principles and rules apply to these higher-order transition schemes, we 
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can write the Q matrix and determine the mean lifetimes of the channel 
at each state. It is much more difficult, however, to give explicit expres-
sions for the eigenvalues, time constants, and the relationships between 
measured parameters (e.g., burst lifetime) and the rate coefficients. Nu-
merical analysis with computers is needed to accomplish these, and the 
results are less intuitive than for the two- or three-state schemes. 

10.4.2.1 Two-agonist binding scheme: A five-state scheme Consider 
a channel that is bound by two agonist molecules sequentially, and the 
channel may open with either one or two molecules bound. The transition 
scheme for such channels can be written as follows: 

state: 5 

AR; 01 

k+2 

A2R: 02 

AR 

A2R*2 

Note that this scheme has two open states (states 1 and 2). If the two 
open states have identical conductances, it is difficult to distinguish be-
tween them. If the two conductances are different, then one may deter-
mine the mean lifetime of the two states individually. The Q matrix of 
this transition scheme can be written as follows: 

i 
2 

Q = з 
4 
5 

1 
-(«1 +kl2xA) 

2 k*2 
0 
01 0 

-(<x2+2fc!2) 
02 0 0 

з 
0 
«2 

-(02+2 fc_2) 
0 

«1 
0 

-(01 + к+2хл + fc-i) 
2k+\XA 

5 
0 
0 
0 

k-1 
-2k+ixA 

The mean lifetime of the channel at each of the five states can be writ-
ten as flit"1, as stated in rule 3. It is very tedious, but straightforward be-
cause the same rules apply, to calculate the eigenvalues, relaxation time 
constants, and other kinetic parameters. Special computer programs are 
developed to deal with this type of calculation. 

10.4.2.2 The Hodgkin and Huxley K+ and Na+ channels Hodgkin and 
Huxley modeled the K+ and Na+ channels in the squid axon with n4 and 
m3h, respectively (see Chapter 6). Each of the gating particles can be 
either at open (1) or closed (0) states. 
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The K+ channels The Hodgkin and Huxley n4 model for K+ channels is 
described by the state diagram shown in figure 10.1. 

The Q matrix of this transition scheme, according to rule 2, can be 
written as follows: 

1 2 3 4 5 

1 --4/J 40 0 0 0 
2 Of - ( a + 30) 3/5 0 0 
3 0 2a - ( 2 a + 20) 2Ц 0 
4 0 0 3<x -(3<x + j3) p 
5 0 0 0 4a -4a 

According to rule 3, the mean open lifetime of a single Hodgkin and 
Huxley K+ channel equals -cfil = According to rules 5 and 6, there 
are four nonzero eigenvalues and thus 4 time constants (тп, тп /2, тп/3, 
and тп/4). The Hodgkin and Huxley model has only one time constant 
тп = but it is raised to the 4th power. Kinetically, the two models 
are indistinguishable. 

The Na+ channels Similarly, the Hodgkin and Huxley Na+ channel is 
described by the state diagram shown in figure 10.2. 

The Q matrix of this scheme can be written as: 

1 2 3 4 

1 " - ( 3 P m + Ph) 30m 0 0 
2 dm -(<Xm + 2fim + fih) 2 Pm 0 
3 0 2<xm - ( 2 (Xm + Pr, t + Ph) Pm 

4 0 0 3 a m - ( 3 (Xm + Ph) 

5 0 0 0 (Xh 

6 0 0 (Xh 0 
7 0 <Xh 0 0 
8 tXh 0 0 0 

5 6 7 8 

0 0 0 Ph 

0 0 Ph 0 
0 Ph 0 0 

Ph 0 0 0 
(3a m + ah) ЗЛж 0 0 

Pm -{2<Xm + Pm + (Xh) 2(xm 0 
0 2 Pm ~((Xm + 2 Pm + (Xh) (Xm 

0 0 3 Pm " ( 3 Pm + (Xh) 

Again, from rule 2, the mean open lifetime of the Hodgkin and Huxley 
Na+ channel = - q n ~ l = - There should be seven nonzero eigen-
values for the Q matrix and thus seven time constants. The Hodgkin and 
Huxley m3h model only provides two time constants, т& and т ж . For 
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macroscopic currents, the eight-state model is kinetically indistinguish-
able from the m?h model. However, tests of the K+ and Na+ channels 
based on the state diagrams shown above show that the Hodgkin and 
Huxley model for Na+ and K+ channel gating is not correct in all details. 

Limitations of the Hodgkin and Huxley model for the Na+ channels 
1. The deactivation time constant is slower than predicted from the 

Hodgkin and Huxley model. 
According to the Hodgkin and Huxley m?h model, during deacti-
vation (offset of a depolarizing voltage-clamp pulse), only one m 
particle is needed to be moved from permissive to nonpermissive 
state; thus the I^a during deactivation should be three times faster 
than the off gating current (all three m particles are moved back 
to nonpermissive state, of course, under the condition of no inacti-
vation). This is not supported by experimental data, which indicate 
that the off-I^a is as slow as off gating current (figures 6.21 and 6.23 
in chapter 6). This indicates that the movement of m particles may 
not be completely independent. 

2. The gating current time course does not fit the Hodgkin and Huxley 
model. 
According to the Hodgkin and Huxley model, gating current is gener-
ated by the movement of identical and independent gating particles. 
At the onset of a depolarizing pulse, Ig should rise instantaneously 
and then fall with a single exponential. However, experimental data 
on gating currents show a rising phase at the onset and multiple ex-
ponential components at the falling phase. This indicates that Na+ 

channel gating may be more complex than the Hodgkin and Huxley 
assumptions of identical independent gating particles. 

3. Single-channel measurements give a longer channel open lifetime (in 
the absence of inactivation) than predicted by Hodgkin and Huxley's 
model. According to the Hodgkin and Huxley model (the eight-state 
scheme), the mean open lifetime of the Na+ channel should be 

T0 = - a u ~ l = * (rule 3). 
3pm + Ph 

If one removes inactivation (e.g., by pronase), 

т = 1 
° 3 f}m 
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Use the Hodgkin and Huxley original equation 

я I - moo 
P m = — z 

for Vc = - 4 0 mV, pm = 69 sec -1, —r- = 5 msec. 
jPm 

Experimentally, however, Patlak and Horn found that the mean open 
lifetime after removal of inactivation is about 30 msec. This indi-
cates that the rate of deactivation is slower than what Hodgkin and 
Huxley imply, and it is consistent with the observation in (a) that 
the tail I^a current is slower than the prediction of the Hodgkin and 
Huxley model (that deactivation is three times faster than the off 
gating current). 

In conclusion, the three discrepancies of the Hodgkin and Huxley model 
mentioned above indicate that although the Hodgkin and Huxley formu-
lation can explain most properties of the macroscopic Na+ current, it falls 
short in explaining detailed gating mechanisms. 

A transition scheme modified from the Hodgkin and Huxley model has 
been proposed by Patlak (1991). This scheme seems to be able to explain 
more single-channel and gating-current data than the original Hodgkin 
and Huxley scheme. The new scheme involves an additional closed state 
(Ci) prior to the m gates, and two inactivated states (Ii and I2). 

4 к 3 (Xm Ci = c2 = 
Л 2 PM 3 PM 4 у 

One can use the rules we learned to write the Q matrix and calculate 
the kinetic parameters, and then compare the results with experimental 
data. So far, the question of how Na+ channels are gated is not fully 
resolved. The model shown above is widely used, and it is one of the 
most useful developed to date. By obtaining more single-channel data, 
knowing more about the structure-function relationships, and fitting data 
with more realistic models, one can expect to determine the true transition 
mechanisms of the Hodgkin and Huxley Na+ channels. 
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10.5 Conclusions: Analysis of ionic currents 

This chapter provides mathematical and conceptual tools for analyzing 
the stochastic behaviors of single ion channels and of whole-cell current 
mediated by a large number of ion channels. The basic scheme of analy-
sis for the single-channel and whole-cell currents can be summarized as 
follows: 

For I\ (single channel currents): By obtaining long periods of records 
(Г — oo), one can observe burst behavior and guess the transition scheme. 
One can measure mean open, closed, burst lifetimes, gaps between and 
within bursts, etc., to determine the transition scheme and transition rate 
constants (a, >3, k\, к_ь кв, к-в, etc.). 

For IN (N channels, whole-cell current): Measurements of S ( f ) or re-
laxation time constants give estimates of the number of eigenvalues Ai, 
which gives the number of transition states (number of nonzero Aj + 1). 
One can also estimate у from measuring 5(0), criN2, and щ, the transition 
rate constants from the corner frequencies of the power spectral density 
function. 

The stochastic analysis given above can be used to describe the behavior 
of single ionic channels or ensembles of channels. The time-dependent 
mechanisms of these channels cannot be described by explicit mathemat-
ical equations; they are random processes that can be determined only 
by statistical functions. This stochastic description of molecular mech-
anisms of membrane channels constitutes a new formulation for mod-
ern neurophysiological research. More and more new insights have been 
brought into this line of neurobiology as more and more mathematics is 
learned and applied by neuroscientists. 

Dr. Carl Pantin, Director of Studies in Trinity, said, "You must 
continue to learn mathematicsand this I have endeavored to 
do during the rest of my life—Man Hodgkin 

10.6 Review of important concepts 

1. The transition probabilities of a channel following an n-state transi-
tion scheme (nth order Markov process) can be described by a matrix 
differential equation (Chapman-Kolmogorov equation). 
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2. The derivation of the Chapman-Kolmogorov equation is derived with 
the two-state transition scheme, which elucidates all basic concepts 
and general rules implicated in the equation. 

3. Mathematical rules derived from the Chapman-Kolmogorov equa-
tion for n-state channels are given, and the applications of these 
rules on the two-state, three-state, and multiple-state channels are 
described. 

4. The number of transition states of a channel can be estimated by the 
relaxation time course and the shape of the power spectral density 
function (S(f)) of the whole-cell current. 

5. The transition rate coefficients in any given transition scheme can 
be estimated by measuring various parameters in single-channel cur-
rent records, based on rules derived from the Chapman-Kolmogorov 
equation. 

10.7 Homework problems 

1. A cell contains 105 voltage-gated Na+ channels, and each of them fol-
lows the two-state transition scheme with voltage-dependent transi-
tion rate constants. 

i л closed — open 
«(V) 

state number 2 1 

a(V) =400e- y / 4 0 m V (sec"1) 
P(V) = 4 0 e + v / 2 0 m v (sec"1) 

(a) Write the Q matrices for this transition scheme (in sec-1) at 
V = - 8 0 mV and at V = +20 mV. 

(b) What are the steady-state whole-cell currents when the cell is 
voltage-clamped at - 8 0 mV and at +20 mV (assume the cell has 
Na+ channels only)? (yN a = 20 pS, ENa = +50 mV.) 

(c) Draw the whole-cell current trace in appropriate units (of cur-
rent and time) when the cell is stepped from -80 mV to +20 mV 
for 10 msec and then stepped back to -80 mV. Label the time 
constants (T) (with appropriate values and units) of the current 
at the onset and cessation of the 10 msec voltage step. 
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2. Channels gated by extracellular ligand A follow the two-state tran-
sition scheme 

fci 
A + R — AR 

k2 
XA closed open. 

If ki = 2 x 105 sec"1 • M~\k2 = 100 sec"1,*,* = Ю~5 M, 

(a) Write the infinitesimal matrix Q with numbers. What is the unit 
of each matrix element? What is det Q? 

(b) If one records one of these channels for a long time, what are 
the average open and closed lifetimes? About what percentage 
of the time is the channel open? What percentage of the time 
is the channel closed? 

(c) A cell contains 104 of these channels in its plasma membrane, 
and the conductance of a single open channel is 10 pS. The 
open channel allows only Na+ to go through (Емa = +50 mV). 
What is the steady-state current of the cell when it is voltage-
clamped at - 50 mV and 10~5 M of ligand A is applied to the 
extracellular space? 

(d) What is the approximate amplitude of the noise in the A-induced 
current in (с)? 

(e) If XA suddenly drops from 10"5 M to 0 M, draw the time course 
of the decay of the A-induced current in this cell. What is the 
value of т? 

(f) Sketch the power spectral density function 5 ( / ) of this A-in-
duced current. What is the value of 5(0)? What is the value of 
/с? 

3. The membrane of a neuron at rest is permeable only to K+, and the 
resting potential is - 80 mV. In the presence of 10~4 M of glutamate, 
which is assumed to open Na+ channels, the membrane potential of 
the neuron is -40 mV. The glutamate-gated Na+ channels follow the 
two-state transition scheme 

fci A + R — AR 
k2 

XA closed open, 
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where Xa is the concentration of glutamate, and k\ and кг are tran-
sition coefficients that are voltage-dependent, that is, 
fci(V) = 2000ev/4° mV (sec"1 • M"1), 
k2(V) =e-v,40mW (sec"1). 

(a) Write the infinitesimal matrix Q in numbers (with appropri-
ate units) for the glutamate-gated channels in the presence of 
10"4 M glutamate. 

(b) If one records one of these glutamate-gated Na+ channels for 
a long period of time (Vc = -40 mV; assume the channel is 
stationary), about what percentage of the time is the channel 
open? What percentage of the time is the channel closed? 

(c) Given that the input resistance of the neuron at rest is 107 Q, 
ENa = +40 mV, and the single-channel conductance of the glu-
tamate-gated Na+ channel is 20 pS, estimate the number of 
glutamate-gated Na+ channels in the neuron activated by Ю - 4 M 
glutamate. 

4. A voltage-dependent K+ channel is gated by two identical gating par-
ticles у (valence + 1) that follow the following kinetic scheme 

№) 
V — 1 - p 

a(V) 
(Permissive) (Nonpermissive), 

where p and 1 - p are the probabilities of particle у in the permissive 
and nonpermissive states, respectively. The two states are separated 
by a single energy barrier within the membrane. 

(a) Draw a figure of the membrane with the energy barrier and the 
locations of the gating particle at its permissive and nonpermis-
sive states so that the channel can be activated by membrane 
hyperpolarization. 

(b) Draw the whole-cell current of a neuron that contains 104 of 
these voltage-dependent K+ channels (and no other channels) 
when the neuron is stepped from 0 mV to -50 mV. (EK = 
- 9 0 mV; the activation voltage range for the K+ channel is be-
tween 0 and -60 mV.) Does the time course of the onset of the 
K+ current follow a single or multiple exponential? 
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5. The plasma membrane of a neuron contains 105 identical channels 
(C) that are gated by extracellular ligand A: 

A + C Ь: AC ^ AC* 
k-1 « 

closed open 

Given that k+\ and k-\ are much faster than a and /J, the resting 
potential of the neuron is -80 mV, and channel С is permeable only 
toNa+ ([Na+]out / [Na+]in = +2), 

(a) Sketch the whole-cell current evoked by ligand A when the neu-
ron is voltage-clamped 
i. at the resting potential; and 
ii. at +50 mV. 

(b) What is (are) the approximate relaxation time constant(s) of the 
whole-cell current? 

(c) Sketch the power spectral density function (5 ( / ) vs. / in log-log 
scales) of the current noise during application of ligand A. 

6. A channel follows the following transition scheme: 

10 50 
closed — open — blocked 

100 5 

state number 3 1 2 

All transition constants are in sec"1. 
(a) What are the eigenvalues of the Q matrix for this transition 

scheme? 
(b) What are the mean open lifetime, mean blocked lifetime, and 

mean closed lifetime of the channel? 
(c) Sketch the power spectral density function S ( f ) of the current 

mediated by N of these channels. Label the cutoff frequencies 
( f c ) with appropriate values. 

7. If a channel follows the following transition scheme: 

ki кг кз 
closedi — closed2 — closed3 — open 

fc-i k.2 к-з , 

state number 4 3 2 1 
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(a) Write the infinitesimal matrix Q for this channel. 
(b) What are the mean lifetimes of the channel in each of the four 

states? 

8. A channel follows the following transition scheme: 

100 50 
closed — open — inactivated 

300 50 
state number 3 1 2 

The numbers are transition rate constants (sec-1). 

(a) What are the eigenvalues of the Q matrix for this channel? 
(b) Sketch the power spectral density function of the current me-

diated by N of these channels. What are the values of / c ? 

9. The figure below is the single-channel current trace recorded from 
an ACh-gated channel in the presence of gallamine (ACh channel 
blocker). The reversal potential of this channel is about +10 mV, 
and the channel is voltage-clamped at - 40 mV. 

0 — —I ni— nn 

/(pA) 

- 2 0 J 

I 
25 

l 
50 

I 
75 100 

I 
125 

I 
150 

I 
175 

—I— 
200 

—I 
225 

time (msec) 

(a) What is the conductance of a single open channel if the I-V 
relation of the open channel is linear? 

(b) Draw the single-channel current trace when the channel is clamp-
ed at +60 mV. 

(c) If the trace given above is representative of current traces for a 
long period of time, estimate the values of cx, /J, квХв, and к-в. 

10. A neuron contains N identical channels that can be activated by 
transmitter X. Each of these channels follows the two-state tran-
sition scheme 

a 
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The macroscopic current (N channels) activated by a brief pulse of 
transmitter X is shown in figure 10.4A. Five single-channel current 
records and their sum are shown in figure 10.4C and 10.4D. 

(a) Write the relaxation time constants of the macroscopic current 
(figure 10.4A) and of the sum of the five single-channel currents 
(figure 10.4B) in terms of the rate coefficients (a and /J). 

(b) Explain, by using the information in this chapter, why the two 
relaxation time constants are different. 

11. The figure below shows the single channel current of a ligand-gated 
channel induced by 10"4 M ligand at various voltages (Vc). The tran-
sition scheme of this channel is two state, that is, 

0 
O. 

0 
-50 

i r 

-70 

2 pA 

10 msec 

(a) If the records given are representative for current traces over 
a long period of time, estimate the values of a and /? at each 
voltage. 

(b) Plot, with appropriate values, the steady-state probability of 
channel opening with respect to membrane voltage. What is the 
steady-state probability of channel opening at Vm = - 30 mV? 
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What is the unitary conductance of this channel? 
If a neuron contains 104 of the channels shown in the figure, 
draw the whole-cell current induced by a brief "puff" of ligand 
when the cell is clamped at -70, -50, 0, +50, and +70 mV. 
Give the approximate values of the maximum current induced 
by Ю -4 M ligand at each Vc and mark the relaxation time with 
appropriate time constants (values and units). 

12. A channel follows the following transition scheme: 

10 50 
closedi — open — closed2 

100 5 
2 1 3. 

(c) 

(d) 

All transition coefficients are in sec-1. 

(a) Write the Q matrix for this channel. What are the eigenvalues 
of the Q matrix? 

(b) Sketch a histogram of the open lifetimes of this channel. What 
is the mean open lifetime? 

(c) Sketch the power spectral density function S ( f ) of the current 
mediated by N of these channels. Label the cutoff frequencies 
(fc) with appropriate values, and explain how / c ' s are deter-
mined. 

13. We mentioned that Patlak's model gave the best description of the 
Hodgkin and Huxley Na+ channel. Given the rate coefficients (in 
sec-1) of Patlak's model 

Ci 
5 

40 

20 
C2 
4 

30 

40 

(a) What are the values of ki and кг (in sec-1)? 
(b) Write the infinitesimal matrix Q for this transition scheme. 
(c) What is the mean open lifetime of this sodium channel? 
(d) In the presence of pronase (which removes inactivation), what 

is the mean open lifetime of the sodium channel? 
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14. A cell contains 105 identical channels that are gated by transmitter 
A. While voltage-clamped at - 4 0 mV, bath application of 10"4 M 
transmitter A increases the steady-state opening probability from 
0 to 0.2 and results in a steady-state current. The power spectral 
density of this current is given below. 

frequency (Hz) 

The reversal potential of these channels is +20 mV, and the single 
channel conductance is 20 pS. 

(a) What is the mean amplitude of the whole-cell current induced 
by transmitter A? 

(b) Draw the relaxation time course, with appropriate values of 
time constant(s), after transmitter A is suddenly dropped from 
10"4 M to 0 mM. 

(c) Assume these channels follow the three-state agonist binding 
scheme: 

ki fi 
A + R = AR == AR*, 

k. i « 
and k_i = 1000 sec"1, ki = 100 sec"1, a = 10 >3, Ai + Л2 = 
a + ft + fc-i. 

Write the Q matrix for these channels (each matrix element 
should be in number of transitions per second). 

15. Horn and Vanderberg (1984) showed that the Na+ channels medi-
ating action potentials (Hodgkin and Huxley's Na+ channels) can be 
fitted with the following kinetic model: 
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5 
inactivated 

closed 
4 

closed 
3 

closed 
2 

open 
1 

(a) Write the infinitesimal matrix (Q matrix) for the above transition 
scheme. 

(b) Given that a m = 100 sec"1, = 1000 sec"1, a h = 50 sec-1, 
and Ph = 100 sec-1, what is the mean open lifetime of the Na+ 

channel? 
(c) The peak current of a neuron containing 104 identical Na+ chan-

nels with the above kinetic scheme when voltage is stepped 
from -100 mV to 0 mV is 2 nA. The conductance of a single 
openNa+ channel (y) is 100 pS. What is the opening probability 
of a single Na+ channel? (ENa = +50 mV.) 



310 Synaptic Transmission I: Presynaptic 
Mechanisms 

11.1 Introduction 

Synapses1 are the principal sites for communication among neurons. Al-
though there can be electrical field interactions as well as communication 
via changes in ions in the extracellular space, synapses, both electrical and 
chemical, are specialized structures that have evolved for passing infor-
mation from one neuron to another. Electrical synapses, which are direct 
electrical connections between neurons formed by way of gap junctions, 
play important roles in cell-to-cell communication, especially among glial 
cells and among neurons during development. In the adult mammalian 
central nervous system, however, electrical synapses among principal cell 
types (e.g., pyramidal neurons) are rare. The information passed from 
one neuron to another is therefore mainly in the form of chemicals called 
neurotransmitters released from the presynaptic terminals of chemical 
synapses. 

In this and the next four chapters we will cover in some detail the physi-
ology and biophyics of synaptic transmission. We will start with the presy-
naptic side of the synapse and derive some of the classical methods for 
analyzing the stochastic nature of transmitter release. Chapter 12 will 
discuss the role of presynaptic Ca2+ in the release process, then in chap-
ter 13 we will move to the postsynaptic side of the synapse and discuss the 
mechanisms for secretion-excitation coupling. We will also discuss some 
of the biophysical principles associated with electrical synaptic transmis-
sion. In chapter 14 we will discuss the use of electrical field recordings 
for studying synaptic transmission, and in chapter 15 we will review some 
general principles and nomenclature for the study of synaptic plasticity. 

:The word synapse comes from Greek, syn, together, and haptein, to fasten, and was 
first used by Sherrington. 
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As with any treatment of an important subject, something gets omitted. 
In the case of synaptic transmission, we will not be able to present much 
of the cell or developmental biology of the synapse, the biochemistry of 
the release process, or the neurochemistry of transmitter systems. For 
these important topics the reader should refer to several excellent books 
included in the reading list. 

11.1.1 Why chemical synaptic transmission? 

Although the prevailing view in the 1940s and early 1950s was in favor 
of electrical transmission and against the idea of released chemicals at 
synapses, it is fairly easy to show that the transmission of electrical sig-
nals between neurons in the absence of a synapse (either with a direct 
connection via gap junctions or with released chemicals) is highly unfa-
vorable. Let's look at the situation of two neurons that have processes 
that are close to one another (refer to figure 11.1). Why can't the impulse 
from one neuron simply jump the gap and excite the next neuron, as was 
thought to be the case in the late 1940s? Assume that the resistance of 
the terminal membranes of neurons 1 and 2 is 1,000 MO (not unreason-
able for a small area of membrane with a resistivity on the order of 104 to 
105 fi-cm2), the input resistance of neuron 2 is 100 МП, and the resistance 
of the extracellular space in the narrow gap between the processes of the 
two neurons is 1 MQ. Analysis of this relatively simple circuit yields an 
attenuation of potential from neuron 1 to neuron 2 by about 4 orders of 
magnitude, or about 1/104 (the analysis of this circuit is left as a home-
work problem). Even if one reduced the gap between the two membranes 
such that the extracellular resistance increased to 10 МП, the attenuation 
would still be about 1/103, that is, for each 100 mV in neuron 1, about 
100 /JV would make it to neuron 2. Admittedly, this analysis assumes the 
steady state and ignores transient signals where membrane capacitance 
plays a role, but the point is that without some means of coupling one 
neuron to another, very little transfer of electrical events is likely to take 
place. 

In the case of an electrical synapse, there is a direct connection from 
one neuron to another by way of a channel or gap junction. This channel 
reduces the resistance across the two terminal membranes that we had 
in the previous example, but even more importantly, it eliminates the 
electrical shunting by the extracellular space. The circuit representation 
of an electrical synapse is schematized in figure 11.2. The attenuation of 
potential from neuron 1 to neuron 2 is now only about 1/10. 
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Figure 11.1 Schematic for the transfer of electrical signals between neurons in the ab-
sence of any direct electrical connections. 

Figure 11.2 Transfer of electrical signals between neurons through a gap junction. 

Obviously, with a direct connection there is a much better transfer of 
electrical events between neurons. The coupling, however, is relatively 
fixed, and this limits the capabilities (or modifiability) of the system. Also, 
transmission is sign conserving and the durations of pre- and postsynap-
tic events are roughly the same (the duration of the postsynaptic event 
depends on the membrane time constant). In general, electrical synapses 
are suitable for high-speed transfer of information and for synchroniza-
tion of cells. They are also very important for signal processing in the 
retina. Some additional properties of electrical synapses will be covered 
in chapter 13. 

V W *v2 

109Q 
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11.2 Chemical transmission 

active zone 

Figure 11.3 Schematic diagram of a synapse with an action potential in the presynaptic 
terminal and an EPSP in the postsynaptic cell. 

For the remainder of this chapter and the next chapter, we will concen-
trate exclusively on synaptic transmission at chemical-releasing synapses. 
Most of what we know about synaptic transmission was gleaned from the 
study of two preparations: the neuromuscular junction (either the neu-
romuscular junction of a vertebrate such as the frog, or the invertebrate 
crayfish neuromuscular junction) and the squid giant synapse. The parts 
of a typical synapse are schematized in figure 11.3. The presynaptic axon 
can be myelinated or unmyelinated. The active zone contains the release 
sites for the neurotransmitter on the presynaptic side and the neurotrans-
mitter receptors on the postsynaptic side. There is a narrow gap or cleft 
between the pre- and postsynaptic membranes. In general, the sequence 
of events at a synapse during neurotransmission is listed below: 

1. Action potential in nerve: The action potential propagates down 
the axon and then invades the presynaptic terminal. The action po-
tential in the axon is primarily dependent on Na+ and K+ channels. 

2. Action potential in terminal: The action potential invades the ter-
minal, presumably in a nondecremental fashion. There are many 
voltage-gated channels in the presynaptic terminal activated by the 
invasion of the action potential (e.g., Na+, K+, and Ca2+) although the 
exact types of channels are largely unknown. The depolarization of 
the terminal by the action potential activates (at least) voltage-gated 
Ca2+ channels, allowing the entry of Ca2+ ions. 



11.2. Chemical transmission 291 

3. Fusion of vesicle to membrane; release of chemical: The entry 
of Ca2+ ions into the terminal near the release sites triggers some 
unknown sequence of events leading to the fusion to the plasma 
membrane of vesicles containing neurotransmitters. The fusion of 
vesicles causes release of one or more chemicals into the synaptic 
cleft. This process is also called exocytosis. 

4. Diffusion: The neurotransmitters diffuse across the cleft and make 
contact with the postsynaptic membrane. 

5. Binding to receptor: The neurotransmitter molecules bind to spe-
cialized receptors in the postsynaptic membrane. 

6. Gating of ion channels: The binding of transmitter molecules to 
the receptors causes the rapid opening of ion channels. The open-
ing of the channels causes a change in the membrane potential (ei-
ther depolarization or hyperpolarization) of the postsynaptic neu-
ron. At some synapses the binding of neurotransmitters to receptors 
does not directly gate ion channels. Instead, the activation of recep-
tors triggers either the release of second-messenger molecules into 
the cytoplasm of the postsynaptic neuron, which then modulate ion 
channels, or the activation of GTP-binding proteins that couple to 
ion channels in the membrane and alter their function. The indirect 
coupling of neurotransmitters to ion channels through either sec-
ond messengers or G proteins generally produces slower synaptic 
responses than those produced by the direct gating of channels by 
neurotransmitters. 

7. Recycling of vesicles: After exocytosis the vesicle membrane gets 
pinched off from the plasma membrane to reform vesicles in a pro-
cess called endocytosis. 

Steps 1-6 above can take place in 0.5-1 msec at many synapses. In fact, 
at some insect neuromuscular junctions transmission can take place in 
less than 100 /i/sec. As mentioned above, there are two classical prepa-
rations for studying synaptic transmission: the neuromuscular junction 
and the squid giant synapse. Each has its own advantages and disadvan-
tages. The vertebrate neuromuscular junction has the advantage of allow-
ing one to record the spontaneous release of transmitters. Experiments 
at the neuromuscular junction led to the idea that transmitter release is 
quantal in nature. We will develop the theory for the quantal release of 
neurotransmitters in the following sections. 
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11.3 Experiments at the neuromuscular junction 

If one places a microelectrode into a muscle fiber near the end plate, one 
can record spontaneous depolarizations, as depicted in figure 11.4. These 
spontaneous depolarizations are called miniature end-plate potentials or 
mEPPs, and they appear to occur at random intervals that average around 
1 per sec. A single mEPP results from the release of a neurotransmitter-
containing vesicle from the presynaptic terminal. If the amplitudes of all 
of the mEPPs recorded over a given time period (say 10 min) are mea-
sured and used to construct an amplitude histogram, one obtains a sim-
ple, unimodal distribution such as that illustrated in figure 11.5. The 
mean amplitude of all of the mEPPs recorded over that time period in this 
fictitious experiment was around 0.4 mV. The variance in the histogram 
may be due to many factors, such as the variance in the amount of trans-
mitter in each vesicle, the amount of transmitter molecules binding to 
receptors, the number of postsynaptic receptors, and the probability of 
channel opening after binding a molecule of transmitter. 
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Examples of spontaneous, miniature end-plate potentials (mEPPs). 
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Figure 11.5 Amplitude histogram of spontaneous mEPPs. 

Let us now do a slightly different experiment at this fictitious neuromus-
cular junction. First, we will add a high concentration of Mg2+ ions to the 
bath and at the same time lower the Ca2+ concentration. This change in 
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the divalent cation concentrations reduces neuromuscular transmission 
(the reasons for this will become clear in the next chapter). Stimulation 
of the nerve innervating the muscle fiber elicits depolarizations (called 
end-plate potentials or EPPs) that fluctuate in amplitude from trial to trial. 
Such an experiment is illustrated in figure 11.6. In the early 1950s Castillo 
and Katz did exactly the kinds of experiments described here. They ob-
served that the fluctuation in amplitude of the EPPs appeared to average 
around 0.4 mV, and suggested that the EPP was composed of unit multi-
ples of mEPPs. They hypothesized that the fluctuation of EPP amplitude 
was due to a variation from trial to trial in the number of mEPPs (or quanta) 
released. This so-called quantum hypothesis is one of the cornerstones of 
our understanding of synaptic transmission. We will present in the fol-
lowing sections the theory and mathematics underlying this extremely 
important hypothesis. 

0 20 40 60 

time (msec) 

Figure 11.6 Evoked responses (EPPs) are superimposed to illustrate the variability in 
amplitude from trial to trial. The arrow indicates the time of nerve stimulation. 

In presenting the theory underlying the quantum hypothesis, we will first 
derive the equations describing the spontaneous release of transmitter 
in the form of mEPPs. We will then show how these equations can be 
extended to the case where there is a transient increase in probability of 
release following an action potential in the presynaptic fiber. Many of the 
equations and much of the theory (i.e., probability theory) are similar to 
those presented for single channels in chapter 9 (see also Stein 1980). As 
always, there are a number of assumptions, which are listed below. 

1. n units (or sites) are available for release of transmitter with only a 
single release (i.e., single vesicle) occurring at each site. Without an 
action potential there is an extremely small but finite probability of 
release at each release site. This very small probabililty of release 

2.5 и 

11.4 Statistical treatment of quantum hypothesis 
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is what leads to the infrequent appearance of a mEPP. Following 
an action potential, however, the probability of release is greatly 
increased for a brief period of time. This probability is assumed to 
be uniform over all release sites and has an average value of p (per 
action potential). The mean number of units released per action 
potential is m = np. If the probability of release at any release site 
is p and the probability is uniform over all release sites, then p = p. 

2. The amount of transmitter per unit of release is rate limiting. In 
other words, there are many more receptors on the postsynaptic 
membrane than there are transmitter molecules per unit of release. 
This also leads to the assumption that the variability in the ampli-
tude of the mEPP is due to the variability in the number of transmit-
ter molecules that make up each unit of release. (As we will see, this 
is an important assumption that may not be true in all cases.) 

3. With low Ca2+ and high Mg2+ in the bath, p is small. 
4. For now we will assume that n is large. 
5. The release of one unit of transmitter is independent of the release 

of any other units ox transmitter. This assumption leads to the idea 
that the release process is the summation of a number of indepen-
dent events. This is an important assumption. 

6. One unit of transmitter (vesicle) release will be called a quantum. 

As was illustrated above, transmitter release occurs spontaneously as 
well as being evoked by nerve stimulation. From the assumption of inde-
pendent events for release, we will first derive an equation that describes 
spontaneous release of transmitter. We will then extend that equation to 
one that describes evoked release. 

11.4.1 Spontaneous release 

Let us assume an average release rate of mEPPs of r /sec. Referring to the 
time line in figure 11.7, a release occurs at t = 0. We want to derive an 
equation that describes the probability of another release occurring, as a 
function of time, following this release. As we will see, this equation will 
describe the distribution of intervals between successive mEPPs. 

The probability of one release in At is rAt (for small r and small At) 
while the probability of no release is 1 - rAt. Using the terminology 
presented in chapter 9, the probability of 0 quanta released in t + At is 

P(0,t + At) =P(0, t ) • (1 - rAt). (11.4.1) 
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I 1 1 
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time 
Figure 11.7 Time between successive mEPPs. One mEPP occurs at time 0 and another 
at time t + At. 

Rearranging, 

P(0,t + At) _ P(0,t) rP(0, t)At 
At " At At 

and 
P(0, t + At) - P(0, t) 

(11.4.2) 

At 
As At - 0, 

= - rP(0 , t). (11.4.3) 

^ P(0, t + At) - P(0,t) _ = _r 
At—о At dt 

This is a simple first-order differential equation where we can solve for 
P(0, t) and obtain 

P(0,t) = e~rt, (11.4.5) 

where P(0,0) = e° = 1. 
We have derived this equation so that we can use it to derive what we 

are really interested in, that is, the probability of 1 quantum released in 
t + At, as At approaches zero. This can be determined by 

P(l , t + At) = P(l , t) + P(0, t) • P(l , At). (11.4.6) 

Remember from chapter 9 that the probability density function is simply 
the derivative of the probability. The probability density can be obtained 
from equation 11.4.6 by 

d[P(l,t)] .. P ( l , t + A t ) - P ( l , t ) P(l , At) 
Л = 11111 77 =P(0, t) — dt At-о At At 

-rt ^At 
= e 

At 
= re~rt = fi(t). (11.4.7) 

The probability density function for the intervals between releases is there-
fore / i ( t ) (see 2). 
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Figure 11.8 Probability density for intervals between successive mEPPs. 
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Figure 11.9 Measurement of intervals between successive mEPPs. 

Equation 11.4.7 is plotted in figure 11.8 and is an important test of our 
assumption of independent release sites (assumption 5). If we measure 
the intervals between successive releases for a large number of mEPPs 
(depicted in figure 11.9), then these intervals should be distributed expo-
nentially with the rate constant equal to r , the mean rate of release. If 
not, then our assumption of independence may be inappropriate.3 

In addition to the intervals between successive releases, we may want 
to know something about the intervals between multiple releases—for 
example, the time from one release to the second, third, or some other, 
later release. This can easily be derived from equation 11.4.7, and the 
time line for this situation is illustrated in figure 11.10. 

time 

Figure 11.10 Time between multiple mEPPs. One mEPP occurs at time 0, a second at 
time u, and a third at time t. 

To determine the probability density function for the time to the second 
release, we must consider all possible values of u, the time between suc-
cessive releases. In other words, one release must occur in time и (with 
probability f\ (u)) and another in time t - и (with probability f\(t - и)), 
and the probability of these two occurring is the product of the individual 
probabilities. But since the first release can occur at any u, we must take 

2 This was obtained by letting the beginning of each mEPP be t = 0 and measuring the 
time to the next release. 

3The concept of independent events was defined as a random, memoryless process in 
chapter 9. 

г 
0 и 
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into account all possible values of u. To do this we integrate (or summate 
over all u) 

hit) = f М1-и)Ми)с1и. (11.4.8) Jo 
To extend this to the time to the third release, we have the probability of 
two events occurring in time и times the probability of one event occur-
ring in time t - u . Again, however, we must take into account all possible 
values of и by integrating 

hit) = f fi(t-u)f2(u)du. (11.4.9) 
Jo 

This can be stated more generally as 

fk(t)= f / i ( t ~ t t ) / f c _ i ( u ) d u . (11.4.10) 
Jo 

These integrals are called convolution integrals. One method of solution, 
which is convenient in this case, uses Laplace transforms. 

In general, the Laplace transform of fk(t) = £[fk(t)] = F kis) and the 
inverse Laplace transform of Ffc(s) = = fkit) . The Laplace 
transform of equation 11.4.8 is 

F2(5)=FI(5)-FI(5) = [FI(5)]2, 

where this is the well-known property of the Laplace transform of a con-
volution integral (see book on Laplace transforms, e.g., Bracewell 1978), 
and, similarly, for equation 11.4.9 

F3(^)=FI(5)-[Fi(5)]2 = [FI(5)]3, 

which, for equation 11.4.10, leads to 

*kis) = [Fi(s)]fc. (11.4.11) 

From a table of Laplace transforms, 

£ [ re" r t ] =r/is + r) , so 

F kis) = rk/is + r)k. 

From a table of inverse Laplace transforms, we get fkit) by looking up 
£- \ |~rk/(s + j j^s leads to the solution 
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time 

Figure 11.11 Gamma distribution for different к with an average rate of release (r) of 
1/sec. Gamma distribution represents the distribution of intervals between some number 
(k) of mEPPs. 

ykfk-lp-rt 
fk(t) = ( f c _ 1 ) | , (11.4.12) 

where fk(t) is the probability density function, ifk(t) is also called a 
gamma distribution, because the denominator (к -1 ) ! is the gamma func-
tion of к or Г(к).) fk(t) is the probability of the fcth release happening in 
time t. (Remember that fToofk(t)dt = 1.) fk(t) is plotted in figure 11.11 
for several different к's. The curve for к = 1 is the same as that plotted 
in figure 11.8. 

As к gets large, fk(t) becomes a Gaussian or normal distribution. This 
would represent the probability density for the time for a large number of 
releases. For example, suppose you wanted to know how long you would 
have to wait for 10 releases to occur. Looking at the curve for к = 10 in 
figure 11.11, it would take, on average, slightly less than 10 sec for 10 
releases. Sometimes it would take as little as 5 sec or as long as 15 sec, 
and so forth. Over any 20 sec period, however, the probability is very high 
that you would always observe at least 10 releases. 

11.4.2 Evoked release 

11.4.2.1 Poisson model We will now use some of the equations derived 
above for spontaneous release to explore quantitative aspects of evoked 
release. Evoked release occurs when multiple quanta of transmitter are 
released in a brief interval of time following an action potential. During 
this period the probability of release and the average rate of release are 
very high (i.e., r is large). In the case of evoked release, we are no longer 
interested in the distributions of time intervals between some number 
of releases, because essentially all of the releases we are interested in 
take place in a very brief period of time. Instead, given a high rate of 
release following an action potential, we want to know the probability of 
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a certain number of quanta (fe) being released. We can now define a new 
variable, m, which is the mean number of quanta released following an 
action potential, or, over many trials, m = r t, where t is the time following 
an action potential. The probability that fe quanta are released, or P(k), 
can be obtained by first substituting for r t into equation 11.4.12 and then 
integrating from 0 to t (total probability), or 

f* rktk~le~m ^ ^(fc) = JQ dt ( fe- 1)! 
rktke-m 

(11.4.13) 
fe! ' 

Again letting m = rt = mean number of quanta released in time t (re-
member that r is much higher immediately following an action potential 
than under spontaneous release conditions), we obtain the well-known 
Poisson distribution 

P(k) = 1 I L £ r - ' (11.4.14) 

where the variance = mean, or a2 = m. Also, 

rm - % 
where АГ& is the number of times one observes fe quanta released and N 
is the total number of trials. 

The above is only one of many ways for deriving the Poisson distri-
bution. What is particularly illustrative with this derivation is that we 
started with a description of the stochastic nature of spontaneous release 
and merely extended that description to release immediately following 
an action potential. The only difference between the two cases is that for 
evoked release the rate of release is very high following an action poten-
tial and the time window over which we are observing release is small. 
P(fe) is the probability that fe quanta are released over a period of time 
(following an action potential) when the mean number released per action 
potential is т. m is called the quantal content. 

The Poisson distribution (for different m) is illustrated in figure 11.12. 
It should be noted that it is very similar to that in figure 11.11. Equa-
tion 11.4.14 and figure 11.12 tell us the total probability that some num-
ber of quanta will be released following an action potential. 

11.4.2.2 Binomial model In order for the Poisson distribution to de-
scribe transmitter release, there must be a large number of quanta that 
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Figure 11.12 Poisson distribution for different m. The ordinate represents the total 
probability that some number of quanta (k) will be released following an action potential 
for a given m. 

can be released (large n), each with low probability for release (small p). 
This is seldom the case except under special low-release conditions (e.g., 
low Ca2+, high Mg2+). If this is not the case, then we must use a binomial 
model. This can be derived quite easily. 

Let the number of quanta (or number of release sites) = n, and let p = 
average probability of a quantum being released at any one site. Assume 
that p is uniform over all release sites and that n and p do not vary 
with time (that is, they are stationary). The probability of к quanta being 
released requires that there be к successes with probability pk and n - к 
failures with probability (1 - p)n~k. From elementary probability theory, 
the number of ways to combine к and n - к is given by 

This is the binomial distribution (where m = np and a2 = m( 1 - p)). 
Pn(k) is the probability that к quanta will be released, where the proba-
bility is p for each of n release sites. In figure 11.13, the binomial distri-
bution is plotted for p = 0.1 and n = 1 to 100. 

The binomial model is generally more representative of the release pro-
cess, especially for higher values of quantal content (m). The binomial 
model also reduces to the Poisson model as n — oo (and p — 0). The 
proof of this is left as a homework exercise. 

The assumptions of uniformity and stationarity, however, provide some-
what severe restrictions. In simulations of quantal release, Brown et al. 
(1976) have shown that estimates of m using simple binomial models can 

(11.4.15) 

so 

(11.4.16) 
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Figure 11.13 Binomial distribution. The ordinate represents the total probability that 
some number of quanta will be released following an action potential, p = 0.1 and n 
varies from 1 to 100. 

be significantly in error if there is nonuniformity or nonstationarity at the 
release sites. In case of nonuniformity or nonstationarity, a compound bi-
nomial model must be used in which the equation includes the individual 
values of p at each of n release sites. 

11.4.2.3 Examples Now that we have derived equations for sponta-
neous and evoked release, we will work through some examples. These 
examples follow closely from the actual experiments of Fatt and Katz 
(1952), Castillo and Katz (1954a), and Boyd and Martin (1956) at the neu-
romuscular junction. 

Assume that you are recording at the muscle end plate and stimulating 
the motor nerve under low-release conditions. If the EPPs from all of the 
trials are superimposed, results similar to those illustrated in figure 11.14 
might be obtained. From inspection of the figure, it appears that some-
times there is no release (a failure), while at other times the amplitudes of 
the EPPs appear to fluctuate among values separated by a nearly constant 
amount. 

Let us also assume that you have previously measured spontaneous 
mEPPs and found that the interval histogram is exponential (i.e., tested 
for independent release) and that the mean amplitude is 0.4 mV. You 
want to determine the mean quantal content, m. It would be desirable 
to use the Poisson model, as it has only one unknown (m, as opposed to 
the binomial model which has at least two unknowns, n and p), but it will 
also be necessary to test the applicability of this model. 

A direct calculation for m can be obtained from the assumption that 
the EPP is composed of unit multiples of the mEPP, which are assumed to 
be released at the same time and to add linearly with each other. This can 
be stated mathematically as follows: 
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Figure 11.14 Superimposed EPPs from successive trials. The arrow indicates the time 
of nerve stimulation. 

V = m-q, (11.4.17) 

where V is the mean amplitude of the EPP and q is the mean amplitude 
of the mEPP (i.e., quantal size). Such a direct calculation for ж does not 
depend on any assumption of the statistic used to describe the release 
process (i.e., Poisson or binomial), ж, by this direct method, is simply 

mean EPP V . 
md = — = (11.4.18) mean mEPP q 

First test for Poisson model As before, N* = number of observations at 
a given amplitude and N = total number of observations. One way to test 
for the Poisson model is to make a calculation for ж using the Poisson 
model and compare this to a calculation using the direct method. This can 
be done by using the Poisson equation to predict the number of failures. 
The number of failures (No) by the Poisson equation is 

m0 e-m N 

PO = q] = дг, where 

No = Ne~m, or 
7П/ = ln(JV/No). (11.4.19) 

If the Poisson model is appropriate for this experiment, then mu should 
equal ж / , or 

^ = ln(N/N0). 
a 
Taking data from a number of different experiments, a plot of ж / from 
the method of failures vs. ma from the direct method should be a straight 
line if release follows a Poisson model. Such a plot is illustrated in fig-
ure 11.15. The linear relationship will hold only when ж is small and 
there is linear summation of individual quanta. 
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m f =ln(N/N0) 

md = V/q 

Figure 11.15 Ideal relationship between m from method of failures and m from direct 
method for different experiments. 

Second test for Poisson model Figure 11.16 illustrates an amplitude 
histogram of spontaneous mEPPs. This histogram is reasonably well fit 
by a Gaussian of the form 

1 
(Гл/2тт 

where ц is the mean and a 2 is the variance. 

40-

(11.4.20) 
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Figure 11.16 Amplitude histogram of spontaneous mEPPs. 

Given a number of trials of evoked EPPs such as those illustrated in fig-
ure 11.14, an amplitude histogram of evoked release can be constructed. 
If the release process follows Poisson statistics, then we should be able to 
predict the number of times we would measure 1 quantum (A/i), 2 quanta 
(N2), 3 quanta (N3), and so forth. We can use these calculations as well as 
the information we already have about mEPPs to try and fit the histogram 
with a theoretical curve such as illustrated in figure 11.17. The methods 
for this are outlined below. 

The number of times one quantum is released is (calculated using equa-
tion 11.4.2.3) 

N1 = (me~m)N = mJV0. (11.4.21) 
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Figure 11.17 Histogram of evoked release. (Adapted from Boyd and Martin 1956.) 

If the Poisson model is valid, then the shape of the Gaussian curve that 
should fit the first peak in the histogram will have its mean centered at 
0.4 mV, its variance equal to the variance of the Gaussian used to fit the 
mEPP histogram (a2), and its area should overlap a portion of the his-
togram whose total number of observations are equal to the calculation 
of N\ above. 

Similarly for N2 and N3, 

N2 = 

and 

N3 = 

m 2 e - m 

m3 e-m 

m N= — 

m 

N1; o~2 = 2a 2 

N2; 03 = 3a2 

The second and third peaks in the histogram should be fit by Gaussians 
with their means centered at 0.8 mV (2 x q) and 1.2 mV (3 x q), their 
variances equal to 2 and 3 x o-2, respectively, and tl^eir areas should en-
compass numbers of observations given by the calculations for N2 and 
N3 shown above. This process is continued for as many peaks as possi-
ble in the evoked histogram and is illustrated in figure 11.18. The total 
curve used to fit the histogram in figure 11.17 is the sum of the individual 
Gaussians in figure 11.18. The ability of the curve to fit the histograms is 
a second test of the Poisson model. 

One assumption of this analysis, however, is that the variance at each ol 
the release sites is equal to the variance of the population of mEPPs. For 
the neuromuscular junction this assumption appears to hold, and there-
fore the variance of each peak in the histogram is equal to the number of 
quanta that make up the peak times the variance of the mEPPs and thus 
gets bigger for a larger number of releases. In fact, when m gets large 
the variance can actually be greater than the mean amplitude of the EPP, 
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Figure 11.18 Gaussian curves used to fit the histogram of evoked release shown in 
figure 11.17. (Adapted from Boyd and Martin 1956.) 

which would make the observation of peaks in the histogram difficult (see 
figure 11.17). This may or may not be true for other synapses. One could 
easily imagine the variance being different at individual release sites, in 
which case the variance of the peaks in the histogram would be less than 
the multiple of the mEPP variance. 

Third test for Poisson model Remember that for a Poisson distribution, 
cr2 = mean. When we applied the Poisson model to transmitter release, 
the mean was equal to m, the mean quantal content. Therefore, 

a 2 = m, or a = Vm. (11.4.22) 

Also, from elementary statistics, the coefficient of variation, CV, is defined 
as: 

CV = standard deviation/mean = сг/mean. (11.4.23) 

For the Poisson model we can therefore define the CV as follows: 

CV = a/m, (11.4.24) 

or 

CV = 1 
л/т 

1_ 
cr' (11.4.25) 

Remember that V = m - q, and therefore CV is also given by 

CV = | , (11.4.26) 

where cr is the standard deviation around the mean of the EPP amplitude 
distribution, and thus 

1 V2 
mcv = 7^77 = - 7 . (11.4.27) CV 2 
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log lmd] 

Figure 11.19 Third test of Poisson model and effect of nonlinear summation at high 
release rates. The solid line is the theoretical curve while the dotted line represents ex-
perimental data. The deviation of the two at large m is due to nonlinear summation (see 
text for further details). (Adapted from Castillo and Katz 1954a.) 

The third test of the Poisson model is to calculate the a and mean 
amplitude from each peak (or class) of the amplitude distribution of EPPs 
and compare to the m calculated for each peak by the direct method 

V m d = 
<1 

From equation 11.4.25 we can derive the following: 

log(CV) = - (1 /2) • log(m). 

A plot of log(CV) vs. log(rrid) for different peaks should be a straight line 
with slope of -1/2. An example is illustrated in figure 11.19. 

The dotted line (representing the data points) in figure 11.19 deviates 
from the theoretical curve at high rates of release. This deviation is caused 
by nonlinear summation of the individual quanta that make up the EPP. 
Nonlinear summation of synaptic responses is due to the fact that the driv-
ing force for the EPPs decreases with the synaptic depolarization. (This 
will be discussed more fully in chapter 13.) The error associated with 
nonlinear summation at high release rates can be significant. A method 
of correcting for nonlinear summation was derived by Martin (1955) and 
is given by 

VEPPKES - VEPP) = mGpeak/GN, (11.4.28) 

where VEPP is the EPP amplitude, ES is the synaptic equilibrium potential, 
Gpeak is the peak synaptic conductance change, GM is the input conduc-
tance of the cell, and m is the quantal content. The above equation will 
make the curve in figure 11.19 approximately linear at high rates of re-
lease. A more accurate method of correction is quite complicated (Stevens 
1976), and so the best way to avoid the problem of nonlinear summationis 
to use voltage-clamp techniques so that the driving force for the synaptic 
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current stays constant, regardless of quantal content (see also chapter 
13). 

Another source of nonlinear summation and error in estimates of m can 
occur if individual quanta are not released at the same time. This leads to 
what are called latency fluctuations. Latency fluctuations can also affect 
the rise time of the synaptic response, particularly the rise time of the 
synaptic current when using a voltage clamp. 

In summary, if one wishes to determine m at a particular synapse using 
the Poisson model, one can use three methods: the direct method, the 
method of failures, and the coefficient of variation (CV) method. If the 
Poisson model is appropriate, then the m calculated with each method 
should be equivalent. Remember, however, that the direct method is not 
dependent on the Poisson model. For review, the three methods and their 
equations for the Poisson model are 

1. Direct method: т д = 
2. Failure method: m / = ln(iV/No). 

i v2 
3. CV method: mcv = cV2 = 

Binomial model The assumptions necessary for the use of Poisson statis-
tics (large n small p resulting in small m) hold only under very special 
conditions. It was originally believed that n might be equal to the number 
of vesicles at a release site, which is often quite large, p, however, is usu-
ally small only under abnormal conditions (e.g., with high Mg2+ and low 
Ca2+). It is now generally believed that n = the number of active zones 
at a synapse (see figure 11.20). This idea was derived from experiments 
where the morphology of the synapse was correlated with the physiology. 
The number of active zones at a synapse can be a relatively small number, 
thus necessitating the use of binomial statistics. 

There are several ways of doing a quantal analysis when the Poisson 
model cannot be assumed. Four methods are outlined below. 

1. Direct method: 

V m d = 

Remember that this method does not depend on the release statistic. 
For large m, however, nonlinear summation can be significant and 
thus voltage clamping should be used if possible. 
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Figure 11.20 Number of release sites equals number of active zones. Upper diagram is 
that of a neuromuscular junction. The bottom diagrams represent three central synapses. 
The statistical parameter n would be 1 for the left bouton and 4 for the middle and righi 
boutons. (From Korn and Faber 1991.) 

2. Method of failures: From the binomial model, 

Since there are now two unknowns in this equation, the use of this 
method requires an independent measure of p. Unfortunately, there 
are few satisfactory ways of obtaining p. 

3. CV method: From the binomial model, 

4. Histogram fitting: With this method the evoked histogram is besl 
fitted using a simple or compound binomial model with Gaussian 
curves representing multiple units of transmitter release. The sta 
tistical methods for obtaining a best fit include maximum likelihood 
and deconvolution methods (see Redman 1990). 

11.4.2.4 Requirements for quantal analysis In general, there are a num-
ber of requirements for doing a proper quantal analysis (after Korn and 
Faber 1991). These include 

m / = E o T p ) t o ( N o / N ) " (11.4.29) 

mCv = (1 - p)/CV2 = (1 - (11.4.30) 
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1. Stimulation of a single axon and the measurement of the spike in 
the presynaptic terminal. This will avoid uncertainties associated 
with variability of spike generation or failure of spikes to invade a 
particular terminal. 

2. A sufficiently low noise level so that miniature events and the first 
peak in evoked histograms are clearly separate from the noise (no 
overlap in histograms). Otherwise, a decrease in failures could be 
due to the emergence from the noise of previously undetectable 
evoked events. Also, direct methods become possible. 

3. Resolution of single quantal events. Recording must be done suffi-
ciently close to release sites to avoid filtering due to cable properties. 

4. Quantal events all at the same electrotontic location. If events are 
filtered, they must at least be at the same electrotonic distance. 

5. Direct information on variation in quantal amplitude at single re-
lease sites. If postsynaptic receptors are saturated by the released 
transmitter (see section 11.6), data maybe difficult to interpret. 

6. Morphological identification of synaptic active zones, the potential 
sites of release. 

7. Information on whether p is uniform at all release sites. This will 
determine whether a simple or compound binomial model should 
be used. 

There is a large literature on quantal analysis. The subject is interesting 
and important, but at the same time quite complicated. The interested 
reader is referred to many excellent reviews in the reading list. 

11.5 Use-dependent synaptic plasticities 

11.5.1 Facilitation, post-tetanic potentiation, and depression 

Use-dependent synaptic plasticity refers to the change in the strength of a 
synaptic connection depending on the prior use or activity at that synapse. 
Three common forms of short-term plasticity are called facilitation, post-
tetanic potentiation or PTP, and depression. 

Facilitation Facilitation can be studied by giving a pair of stimuli to the 
motor nerve terminal under low-release conditions (low Ca2+, high Mg2+) 
and plotting the fractional increase in amplitude of the second response 
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Figure 11.21 Paired-pulse facilitation (left) and a semi-log plot of the change in ampli-
tude of the EPPs vs. time (right). The time constants for facilitation can be obtained by 
peeling (see chapter 4). 

as a function of the interval between the pair of stimuli. For obvious 
reasons, this is also called paired-pulse facilitation. 

At the motor end plate, where facilitation has been studied most exten-
sively, a semilog plot of the fractional increase in amplitude of the EPP 
yields a double exponential curve indicating that there are two phases to 
facilitation characterized by different time constants. These were called 
Fi and F2 (see figure 11.21). Magleby and colleagues (reviewed in Magleby 
1987) have done careful studies of these different phases of facilitation 
using stimulus trains of different frequencies and measuring the ampli-
tude of the EPP (compared to the initial EPP) as a function of time during 
the train. They found that the time constants were: 

тр1 ^ 50 msec and тf2 - 300 msec. 

Facilitation can be expressed mathematically as 
EPP(t) - EPPp 

= rar> ' (11.5.31) EPPo 
where F(t) is the amount of facilitation and EPP(t) is the facilitated EPP 
at time t following the control EPP (EPP0).4 

For relatively small amounts of facilitation (F < 2), F(t) is approxi-
mately the linear sum of the facilitation from each action potential, or 

n 
Fit) = £ / ( t i ) , (11.5.32) 

i=1 

4The same equation might hold for any synapse by merely replacing EPP with EI\SI\ 
IPSP, EPSC, or IPSC. 
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Figure 11.22 Measurement and time course of augmentation and PTP. (Note that the 
first EPP after the train is reduced in amplitude because of depression and is thus not 
included in measurements of PTP.) 

where f it i) is the incremental facilitation contributed by each action po-
tential. At the neuromuscular junction f ( t ) is given by 

f i t ) = Fxe-{t/SO) + F2e- ( t / 3 0 0 \ (11.5.33) 

where F\ and F2 are the maximum amounts of each of the phases of fa-
cilitation, and t is time (in msec, in this example). 

Castillo and Katz (1954b) were the first to perform a quantal analysis 
during facilitation and found that there was a significant decrease in the 
number of failures associated with the second response—consistent with 
a hypothesis of an increase in the number of quanta (m) released during 
the second stimulus. They suggested that facilitation is due to an in-
creased probability of release ip) at each release site and thus represents 
a presynaptic change at the synapse. 

PTP One can study PTP by giving a train of stimuli and comparing the 
amplitude of the EPP before to the EPP at various times after the train. As 
with facilitation, a semilog plot of the fractional increase in amplitude of 
the EPP with time after the train often yields a double exponential decay. 
The earlier phase has been called augmentation, while the later phase is 
what most people call PTP. The decay time constant of augmentation is 
s* 7 sec; that for PTP is ^ 1 min. The two phases to PTP are described by 

E P P ( ^ " E P P ° = A<T"7 + Ре-"™, (11.5.34) 
EPPo 

where EPP(t) and EPPo are the same as in equation 11.5.31, A and P are 
the maximum values of augmentation and PTP, respectively, and t is in 
seconds. 

Facilitation, augmentation, and PTP are all believed to be due to an in-
crease in quantal content im), possibly through an increase in p, and thus 
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represent presynaptic changes in release mechanisms. All three also in-
volve presynaptic Ca2+ in some way. Katz and Miledi (1968) proposed 
what has been called the residual Ca2+ hypothesis to explain these forms 
of synaptic plasticity. Simply stated, this hypothesis suggests that resid-
ual Ca2+ in the terminal from the conditioning train or impulse adds non-
linearly to the Ca2+ influx during the test impulse to increase release. This 
hypothesis will be discussed more fully in the next chapter when the role 
of Ca2+ in the release process is presented. For reasons that are not un-
derstood, Ba2+ and Sr2+, when replacing Ca2+ in the bath, have differential 
effects on these various components of synaptic plasticity. Sr2+ increases 
the magnitude and decay time of F2, while Ba2 increases the magnitude 
of augmentation (Zengel and Magleby, 1980,1981). 

Depression Depression in the amplitude of the EPP occurs during repet-
itive stimulation under conditions of normal or increased rates of release. 
Castillo and Katz also studied quantal properties of synaptic depression 
and found that mEPP amplitude was unchanged during the period of de-
pression, suggesting that depression is due to a decrease in the number 
of released quanta (i.e., quantal content, m). For a variety of reasons, they 
and others suggest that there is a decrease in the number of release sites 
(n). Synaptic depression has both fast and slow components. Following 
brief trains, or even a single impulse under greatly elevated Ca2+, a test 
EPP 100 msec after the conditioning impulse can be depressed to 15-25% 
below control values; recovery follows an exponential time course with a 
time constant of about 5 sec. This recovery has the form 

EPP(t)/EPP0 = 1 - D0e" t /T, (11.5.35) 

where EPP(t) and EPPo are the depressed and control amplitude EPPs, re-
spectively, Do is the depression immediately following the conditioning 
train or impulse (e.g., 0.15-0.25), and т is the recovery time constant. Af-
ter a longer train of impulses to the motor nerve (e.g., 3 min), a test EPP 
can be depressed to about 10% of control values and recover exponen-
tially with a time constant of about 4 min. Equation 11.5.35 can similarly 
describe this slow phase of depression. 

Although all of these forms of synaptic plasticity have been studied 
most extensively at the neuromuscular junction, they appear to also be 
present at other types of synapses as well, including synapses in the cen-
tral nervous system. The quantitative properties of synaptic plasticities 
and the similarities and differences between plasticities at the neuromus-
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Figure 11.23 Quantal analysis of LTP at crayfish neuromuscular junction (from Baxter 
et al. 1985). The traces in the upper left are the EPSPs before and after high-frequency 
stimulation. The graph in the lower left is the change in amplitude of the EPSP vs. time. The 
superimposed traces in the upper right illustrate the fluctuation in amplitudes (variance) 
of the EPSPs and the decrease in failures during LTP. The traces in the lower right show 
spontaneous mEPSPs before and during LTP. 

cular junction and those at central synapses, however, remain to be de-
termined. 

11.5.2 Long-term potentiation 

Another form of synaptic plasticity is called long-term potentiation, or 
LTP. This is a long-term change in synaptic strength observed under cer-
tain conditions at "integrating"-type synapses. (Note: An integrating syn-
apse means a synapse for which there is not one-for-one firing of pre- and 
postsynaptic neurons. To reach threshold at integrating synapses, there 
must be some form of summation of synaptic potentials. The frog neuro-
muscular junction is an example of a nonintegrating synapse because an 
action potential and muscle contraction are achieved each time the mo-
tor nerve fires. Examples of integrating synapses include most excitatory 
synapses in the central nervous system.) LTP is similar to PTP in that there 
is an increase in the amplitude of the EPSP after a brief train of stimuli. 
Whereas PTP decays within a few minutes, LTP decays over the course of 
several hours or, under certain conditions, up to a month or more. LTP is 
the best candidate mechanism available for aspects of memory, and will 
be discussed more fully in chapter 15. 

The first quantal analysis of LTP was done at a crayfish synapse. All 
three methods were employed (direct, failures, and CV) to test for changes 
in quantal content during LTP. This work nicely illustrates the use of the 
Poisson model for doing a quantal analysis. In figure 11.23 (bottom right) 
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Figure 11.24 Quantal analysis of LTP (from Baxter et al. 1985). The graphs on the left 
are frequency histograms of mEPSP amplitudes before (top) and during (bottom) LTP. The 
graphs on the right are plots of mf (mo, top) and md (mi, bottom) against m c v (тг) before 
and during LTP (different symbols). Data are consistent with a change in m and no change 
in q. 

the amplitudes of miniature excitatory postsynaptic potentials (mEPSPs) 
are illustrated before and during LTP. There is no apparent change in the 
mean amplitude (figure 11.24, left). In figure 11.24 (right) the use of the 
Poisson model, in which the quantal content, m, is calculated using the 
three methods, is illustrated. The m calculated from the three methods 
agrees favorably, justifying the use of Poisson statistics for the release» 
process. 

The results are quite clear. There is an increase in m during LTP with no 
change in q. LTP, at least at this synapse, is due to a presynaptic change 
that results in an increase in transmitter release. 

11.6 Synaptic transmission between central neurons 

Quantal analysis of LTP in hippocampus has also been performed by ii 
number of groups. As with the crayfish, most reports suggest an increase 
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Figure 11.25 The saturation of receptor hypothesis (from Edwards 1991, used by per-
mission of Nature, copyright © 1991 Macmillan Magazines Limited). The diagram on 
the left (a) is that of a neuromuscular junction in which there are many postsynaptic re-
ceptors at each release site. The diagram on the right (b) illustrates the hypothesis for 
central synapses in which there might be a limited number of receptors at each release 
site, leading to the saturation of the receptors during each quantal event. See text for 
further explanation. 

in quantal content with LTP. The principal methods utilized for these 
studies were the method of failures and the CV method. These reports 
also discuss some of the additional problems in doing a quantal analysis 
when single quantal events are either difficult to resolve or difficult to 
identify with the synapses being stimulated. As mentioned previously, 
the method of failures requires knowledge of the amplitude of a single 
quantal event. Otherwise, increases in the amplitudes of quantal events 
could appear as a decrease in failures simply because they were previ-
ously buried in the noise and appeared as failures in evoked release. Also, 
a recently proposed hypothesis for saturation of receptors raises other 
concerns about interpreting results from traditional methods of quantal 
analysis. 

Specifically, it was first suggested by Jack, Redman, and Wong and later 
by others that postsynaptic receptors are saturated by released neuro-
transmitter at central synapses (see figure 11.25). Under this hypothesis 
the number of receptors at the subsynaptic membrane, rather than for the 
amount of transmitter in each vesicle, is rate limiting for the amplitude of 
the quantal event. This would lead to little or no quantal variance at each 
release site. It has also been suggested that there may be a relatively fixed 
number of receptors at all active release sites on any particular neuron 
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Figure 11.26 Small quantal variance across release sites (from Edwards et al. 1990). 
The upper graph is a frequency histogram of evoked IPSPs from a dentate granule cell in 
normal saline; the bottom graph is from the same cell with low extracellular Ca2+ and 
high Mg2+. The Gaussian curve that fits the bottom histogram also fits each of the five 
peaks in the top histogram. The variance of each peak is small and does not appear to 
sum over multiple releases. 

(see figure 11.26). This would lead to little or no quantal variance across 
release sites. These possibilities have important functional implications 
for both the method of failures and the CV method and will require fur-
ther study. For example, there could be "silent" synapses where release 
occurs but with no postsynaptic receptors. The insertion of receptors 
would reduce the "failures" at this synapse and yet represent a postsy-
naptic change. Also, it is possible to show that if the quantal variance has 
different values at different release sites, a purely postsynaptic change 
can lead to changes in CV. 

Another hypothesis with functional implications for central synapses 
is that the conductance associated with an individual synapse may vary 
depending on its electrotonic distance from the soma (see Jack et al. 
1990). This hypothesis was derived from data in which it appeared that 
the charge measured in the soma for proximal and distal synapses was 
approximately the same. One explanation for this would be that distal 
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synapses produce larger conductance changes than proximal synapses, 
so that the same amount of charge ultimately reaches the soma from the 
two inputs. Another possibility is that distal synapses get amplified by 
their activation of voltage-gated channels in the dendrites. 

Many of the problems associated with studying the properties of central 
synapses arise from the fact that it is difficult to isolate and study indi-
vidual synapses in central neurons. It can be seen from just this rather 
brief discussion that the quantal properties of synaptic transmission in 
central neurons with complex dendritic trees will be the subject of intense 
investigation for many years to come. Reviews of some of the issues can 
be found in Stevens (1993), Jack et al. (1990), and Redman (1990). 

11.7 Summary of important concepts 

1. Poisson model. 
2. Tests for Poisson model. 
3. Binomial model. 
4. Tests for binomial model. 
5. Problems associated with quantal analyses. 
6. Facilitation and post-tetanic potentiation. 

11.8 Homework problems 

1. Show that for the binomial model 

and 

mCv = (1 - p)/CV2. 

2. (a) In an experiment in which the nerve was stimulated 500 times, 
how many observations of failure in neuromuscular transmis-
sion would be expected? Assume Poisson statistics and a mean 
quantal content of 5. 
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(b) How many observations of two quanta released would be ex-
pected during the same experiment? Use the same assump-
tions. 

3. Prove that as n — oo, but m = np = constant, the binomial distribu-
tion approaches the Poisson distribution. 

4. While recording at a frog neuromuscular junction, you measure the 
amplitudes of spontaneous synaptic events (mEPPs) at the times in-
dicated below. 

mEPP # amplitude (mV) total time (sec) interval (sec) 
1 1.0 0 -

2 1.0 0.5 0.5 
3 0.6 1.0 0.5 
4 1.1 2.0 1.0 
5 0.9 2.5 0.5 
6 0.8 4.0 1.5 
7 1.3 4.5 0.5 
8 1.0 5.5 1.0 
9 1.2 8.0 2.5 
10 1.0 9.0 1.0 
11 0.7 12.0 3.0 
12 1.0 13.0 1.0 
13 1.0 13.5 0.5 
14 1.1 15.5 2.0 
15 0.9 17.5 2.0 
16 0.9 20.0 2.5 
17 1.1 23.5 3.5 
18 1.0 27.0 3.5 
19 1.0 27.5 0.5 
20 1.1 28.0 0.5 
21 0.9 30.0 2.0 
22 1.2 31.0 1.0 
23 0.8 33.0 2.0 
24 0.7 34.5 1.5 
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mEPP # amplitude (mV) total time (sec) interval (sec) 
25 1.4 36.0 1.5 
26 1.3 38.0 2.0 
27 1.0 40.5 2.5 
28 0.9 43.0 2.5 
29 1.1 46.0 3.0 
30 1.2 49.0 3.0 
31 0.8 50.0 1.0 
32 1.0 53.5 3.5 
33 1.0 54.0 0.5 
34 1.1 55.0 1.0 
35 0.9 58.5 3.5 
36 1.0 60.5 2.0 
37 1.1 63.0 2.5 
38 1.0 66.0 3.0 
39 1.0 67.5 1.5 
40 1.2 69.0 1.5 
41 0.8 72.0 3.0 
42 1.0 73.0 1.0 
43 1.0 74.5 1.5 
44 1.1 75.0 0.5 
45 0.9 76.5 1.5 
46 0.9 82.5 6.0 
47 1.0 88.5 6.0 

(a) What is the mean amplitude of the mEPPs? 
(b) Is the occurrence of each event independent of the occurrence 

of the others? Verify your answer quantitatively with the ap-
propriate histograms. 

(c) If you could record for a long time (much longer than for the 
sample given in the table), what would be the mean rate of the 
mEPPs? 

5. A neuromuscular junction is stimulated 25 times. The amplitudes 
of the EPPs for each of the 25 trials are (in mV): 0.3, 0, 0.5, 0.7, 0, 
1.1, 1.5, 0, 1.1, 0.9, 0, 0, 1.3, 1.1, 0.5, 0.5, 0.7, 0, 0.7, 1.1, 0.5, 0.5, 0, 
0.9, 1.3. 

(a) Plot an amplitude histogram of the responses using a bin width 
of 0.2 mV. 
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(b) In other experiments you determined that the mean amplitude 
of the mEPP was 0.5 mV. Calculate m by at least two methods, 
assuming Poisson statistics for the release process. 

(c) Given your value for m, how many times would you predict that 
3 quanta would be released in an experiment in which the nerve 
was stimulated 200 times? 

6. You are voltage-clamping a neuromuscular junction at - 80 mV (per-
fect space clamp), and you measure the following end-plate currents 
in response to low-frequency nerve stimulation: (EPCs, in nA) 0.3, 
0.5, 0.7, 1.1, 1.5, 1.1, 0.9, 1.3, 1.1, 0.5, 0.5, 0.7, 0.7, 1.1, 0.5, 0.5, 0.9, 

(a) If you assume that Es = 0 mV, what is the approximate synaptic 
conductance? 

(b) Without any knowledge about miniature EPCs, what is the mean 
number of quanta released per stimulus? 

(c) From your answer in (b), what is the predicted number of fail-
ures during a 1000-stimulus experiment? 

(d) What are two reasons why you measure fewer failures than pre-
dicted from your calculation in (с)? 

7. You wish to use methods of quantal analysis to determine if the 
increases in synaptic transmission associated with LTP result from 
pre- or postsynaptic changes. The frequency histograms shown here 
illustrate measurements of spontaneous mEPSCs during a fixed 
10 min interval before and during LTP. 

1.3. 
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(a) Using only the histograms, can you make any tentative conclu-
sions regarding pre- vs. postsynaptic changes during LTP? Be 
sure to explain your answer and to give all of the reasons you 
can think of. 

(b) If the mean evoked EPSC was 2.0 nA before and 3.0 nA during 
LTP, calculate the quantal content before and during LTP. 

(c) If you assumed that the number of release sites was fixed at 
500, what would be the average probability of release at each 
site before and during LTP? 

(d) On average, how many trials would be necessary to observe a 
single failure before and during LTP? Does this depend on the 
type of release statistic used to determine your answer? 

8. Given that P(0, t) = e~rt, where r = average rate of spontaneous 
mEPSPs, derive the probability density function for intervals between 
successive (single) releases. 

9. (a) Given the following amplitudes for spontaneous mEPSPs, cal-
culate their mean amplitude: (in mV) 0.4, 0.5, 0.6, 0.7, 0.3, 0.7, 
0.7, 0.9. 

(b) Given the following amplitudes for evoked synaptic potentials, 
calculate their mean evoked amplitude and a : (in mV) 2.0, 0.5, 
2.5, 0.5, 2.5, 2.0, 0, 1.0, 0.5, 2.5, 2.5, 1.0, 0.5, 2.5. 

(c) Determine m by three methods (you can assume Poisson statis-
tics for this question). Why might the results differ for the three 
methods? 

(d) Calculate the expected number of failures during 25 trials using 
a binomial model. Assume n = 10. 



322 Chapter 11. Synaptic Transmission I: Presynaptic Mechanisms 

10. Using the data illustrated below, plot synaptic plasticity as a function 
of time and derive an equation that suitably describes the relation-
ship between plasticity and time. 
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12 Synaptic Transmission II: Ca2+ and 
Transmitter Release 

12.1 Introduction 

It has been known for some time that Ca2+ is somehow necessary for 
synaptic transmission. It is known, for example, that elevated [Ca2+]out 
increases transmission while elevated [Mg2+]out decreases transmission, 
as was mentioned in the previous chapter. Furthermore, Ca2+ appears 
to be unique among divalent cations in promoting synaptic transmission. 
Only Sr2+ and Ba2+, as substitutes for Ca2+ in the medium, will allow re-
lease at all, and they do so with much less efficiency (i.e., Ca2+ > Sr2+ > 
Ba2+) and somewhat differently than Ca2+. Transmitter release is typ-
ically asynchronous with these other divalent cations, as illustrated in 
figure 12.1. 

Figure 12.1 Typical synaptic response with normal Ca2+ in the bath compared to that 
with either Ba2+ or Sr2+. The arrows indicate time of nerve stimulation. 

Again, most of what we know about the mechanisms of transmitter re-
lease has come from the study of two preparations, the neuromuscular 
junction and the squid giant synapse. Study of the vertebrate neuromus-
cular junction led to the quantum hypothesis, which was presented in the 
previous chapter. Experiments on the squid giant synapse, in particular, 
but also on the neuromuscular junction, led to the Ca2+ hypothesis for 
transmitter release. This hypothesis will be discussed at some length in 
the rest of this chapter. 



324 Chapter 12. Synaptic Transmission II: Co2"1" and Transmitter Release 

12.2 Formulation of the Ca2+ hypothesis 

The squid giant synapse is a rather unique preparation. Because of its 
large size it allows direct access to the presynaptic terminal for micro-
electrode recording and injection of drugs. The species of squid most 
frequently used for studies of synaptic transmission is Loligo pealii, avail-
able at the Marine Biological Laboratory, Woods Hole, Massachusetts. Sev-
eral giant synapses are located in the stellate ganglion of the squid. These 
were first discovered by the anatomist J. Z. Young in 1939. The most me-
dial and largest of the synapses is the one used for electrophysiological 
studies. This synapse also gives rise to the famous giant axon, which 
has been exploited for studies of nerve conduction and was discussed in 
chapter 6. 

The squid stellate ganglion and giant synapse are shown in figures 12.2 
and 12.3. The synapse is typically over 1 mm in length and about 50 ц т 
in diameter. It is possible to place 3 or more microelectrodes into the 
presynaptic terminal along with 2 or more into the postsynaptic axon. 
This permits simultaneous voltage clamping of both sides of the synapse, 
something that is generally not possible with any other synaptic prepara-
tion. 

In spite of its large size, however, the giant synapse is a very difficult 
experimental preparation and has several disadvantages for the inves-
tigation of synaptic transmission. First, squid do not live very long in 
captivity, so the experiments must be done near where they are captured. 
Second, very few squid have synapses with the postsynaptic axon in the 
proper orientation for impaling the presynaptic axon. Third, the synapse 
is very fragile and is often damaged by the insertion of multiple microelec-
trodes. And fourth, because of the large size and low input resistance of 
the postsynaptic axon, miniature postsynaptic potentials are very small 
and difficult to record. Nevertheless, the squid synapse has proven to be 
a valuable preparation for the study of presynaptic mechanisms of neuro-
transmitter release and for testing the Ca2+ hypothesis. 

Some of the more important experiments that led to the Ca2+ hypothe-
sis were performed by Bernard Katz and Ricardo Miledi in the late 1960s 
on the squid synapse and the vertebrate neuromuscular junction. The 
results of these experiments, which formed the foundation for the Ca21 

hypothesis for synaptic transmission, will be described briefly, in rough 
chronological order, in this and the following few sections. 
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Figure 12.2 Diagram of squid stellate ganglion and giant synapse. (A) The presynaptic 
axon is shown in black making synaptic contacts with each of the stellate nerves. The 
giant axon is in the upper right. (B) Intracellular recordings from the pre- and postsynaptic 
axons. (Adapted from Zucker 1991.) 

presynaptic ending 

postsynaptic neuron 

Figure 12.3 Enlarged diagram of squid giant synapse. 

a. When the action potential in the presynaptic terminal was blocked 
with TTX, no EPSP in the postsynaptic axon was recorded. This ex-
periment suggested that a presynaptic action potential was neces-
sary for release. 

b. Using the squid giant synapse, depolarization of the presynaptic ter-
minal resulted in an EPSP, even in the presence of TTX. This further 
elaboration of the previous result showed that an applied depolar-
ization to the terminal could substitute for an action potential. 
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c. Again with the squid, when Na+ channels were blocked with TTX and 
K+ channels were blocked with TEA, depolarization of the presynap-
tic terminal resulted in spike-like or regenerative events in the ter-
minal. These "spikes," which presumably were mediated by Ca2+, 
elicited EPSPs in the postsynaptic axon. If the terminal was depo-
larized to extreme positive potentials, near the expected Nernst po-
tential for Ca2+, there was no EPSP. This experiment suggested that 
Ca2+ influx occurring during these spikes was necessary for release. 

d. In other experiments at the frog neuromuscular junction, Ca2+ was 
removed from the bath so that stimulation of the motor nerve elicited 
no response at the muscle end plate. Ca2+ was then iontophoresed 
onto the junction at the time of stimulation, and this resulted in an 
EPP. If Ca2+ was iontophoresed a few msec after the stimulation, no 
response was observed. This very important experiment indicated 
that not only was Ca2+ required for release, but it had to be present 
almost exactly when the action potential arrived at the presynaptic 
terminal. 

12.3 Cooperative action of Ca2+ ions on transmitter release 

The experiments outlined above, and many others, gave firm support for 
the hypothesis that Ca2+ is necessary for transmitter release. In 1967 
Dodge and Rahamimoff performed an extremely important set of exper-
iments at the frog neuromuscular junction. The results of these exper-
iments, which were not fully accepted for almost 20 years, suggested a 
particular quantitative relationship between Ca2+ and transmitter release. 
Specifically, they proposed that transmitter release is dependent upon the 
4th power of the Ca2+ concentration in the extracellular bath, or, in more 
molecular terms, four Ca2+ ions act in a cooperative manner to cause re-
lease. 

Without knowing any details about how transmitter release is depen-
dent upon Ca2+, or how Mg2+ inhibits release, Castillo and Katz (1954), 
Jenkinson (1957), and then Dodge and Rahamimoff assumed that Ca2+ 

must bind to some critical site X at the presynaptic terminal in order for 
transmitter release to occur. This assumption leads to the following ki-
netic equation: 

Ca2+ + X ̂  CaX (with dissociation constant K\). (12.3.1) 



12.3. Cooperative action of Co24* ions on transmitter release 327 

Release would occur only upon the formation of CaX. Using the law of 
mass action, Dodge and Rahamimoff derived the following: 

where Ж is a constant. This equation makes a number of interesting 
predictions. If release is directly proportional to [CaX], then the amplitude 
of the EPP should be directly proportional to [CaX]. If release is instead 
dependent on the formation of 2 CaXs, then the EPP would be proportional 
to [CaX]2, and so forth. More generally, 

where к is a proportionality constant and n is a positive integer. If we 
let к = K\ = 1, then the predicted relationship between EPP and [Ca2+]out 
for different values of n can be observed in figure 12.4. Note that at high 
external Ca2+ concentrations the curves are highly nonlinear for all values 
of n. If we expand the scale between 0 and 1.5 mM [Ca2+]0ut> however, 
the initial portion of the curve for n = 1 is actually fairly linear, while 
those for n = 2,3,4, and 5 are still quite nonlinear. With the fairly simple 
assumptions made by Dodge and Rahamimoff, equation 12.3.3 predicts 
that at low concentrations of external Ca2+ the relationship between EPP 
amplitude and external Ca2+ will be linear if release is dependent on the 
formation of a single [CaX], or nonlinear if release is dependent on the 
formation of more than one [CaX]. In other words, if there is cooperativity 
in the action of Ca2+ ions on the release process, the relationship should 
be nonlinear. 

Also in figure 12.4, equation 12.3.3 is plotted on log-log axes. The initial 
portion of each of the curves is linear, and the slope varies for different 
n's. The experiments performed by Dodge and Rahamimoff were simply 
to vary the external concentration of Ca2+, measure the amplitude of the 
EPP, and compare the relationship obtained in this way to the theoretical 
curves of figure 12.4. The results of their experiments, which are replotted 
in figure 12.5, are most consistent with n = 4. In other words, transmitter 
release appeared to be dependent on the 4th power of external Ca2+ or 
on this complex, CaX. 

There are several significant aspects to these findings, to which we will 
return later. First, the 4th power relationship sets constraints on the bio-
chemical mechanisms involved in release. The release of a single quantum 

(12.3.2) 

(12.3.3) 
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n = l 

[Ca2+]0ut (mM) [Ca2+]0ut (mM) 

[Ca2+]0ut (mM) 

Figure 12.4 Plots of equation 12.3.3 on linear and log-log coordinates. (After Dodge and 
Rahamimoff 1967.) 

of transmitter requires the cooperative action of Ca2+; that is, the action 
(or binding) of four Ca2+ ions is required for release.1 Second, the rela-
tionship between the EPP and external Ca2+ is highly nonlinear. Referring 
to figure 12.5, a small increase in Ca2+ of around 20-25% from an ini-
tial level of 0.2 mM leads to a doubling in the amplitude of the EPP. A 
more detailed description of the cooperative action of external Ca2+ on 
transmitter release will be discussed in the next section. 

12.4 Biophysical analysis of Ca2+ and transmitter release 

Further support for the Ca2+ hypothesis came from Miledi in 1973. He 
found that direct injection of Ca2+ into the presynaptic terminal of the 
squid synapse led to transmitter release. Also, Llinas and Nicholson (1975), 
using the Ca2+-sensitive photoprotein aequorin, which emits light when 

Mathematically, it makes no difference whether 4 Ca2+ ions bind to a single molecule 
or whether 4 molecules of CaX form before release occurs. 
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Figure 12.5 Relationship between external Ca2+ and the amplitude of the EPP. Data are 
plotted on linear and log-log coordinates. (Adapted from Dodge and Rahamimoff 1967.) 

it binds Ca2+, demonstrated that a rise in preterminal Ca2+ occurs during 
neurotransmission. They injected aequorin into the presynaptic terminal 
and measured light flashes upon stimulation of an action potential in the 
presynaptic axon. The results of these experiments indicated that a rise in 
Ca2+ in the terminal could cause release and that a rise in Ca2+ occurred 
under physiological conditions when an action potential was elicited in 
the preterminal. By this time, voltage-gated Ca2+ currents had been mea-
sured from a variety of preparations, and thus the rise in Ca2+ following 
an action potential in the presynaptic terminal was assumed to occur from 
an influx through voltage-gated Ca2+ channels. 

By the late 1970s, the Ca2+ hypothesis was obviously well formulated. 
Little or nothing was known, however, about the details of Ca2+ entry 
into the presynaptic terminal or about the relationship between Ca2+ en-
try and transmitter release. We will now discuss the work of two groups, 
which was published over the period from 1981 to 1987. This work pro-
vided the first description of Ca2+ current (lea) in the squid presynaptic 
terminal and the first definition of a quantitative relationship between Ica 
and transmitter release. The two groups were Llinas, Walton, and Stein-
berg and Augustine, Charlton, and Smith, and both groups worked during 
summers at the Marine Biological Laboratory. 

12.4.1 Voltage clamping the squid giant synapse 

Although the size of the squid synapse appears favorable for inserting 
multiple microelectrodes and voltage clamping, one serious problem has 
to do with something called space clamp. 

As mentioned in chapter 6, voltage clamping requires that the voltage 
across the membrane from which current is measured be held constant 
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throughout the time interval of interest. In other words, the voltage in 
time and across space must be clamped to a given value, or 

dVm _ dVm _ 
dt dx 

Only under these conditions will the clamp current (Ici) equal the mem-
brane ionic current, or 

Icl — home = 5 j f l i on(Vm ~~ £ion)» 

where the ion subscript represents the different ionic conductances in 
the membrane. 

Hodgkin and Huxley and other physiologists achieved these conditions 
in the squid by inserting a silver wire inside of the axon and then mea-
suring current from a region along the length of this wire. The internal 
wire had the effect of short-circuiting the axon so that the length of axon 
along the wire was isopotential. The axon was said to be space clamped 
throughout this region because the potential was clamped not only in time 
but also across space or distance. Unless a space clamp is achieved along 
with a voltage clamp, the current measured (the clamp current) will not be 
an accurate reflection of the underlying membrane conductance change. 
The necessity of space clamping, and the errors associated with voltage 
clamping synaptic inputs that occur on dendrites, will be discussed again 
in chapter 13. 

In the case of the squid giant synapse, it is not possible to insert a silver 
wire to short-circuit the presynaptic terminal. Voltage clamping with two 
microelectrodes will maintain the voltage constant in a small region of the 
terminal, but, because of its cable-like structure, regions of the terminal 
a short distance away from the microelectrodes will not be at the same 
potential as those near the microelectrodes. The current injected by the 
current microelectrode will be the sum of the current flowing across the 
clamped portion of the terminal and the current flowing across the rest 
of the terminal for which the potential is not being held constant in either 
time or distance. In other words, the clamp current will be 

Ici = X0u>n(Vm - £ion) (for the clamped region) 
rs г 

+ ZT1 (for the rest of the axon), (12.4.4) ox 
where Ii is the axial current flow (refer to chapter 4). Under normal condi-
tions, there is no way of separating the current across the clamped region 
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Figure 12.6 Diagrammatic representation of the lack of space clamp in a presynaptic 
terminal using a two-microelectrode voltage clamp. The membrane potential is clamped 
to a depolarized value only in the vicinity of the electrodes. 

of the terminal from that across the rest of the axon. This is illustrated 
in figure 12.6. 

A method for partially separating these currents was devised by Adrian, 
Chandler, and Hodgkin (1970) for use on axons or other cable-like struc-
tures where multiple microelectrodes can be inserted. It is called the 
three-microelectrode voltage clamp and was used by Augustine, Charlton, 
and Smith to minimize the errors associated with the lack of space clamp 
at the squid giant synapse. As an additional procedure for minimizing 
space-clamp errors, they perfused a Ca2+-containing solution across the 
tip of the terminal while blocking Ca2+ channels (and all other voltage-
gated channels) elsewhere. 

Referring to figure 12.7, Vi was the voltage-sensing electrode and I was 
the current-passing electrode for a two-microelectrode voltage clamp. A 
voltage clamp was really achieved only at point Vi. Current (Ici) was 
passed through electrode I to maintain the potential constant at Vi (via 
the electronic feedback circuitry of the voltage clamp; refer to appendix 
A). Only a portion of the current injected through J, however, actually 
reaches point V\. The rest flows either across the membrane between 
electrodes I and Vi or in the completely opposite direction of the axon 
toward the cell body. The current flow up the axon will produce a po-
tential drop that can be measured by the second microelectrode V2. The 
difference in potential between V2 and V\ will represent the current that 
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flows to V\ and ultimately across the distal portion of the terminal. This и 
diagrammatically represented in figure 12.7C. The total injected curreni 
(Id) flows either up the axon toward the cell body or toward the end of the 
terminal (some of it leaks out across the membrane along the way). The 
current flowing up the axon is represented by /2 in the diagram, and thai 
flowing toward the terminal by h - The idea behind this method of voltage 
clamping is that the difference in potential between V2 and V\ will be г 
more accurate representation of the current at the end of the terminal 
Im t than would be the total current, Ici. Since Ca2+ is present only in the 
external medium near the end of the terminal, V2 - V\ will be a close ap 
proximation of I m and thus lea across the end of the terminal. Although 
this method does not produce a perfect space clamp, it does greatly re-
duce the errors associated with imperfect space clamp. One also begins 
to appreciate how significant these errors must be to motivate Augustine. 
Charlton, and Smith to go to such extreme lengths to try to avoid them. 

200 «im 10 20 30 40 50 
Time (min) 

УЛЛЛ-

Figure 12.7 (A) A voltage clamp was applied between I and V\ while Ca2+ was present 
only near the end of the terminal. (B) The change in postsynaptic response (P.s.p.) as 
Ca2+ is added to the perfusing saline is shown on the right. (A and В from Augustine et 
al. 1985a.) (C) Lumped equivalent circuit representation of three-microelectrode voltage 
clamp. The terminal is not space clamped, (i.e., Ic\ Ф I m at Vi) but a better approximation 
can be obtained for Im near V\ by using V2 - Vi as a measure of Im. V2 - V\ = /i oc lm = 
lea• 
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12.4.2 Presynaptic Ca2+ currents 

Before describing results obtained with this three-microelectrode voltage 
clamp, we use figure 12.8 to illustrate some of the first voltage-clamp 
results obtained from the squid synapse preparation. This figure nicely 
illustrates the separation of the Na+ and K+ currents from lea and their 
relative magnitudes. In figure 12.8A the total ionic current in response to 
a step command is depicted in trace (a), while trace (b) was obtained after 
applying TTX and a general K+-channel blocker 3-aminopyridine. The 
current in trace (b) presumably represents lea- In figure 12.8B, current 
traces from another synapse (also in TTX and 3-aminopyridine) before 
and after applying Cd2+ to block Ica are illustrated. The relatively small 
amplitude of Ica in comparison to the Na+ and K+ currents is even more 
apparent in В if one notes the difference in calibration bars between A 
and B. (Also note the inflection of the trace in B(a). This is sometimes 
characteristic of a less then optimum space clamp.) 

1ms Im» 

Figure 12.8 Voltage-clamp records from squid presynaptic terminal. (From Llinas et al. 
1981a by permission of the Biophysical Society, copyright © 1981 Biophysical Society.) 
(A) A depolarizing command in normal saline (a) elicits an inward Na+ and an outward K+ 

current. After TTX and 3-aminopyridine are applied, these currents are blocked, leaving 
a small inward Ca2+ current (b). (B) Inward Ca2+ currents from another terminal before 
(a) and after (b) applying Cd2+. 

Figure 12.9 illustrates Ica from a squid synapse using the three-micro-
electrode voltage clamp described earlier. A number of important features 
of these current records should be emphasized and understood. First, 
the amplitude of the current increases with the depolarizing command, 
reaching a maximum around 0 mV, and then decreases with further depo-
larization. This is typical for a channel that is activated by depolarization 
and that has an apparent Nernst potential at very positive values. Second, 
there is very little inactivation of the current during the time course of the 
step commands shown in figure 12.9 (6 msec). Third, the onset of the cur-
rent is slow and delayed from the onset of the step command. And fourth, 
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Figure 12.9 Presynaptic Ca2+ currents. (From Augustine et al. 1985a.) The command 
potentials are shown above while their values are given at the left of each current trace. 

there is a large tail current at the end of each command. The tail current 
would be expected for a channel that is activated during the command 
and for which there is an increased driving force after the step command. 
(Remember from chapter 6 that the amplitude of the tail current will de-
pend on the magnitude of the conductance activated during the command 
and the driving force {Vm - Eca) for current through the open channels, 
where Eca is the apparent Nernst potential for Ca2+.) The I-V relationship 
for this experiment is illustrated in figure 12.10. Note that the current is 
not activated until about -40 mV, and that, as mentioned above, the peak 
inward current occurs at around 0 mV. 

12.4.3 Relationship between Ica and transmitter release 

The simultaneous measurement of Ica and the postsynaptic response is 
illustrated in figure 12.11. In this experiment, as well as for that illus-
trated in figure 12.12, the postsynaptic axon was also voltage clamped 
so that the postsynaptic current could be measured. Again, several very 
important features of the release process are illustrated in figurel2.11. 
First, in part A and as seen in the figure 12.9, there is a delay in the onset 
of Ica from the onset of the step depolarization. Second, the rise in Ica 
is relatively slow. This delay and slow rise in Ica is reflected in the post-
synaptic current, which does not begin to appear until nearly the middle 
of the step command. And third, the peak of the postsynaptic current 
doesn't occur until after the end of the step command. In other words, 
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Figure 12.10 I-V curve of presynaptic Ca2+ currents. (Adapted from Augustine et al. 
1985a.) 

the turning on of Ica by the onset of the voltage step produces little or 
no postsynaptic current while the turning off of the voltage step produces 
most of the current. Because release occurs mostly with the turning off of 
the voltage, it is called an off response. This characteristic of the release 
process is also observed in figure 12.12. It can be explained by remem-
bering the characteristics of Ica noted in figure 12.9. The onset of the 
current is slow and delayed so that release, which is nonlinearly related 
to the rise in intracellular Ca2+, is also slow to begin. The large off re-
sponse can be understood by noting the large tail current at the end of 
the command. The turning off of the command produces a large and fast 
Ica, which elicits a large release of transmitter. 

Another extremely important feature of the release process is illus-
trated in part В of figure 12.11. In this instance a very large depolarizing 
command was given such that little or no Ica flowed during the command, 
even though the channels were opened by the depolarization. After the 
end of the command, however, a large rapid tail current was observed, 
leading to release of transmitter and a postsynaptic current. Given that 
there was no Ica during the command, and thus no postsynaptic response, 
the activation kinetics of the Ica was not a factor in the release of neuro-
transmitter. The large rapid tail current and the resulting postsynaptic 
response allow one to determine the minimum time between the entry of 
Ca2+ into the presynaptic terminal and a postsynaptic response. From 
experiments such as these, that interval has been estimated to be about 
200 jusec. In other words, from the entry of Ca2+ into the terminal it takes 
no more than 200 usee for Ca2+ to trigger release of transmitter and for 
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Figure 12.11 Simultaneous presynaptic Ca2+ currents {Ica) and postsynaptic currents 
(P.s.c.). (Adapted from Augustine et al. 1985b.) In (A) an inward Ca2+ current elicits 
a postsynaptic current during the command (Vpre)• In (B) there is no Ca2+ current or 
postsynaptic current until after the end of the command. The dotted lines indicate the 
delay from the Ca2+ current to the postsynaptic current, which is about 200 ^sec in (B). 

the transmitter to diffuse across the cleft and activate postsynaptic recep-
tors. Transmitter release can obviously be an extremely rapid process. 

The full relationship between presynaptic Ca2+ and the postsynaptic 
response can be obtained from the experiment illustrated in figure 12.12. 
Step commands from a holding potential of - 7 0 mV to between -33 mV 
and +57 mV were given to the voltage clamped presynaptic terminal of 
the squid giant synapse. The Ica is present at - 33 mV, it increases with 
depolarization up to - 3 mV, and then it decreases with further depolar-
ization, in accordance with the I-V curve for Ca2+ shown in figure 12.10. 
In general, the postsynaptic response also increases with depolarization 
of the presynaptic terminal until the maximum Ica is obtained, and then 
the postsynaptic response also declines as the presynaptic terminal is 
further depolarized. 

Looking carefully at these traces, there are again a number of impor-
tant features to the data that should be emphasized. First, at -33 mV 
and -28 mV there is a significant amount of Ica flowing during the com-
mand, and yet there is essentially no postsynaptic response. As we will 
see in figure 12.13, this can be most easily understood on the basis of the 
nonlinearity in the relationship between Ica and transmitter release. 

Second, for all of the commands, the largest postsynaptic response oc-
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Figure 12.12 Presynaptic Ca2+ currents Пса) and postsynatic currents (P.s.c.) elicited 
by different amplitude depolarizing commands (Vpre) given to the presynaptic terminal. 
(From Augustine et al. 1985b.) 

curs after the end of the command. As discussed above, transmitter re-
lease is essentially an off response. Although the tail currents have been 
mostly removed from the traces in figure 12.12, we sawin figure 12.11 that 
at the end of the command the increase in driving force for Ca2+ produces 
a large rapid Ica through Ca2+ channels activated by the depolarization 
and thus a large rapid release of transmitter. 

Third, with step commands of +27, +37, and +57 mV, the off response 
decreases with increasing depolarization even though the Ca2+ conduc-
tance should have been maximally activated, and the tail current should 
thus have been constant, for each of these commands. These results can 
be understood by recognizing that facilitation of transmitter release will 
occur from the small Ica that flows during the command (this will be 
discussed further in section 12.5.2). For example, for the command to 
+27 mV, the Ica during the command causes little or no release itself, but 
it does facilitate the release that occurs in response to the tail current 
flowing at the end of the command. At +37 mV there is less Ica during 
the command and thus less facilitation of the off response, and, finally, 
at +57 mV no Ica flows during the command and no facilitation of release 
occurs during the tail current. The release that occurs during the tail cur-
rent at the end of the command to +57 mV is presumably the amount of 
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release that would have occurred at +27 and +37 mV if there had been no 
current during the command. How the results of these experiments relate 
to transmitter release following an action potential will be discussed in 
section 12.4.5. 

12.4.4 Cooperative action of Ca2+ at the squid synapse 

Using data such as those illustrated in figure 12.12, the relationship be-
tween presynaptic Ica and postsynaptic response is shown in figure 12.13. 
The data are plotted on both linear and log-log scales, and the curves 
should be compared to those shown in figure 12.5. The relationship is 
highly nonlinear, and the slope of the log-log plot is between 2 and 4. The 
data from the squid synapse thus supports the cooperativity among Ca2+ 

ions in promoting release, as predicted by the more indirect experiments 
of Dodge and Rahamimoff some 20 years earlier. Careful examination of 
the nonlinear relationship should also make the explanation of the results 
in the previous two figures more understandable. For example, at the low 
end of the curve, a small lca (but actually up to almost 20% of the maxi-
mum current) elicits essentially no postsynaptic response whereas a 20% 
increase in the current starting in the middle of the curve (at about 0.5 on 
the abscissa) can lead to a doubling of the postsynaptic response. 

Figure 12.13 Relationship between presynaptic Ca2+ current (Iс a) and postsynaptic 
response (P.s.c.) plotted on linear (left) and log-log (right) coordinates. (From Augustine 
et al. 1985b.) The numbers next to the lines refer to the power function that provides the 
best fit. 
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The data illustrated in the previous two figures support the idea of a 
cooperative relationship among Ca2+ ions and transmitter release with 
a power function of between 2 and 4. The above experiments, however, 
did not entirely mimic those of Dodge and Rahamimoff. The relation-
ship in which Dodge and Rahamimoff found a power function of 4 was 
between extracellular Ca2+ and postsynaptic response as opposed to the 
relationship illustrated above between presynaptic Ica and postsynaptic 
response. What is missing for a direct correspondence with Dodge and 
Rahamimoff is a relationship between extracellular Ca2+ and presynaptic 
Ica• Augustine and Charlton did investigate just such a relationship, and 
this is illustrated in figure 12.14. 

[Ca]0 (тм) ICa]0 (тм) 

Figure 12.14 Relationship between either presynaptic Ca2+ current (Ipre) or postsynap-
tic response (P.s.c.) and [Ca2+ ]out (from Augustine et al. 1986). Data are plotted on linear 
(left) and log-log (right) coordinates. The best-fitting power function (и) is indicated for 
each curve on the right. 

In part A of figure 12.14, the relationships between [Ca2+]out and either 
postsynaptic current (PSC) or Ica are plotted on linear scales while in В 
they are plotted on log-log scales. As expected, there is a very nonlinear 
relationship between [Ca2+]out and PSC. This relationship yields a power 
function of about 4 when plotted in B. The relationship between [Ca2+]out 
and Ica was found to be less than linear, or sublinear, yielding a power 
function of around 0.8. The overall relationship between [Ca2+]out and PSC 
can be viewed as the combination of these two relationships, as follows 
(Augustine and Charlton 1986): 

Ica oc ( [ C a 2 + ] o u t ) n i , 

PSC oc ( [Ca 2 + ]out ) n 2 , 
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and therefore 

PSC ОС (Jca)W2/ni. (12.4.5) 

With u\ being about 0.9 and пг about 3.5, the overall relationship yields 
an exponent of about 4, which is internally consistent with the different 
experimental results. One of the main conclusions from the experiments 
illustrated in figure 12.14 is that the source of the cooperativity of Dodge 
and Rahamimoff and that of Augustine and colleagues illustrated in fig-
ure 12.13 cannot be due to cooperativity between [Ca2+]out and presynap-
tic /ca, but instead between Ica and the mechanisms of release. 

12.4.5 A model for transmitter release at the squid synapse 

Using the voltage-clamp data for presynaptic Ica as a function of voltage, 
and the relationship between Ica and release, Llinas and coworkers devel-
oped a computer model for synaptic transmission at the squid synapse. 
This model is extremely useful for predicting the general features of Ica 
during the presynaptic action potential and is illustrated in figure 12.15. 

Figure 12.15 Relationships among presynaptic action potential (V) and the Na+, K+, 
and Ca2+ conductances that are responsible for the action potential. (From Llinas et al. 
1981a by permission of the Biophysical Society, copyright © 1981 Biophysical Society.) 
The Ca2+ conductance is enlarged 50 times to fit on the same scale. 

The model used the Hodgkin-Huxley formulation for Na+ and K+ (see 
chapter 6). Ica was derived from a conductance equation of the form 

дса = т3вса> 

with rate constants determined from experimental data and with no inac-
tivation. Note that, as determined from the voltage-clamp data, the Ca2+ 

conductance is slow to turn on and does not begin until near the peak of 
the action potential. The Ica follows the activation of the conductance, 
although it is even slower to rise because the driving force is low at the 

mS/c 

QJ-0 
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Figure 12.16 Relationships among presynaptic action potential, presynaptic Ca2+ cur-
rent (a), postsynaptic current (b), and postsynaptic potential (c). All currents and poten-
tials are plotted upwards to facilitate comparison of their time courses. The inset is a 
blowup of the curves to indicate the delay from the action potential to the onset of the 
Ca2+ current (a) and the delay from the Ca2+ current to the onset of the postsynaptic 
current (b). (From Llinas et al. 1981b by permission of the Biophysical Society, copyright 
© 1981 Biophysical Society.) 

peak of the action potential—the current doesn't actually peak until the 
end of the action potential. The Ca2+ current during the action potential 
is truly an off response, in that it flows primarily as the action potential 
is repolarizing and while the driving force for Ca2+ is increasing. These 
simulations are also useful for illustrating the time courses of g^a and 
дк during the action potential. 

The relationships among the action potential, Ica, excitatory postsy-
naptic potential (EPSP), and excitatory postsynaptic current (EPSC) in the 
model and those found experimentally are illustrated in figure 12.16. In 
the figure the action potential is followed by curves a, b, and c. These 
are the presynaptic Ica, the EPSC, and the EPSP, respectively. Some of the 
features noted in the voltage-clamp records from previous figures and 
their significance for neurotransmission can be appreciated more fully 
from these curves. First, the slow onset of Ica is responsible for the delay 
between the beginning of the action potential and Ica (<*> in the inset). Sec-
ond, there is very little delay (~200 цsec) between the onset of Ica and the 
EPSC (b in inset). (Note: The rapid off response that we have been empha-
sizing in this section has particular functional significance with respect 
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to synaptic transmission. The large, fast off response is what is responsi-
ble for the relatively brief period of synchronous transmitter release and 
the brief postsynaptic response. If the Ca2+ current were instead spread 
out over a longer period of time, then transmitter release would also be 
more prolonged and would produce a longer and smaller peak response in 
the postsynaptic axon.) Third, the majority of Ica flows during the falling 
phase of the action potential. And fourth, the EPSP rises slower and peaks 
later than the EPSC (this will be discussed further in the next chapter). 

The Ca2+ hypothesis continues to be widely supported. Additional ex-
periments have used flash photolysis of compounds that normally bind 
Ca2+ and then release Ca2+ with light (see appendix B). When these 
molecules are injected into the squid terminal, a rapid increase in [Ca2+]m 
can be obtained after a light flash. Such experiments have demonstrated 
rapid release of transmitter and suggest that Ca2+ is necessary and suf-
ficient for release. A minority view, however, holds that release is de-
pendent on membrane potential in addition to a rise in Ca2+. This is the 
so-called Ca2+-voltage hypothesis. Despite intense investigation there is 
still much to be learned about neurotransmitter release mechanisms and 
the role of Ca2+. 

12.4.6 Synaptic delay 

From what has been presented thus far, the synaptic delay of 0.5-1.0 msec 
from an action potential in the presynaptic axon to an EPSP in the postsy-
naptic cell can be separated into two components. The first delay is that 
between the action potential and the onset of Ica in the presynaptic ter-
minal. From figure 12.16, this delay is around 800 jusec and accounts for 
by far the larger amount of delay in synaptic transmission. The second 
delay is that between the onset of Ica and the postsynaptic current. From 
figures 12.12 and 12.16, this delay is about 200 jusec. The overall syn-
aptic delay will vary from synapse to synapse, but if the results from the 
squid can be generalized to other preparations, then we can assume that 
the most significant delay is that associated with the kinetics of Ica- The 
synaptic delay will also be temperature dependent, because Ca2+ channel 
kinetics are temperature dependent, while the other steps in the release 
process (e.g., diffusion) do not vary much with temperature. 

(The diffusion time of transmitter across the synaptic cleft is quite 
short. It can be estimated by the equation 

Ax2 

2D ' 
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where t is the diffusion time, Ax is the distance across the cleft, and D 
is the diffusion coefficient for the transmitter. Using the diffusion coeffi-
cient for ACh of 7.6xlO"6 cm2-sec-1 and a cleft thickness of 5xl0~6 cm, 
the diffusion time is 1.6 ^sec. This delay due to diffusion of transmitter 
across the cleft is therefore negligible compared with delays of the other 
processes associated with release.) 

From a molecular standpoint the 200 /usee delay associated with the 
release process itself may be the more important and the more interest-
ing. This delay sets severe constraints on the molecular mechanisms of 
release. Even this small delay of -200 /usee must be broken up into sev-
eral steps. From the time of Ca2+ entry to some 200 /usee later, Ca2+ 

ions must diffuse to their internal binding sites and bind to the Ca2+ re-
ceptor, vesicles must fuse to the membrane and release their contents, 
transmitter molecules must diffuse across the synaptic cleft, and trans-
mitter molecules must bind to their postsynaptic receptors and open ion 
channels. 

12.5 Ca2+ and synaptic plasticity 

As mentioned in the previous chapter, the forms of synaptic plasticity 
discussed thus far, namely depression, facilitation, post-tetanic potenti-
ation (PTP), and long-term potentiation, appear to involve Ca2+ in some 
way. (Long-term potentiation will be discussed more fully in chapter 15.) 
Moreover, depression, facilitation, and PTP are also thought to be presy-
naptic phenomena; that is, each is thought to involve changes in trans-
mitter release. Given the results presented in this chapter concerning the 
relationship between Ca2+ and transmitter release, it is appropriate to re-
view some of the leading hypotheses for the role that Ca2+ might play in 
these short-term changes in transmitter release. 

12.5.1 Synaptic depression 

Synaptic depression is a use- or activity-dependent decrease in synaptic 
strength. The two main hypotheses proposed for synaptic depression 
are the decrease of Ca2+ influx hypothesis and the transmitter depletion 
hypothesis. The first proposed that Ca2+ influx is depressed following in-
tense stimulation, leading to a reduction in transmitter release. There are 
a number of ways in which intense stimulation could lead to a reduction 
in Ca2+ influx. For example, changes in amplitude of the presynaptic ac-
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tion potential or inactivation of Ca2+ channels would lead to a decrease in 
Ca2+ influx. This hypothesis was tested carefully by a number of workers. 
One of the more convincing experiments was done by voltage clamping 
the presynaptic terminal of the squid synapse and showing that depres-
sion could be obtained with brief, repetitive depolarizations during which 
a constant amplitude Ica was recorded (Charlton et al. 1982). The results 
of these and other experiments demonstrate that this hypothesis is very 
unlikely. 

The second hypothesis proposed that the amount of transmitter avail-
able for release is depleted following high rates of release. This hypothesis 
is essentially one of exclusion. In other words, most of the other hypothe-
ses that have been proposed for depression, such as that discussed above 
and also hypotheses regarding changes in extracellular potassium and 
desensitization of transmitter receptors, have been disproven, leaving as 
the most reasonable remaining hypothesis, the transmitter depletion hy-
pothesis. 

12.5.2 Facilitation and PTP: The residual Ca2+ hypothesis 

The most influential hypothesis for a mechanism to explain facilitation 
and PTP was originally proposed by Katz and Miledi (1968) for facilitation. 
This hypothesis has been called the residual Ca2+ hypothesis and is based 
on the nonlinear relationship between Ca2+ and transmitter release. As 
alluded to in previous sections, this hypothesis proposes that a portion of 
the Ca2+ that enters during the first stimulus (or during a train of stimuli) 
is present in the terminal during the second (or subsequent) stimulus. 
This residual Ca2+ is too little to evoke release itself (i.e., at the low end 
of the curve in figure 12.14) but will add nonlinearly to the Ca2+ influx 
occurring during the next stimulus. The result will be a greater release 
of transmitter diuring the second stimulus than that during the first. The 
residual Ca2+ hypothesis has been an extremely important one and has 
been tested in many ways during the past 15 years. Although a detailed 
explanation of the mechanisms for facilitation and PTP is not yet available, 
at least the role of residual Ca2+ in these forms of plasticity is a little better 
understood. 

12.5.2.1 Facilitation One of the experimental tests for the residual Ca24 

hypothesis was done by Milton Charlton and his colleagues. They pro-
posed that if Ca2+ buffers were added to the presynaptic terminal such 
that the residual Ca2+ following the control stimulus would be buffered 
and thus reduced, then the duration of facilitation would decrease (faster 
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decay). The experiments were done by introducing a Ca2+ chelator, BAPTA, 
into the presynaptic terminal of either the frog or crayfish neuromuscu-
lar junction. Their results were exactly opposite to the prediction of the 
residual Ca2+ hypothesis. At the frog neuromuscular junction the time 
course of facilitation was increased (slower decay) while at the crayfish 
junction there was no change in time course. These results are incompat-
ible with the residual Ca2+ hypothesis. 

Zucker and his colleagues have used fluorescent imaging of changes in 
[Ca2+]m and computer modeling of Ca2+ influx in the vicinity of release 
sites (see the next section and appendix B) and also reach the conclusion 
that the residual Ca2+ hypothesis, at least in its simplest form, is not 
adequate to explain facilitation. It has been proposed instead that Ca2+ 

entering during the control stimulus acts at some site other than that 
which directly triggers release. Furthermore, the action of Ca2+ at this 
other site is noncooperative in that facilitation may be linearly dependent 
on [Ca2+]m rather than on a 4th power relationship such as would be 
predicted from the residual Ca2+ hypothesis. 

Another argument against the residual Ca2+ hypothesis for facilitation 
is that the time course for decay of the fast Ca2+-dependent K+ current, 
which is activated in the presynaptic terminal (crayfish) by the first stim-
ulus, is much faster than the time course for facilitation. The decay of the 
Ca2+-dependent K+ current would presumably reflect the decay of resid-
ual Ca2+ in the terminal and, by this argument, is too fast to account for 
facilitation. 

12.5.2.2 PTP As mentioned in the previous chapter, the time course of 
PTP is on the order of 1 minute. The residual Ca2+ hypothesis, at least as 
proposed for facilitation by Katz and Miledi and involving the nonlinear 
summation of Ca2+, is unlikely to explain PTP because of the relatively 
slow decay of PTP. That is, the rise in Ca2+ near the release sites at the 
inner surface of the membrane would be expected to fall very rapidly 
(-10-100 msec) following a stimulus train and be too small to account 
for PTP that lasts up to a minute. The influx of Ca2+ during the train, 
however, will diffuse throughout the volume of the terminal. The residual 
Ca2+ averaged over the entire volume of the terminal could indeed play a 
role in PTP. 

This idea was tested by George Augustine and his colleagues using a 
similar logic as that of Charlton for facilitation. They found that the time 
:ourse of decay of the average Ca2+ in the terminal measured by fluo-
rescent imaging techniques matched closely the time course of decay of 
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PTP. Furthermore, reducing the residual Ca2+ by injection of EGTA re-
duced PTP. (EGTA is different from BAPTA in that it is a relatively slow 
buffer. Injection of EGTA has no effect on release during single stimuli, 
whereas BAPTA will reduce such release.) Similar conclusions have been 
reached by others. It appears therefore that residual Ca2+ does play a 
role in PTP (and augmentation), but not by way of nonlinear summation 
of Ca2+. Instead the residual Ca2+ must somehow play a role in mobilizing 
transmitter vesicles or sensitizing the release machinery to Ca2+ so that 
more transmitter gets released for a period of time following a stimulus 
train. 

It is not entirely clear what controls the rate of decay of residual Ca2+ in 
a presynaptic terminal. The possible routes for removal of Ca2+ include 
uptake and storage by intracellular organelles, active transport across the 
plasma membrane, and removal by Na+-Ca2+ exchange. All of these re-
moval processes are likely to have different rate constants, and therefore 
any transmitter release mechanisms dependent on [Ca2+]in will be depen-
dent on these rate constants. It is tempting to speculate that facilitation 
(Fi, F2, see chapter 11), augmentation, and PTP are each dependent on a 
different Ca2+ removal process, but this speculation is probably too sim-
plistic (see Magleby 1987). 

12.5.3 Presynaptic modulation of transmitter release 

Many presynaptic terminals also contain receptors for neurotransmitters, 
sometimes including receptors for the transmitter released at that same 
synapse—so-called autoreceptors. The list of well-known presynaptic re-
ceptors includes y-aminobutyric acid (GABAb), muscarinic acetylcholine, 
serotonin, «-adrenergic, opioid peptide, and adenosine receptors. There 
are undoubtedly many more. From the mechanisms of release discussed 
in this chapter, it is obvious that there are many ways in which trans-
mitter release could be modulated by presynaptic receptors. One of the 
more important and prominent sites of modulation is on the presynaptic 
Ca2+ current itself. As mentioned in chapter 7, there are multiple types of 
Ca2+ channels. At vertebrate synapses two types of channels have been 
suggested to take part in transmitter release: the N- and P-type channels. 
(One characteristic of the presynaptic Ca2+ channel, whatever it might be, 
is that it shows little or no inactivation during short depolarizations; see 
figure 12.9.) For the N-type channel in particular, the activation of a num-
ber of the above transmitter receptors has been demonstrated to inhibit 
N-type channel activity. These include GABAB, muscarinic cholinergic, 
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«-adrenergic, serotonin, opioid, and adenosine receptors. 
In addition to direct modulation of Ica, anything that alters the potas-

sium current in the presynaptic terminal would alter the duration of the 
action potential and indirectly modulate Ica• For example, drugs that 
block the A-, D-, and C-type K+ channels cause a significant increase in 
synaptic transmission in most preparations. Many of the above list of 
transmitter receptors have been suggested to modulate at least one of 
these types of K+ currents. Moreover, most of the above list of receptors 
also couple to one or more second messenger systems, raising the possi-
bility of altering release through direct effects on the biochemical mech-
anisms of release in addition to, or instead of, altering of release through 
changes in Ica- Just such a modulation of release has been demonstrated 
for serotonin at several invertebrate synapses (see Delaney et al. 1991). 

12.6 Molecular mechanisms of release 

12.6.1 Early hypotheses for Ca2+-dependent exocytosis 

The short delay (< 200 /./sec) from the entry of Ca2+ to the release of 
neurotransmitter places some theoretical constraints on what the molecu-
lar nature of the release mechanism can be. The bulk of available evidence 
still favors the idea that the transmitter-containing vesicles observed at 
the presynaptic terminal are the units of transmitter release, with one 
vesicle equal to one quantum. 

Although similar data are not available at other synapses, from the syn-
aptic delays one can estimate that release must occur within a similar time 
frame, including at the vertebrate neuromuscular junction and at gluta-
matergic, cholinergic, and GABAergic synapses in the central nervous sys-
tems. Not all exocytotic processes are this fast, however. For example, 
the Ca2+-dependent secretion of histamine from mast cells and of cat-
echolamines from adrenal chromaffin cells takes place on the order of 
seconds instead of microseconds. Release of hormones, catecholamines, 
and neuropeptides from various nerve terminals in the peripheral and 
central nervous system are also thought to take place much more slowly 
than the fast neurotransmission discussed here for the squid synapse and 
neuromuscular junction. Many of these slower-releasing systems have 
nevertheless proven to be useful preparations for the study of the gen-
eral mechanisms of Ca2+-dependent exocytosis. It is important to keep in 
mind, however, that the molecular mechanisms of release at these slower-
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secreting systems may have some similarities but also some significant 
differences from the mechanisms underlying fast exocytosis. 

Many hypotheses have been proposed for the rapid Ca2+-dependent 
events leading to neurotransmission. Some of these are listed below along 
with some of the evidence for and against—mostly against. 

1. Charge neutralization: One early idea was that the external sur-
face of the vesicle membrane and the inner surface of the synaptic 
membrane were both negatively charged and that the entry of Ca2+ 

neutralized their electrostatic repulsion and allowed the two mem-
branes to fuse. Although this could be a rapid process, there also 
would be no special requirement for Ca2+. Any divalent cation (e.g., 
Mg2+) would serve equally well to neutralize the negative charge. Be-
cause there is a special requirement for Ca2+ in the release process, 
this simple hypothesis is very unlikely. 

2. Ca2+-dependent K+ channel: It was proposed that if there were 
Ca2+-dependent K+ channels in the vesicles they would bind incom-

- ing Ca2+ and open channels permeable to K+ and H2O. If the vesicles 
were normally hypertonic, the resulting influx of H2O would cause 
the vesicles to swell and fuse with the plasma membrane. This hy-
pothesis went out of favor when the injection of blockers for Ca2+-
dependent K+ channels into the squid synapse had no effect on re-
lease. There is also no evidence that vesicles swell prior to fusion. 
They do, however, appear to swell after fusion. 

3. Actin/tubulin: Another idea was that Ca2+-dependent contractile 
proteins such as actin and myosin might be attached to the vesi-
cle and synaptic membranes and contract upon the entry of Ca2+, 
bringing the two in contact for fusion. Also, tubulin, a constitutive 
protein of microtubules, was suggested to be phosphorylated upon 
entry of Ca2+ and somehow to trigger release. These hypotheses 
have been rejected because depolymerizing drugs such as cytocha-
lasin, colchicine, and vinblastine fail to inhibit release (reviewed in 
Augustine et al. 1987). 

4. Miscellaneous: There have been many other proposals. These in-
clude other mechanisms for vesicle swelling, metalloendoproteases 
that would cleave certain proteins, and numerous other molecules 
that seemed attractive for an involvement in the release process. 
The apparent requirement for 3 or 4 Ca2+ ions makes any molecule 
that binds Ca2+ with a stoichiometry of near 4 a likely candidate. 
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One of the more prominent of these is calmodulin. Unfortunately, 
there is little evidence for a direct role of calmodulin, or of any of 
these other suggested substances, in the release process. One must 
also separate the biochemical steps that are involved in the prepara-
tion of the vesicles for release from the final, rapid Ca2+-dependent 
step of vesicle fusion. There is much interest in proteins that are 
associated with vesicles. Some of these proteins may be involved 
in vesicle trafficking and docking as well as in the final fusion step. 
These vesicle-associated proteins will be discussed in section 12.6.3. 

12.6.2 Fusion pores 

The actual membrane fusion event, at least for the slower-secreting sys-
tems, can be measured electrically by monitoring the total input capac-
itance of the cell. As a vesicle fuses to the plasma membrane, there is 
a small increase in membrane area and thus in total capacitance of the 
cell (remember that total capacitance= Cmx area). This is illustrated in 
figure 12.17. 

In addition to the change in capacitance due to the added membrane 
from the vesicle, if one assumes that the potential across the vesicle is 
initially different from that of the cell (for example, chromaffin granules 
have an inside positive potential of +50 mV; see figure 12.17), then when 
fusion occurs a small current will flow from the vesicle to the exterior 
of the cell. From the magnitude of this current, one can determine the 
conductance and size of the initial opening. 

It has been suggested that the rapid fusion of the bilayers from the 
vesicle and plasma membrane may be mediated by a macromolecule that 
spans the two membranes and forms a pore or channel upon the influx 
of Ca2+. The opening of this fusion pore, which would allow the diffusion 
of transmitter from the vesicle to the extracellular space, could be an ex-
tremely rapid event. When the current associated with the initial fusion 
event was measured, it turned out that it was produced by a fairly con-
stant conductance of around 230 pS (at least for mast cells), which then 
increased gradually as the pore dilated. This finding lent support to the 
idea that there is a pore or channel in the vesicle and plasma membrane 
that opens with the entry of Ca2+. Candidate molecules for the fusion 
pore include the annexins, synaptophysin, synaptotagmin, and syntaxin 
(see section 12.6.3). Other more recent data, however, suggest that these 
proteins instead form a "scaffolding" between vesicle and plasma mem-
brane to facilitate the fusion event and that the pore itself is a single lipid 
bilayer (Monck and Fernandez, 1994). 
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Figure 12.17 Diagram of vesicle fusion. When fusion occurs (right) there is an increase 
in capacitance (CV =Cc + Cv). If the initial potential across the vesicle, VV, is different from 
that of the cell, Vm, then a current will flow, If = Gf(Vm - Vv), where If and Gf are the 
current and conductance of the fusion pore, respectively. (Adapted from Breckenridge 
and Aimers 1987. Used by permission of Nature, copyright © 1987 Macmillan Magazines 
Limited.) 

12.6.3 Vesicle-associated proteins: Possibilities for the Ca2+ receptor 

There is much interest in the proteins associated with vesicles because of 
their possible role in preparing vesicles for release and in mediating the 
final, rapid fusion event. There must be some site near the Ca2+ channel 
and vesicle that binds Ca2+ and triggers release. This Ca2+ receptor or 
Ca2+ trigger molecule may be one of the vesicle-associated proteins. In 
this section we will summarize some of the better studied examples of 
vesicle-associated proteins, with emphasis on their putative physiological 
functions. 

1. Synapsins: The synapsins family contains the major phosphopro-
teins present in nerve terminals. The synapsins are associated with 
vesicles, and they bind to cytoskeletal elements. In addition, they 
are phosphorylated by a number of protein kinases including cAMP-
dependent kinase, Ca2+/calmodulin-dependent kinases I and II (CaM 
kinase I and П), and proline-directed kinase. The possibility that 
the synapsins play a role in transmitter release was tested using in-
jection of phosphorylated and dephosphorylated synapsin into the 
squid synapse. Dephosphorylated but not phosphorylated synapsin 
inhibited release. Also, the injection of CaM kinase II increased re-
lease, while none of these injections affected the influx of Ca2+. 
These and other results are consistent with the idea that dephos-
phorylated synapsin binds to cytoskeletal proteins and immobilizes 
vesicles. The vesicles are then released from the cytoskeleton when 
synapsin is phosphorylated by CaM kinase II. The synapsins are 
therefore believed to play a role in the mobilization of vesicles and 
regulating the number of vesicles available for release. 
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2. Synaptotagmin: Synaptotagmin is an abundant membrane protein 
of synaptic vesicles that interacts with phospholipids and proteins 
in the surface membrane. It also has one or two Ca2+ binding sites 
and is present in the membrane as a dimer (hence a possible stoi-
chiometry of four Ca2+-binding sites). It is an attractive candidate 
molecule for the Ca2+ receptor and may also play a role in vesicle 
docking and fusion, although it does appear that fusion can occur 
in the absence of synaptotagmin. 

3. Synaptophysin: Synaptophysin is the most abundant vesicle mem-
brane protein. It is a Ca2+-binding protein that, for a number of 
reasons, is an attractive candidate molecule for the "scaffolding" 
near the fusion pore. 

4. Others: Other molecules that have recently been suggested to be 
either associated with vesicles or with the plasma membrane and to 
be involved in the release process include synaptobrevin; гаЬЗА (re-
viewed in Siidhof and Jahn 1991), a protein suggested to target vesi-
cles to the active zone; syntaxin, a presynaptic membrane protein 
that is associated with Ca2+ channels and interacts with synapto-
tagmin; and the neurexins, a family of cell surface proteins, at least 
one of which may interact with synaptotagmin. Undoubtedly, others 
will be identified in the near future that also have some function in 
transmitter release. 

12.6.4 Calcium domains, active zones, and calcium buffering 

The active zone of a synapse is a specialized structure spanning both 
the pre- and postsynaptic sides of the synapse (see figure 12.18). The 
postsynaptic side of the synapse contains a high density of postsynap-
tic receptors. The synaptic cleft also shows a distinctive staining pat-
tern, suggesting molecules that physically hold the pre- and postsynaptic 
membranes together. On the presynaptic side, there is a high density of 
transmitter-containing vesicles in close proximity to the membrane and 
an array of cytoskeletal elements surrounding these vesicles. In freeze-
fracture micrographs of the active zone, distinct particles can be observed 
in the membrane that are suggested to be the Ca2+ channels responsible 
for release. 

Active zones are characteristic only of terminals of fast-releasing syn-
apses. At slower-releasing synapses, such as neuropeptide-secreting ter-
minals, no apparent active zone is observed. This may also indicate that 
the Ca2+ channels for slow secretion are more distant from the vesi-
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A 

Figure 12.18 (A) Transmission EM of synaptic terminal. (Den = dendrite, and S\ and S2 
are active zones for synapses Ati and At2.) (B) Scanning EM of freeze-fractured terminal, 
(mit = mitochondrion in synaptic terminal At, and sv = synaptic vesicle.) (C) Diagram of 
synapse. Note the specialized structures on both the pre- and postsynaptic sides of the 
synapse (A and B) and the suggested grid for vesicle release in the presynaptic terminal 
(in C). (A) and (B) are from Peters, A., Palay, S. L., and Webster, H., The Fine Structure of 
the Nervous System, used by permission of Oxford University Press, copyright © 1991 
Oxford University Press; (C) is from Pappas and Purpura 1972. 
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cles and explain the finding that neuropeptide secretion usually requires 
higher frequencies of stimulation (which brings in more Ca2+) than does 
transmitter release at fast-secreting synapses. 

The possible close proximity of the Ca2+ channels to the vesicles, at 
least for the fast-releasing synapses, raises a number of issues. These 
include the concentration of Ca2+ in the terminal necessary for release, 
the buffering and diffusion of Ca2+ in the terminal, the concept of Ca2+ 

domains near the inner surface of the Ca2+ channels, and the proximity 
of the vesicles to the Ca2+ channels. 

The concentration of Ca2+ in the presynaptic terminal necessary for re-
lease has been estimated to be on the order of 10-100 д/М. Given that 
the normal resting level of Ca2+ is about 50-100 nM, a rise of [Ca2+]m of 
roughly 3 orders of magnitude must take place to trigger release. How is 
this possible, and why do fluorescent measurements of Ca2+ in the ter-
minal during trains of action potentials indicate rises of only about a few 
hundred nM? The answer appears to lie in the concept of a Ca2+ domain 
near the mouth of an open Ca2+ channel, in which the Ca2+ concentration 
can be very high and yet fall off very steeply with distance away from 
the channel. This would also necessitate that the Ca2+ receptor that fa-
cilitates release must be very close to a Ca2+ channel (i.e., -10 nm). The 
fluorescent changes associated with an increase in [Ca2+]in averaged over 
a large area would merely reflect the diffusion of Ca2+ into the entire vol-
ume of the terminal resulting from the influx through a few open Ca2+ 

channels. This idea is illustrated in figure 12.19. It is also estimated that 
there are multiple Ca2+ channels associated with each release site and 
that the domains from adjacent Ca2+ channels partially overlap. 

The buffering of Ca2+ in the presynaptic terminal is also of great in-
terest. Because so many cellular processes depend on Ca2+, the con-
centration of Ca2+ in cells is tightly regulated. Free Ca2+ can bind to 
endogenous intracellular buffers, be transported across the membrane 
by pumps or Na+-Ca2+ exchange, or be sequestered by intracellular or-
ganelles. The buffering of Ca2+ is believed to occur via both mobile and 
immobile molecules that bind Ca2+. The buffering of Ca2+ in a hypothet-
ical cell is illustrated in figure 12.20. The immobile buffer is believed 
to have a high capacity for binding Ca2+ and thus to be essentially non-
saturable with a low affinity for Ca2+. Approximately 98% to 99% of the 
entering Ca2+ rapidly binds to this immobile endogenous buffer. 
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Figure 12.19 Ca2+ domains in presynaptic terminal. (From Smith and Augustine 1988.) 
Each cluster of dots represents Ca2+ ions entering the presynaptic terminal through a 
single channel. The sphere is roughly the size of a transmitter-containing vesicle in com-
parison to the Ca2+ channels. 

Figure 12.20 Diagram of Ca2+ homeostasis in a cell. Bw and B/m are the mobile and 
immobile buffers, respectively. Ca2+ can enter the cell through channels in the plasma 
membrane, be transported out of the cell by active transport or Na+-Ca2+ exchange, be 
taken up by intracellular organelles, or be released into the cytoplasm by intracellular 
stores. 
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12.7 Summary of important concepts 

1. Cooperativity of Ca2+ and release. 
2. Space clamp. 
3. Relationships among presynaptic action potential, Ica, and EPSC. 
4. Origin of synaptic delay. 
5. Off response. 
6. Residual Ca2+ hypothesis. 

12.8 Homework problems 

1. Reproduced below is part of figure 12.16. It depicts different aspects 
of synaptic transmission as studied at the squid giant synapse. Label 
and describe all parts of the figure. 

2. Recalling the Ca2+ hypothesis for transmitter release, briefly answer 
(one page or less for each) the following questions: 

(a) What is an on response? 
(b) What is an off response? 
(c) What is the significance of each? 
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(d) Describe the origin of the synaptic delay. 
(e) What is the nature and significance of the nonlinear relationship 

between [Ca2+]in and transmitter release? 
(f) Describe the residual Ca2+ hypothesis for faciliation, augmen-

tation, and PTP. 

(a) Given the three-microelectrode voltage clamp shown below, la-
bel the three electrodes and give the equation for Im in terms 
of whatever you label the three electrodes. What is the relation-
ship between 7ciamp and Im? 

(b) List all of the information about Ca2+ and transmitter release 
that can be obtained from the data illustrated in the following 
figure. 

„„ -I 1 _ J L. . ^ _ 
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13 Synaptic Transmission III: 
Postsynaptic Mechanisms 

13.1 Introduction 

The last two chapters discussed various presynaptic mechanisms involved 
in synaptic transmission, including the quantal nature of neurotransmit-
ter release and the role of Ca2+ in release. In this chapter we move to 
the postsynaptic side of the synapse. As in previous chapters, the focus 
will be on physiological mechanisms. We will assume knowledge of pre-
vious chapters, in particular those concerning cable properties and the 
analysis of single ion channels. This chapter will cover some of the basic 
principles associated with the events at the postsynaptic membrane fol-
lowing the release of neurotransmitter, and the functional properties of 
excitatory and inhibitory synapses. We will also briefly discuss electrical 
synapses, synaptic events involving a conductance decrease, and certain 
unique aspects of different neurotransmitter responses. For a discussion 
of the neurochemistry of neurotransmitter systems and the molecular bi-
ology of transmitter receptors, the reader is referred to several excellent 
texts (Cooper et al. 1986; Hall 1992; Siegel et al. 1989). 

13.2 General scheme for ligand-gated channels 

The general kinetic scheme for ligand-gated channels is illustrated below 
(see also chapters 8-10). 

(hydrolysis or uptake) (С) (O) 
t fci P 
T + R ^ T • R — T • R* 
1 кг oc 

diffusion 
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Neurotransmitter molecules are released from the presynaptic terminal. 
The concentration of transmitter molecules (T) in the synaptic cleft is 
dependent upon the concentration of transmitter in vesicles, the number 
of vesicles released, and the geometry of the cleft. The decline in the 
concentration of transmitter in the cleft is dependent on diffusion and 
either hydrolysis or reuptake by the pre- or postsynaptic elements and 
glial cells. One or more of these transmitter molecules will bind to a 
receptor (R) on the postsynaptic membrane, forming a bound but closed 
state of the channel (C). The closed state makes a transition to the open 
state (O) in a probabilistic manner (see chapters 8-10). 

Figure 13.1 Diagram of current flow through a single, open channel. 

During the open state of the channel the amount of current flow through 
the channel is dependent on the single-channel conductance and the driv-
ing force for current through the channel. The current per channel is given 
by 

ISx=Gsx(Vm-Es), (13.2.1) 

where ISx is the single-channel current, GSx is the conductance of a sin-
gle channel, and (Vm - £5) is the driving force. Equation 13.2.1 is simply 
Ohm's law, where the driving force is the difference in potential across 
the membrane for that particular ion. Using the familiar parallel conduc-
tance model to represent the postsynaptic membrane and, for the mo-
ment, considering each channel as an element of the model, the situation 
just described is depicted in figure 13.2. 

If each channel opened at the same time and stayed open, then the total 
synaptic conductance would be the sum of all the channel conductances, 
or 

N 
Gs = 

x=l 
As we saw in chapters 8-10, however, channel opening is a stochastic pro-
cess, and one must take into account the probability of channel opening 
as well as the number of channels in the postsynaptic membrane available 
for opening. A better equation for synaptic conductance is therefore 
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Is outside 

inside 

Figure 13.2 Parallel conductance model of a synapse with multiple ligand-gated chan-
nels. The switch associated with each conductance element depicts opening or closing 
of the channel (i.e., closed switch = open channel and current flow). Gr and Er are the 
resting conductance and resting potential of the postsynaptic cell, respectively. All other 
elements are as described elsewhere. 

Gs = ys(N.P), (13.2.2) 

where ys is the more conventional symbol for single-channel conductance, 
N is the number of channels available for opening, and P is the probability 
of a channel being open. P will depend on the concentration of transmit-
ter molecules in the cleft, the kinetic properties of the channel, and, for 
some receptors, the postsynaptic membrane potential. Combining equa-
tions 13.2.1 and 13.2.2, we have 

Is = YsW • P)(Vm - £5), (13.2.3) 

which is the equation for synaptic current in terms of single-channel prop-
erties. For most of the discussion in the rest of this chapter, however, we 
will ignore the stochastic properties of the ligand-gated channels and use 
the total (peak) synaptic conductance Gs from equation 13.2.2, or 

Is = Gs(Vm-Es). (13.2.4) 

Referring to figure 13.2, when the channels are open (switches closed) 
current flows in accordance with equation 13.2.4. Is charges the mem-
brane capacitance, Cm, and flows across the membrane conductance, Gr. 
When the transmitter concentration is low and the channels close (open 
switches), the potential developed across Cm decays with a rate deter-
mined by т ж . For synaptic events faster than т ж , the decay of the syn-
aptic potential is governed by т т , whereas for events slower than т ж , the 
time course of the synaptic potential is governed by the time course of 
the conductance change itself. The direction of Is, and thus the polarity 
of the potential developed across Cm during the flow of J5, is determined 
by £5 relative to £ r . 
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13.3 Synaptic conductances and reversal potentials 

The release of a neurotransmitter from a presynaptic ending produces a 
conductance change in the postsynaptic neuron. The strength of the syn-
aptic connection will depend, in part, on the magnitude of this conduc-
tance change and the driving force for the synaptic current. This section 
will discuss these and other issues related to the properties of synaptic 
events. 

13.3.1 Definitions of excitatory and inhibitory responses 

Orthodromic activation of a neuron occurs when an action potential trav-
els in the direction from cell body to synaptic ending. This is in contrast to 
antidromic activation, in which an action potential travels in the direction 
toward the cell body, away from the synapse. If the stimulation is done 

Figure 13.3 Diagram of orthodromic and antidromic stimulation. Orthodromic and 
antidromic refer to the direction of travel of the action potential, that is, orthodromic = 
AP from soma to synapse; antidromic = AP from synapse or axon to soma. 
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somewhere along the axon, then action potentials travel in both direc-
tions, one orthodromically toward the synapse and one antidromically 
toward the cell body. Orthodromic and antidromic stimulation are illus-
trated in figure 13.3. The terms afferent and efferent fibers are also useful 
to define in this context. Afferents are axons in which action potentials 
travel toward a neuron by way of a synapse (e.g., the axon at the top of fig-
ure 13.3), and efferents are axons in which action potentials travel away 
from the soma of the neuron (e.g., the axon at the bottom of figure 13.3). 

Orthodromic stimulation of an excitatory synaptic input produces ex-
citatory postsynaptic potentials (EPSPs) in the postsynaptic neuron. Ex-
amples of EPSPs are shown in figure 13.4. If one changes the membrane 
potential of the postsynaptic neuron by passing steady current (either 
inward or outward), the amplitude of the EPSPs will change. If the post-
synaptic membrane is completely passive, with no voltage-gated conduc-
tances, then the amplitude of the EPSPs will increase with hyperpolariza-
tion and decrease with depolarization in accordance with the change in 
driving force (i.e., change in Vm). At some membrane potential depolar-
ized from rest ( -0 mV in figure 13.4), the polarity of the EPSP will reverse 
sign and become hyperpolarizing. This is called the reversal potential, 
Vrev • 

Inhibitory inputs are typically (but not always) hyperpolarizing from 
rest. Examples of inhibitory postsynaptic potentials (IPSPs) are also il-
lustrated in figure 13.4. Note the change in amplitude of IPSPs at dif-
ferent membrane potentials and also the reversal potential for the IPSPs 
( 75 mV in figure 13.4). 

A synapse is considered excitatory if it increases the probability of a 
neuron firing an action potential. Likewise, a synapse is considered in-
hibitory if it decreases the probability of firing an action potential. These 
definitions may seem straightforward, except that they lead to a situation 
that may seem counterintuitive at first: A synaptic input could produce 
a depolarization of the membrane potential and still be inhibitory. What 
determines whether a synaptic input is excitatory or inhibitory is the rela-
tionship between its equilibrium potential (Es) and the threshold for firing 
an action potential. If we assume a normal resting potential of around 
-60 mV and a threshold for the action potential that is positive to this 
value (i.e., Vrest < Vth), then we can put the definition for excitatory and 
inhibitory synapses in more quantitative terms with the following: 

If Es > Vth, then the synapse is excitatory. 
If Es < Vth, then the synapse is inhibitory. 
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Es is the synaptic equilibrium potential and Vth is the voltage threshold 
for an action potential (an action potential is elicited 50% of the time at 
this potential). As we will see later, the above definitions hold only for 
synapses that produce an increase in conductance in the postsynaptic 
membrane—so-called conductance increase PSPs. For conductance de-
crease PSPs, the inequalities are reversed. 

Vm (mV) 
39 

EPSPs 

23-

7" 

-9 " 

-25" 

Vm (mV) 
IPSPs 

Figure 13.4 Examples of EPSPs and IPSPs at different membrane potentials in a passive 
neuron. 

One might naturally (but incorrectly) think that excitatory synapses pro-
duce transient depolarizations from rest and inhibitory synapses produce 
transient hyperpolarizations from rest. As stated above, what determines 
whether a synapse is excitatory or inhibitory is the relationship between 
threshold and synaptic equilibrium potential. Excitatory synaptic inputs 
are indeed depolarizing from rest, but inhibitory inputs could be hyper-
polarizing, depolarizing, or produce no change at all in the membrane po-
tential. For example, one can imagine a situation in which Vrest = -60 mV, 
Vth = -50 mV, and Es = -55 mV. Such a synaptic input would be depo-
larizing from rest yet would still be classified as inhibitory by these defi-
nitions. The answer to this apparent paradox may become clearer when 
we discuss current-voltage relationships for synaptic inputs. In the mean-
time, consider an extreme case of an inhibitory synapse with the above 
parameters that produces a huge increase in conductance, some 10 times 
the normal resting conductance of the cell. During this synaptic input, the 
membrane potential would essentially be "clamped" to -55 mV, a value 
below threshold. To reach threshold the neuron would have to receive a 
very large excitatory input—much larger than would be necessary in the 
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absence of the Inhibitory input—to depolarize the membrane potential 
to threshold. The inhibitory input, even though depolarizing, keeps the 
membrane potential below threshold and lowers the probability of firing 
an action potential. It can therefore be properly classified as inhibitory 
(see also example 13.1). 

Another example would be an inhibitory input that produces no change 
in membrane potential. Such an input would have an equilibrium poten-
tial near rest, or -60 mV in the above example. During such a synaptic 
event, the membrane would now be "clamped" to the resting potential 
and again resist depolarization to threshold. These types of synaptic in-
puts have also been called shunting inputs because they shunt current 
flow from a simultaneous excitatory input and attenuate its amplitude. 
Although this is certainly true, the terminology is a bit misleading when 
applied only to a synaptic input with no potential change, because essen-
tially all inhibitory inputs are "shunting," regardless of whether they are 
depolarizing, hyperpolarizing, or produce no change in membrane poten-
tial. In each case they will shunt current flow from an excitatory input and 
reduce its amplitude. A few additional points about shunting inhibition 
include: (a) The shunting lasts only for the duration of the conductance 
change, which is not necessarily the same as the duration of the inhibitory 
potential; (b) The shunting is fairly localized in space and occurs only near 
the site of the inhibitory input; and (c) The shunting is not subtractive. In 
other words, the shunting does not merely subtract off a fixed amount the 
way a hyperpolarization might subtract from a depolarization. Instead, 
shunting can reduce the depolarizing event by an amount that depends 
on the relative magnitudes of the inhibitory and excitatory conductance 
changes (i.e., a large shunting conductance change will reduce a small 
EPSP by a large amount, but a large EPSP by a lesser amount—the equa-
tion for this is given in example 13.1). Hyperpolarizing inhibition that is 
not shunting, for example, inhibition taking place at a site far from the 
synaptic input or at a time following the underlying conductance change, 
can be considered subtractive. 

13.3.2 Voltage-clamp analysis of synaptic parameters (I-V curves) 

Although much can be learned from studying EPSPs and IPSPs such as 
those shown in figure 13.4, it is difficult to determine the conductance 
change associated with the synaptic input by using current-clamp tech-
niques. An important method for analyzing synaptic inputs is once again 
the voltage clamp. Using voltage-clamp methods, one can determine the 
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Figure 13.5 Voltage-clamp analysis of a synaptic input. Examples of excitatory synaptic 
currents (EPSCs) measured at different holding potentials to illustrate the measurement 
of the holding current, IH, and the peak synaptic current, / s . IH is measured from the 0 
current level, while Is is measured from the holding current. See text for further explana-
tion. 

peak conductance change, Gs, the time course of the conductance change, 
gs, and the equilibrium potential, Es. One can also determine some of 
the resting properties of the neuron. Using the equivalent circuit of fig-
ure 13.2, the following equation can be derived: 

ID = IH + Is = GAVm - Er) + Gs(Vm - Es), (13.3.5) 
where Ici is the total clamp current and IH is the holding current. The 
use of a voltage clamp to determine properties of a synaptic input is illus-
trated in figure 13.5. In this figure the membrane potential of the post-
synaptic neuron is clamped at various values while the synaptic input is 
activated at each potential. The holding current, /я, is the steady cur-
rent necessary to keep the neuron at the intended holding potential. By 
definition, the resting potential is the holding potential at which IH = 0. 
When the synapse is activated, the current associated with the synapse, 
Is (also called an EPSC or IPSC, depending on whether it is excitatory or 
inhibitory), is added to IH. From data such as these one can measure IH 
and Is as a function of Vm and plot the associated current-voltage (I-V) 
curves (figure 13.6). 

The slope of the line for IH VS. Vm (particularly in the hyperpolarizing 
direction where the effect of voltage-gated conductances on the holding 
current is minimal) gives the resting conductance of the neuron, or Gr. 
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Figure 13.6 I-V curves from a voltage-clamp experiment of an excitatory synaptic input. 
Is vs. Vm gives the synaptic conductance and / я vs. Vm gives the resting conductance of the 
neuron. Er is the resting potential, and Vrev(e) is the reversal potential of the excitatory 
response. 

The slope of the line for Is vs. Vm gives the peak synaptic conductance, Gs. 
Is could be measured at any point in time after the onset of the synaptic 
current. If the measurement is made at the peak, as illustrated in fig-
ure 13.5, then the conductance is the peak conductance. A measurement 
of Is at some other time point would yield an I-V curve with a different 
slope and thus a different value for G5. 

As mentioned above, the voltage intercept of the /я vs. Vm line gives the 
value for the resting potential. The intercept of the Is vs. Vm line gives 
the value for the reversal potential, Vrev, because it is the potential at 
which the polarity of the synaptic current reverses its sign. The reversal 
potential is also equal to the synaptic equilibrium potential, ESl when the 
synaptic input is isopotential with the location of the voltage clamp (see 
also section 13.3.3). 

'Example 13.1 N 

Suppose we are recording from a neuron receiving an excitatory syn-
aptic input with properties the same as those illustrated in figure 13.6. 
At any potential between rest and threshold, the excitatory input will 
produce an inward current that depolarizes the neuron toward (or be-
yond) threshold. In the figure below, an I-V curve for a hypotheti-
cal inhibitory input is illustrated. The conductance of this input is 5 
times the excitatory input (5 times the slope) with an equilibrium po-
tential (—"60 mV) depolarized from rest (-70 mV) but hyperpolarized 
from threshold (Vth = -45 mV). Is this input really inhibitory? At any 

v ; J 
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N 

Example 13.1 (continued) 
potential between rest and its equilibrium potential, the synaptic in-
put will produce an inward current that depolarizes the neuron toward 
threshold—as would an excitatory input. At potentials between Es and 
threshold, however, the synaptic input will produce an outward current 
that hyperpolarizes the neuron away from threshold. This would indeed 
be inhibitory. 

But what if the excitatory and inhibitory inputs are activated together? 
Such a composite synaptic response will have an I-V curve that is the 
sum of the individual I-V curves. This is illustrated by the dotted line in 
the figure. In this case, the combined inputs will still be inhibitory be-
cause the composite equilibrium potential is negative to threshold. The 
inhibitory input has thus overpowered the excitatory input and shunted 
the amplitude of the excitatory current. 

The conductance (slope of I-V curve, GST) and equilibrium potential 
(voltage intercept, EST) of the combined synaptic response is given by 

G s t L о V i - • J 

13.3.3 Conductance and reversal potentials for nonisopotential syn-
aptic inputs 

Most excitatory synapses in the CNS terminate on dendrites that are elec-
trically remote from the cell body. Even inhibitory synapses, which were 
once believed to be restricted to the soma, are now known to have con-
tacts throughout the dendritic tree. In such cases, the preceding discus-
sion of voltage clamping synaptic inputs becomes complicated by a lack 
of space clamp, because the subsynaptic membrane at the synapse will 
not be isopotential with the site of recording. 
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The lack of space clamp has a number of effects (see also chapter 12). 
First, the measured reversal potential (measured, for example, from the 
soma) will no longer be equal to the synaptic equilibrium potential (i.e., 
VREV * ES). Second, the synaptic conductance change measured from 
the soma will not be equal to the conductance change occurring at the 
synapse. And third, the time course of the synaptic current measured 
from the soma will be slower than that occurring at the synapse because 
of the low-pass filtering properties of the dendrites (see also chapter 4). 
We will discuss each of these errors in the following three sections and in 
section 13.4.2. 

13.3.3.1 Reversal potentials and conductance ratios: General Most 
fast inhibitory responses in the CNS are mediated by СГ. In other words, 
the inhibitory neurotransmitter (usually either GABA or glycine) opens 
channels that are permeable to CI". The equilibrium potential for these 
inhibitory synapses is equal to that for СГ or ES = ECU For fast excitatory 
synapses, the ligand-gated channels (usually either glutamate or nicotinic 
ACh) are nonselective for monovalent cations (Na+ and K+, although some 
are also permeable to Ca2+). The equilibrium potential (ES) for excitatory 
synapses is around 0 mV. 

For the case of a channel permeable to two or more ions, measuring 
the reversal potential as a function of different ionic concentrations in 
the bath will provide information about the relative conductance of the 
channel to different ions as well as, perhaps, the error associated with the 
measurement of the reversal potential for synapses not isopotential with 
the recording site. The situation for two ions (Na+ and K+) is depicted in 
figure 13.7. 

Figure 13.7 Parallel conductance model for an excitatory synapse in which the ligand-
gated channels are permeable to both Na+ and K+. When the synapse is active, the 
switches are closed, and the G's represent constant parameters. Note, however, that 
although Na+ and K+ are depicted here as separate current pathways, they actully flow 
through the same channel. 
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The synaptic equilibrium potential for this synapse is 

rr GKEK + GNgENa /1 э э Es = 7Г—7; . (13.3.6) Ьк + (jNa 
If we change the concentration of K+ in the bath and assume that the 
intracellular concentration of K+ does not change, then 

[K+]£ut Д7\ [K+]2 
out Д Г _ e*1 r 2 In LJV Jout 1 4 1

 1 n 

= ^ i n ^ k , (13.3.7) 

where [K+]oUt and [K+]oUt are two different bath concentrations. Using 
equations 13.3.6 and 13.3.7, the change in synaptic equilibrium potential 
is given by 

AES = . G* (AEK), (13.3.8) 
+ ^Na 

which is plotted in figure 13.8. Similar equations are obtained if the con-
centration of extracellular Na+ in the bath is varied, and this is illustrated 
in figure 13.9. 

Figure 13.8 Hypothetical experiment in which the synaptic equilibrium potential varies 
as a function of extracellular K+. 

From these two experiments one can estimate the relative conductance 
of the channels to the two ions by looking at the ratio of the slopes in the 
figures, or 

slope (K+) _ GK (13 3 9) 
slope (Na+) G^a 
which is approximately 1 for most EPSPs. This analysis can easily be ex-
tended if there are more (or less) than two permeable ions present in the 
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Figure 13.9 Hypothetical experiment in which the synaptic equilibrium potential varies 
as a function of extracellular Na+. 

bath solution or if one wishes to determine the relative conductance of 
the channel to an ion not normally present in the extracellular medium. 
From the above equations one can also show that if there are only two 
ions in the bath that can permeate the channels, then 

slope (K+) + slope (Na+) = 1, 

and 
GK = slope (K+) 
GNU 1 - slope (K+)' 

13.3.3.2 Reversal potentials and conductance ratios: Nonisopotential 
synapses In the above example we were assuming that the measure-
ments were made right at the synapse so that the synaptic equilibrium 
potential was equal to the reversal potential. This type of analysis is very 
powerful for identifying the selectivity of channels to different ions. But 
what if the synapse is not located at the site of recording? What is the 
relationship between VREV and ES? The problem is illustrated once again 
in figure 13.10 (see also chapter 4). 

The polarity of the synaptic current reverses when the membrane po-
tential at the synapse is equal to the synaptic equilibrium potential. The 
membrane potential at the site of recording, however, will not be the same 
as that at the synapse. For example, one may have to depolarize the soma 
to +20 mV in order for the synaptic site to be depolarized to 0 mV. This 
difference represents the amount of attenuation of potential from the 
soma to the synapse. In this case the reversal potential measured from 
the soma will not be the same as the reversal potential (equilibrium po-
tential) at the synapse. Using the ball-and-stick model of chapter 4, this 
difference is illustrated in figure 13.11. 
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Figure 13.10 Synapses remotely located from the site of recording. (Adapted from 
Carnevale and Johnston 1982.) 

The amount of error associated with the measurement of the reversal 
potential in the soma can be calculated for an equivalent cylinder repre-
sentation of the neuron by (see chapter 4) 

where Vrev is the reversal potential measured at the soma, L is the electro-
tonic length of the (finite-length) equivalent cylinder, and X is the electro-
tonic distance of the synapse from the soma. The attenuation of potential 
from the soma to the synaptic site would obviously be useful to know. II 
is not always possible, however, to assume an equivalent cylinder repre-
sentation of the neuron. The two-port analysis introduced in chapter 4 
can sometimes be used instead. The experimental situation depicted in 
figure 13.10 is shown in electrical terms in figure 13.12 where the "cable" 
merely represents that portion of the neuron or dendrites that renders 
the synaptic site nonisopotential with the soma. 

In general, (Vrev-Er) * (Es-Er) and, actually, (V rev - E r ) > (Es-Er). 
As in previous chapters, if we define gain as the output/input ratio, where 
Vrev is the input and Es is the output, then 

(Vrev - Er) • gain = (Es - Er). 

(Es - Er) = (Vrev - Er) 
cosh(I - X) 

cosh (I) ' (13.3.10) 
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Figure 13.11 Equivalent cylinder representation of the soma and dendrites—the ball-
and-stick model. The difference between Vrev measured in the soma and Es at the synapse 
is illustrated. See text for further explanation. 

"cable" synapse 

recording 
site 

(e.g. soma) 

Figure 13.12 Equivalent circuit representation for recording from a remotely located 
synaptic input. The "cable" merely represents the part of the neuron between the record-
ing site and the synapse. 

Let this gain be equal to k. Then 

(Vrev-Er) = (Es-Er)-l/k, (13.3.11) 

where к < 1 and is the gain of the cable. Note that for a finite-length 
equivalent cylinder, 

cosh(I - X) к = cosh(L) 
A similar analysis to that shown in the previous section, where the syn-

aptic equilibrium potential varied with the concentration of extracellular 
ions, now leads to some interesting and potentially useful relationships 
for remotely located synapses. Varying the concentrations of extracel-
lular K+ and Na+ and using equation 13.3.11 leads to the relationships 
shown in figure 13.13. 
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Figure 13.13 Hypothetical experiment in which the synaptic equilibrium potential varies 
as a function of extracellular K+ and Na+. 

From figure 13.13, the sum of the slopes will now give an estimate of k, 
or 

Further discussion of this type of two-port analysis is given in Carnevale 
and Johnston (1982). 

13.3.3.3 Synaptic conductance change for nonisopotential synapses 
As discussed in section 13.3.2, the synaptic conductance of an isopotential 
synapse can be obtained from the slope of the I-V curve when measured 
under voltage-clamp conditions. In most cases, however, the synaptic 
input is remotely located from the site of the voltage clamp. Under these 
conditions, what is the relationship between the slope of the I-V curve 
measured, for example, in the soma, and the conductance change at the 
synapse? The answer to this question is somewhat complicated, and the 
interested reader should refer also to more complete treatments given 
elsewhere (Carnevale and Johnston 1982; Johnston and Brown 1983; Rail 
and Segev 1985; and Spruston et al. 1993). 

The fact that the synaptic conductance change occurs remotely from the 
voltage clamp means that the potential at the synaptic site is not constant 
during the synaptic input. In other words, although the potential at the 
soma may be constant, the potential at the synapse is not clamped, but 
changes with time. This also means that the driving force for the synaptic 
current (Vm-Es) changes during the synaptic event, and Is will actually be 
less than if Vm had been held constant. In addition, the synaptic current 
will attenuate in amplitude from the site of input to the soma due to the 
cable properties of the dendrites. The amount of attenuation will depend 
on the electrotonic distance of the synapse from the soma as well as on the 
kinetics of the synaptic current (the faster the kinetics of the current, the 
greater the attenuation). These two factors (decreased Is due to decreased 

X slopes = 
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driving force and decreased Is due to attenuation along the cable) mean 
that the I-V curve of the synapse as measured from the soma is quite 
different from that which one would have obtained under space-clamped 
conditions. But, how bad is it? 

A quantitative answer to this question requires knowing the specific 
parameters associated with the synaptic input and the postsynaptic neu-
ron. An example for a hippocampal pyramidal neuron is illustrated in 
figure 13.14. In general, the errors associated with measuring the syn-
aptic equilibrium potential for a remote synapse, such as those discussed 
in the previous section, are small—perhaps 10-20 mV for most excitatory 
synapses. In contast, the error associated with estimating the synaptic 
conductance change can be quite large. For the example shown in fig-
ure 13.14, the conductance change measured from the soma for a synapse 
located about 20% of the total distance out the dendritic tree is only about 
1/5 of that at the synapse! 

13.4 Synaptic kinetics 

The simple two-state kinetic scheme for a ligand-gated channel presented 
in section 13.2 and in chapters 8-10 is given again below. 

hydrolysis 
(or uptake) 

t 
T 
1 

diffusion 

The model assumes that one molecule of transmitter binds to one re-
ceptor and that there are no interactions among receptors (independent 
events). As discussed in chapter 10, this kinetic model can be easily mod-
ified for the case of two molecules binding to the receptor by adding an 
additional closed state to the channel representing a singly bound, but 
closed channel. Nicotinic ACh and NMDA glutamate receptors appear to 
bind two molecules of transmitter before opening. The stoichiometry of 
many other receptors, however, is not known. 

The model can also be extended to include desensitization. Desensiti-
zation is the inactivation of the receptor/channel due to prolonged action 
of the transmitter. Although the mechanism of desensitization is not well 

(С) (O) 
ki fi 

+ R ^ T-R ^ T•R* 
кг (x 

(13.4.12) 
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Figure 13.14 Effect of poor space clamp on measured synaptic parameters in a finite-
length, equivalent cable (from Spruston et al. 1993). (A) Synaptic currents measured from 
the soma for synapses at different electrotonic distances out the dendrites. (B) Plot of 
peak amplitude of synaptic current measured in the soma as a function of the electrotonic 
distance of synapse from the soma. (C) Plot of synaptic conductance measured from the 
soma as a function of the electrotonic distance of synapse from the soma. (D) Plot of 
reversal potential measured from the soma as a function of the electrotonic distance of 
synapse from the soma. 

understood, it may represent another closed state to the channel that is 
reached from the open state. The receptor, once desensitized, usually has 
a higher affinity for the transmitter than do nondesensitized receptors. 

For the neuromuscular junction where ACh is released and binds to 
nicotinic receptors, the decay of the end-plate current (EPC) is voltage 
dependent. At hyperpolarized potentials the decay is slower than at de-
polarized potentials. This is illustrated in figure 13.15. The rate of decay 
of the EPC is exponentially related to membrane potential and is described 
by the following equation: 

a = beaVm, (13.4.13) 

where a is the rate of decay of the EPC, Vm is membrane potential, and a 
and b are constants. 
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Figure 13.15 Voltage-dependent decay of end-plate currents at the neuromuscular junc-
tion. Superimposed currents at different membrane potentials are shown on the left, and 
a plot of rate of decay for the currents as a function of Vm is on the right. (After Magleby 
and Stevens 1972a.) 

13.4.1 Theory for channel kinetics and the time course of synaptic 
currents 

The observed voltage dependence of the decay of the EPC inspired Ma-
gleby and Stevens to develop a theory for the time course of the synaptic 
conductance change with respect to channel kinetics. This theory holds 
quite well for the end plate and makes some important predictions for 
the operation of this synapse. The theory may also apply to some of the 
glutamate receptors (e.g., NMD A; see section 13.5) at glutamate-releasing 
synapses, although this is currently an active area of research. 

It had originally been assumed that the time course of the EPC reflected 
the concentration of ACh in the cleft so that the decay time of the EPC was 
due to the decay of the ACh concentration by diffusion or hydrolysis. The 
finding that the decay rate of the EPC was voltage dependent at the end 
plate made this idea less likely because neither diffusion nor hydrolysis 
should be dependent on the membrane potential. Magleby and Stevens 
proposed instead that the decay of the EPC was due to the kinetics of the 
ACh-gated channels. The theory can be derived as follows. 

Assume a total of N receptors at the end plate with x of them bound 
with transmitter and in the open configuration and у of them bound with 
transmitter but closed. The synaptic conductance is simply 

where у is the single-channel conductance. The change in x with time can 
be derived from equation 13.4.12 as 

9s = yx (13.4.14) 

(13.4.15) 
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while that for у is given by 

^ = ax + k\c(t)(N - x - y) - (0 + 1c2)y, (13.4.16) 

where c(t) is the concentration of transmitter in the cleft. If the binding 
of transmitter to receptor is rapid compared to diffusion, then the binding 
is essentially at equilibrium and dy/dt « 0 in equation 13.4.16. We can 
then solve for у as follows: 

kic(t)N + x(a-kic(t)) ПЭУ.17Ч 
У ~ n—;; ;—777 . (13.4.17) 

Again, assuming that binding is rapid compared to the opening and 
closing of the channel (i.e., k\ and кг are large compared to a and 0) and 
that N is large compared to x, then 

У - Т ^ Г у 
with К = к 2 /кь Combining equations 13.4.14,13.4.15, and 13.4.18, 
§ - ^ 

^ = -(X0s+PW(t), (13.4.21) 

where W(t) = Equations 13.4.19, 13.4.20, and 13.4.21 were de-
rived by Magleby and Stevens and provide a description of the number of 
receptors in the open configuration, and the synaptic conductance pro-
duced by those open receptor-channels, as a function of time and trans-
mitter concentration. 

Magleby and Stevens proposed two alternative schemes to explain the 
single exponential decay of the EPC. First, the conformational change of 
the channel from the closed to open configuration could be rapid com-
pared with the change in ACh concentration in the cleft. Under such a sit-
uation equation 13.4.12 would be essentially in equilibrium, and dgs/dt = 
0 in equation 13.4.21, yielding 

0s(t) = ^W(t). 

The exponential decay of the EPC would then reflect the exponential de-
cay of the ACh concentration as described by W (t). The second possibility 
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is that the concentration of ACh in the cleft rises and falls rapidly com-
pared with the time for conformational changes of the receptor-channels 
(i.e., rapidly with respect to I/a). In this situation c(t) would go to zero 
near the beginning of the decay phase of the EPC, and equation 13 .4 .21 
would reduce to dgs/dt = -ags. This can be solved to yield 

gs(t)=gs( 0)e-at. 
Magleby and Stevens favored the second scheme for several reasons. 

First, the rate of decay is voltage dependent, and neither diffusion nor 
hydrolysis is likely to be dependent on the membrane potential of the 
postsynaptic cell. Second, the rate of the decay of the EPC is very temper-
ature dependent, with a Qio1 of about 3. Diffusion has a Qio of about 1, 
and although it is possible that hydrolysis could have a Qio of 3, Magleby 
and Stevens argued that hydrolysis does not participate in the decay of 
the EPC. Their reasoning for this argument was that treatment of the end 
plate with anticholinesterases that block hydrolysis of ACh do not affect 
the voltage sensitivity of the decay rate. It was also shown subsequently 
by Gage and McBurney that the decay rate still has a Qio of 3 after remov-
ing ACh hydrolysis with anticholinesterases. None of these findings are 
consistent with the rate of decay or the voltage sensitivity of the rate of 
decay being dependent on the ACh concentration in the cleft. 

The conclusion that the duration of the synaptic conductance is depen-
dent on channel kinetics and not on the concentration of ACh in the cleft 
is an extremely important concept. Although this conclusion and the re-
sulting theory were derived from studies of the muscle end plate, there 
are many aspects to the theory that are generally applicable to other fast 
releasing synapses as well. The situation for glutamate and GABA will be 
discussed a little later. There are also aspects of the theory that don't 
quite fit the experimental findings even at the end plate. For example, 
although anticholinesterases do not affect the voltage sensitivity to the 
decay rate, they do prolong the duration of the EPC. This is not predicted 
by the theory, in which diffusion and hydrolysis are assumed to be rapid 
processes, and Magleby and Stevens suggested that there may be some 
direct action of the anticholinesterase enzyme on the channel. Another 
possible explanation is that in the absence of hydrolysis, ACh from neigh-
boring quanta interact nonlinearly at adjacent receptor domains. This and 
other anomalies, however, have not yet been fully resolved. 

* Qio is the ratio of reaction rates for a 10°C increase in temperature, or Qio = гг/г\ , 
where r\ is the rate of reaction at a given temperature and is the rate at 10° С higher 
in temperature. 
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With the conclusion that EPC decay is dependent on <x, Magleby and 
Stevens derived equations that provide some physical interpretation for 
the processes underlying its voltage dependence. From Eyring rate theory, 
discussed in chapter 5, 

a(Vm) = vexp (~Uljm)) . (13.4.22) 

where v is a vibration frequency, к is Boltzmann's constant, T is abso-
lute temperature, and U is the Helmholtz free energy difference between 
the open and closed states of the channel. Assuming that the voltage de-
pendence results from an electric dipole associated with the channel that 
moves in the direction of the applied electrical field, the energy difference 
is given by 

U(Vm) = Uc-EiJCt 

where Uc is the height of the energy barrier for the closing of the channel 
in the absence of a field, E is the electric field, and цс is the change in the 
dipole moment normal to the field associated with closing of the channel. 
Note also that Vm = E • M, where M is the membrane thickness. The 
equation for a can be rewritten as 

a(Vm) = vexp exp ( V m j j ^ ) - (13.4.23) 

Letting Ac = Цс/МкТ and Bc = v exp i -U c / k t ) , we obtain 

<x(Vm) =BceAcV™, (13.4.24) 

which is the identical equation to that determined from the experimental 
data. 

A similar series of equations can be derived for the rising phase of the 
EPC so that 

P = B0eA°v™, (13.4.25) 

where A0 = ц0/МкТ and B0 = vexp(-U0/kt), with ц0 as the change in 
the normal component of the dipole moment associated with the opening 
of the channel and U0 as the height of the energy barrier for opening the 
channel. 

Equations 13.4.21, 13.4.24, and 13.4.25 can be used to predict quite 
accurately the time course and voltage dependency of EPCs from neuro-
muscular junctions. Furthermore, the curvature of the I-V curve of the 
EPC in the depolarizing direction can be explained on the basis of the 
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voltage dependency of channel closing.2 Although the single-channel I-V 
curve is linear, according to the theory of Magleby and Stevens, at depolar-
ized potentials channels will spend less time in the open state, resulting 
in less total current from a population of channels. 

The data supporting the theory for the rising phase of the EPC is not 
as strong as that for the decay phase. The rising phase is not as voltage 
or temperature dependent as predicted by the theory. It may be that the 
rising phase of the EPC is indeed limited by diffusion time of the transmit-
ter. Nevertheless, the general concept that the time course of transmitter 
concentration in the cleft is brief and that channel kinetics is the major 
determinant of the duration of synaptic responses is of fundamental im-
portance to our understanding of synaptic transmission. 

As mentioned in chapter 10, single-channel recordings have demon-
strated that the mean channel open time is much shorter than the rate con-
stant for decay of the EPC. The two-state model given by equation 13.4.12 
is therefore not adequate, and at least a three-state (two closed states and 
one open state) model may be necessary. In this case the decay time of 
the EPC would be related to the channel burst duration rather than the 
mean channel open time. 

There is much less information about glutamate- and GABA-releasing 
synapses than about ACh at the neuromuscular junction. One reason is 
that there are few experimental preparations as favorable for study as the 
neuromuscular junction. It does appear, however, that the general prin-
ciple outlined above—that changes in transmitter concentration in the 
cleft are brief compared to the time course of the synaptic conductance 
change—holds for other synapses. In particular, the concentration of glu-
tamate is brief compared to the time course of the NMDA component of 
the synaptic response (see section 13.5 for discussion of NMDA-receptor-
mediated synaptic responses), and the rate of decay of the NMDA response 
probably reflects channel kinetics. For the non-NMDA component of the 
synaptic response, there is little effect of membrane potential on the rate 
of decay to the EPSC, leading some to speculate that, in contrast to the 
end plate, rapid desensitization or reuptake of transmitter may be rate-
limiting processes for the decay of current. Recent work, however, sug-
gests that at many synapses the concentration of glutamate is brief even 
compared to the time course of the non-NMDA component, and so the 
decay of the non-NMDA current may also be due to channel kinetics. In 

2The I-V curve of the EPC shows outward rectification in that there is less outward cur-
rent flow at depolarized potentials than inward current at corresponding hyperpolarized 
potentials. 
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the case of non-NMDA receptors, there just may be no significant electric 
dipole associated with the receptor molecule to affect decay at different 
membrane potentials. In any event, the general theory first developed 
by Magleby and Stevens guides much research into the mechanisms of 
synaptic transmission. 

13.4.2 Kinetics of nonisopotential synapses 

As discussed in previous sections, the analysis of synaptic events is com-
plicated when the input occurs at a site remote from the soma or site 
of measurement. This is true when one wants to determine the syn-
aptic equilibrium potential from a measurement of reversal potential (sec-
tion 13.3.3.2), the synaptic conductance from a measurement of the I-V 
curve (section 13.3.3.3), or the kinetics of the synaptic current from wave-
form measurements in the soma. The cable properties of a neuron and its 
associated dendrites will attenuate and distort the waveform of a synaptic 
event (see also chapter 4). 

The dendrites act as a low-pass filter and attenuate the higher-frequency 
components of a synaptic input. This means that, in general, the rising 
phase of a brief synaptic current will be distorted and slowed more than 
its falling phase. The falling phase will follow an exponential time course 
when the synapse is isopotential with the recording site and become more» 
multiexponential at increasing electrotonic distances from the soma. The 
amount of slowing of the rising and falling phases depends on the cable 
properties of the neuron, the kinetics of the ligand-gated channels, and 
the electrotonic distance of the synapse from the recording site. Exam-
ples from a representative hippocampal pyramidal neuron are shown in 
figures 13.16 and 13.17. 

Note that the rising phase of a synaptic response is typically character 
ized by its rise time, which is most conveniently measured as the time for 
the response to go from 10% to 90% (or sometimes 20% to 80%) of its peak 
value. (The 10% value is used in order to avoid uncertainties associated 
with measuring the onset of the response, which is usually buried in the 
baseline noise. The 90% value is used to avoid uncertainties associated 
with measuring the time of the peak of the response when the waveform 
is relatively flat or rounded. Other measures of the rising phase include 
the time-to-peak (see chapter 4). Time-to-peak is useful for simulations 
in which there is no noise or as a measure from a fixed time point such 
as from a stimulus artifact.) 
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The falling phase of a synaptic response can be characterized either 
by determining the exponential that best fits the decaying phase of the 
response or by using the measure of half width. The half width is simply 
the total duration of the response at its half amplitude (see chapter 4). 
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Figure 13.16 Effects of electrotonic distance on the kinetics of a synapse measured 
from the voltage-clamped soma in a finite-length (L = 1), equivalent cable (from Spruston 
et al. 1993). (A) Synaptic currents measured in the soma for synapses located at different 
electrotonic distances from the soma. The arrows indicate the onset of the conductance 
change. (Note the different amplitude and time scales for each trace.) (B) Plot of rise time 
(10% to 90%) of synaptic current measured from the soma as a function of its electrotonic 
distance from the soma. (C) Plot of half-decay time of synaptic current measured from 
the soma as a function of its electrotonic distance from the soma. The dashed lines in (B) 
and (C) represent simulations for a semi-infinite cylinder. 
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Measured current at SQma "Clamped" potential at svnapse 

Figure 13.17 Voltage- and space-clamp errors in currents measured with a somatic 
voltage clamp in a realistic compartmental model of a hippocampal pyramidal neuron. 
Fast excitatory synapses modeled using an identical conductance were simulated at four 
different locations in the model. The measured currents (left) are clearly filtered and 
attenuated in comparison to the perfectly-clamped synaptic current in the soma (bottom 
left). The ability of the somatic electrode to clamp the membrane potential at the synapse 
is shown by the records of synaptic escape voltage (solid lines in right column; mean 
distances of the synapses from the soma are indicated). The undamped EPSPs (dashed 
lines in the right column) are also shown for comparison. Note that the EPSPs in the distal 
dendrites are essentially unaffected by the somatic clamp (from Spruston et al. 1994). 

13.5 Excitatory amino acid receptors 

Most fast excitatory synapses in the central nervous system use glutamate 
as the neurotransmitter. Glutamate receptors can be separated broadly 
into two main types—those sensitive to JV-methyl-D-aspartic acid (NMDA) 
and those that are not (non-NMDA). The non-NMDA class can be subdi-
vided further, based on agonist selectivity, into kainic acid (KA) and a-
amino-3-hydroxy-5-methyl-4-isoxazole-proprionic acid (AMPA) receptors. 
Many glutamate receptors have now been cloned, and an intense effort is 
being made to investigate the structure-function relationships among the 
many different subunits that make up the individual receptors. 

The KA and AMPA classes of receptors share many of the functional 
properties of nicotinic ACh receptors in that they mediate fast excitatory 
synaptic responses. The NMDA class of receptors, however, has several 
unique properties with important physiological consequences that will be 
discussed briefly in this section. 
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Figure 13.18 Responses of a neuron to rapidly applied glutamate measured under volt-
age clamp. The responses on the left are due to KA/AMPA receptors because no NMDA 
receptors are present. The bar indicates the time of glutamate application. The I-V curve 
for the responses is shown on the right. 

If brief pulses of glutamate (or KA or AMPA) are applied to a responsive 
neuron under voltage-clamp conditions, the responses and resulting I-V 
curves are illustrated in figure 13.18.3 The current responses reverse near 
0 mV and exhibit a fairly linear relationship with membrane potential. 

If a similar experiment is done with NMDA, however, the result is quite 
different (figure 13.19). The responses are small at negative potentials, 
and the I-V curve is very nonlinear with a prominent region of negative 
slope. This region of negative slope is sensitive to the extracellular con-
centration of Mg2+: The same experiment done after removing Mg2+ from 
the bath yields a fairly linear I-V curve (see figure 13.19). The chord con-
ductance (Is/(Vm - Es)) as a function of voltage is also plotted in fig-
ure 13.19 and nicely illustrates the fact that the conductance of the NMDA 
response is voltage dependent and that this voltage dependency is sen-
sitive to external Mg2+. The voltage dependency of the NMDA receptor 
is quite unique and interesting. As we will see in chapter 15, the NMDA 
receptor plays an important role in certain types of long-term potentia-
tion. It also may be involved in excitotoxicity, where excessive release of 
glutamate (e.g., during ischemia) can lead to cell death. 

EPSPs or EPSCs that occur from the evoked release of glutamate and 
that are mediated exclusively by NMDA receptors (e.g., with an antago-
nist to the non-NMDA receptors present in the bath) are relatively slow 
compared to those mediated by KA or AMPA receptors. The slow rise and 
decay times of the responses appear to be due to the slow kinetics of the 
NMDA receptor-channels. This is illustrated in figure 13.20. It is generally 

3Brief pulses of KA or AMPA can be achieved by filling a blunt glass electrode with a 
concentrated solution and then either applying a brief pressure pulse to the electrode 
or a brief current pulse. The former method is just pressure application while the latter 
method is called iontophoresis. Another method for fast application of a drug to an excised 
patch is to have a continuous stream of solution flowing from a large pipette and rapidly 
move the patch pipette into and out of the stream. 
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Figure 13.19 Responses of a neuron to rapidly applied NMDA measured under voltage 
clamp (the bar indicates the time of application). The currents above were obtained at two 
different Mg2+ concentrations, and the resulting I-V curves are shown in the lower left. 
The chord conductance (calculated using GNMDA = IS/(VM - ES)) is shown in the lower 
right for the same two Mg2+ concentrations. 

thought that NMDA and non-NMDA receptors are located together in the 
subsynaptic membrane. Thus when glutamate is released from the presy-
naptic ending, it will normally bind to both receptors. Near the resting 
membrane potential, however, NMDA receptor-channels are blocked by 
Mg2+ and will not pass much current. A single EPSP evoked from such a 
glutamate synapse will therefore be due mainly to non-NMDA receptor-
channels. At more depolarized potentials, such as occur when the mem-
brane is depolarized by injected current or when a train of stimuli is given 
to summate synaptic responses, then the evoked response becomes a mix-
ture of NMDA and non-NMDA responses (figure 13.21). 

Another feature of the NMDA receptor, although not quite so unique 
as its voltage dependency, is that the receptor-channel is permeable to 
Ca2+. Nicotinic ACh receptors and certain types of KA and AMPA recep-
tors are also permeable to Ca2+, but the NMDA receptor appears to be 
the most permeable of all. The permeability of the NMDA receptor can 
be demonstrated by measurement of the change in the reversal potential 
as a function of extracellular Ca2+ (see section 13.3.3.2) and also by the 
use of fluorescent imaging techniques to measure changes in intracellular 
Ca2+ during activation of the receptors. 
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Figure 13.20 Comparison of the time course of reversed NMDA and non-NMDA EPSCs 
at a potential depolarized to 0 mV. 
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Figure 13.21 Evoked, glutamate-mediated synaptic responses at different membrane 
potentials. The upper two traces are EPSPs at - 4 0 and - 8 0 mV. The NMDA component 
of the response is revealed at - 4 0 mV and prolongs the decay of the EPSP. The bottom 
two traces are EPSCs at the same two membrane potentials. Again, the slower decay of 
the current at - 4 0 mV is due to the NMDA component of the response. At - 8 0 mV the 
NMDA component is blocked by Mg2+ resulting in a pure KA- or AMPA-mediated EPSC 
(see text for further explanation). The current and voltage scales are arbitrary. 
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13.6 Functional properties of synapses 

If the time course of the synaptic conductance change is brief compared to 
т т , EPSPs will decay with the membrane time constant. This is illustrated 
in figure 13.22. The rising phase of gs can be seen to precede the rise of 
the EPSP while gs has essentially decayed to zero during the decay of the 
EPSP. 

i 
20 

—I 
40 

Figure 13.22 Relative time courses of a typical fast EPSP and its associated conductance 
change, gs. 

Referring to the parallel conductance model in figure 13.23, when syn-
apse A is active, the switch is closed and current flows as a function of the 
time course of gs and its driving force. Assuming that the rising phase of 
gs is essentially instantaneous, then the initial portion of the rising phase 
of the EPSP will be described by a single exponential with time constant of 
CM/(GSA + GR). When the synapse is inactive, the switch is open and the 
potential decays with a slower time constant described by CM/GR. If both 
A and В are active together, then the time constant of the rising phase 
would be СЩ/ (GSA + GSB + GR) while the time constant of the falling phase 
would still be Cw/G r. 

Figure 13.23 Parallel conductance model representing the separate synaptic inputs, A 
andB. 



13.6. Functional properties of synapses 387 

13.6.1 Spatial summation 

What happens to the amplitude of the response when two or more syn-
apses are active together? This is illustrated in figure 13.24. The acti-
vation of synapse A alone produces an EPSP of amplitude a, while ac-
tivation of synapse В alone produces an EPSP of amplitude b. Spatial 
summation refers to the simultaneous activation of two or more spatially 
separated synaptic inputs and the resulting summation of their individ-
ual responses. In general, the summation of individual synaptic potentials 
is not linear. As shown in figure 13.24, the amplitude of the summated 
EPSP is smaller than the linear sum of a + b. The explanation for the non-
linear summation is that the driving force for synaptic current changes 
during the EPSP. The larger EPSP that occurs when both synapses are ac-
tive together produces a smaller driving force than that produced when 
the synapses are active individually. This means that ISA and I$B are less 
during the combined EPSP than during the individual EPSPs. Nonlinear 
summation of synaptic events was discussed in chapter 11 in the context 
of quantal analysis. Remember that the amount of nonlinear summation 
depends, in part, on the change in driving force during the summated 
synaptic response. For IPSPs, where the driving force is small to begin 
with, the amount of nonlinear summation will usually be greater than for 
EPSPs. 

Figure 13.24 Spatial summation of synaptic inputs. Summation is typically nonlinear 
(see text for details). 

The amount of nonlinear summation of synaptic inputs will also depend 
on the electrotonic distance between the synaptic inputs. For example, the 
amount of nonlinear summation seen at the soma for two synaptic inputs 
on different dendritic branches will be less than from two inputs on the 
same branch (see figure 13.25). 
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T 

Figure 13.25 Nonlinear summation from synapses on the same and different dendritic 
branches. In general, A + С will summate more linearly than A + B. 

13.6.2 Temporal summation 

In addition to the summation of different synaptic inputs, summation 
also occurs for the same input when it is repeatedly activated. This is 
called temporal summation and is illustrated in figure 13.26. The amount 
of summation will depend on the decay time course of the synaptic re-
sponse (which is usually т т ) and on the interval between the successive 
responses (frequency of stimulation). Like spatial summation, temporal 
summation is nonlinear. The maximum amount of temporal summation 
(assuming no facilitation or depression; see chapter 11) that would be 
achieved at a high frequency of stimulation or at synapses that release 
neurotransmitter in the steady state (e.g., certain synapses in the retina) 
is given by (see figure 13.27) 

GSES + GyEy 
sum Gs + Gr 

Figure 13.26 Temporal summation of synaptic responses. ESUm represents the maxi-
mum summated response, which is dependent on the frequency of stimulation. 
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Figure 13.27 Schematic diagram for determining the maximum temporal summation 
(see text for derivation). 

13.7 Slow synaptic responses: Conductance-decrease PSPs 

In addition to the fast, conductance-increase EPSPs and IPSPs discussed 
in previous sections, there are numerous examples in the central and 
peripheral nervous system of relatively slow PSPs. Many of these have 
been shown to be due to conductance-decrease mechanisms whereby the 
binding of a neurotransmitter leads to a decrease in membrane conduc-
tance. For these conductance-decrease PSPs the change in conductance 
is typically mediated by an intermediate GTP-binding protein and reflects 
several indirect steps between the ligand binding to its receptor and the 
gating of the ion channel. An example of a conductance-decrease EPSP is 
shown in figure 13.28. 

Two of the more prominent neurotransmitters that mediate conduc-
tance-decrease EPSPs in the CNS are ACh, through muscarinic receptors, 
and glutamate, through quisqualate receptors. These types of receptors 

i 1 1 1 
0 20 40 60 

time (sec) 
Figure 13.28 Examples of slow, conductance-decrease EPSPs. The reversal potential 
is - 8 0 mV, and note that the voltage responses move away from the reversal potential. 

\ Contrast this with conductance-increase EPSPs, shown in figure 13.4, in which the voltage 
responses (for both EPSPs and IPSPs) move towards the reversal potential. 
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are called metabotropic because they represent an indirect, metabolic ac-
tion on an ion channel as opposed to ionotropic receptors, such as the 
KA, AMPA, and NMDA receptors discussed in the previous section, which 
directly gate an ion channel. The muscarinic ACh and metabotropic gluta-
mate receptors both lead to a decrease in a voltage-dependent potassium 
conductance (see chapter 7 and discussion of the M-current) in part by 
releasing intracellular Ca2+ from internal stores. As mentioned in sec-
tion 13.3.1, even though their equilibrium potential is negative to thresh-
old (i.e., Es = EK), they are still classified as excitatory, because at all po-
tentials between rest and threshold the responses are depolarizing and 
tend to bring the membrane potential closer to threshold. 

13-8 Diversity of neurotransmitters in the central nervous system 

There are many different types of neurotransmitters in the CNS activating 
a variety of receptors. There are ionotropic receptors, which directly gate 
ion channels, and metabotropic receptors, which gate ion channels indi-
rectly through coupling to a GTP-binding protein (G-proteins) or through 
second-messenger systems activated by G-proteins. The vast majority 
of neurotransmitters bind to metabotropic receptors, whereas relatively 
few neurotransmitters are involved in fast synaptic transmission through 
ionotropic receptors. There is great molecular diversity within each family 
of ionotropic receptors, but surprisingly few neurotransmitters actually 
mediate such responses. The list of neurotransmitters mediating fasi 
transmission includes nicotinic ACh, glutamate, serotonin, GABA, and 
glycine. A list of putative neurotransmitters in the CNS is given in ta-
ble 13.1. Many more are likely to be added to the list in the future. 

Table 13.1 Neurotransmitter candidates in the central nervous system 
Ionotropic 

Neurotransmitter Receptor Ion 
Glutamate AMPA Na+ /K+ /Ca2 + (some) 

Kainate Na+ /K+ /Ca2 + (some) 
NMDA Na+ /K+ /Ca2 + 

Acetylcholine (ACh) nicotinic Na+ /K+ /Ca2 + (some) 
Serotonin (5-HT) 5-HT3 Na+/K+ 

ATP Purine PI Na+/K+ 

y-aminobutyric acid (GABA) A СГ 
Glycine Cl" 
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Table 13.1 (continued) 
Metabotropic 

Neurotransmitter Receptor Ion 
Glutamate Quisqualate G-coupled 

1 K+ 

ACh muscarinic (Ml-5) G-coupled 
1 K+ (M-current), 1 K+ (AHP) 
t K+ (Inward rectifier) 
1 СГ 
I Ca2+(N & L), t Ca2+(T) 

GABA В G-coupled 
tK+, lCa2+(N) 

Norepinephrine (NE) (a, P) 
P 
a 

G-coupled 
1 K+ (AHP), t Ca2+(L&N) 
i Ca2+(N) 

«2 t K+ 

Dopamine (DA) (D bD 2 > . . . ) G-coupled 
i K+(AHP) 

5-HT G-coupled 
1 K+ (M-current) 

5-HT2 I K+ 

5-НТы t K+ 

Histamine (Hi,...) G-coupled 
1 K+(AHP) 

Adenosine (Ai,...) G-coupled 
t K+, 1 Ca2+ 

Opioids (/J, <5, к) 
V 

G-coupled 
t K+ (inward rectifier) 

V 
к 

t K+ (voltage-dependent) 
I Ca2+ 

Substance P G-coupled 
I K+(M-current) 

Somatostatin G-coupled 
t K+ (M-current) 

Bradykinin G-coupled 
1 K+(M-current), 1 K+(AHP) 

VIP G-coupled 
Cholecystokinin G-coupled 
NPY G-coupled 

1 Ca2+(N) 
Neurotensin G-coupled 
TRH G-coupled 
Vasopressin G-coupled 
Oxytocin G-coupled 
CRF G-coupled 
LHRH G-coupled 

I K+(M-current) 
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13.9 Electrical transmission 

13.9.1 Electrical synapses 

In addition to chemical transmission, there are many examples of direct 
electrical connections between cells. These connections occur via spe-
cial channels that span the pre- and postsynaptic membranes and are 
called gap junctions. Electrical synapses play important roles in many 
invertebrate nervous systems. In mammalian nervous systems electrical 
synapses are a prominent form of synaptic transmission in the retina and 
other sensory end organs and among interneurons and glial cells in the 
CNS. It is not clear what role they play in communication among princi-
pal neurons in the brain (e.g., pyramidal neurons). In addition to allowing 
ions to pass from one cell to another, gap junctions are also permeable 
to small molecules so that they provide a limited means of chemical com-
munication between cells. 

Each gap junction is composed of many individual channels (see fig-
ure 13.29). The elementary conductance of each channel is about 100 pS, 
and the opening of the channels is regulated by pH, [Ca2+]m, second mes-
sengers, and, to a small extent, voltage. The channels are called connex-
ons, and the six subunits that make up each channel are called connexins. 
Some of the electrophysiological properties of electrical synapses will be 
discussed briefly below. 

Figure 13.29 Diagram of a gap junction illustrating the individual channels or connex 
ons (from Nicholls et al. 1992). 
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Figure 13.30 Diagram and electrical model of an electrical synapse (see text). 

A diagram of two neurons connected via a gap junction is given in fig-
ure 13.30. The potential in neuron 1 will be coupled to neuron 2 through 
the junctional or coupling resistance, Rc. If a voltage is applied in neuron 
1, the potential that appears in neuron 2 will depend on Rc and R2. If a 
voltage is applied in neuron 2, the potential that appears in neuron 1 will 
depend on Rc and R\. This can be stated mathematically as 

For a voltage at Vi : £ = p = K12. V\ K2 + Kc 

For a voltage at V2 : ~ = p p = K2\ • V2 i<i T Kc 

Кi2 and K2\ are called the coupling coefficients and, in general, K\2 Ф 
K2\. An extreme example of unequal electrical coupling is illustrated in 
example 13.2. 

'Example 13.2 
The following is an extreme example of asymmetrical electrical coupling. 
The figure below depicts two neurons of unequal size coupled via a gap 
junction. 
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Example 13.2 (continued) 
The electrical coupling from neuron 1 to neuron 2 is given by 

Kl2 = w r w = m=°-01-
In other words, if there were a potential of 100 mV in neuron 1, only 
1 mV would couple to neuron 2, very weak coupling. 

The electrical coupling from neuron 2 to neuron 1 is given by 
109 

К П ~ 109 + 109 " 0 ' 5 ' 
A potential of 100 mV in neuron 2 would provide 50 mV in neuron 1, 
very strong electrical coupling. 

This would obviously be an example of an almost unidirectional elec-
trical synapse. 

In addition to the asymmetrical coupling arising from different input 
resistances of the coupled neurons (depicted in example 13.2), asymmet-
rical coupling can also occur if the input resistance of one of the coupled 
neurons is more voltage dependent than the other. Moreover, highly recti-
fying electrical coupling is possible because hyperpolarizing potentials (in 
either direction) might couple better than depolarizing potentials because 
of the larger decrease in input resistance of the neurons during depolar-
izing potentials. A comparison of some of the properties of electrical and 
chemical synapses is given in table 13.2. 

Table 13.2 Properties of chemical and electrical transmission 
Chemical Electrical 

Unidirectional Can be bidirectional or unidirectional 
Excitatory or Inhibitory Sign conserving. Depolarization (or hy-

perpolarization) in one neuron leads to 
depolarization (or hyperpolarization) in 
the other 

Delay of -0.5-1.0 msec No delay other than from low pass filter-
ing. Ideal for rapid communication 

Amplification. Uses energy from ion gradi-
ents and can prolong response 

Dissipative. Signals usually smaller in 
the coupled neuron. Time course lim-
ited by membrane time constant 

Efficient for impedance mismatches Inefficient when coupling between neu-
rons of different input resistances 

Plasticity (use dependent) Coupling can be modulated by 
chemicals 

Chemical communication primarily by 
exocytosis 

Small molecules can pass between 
neurons 
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Experimentally, chemical transmission is distinguished from electrical 
transmission most easily if a reversal potential can be identified. No re-
versal potential will exist for an electrical synapse. The most direct test 
for electrical coupling between cells is to simultaneously record from the 
cells and demonstrate electrical responses in one cell following depolar-
ization or hyperpolarization of the other. Dye coupling has also been 
used to identify gap junctions between cells, but in tissue where the neu-
rons are densely packed the results can be misleading. A comparison of 
the physiological tests for chemical and electrical transmission is given in 
table 13.3. 
Table 13.3 Physiological tests for type of transmission 

Chemical Electrical 
Measurement of a reversal potential Direct electrical coupling using simultane-

ous recordings between two or more cells 
Small synaptic delay No delay 
Pharmacological experiments. Use an-
tagonists of neurotransmitter receptors 

Fluorescent dye injected into one neuron 
diffuses and fills other neurons 

High Mg*+/low Ca*+ will block 
transmission 

High Mg*+/tow Ca*+ will not block 
transmission 

Morphology. Separation of pre- and post-
synaptic membranes 

Presence of gap junctions 

13.9.2 Ephaptic coupling 

In the next chapter we will discuss the electrical fields that are gener-
ated by active neurons. These electrical fields can induce current flow 
in adjacent neurons without any direct electrical coupling via gap junc-
tions. The coupling is indirect and occurs from the electrical fields in 
the extracellular space. An active neuron (either firing an action poten-
tial or a synaptic potential) generates a field that induces current flow 
in any conductor (e.g., another neuron) present within this field. This 
type of coupling is called ephaptic coupling and is another form of elec-
trical transmission among neurons. Ephaptic interactions occur mostly 
in regions of the brain where the neurons are tightly packed together in 
high density. Ephaptic coupling is particularly effective in synchronizing 
the firing of action potentials among neighboring neurons. For an under-
standing of how a potential change in one neuron can induce current flow 
in another, refer to the discussion of figure 11.1. From the calculations 
for the case with no direct electrical connection between neurons (i.e., no 
gap junction), the electrical coupling was shown to be quite small. If there 
are large numbers of neurons tightly packed together and each is firing an 
action potential, however, one can imagine how the summation of these 
small responses from many cells could become significant. 
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13.10 Compartmental models for a neuron 

Throughout this book we use mathematical and electrical circuit mod-
els to represent particular concepts in neurophysiology. This chapter on 
postsynaptic mechanisms would not be complete without a discussion of 
the neuron models used to simulate synaptic inputs and their effects on 
the postsynaptic neuron. To do this we will combine some of the models 
for electrical cables and synapses presented in this and previous chapters 
and introduce the idea of compartmental modeling. An understanding of 
compartmental models will also be useful for the analysis of dendritic 
spines presented in the next section (section 13.11). 

As the name implies, compartmental modeling involves the represen-
tation of various parts of a neuron as individual compartments or groups 
of electrical circuit elements. For example, a complex dendritic tree can 
be represented as hundreds (or thousands) of small segments, each of 
which is considered an isopotential compartment made up of a parallel 
resistor and capacitor. Each of these segments or compartments is then 
interconnected with the others through a single resistor placed in series 
between any two compartments (figure 13.31). The values for the parallel 
resistors and capacitors in each compartment are derived from the mem-
brane surface area and the specific membrane properties of that segment 
of dendrite. For example, for a small segment of a dendrite, the parallel re-
sistor of the compartment representing that segment would have a value 
of Rm + S (where 5 is the surface area of the segment), and the parallel 
capacitor would have a value of Cm x 5. The values of the series resistors 
interconnecting the compartments are derived from the diameters of the 
segments and the internal resistivity of the cytoplasm. For example, the 
total internal resistance {Rint) of one compartment is calculated by 

Rm = RiX (length of segment) -r (cross sectional area of segment), 

while the series resistor interconnecting two compartments would equal 
1/2 the internal resistance of one compartment plus 1/2 the internal re-
sistance of the next compartment. 

Within each compartment one can also add mathematical representa-
tions for voltage- and ligand-gated channels as needed (e.g., Hodgkin-
Huxley equations). The spatial resolution and accuracy of the model will 
depend, in part, on the number of compartments and on the amount of 
information one has to constrain the parameters of the model. The con-
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Figure 13.31 Simplifying a complex neuron (A, top) into a series of isopotential com-
partments (B and C, top). The transmembrane current at each node is the sum of active 
currents, synaptic currents, and leak currents. This is illustrated in the circuit diagrams 
below (A, B, and C, bottom). See text for further explanation. (Adapted from Koch and 
Segev 1989, chapter 3). 



398 Chapter 13. Synaptic Transmission III: Postsynaptic Mechanisms 

struction of a compartmental model from a neuron and the calculation of 
the values of the circuit elements is illustrated in figure 13.32. 

For investigating cable properties, this type of model is particularly use-
ful when the anatomy does not lend itself to the assumptions and simpli-
fications inherent in the Rail model (i.e., 3/2 power rule, all dendrites at 
same I, uniform Rm and Я*; see chapter 4). Furthermore, compartmental 
modeling greatly simplifies the mathematics necessary to simulate real-
istic membrane properties on a computer by substituting ordinary dif-
ferential equations for the partial differential equations of cable" theory 
(chapter 4). The equations describing current and voltage in individual 
compartments lend themselves well to solutions using standard numeri-
cal methods. Many of the examples in this book were derived from com-
partmental models of neurons using a computer program called NEURON, 
which was written by Michael Hines. 

Referring to figure 13.31, current flow in compartment j is described 
by 

I m j = I j - l J - I j + l J , (13.10.26) 
where I j - i j is the current flow from compartment j - I into compartment 
j , and IJ+IJ is the current flow from compartment j into compartment 
j + 1. The membrane current is described by 

dVi Vi 
Imj = + /юн, + lsP (13.10.27) 

where hon, consists of the current from all of the voltage-gated channels 
present in compartment j, and ISj consists of the current from all of the» 
synaptic inputs to compartment j. hon would be calculated from Hodgkin-
Huxley-type equations for the different channels, and Is would be calcu-
lated from equations such as 

Is = ate{l~at) • Gs(Vj-Es), (13.10.28) 

which is a small modification of the alpha function first presented in chap-
ter 4 where the need for a scaling constant has been eliminated by usinjj 
1 - at as the exponent. (Another equation that could be used to represent 
synaptic current is 

Is =K(e~t/T2 -e-t,Tl)Gs(Vj-Es), (13.10.2!)) 

where Ti and тг represent the rise and decay time constants, respectively, 
of the synaptic current, and JOs a scaling constant. Equation 13.10.29 pro 
vides a better representation of a synaptic current than the alpha function, 
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because the rise and decay times of equation 13.10.29 can be adjusted in-
dependently to fit a particular synaptic waveform.) 

Equation 13.10.26 can be rewritten so that the current into and out of 
compartment j is in terms of the internal resistance, or 

Ц -
Vj-i-Vj 
Rintj_ i J 

Vj - Vj+1 
R™tjJ+1 

(13.10.30) 

where Rint is the internal resistance between two compartments. Equa-
tions 13.10.27and 13.10.30 are then combined and solved numerically for 
all compartments in the model. The more compartments, the more ionic 
and synaptic currents included in each compartment, and the smaller the 
time step needed for accuracy in the simulations the greater is the time 
necessary to solve the equations. 

V 2 V 2 
-ЛЛЛЛГ-J—О 

R = R m / S ^c = cms 

Figure 13.32 Compartmental model of a hippocampal CA3 pyramidal neuron and the 
calculation of circuit elements for one compartment (bottom). The diagram in the upper 
left is the reconstructed CA3 neuron, while the diagram in the upper right illustrates the 
numbering of the different compartments. Scale bar is 100 ц т . (Adapted from Spruston 
et al. 1993.) 
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13.11 Dendritic spines and their effects on synaptic inputs 

Most excitatory synapses in the adult CNS terminate on dendritic spines. 
Examples of dendritic spines from hippocampal neurons are illustrated 
in figure 13.33. As discussed in chapter 4, there have been numerous 
ideas expressed over the years for the function of dendritic spines. These 
notions have included that spines increase the surface area of dendrites, 
that spines somehow electrically modify the synaptic signal on the end of 
the spine, and that spines provide for chemical isolation or compartmen-
tation. 

Recent anatomical work has demonstrated that the dendritic surface 
area is more than adequate to support the number of synaptic endings 
on a typical pyramidal neuron in the cortex. Therefore, the idea that 
the surface area added by spines is necessary to accommodate the large 
number of synaptic inputs to a neuron is not likely to be true. 

The idea that spines, by modifying the electrical signals from synaptic 
inputs, might be a substrate for learning has been an attractive one for 
many years. Wilfrid Rail was one of the first to recognize that changes 
in the shape of spines (for example, increases in spine neck diameter) 
might increase the effectiveness of a particular synaptic input and be a 
mechanism for learning. An increase in the effectiveness, efficiency, or, 
as it is more commonly termed, the efficacy of a synapse simply means 
that the activity of the synapse is more likely to cause the neuron to fire, 
in the case of an excitatory synapse, or is more likely to prevent a neuron 
from firing, in the case of an inhibitory synapse. After our presentation of 
cable theory in chapter 4 and of synaptic transmission in chapters 11-13, 
we are now in a position to address quantitatively the question of how 
spines might modify synaptic inputs. It seems reasonable to believe that 
spines are somehow important for synaptic transmission, and possibly 
even for learning (see also chapter 15). As we will see in the next section, 
spines can certainly affect synaptic transmission. They are also likely to 
provide some degree of chemical isolation from the rest of the dendrites. 

13.11.1 Attenuation of potential between dendritic shaft and spine 
head 

One important question is whether a spine provides any degree of electri-
cal isolation from the rest of the neuron. For example, will depolarizations 
due to the activity of synaptic inputs produce a local depolarization at a 
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Figure 13.33 Dendritic spines and their synapses in hippocampal area CA1. (A) Cyto-
plasmic profile (P-face) of a small, thin, or 'pedunculated' dendritic spine (filled square) 
revealed by freeze-fracture electron microscopy to be near a large, mushroom-shaped 
dendritic spine (open square) of the same dendritic segment. (B) Thin-section view of 
two spines with similarly diverse shapes that also have different types of postsynaptic 
densities (PSDs). The smaller spine has a continuous, macular-shaped PSD (filled square), 
while the larger spine has an electron-lucent perforation in the PSD (open square). (C) 
Three-dimensional reconstruction of a segment of CA1 pyramidal cell dendrite revealing 
multiple spine shapes along its length. (D) Particle aggregate on the extracellular half of 
the membrane (E-face) at the site of a synapse on the head of a thin dendritic spine (filled 
square). (From Lisman and Harris 1993.) 
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different, inactive spine head? This issue is obviously important because 
such a depolarization could affect the driving force for a synaptic input 
on the spine, activate voltage-gated conductances if any are present in 
the spine, and affect the behavior of any ligand-gated channels that are 
voltage sensitive (e.g., NMDA receptors). 

Figure 13.34 Compartmental model of a spine attached to a dendrite. The spine is 
represented as three compartments and the dendrite as one compartment. A synaptic 
input at the head of the spine is also modeled. (From Brown et al. 1988.) 

As illustrated in figure 13.34, a spine can be represented as a finite-
length cable with one end attached to the dendritic shaft and the other 
end sealed. With any reasonable estimates for Rm and Ru the actual elec-
trotonic length of this cable is quite short, because the spine is so short 
anatomically. In chapter 4 it was demonstrated that the attenuation of 
potential along the length of a sealed-end, finite cable depends on its 
electrotonic length. For a short I (in this case probably I < 0.1), the at-
tenuation of potential from the dendritic shaft to the spine head would be 
negligible. This implies that the spine is not isolated electrically from the 
potential of the local dendrite and that, whatever is the potential change in 
the dendrite, the resulting potential change in the spine head will be nearly 
identical 

In addition to knowing about attenuation of potential from the dendrite 
to the spine head, it is also of interest to know whether there is attenua-
tion of potential from the spine head to the dendritic shaft. If a synaptic 
potential is generated in the spine head, it is obviously important to know 
whether or not it will attenuate upon reaching the local dendritic shaft. 
As discussed in chapter 4, the attenuation of potential along a finite ca-
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ble with different end terminations is, in general, asymmetrical. In this 
case, one end of the cable is sealed at the spine head while the other end 
is attached to the dendritic shaft. Because the diameter of the dendrite 
is typically much larger than that of the spine and because the dendrite 
represents a long cable compared to the spine, the dendrite provides a 
large load for that end of the spine. In other words, the input resistance 
of the dendrite at the attachment point of the spine is much lower than if 
the dendritic end of the spine had been sealed. It is this difference in end 
terminations that renders the voltage attenuation from spine head to den-
drite greater than that from dendrite to spine head. Thus, the spine can, 
in principle, act as an attenuator of synaptic potentials. The implications 
of this are dealt with further in the next section. 

13.11.2 Synapse on the head of a spine 

As discussed above, the spine has the capability of attenuating the syn-
aptic potential from the head to the dendritic shaft. What may seem a bit 
contradictory, however, is that the spine can also act to amplify or boost 
the synaptic potential. More precisely, the amplitude of a synaptic poten-
tial on the spine head will be greater than if the same synaptic conductance 
change had occurred on the dendritic shaft. Whatever the amplitude of the 
synaptic potential at the head of the spine, however, it may still be atten-
uated upon reaching the dendrite, as discussed in the previous section. 
This is illustrated in figure 13.35. 

The implications of this boosting or amplifying of the local synaptic 
potential are at least twofold. First, the larger amplitude of the local po-
tential might activate any voltage-gated channels present in the spine or 
affect any ligand-gated channels that are voltage sensitive (e.g., NMDA re-
ceptors). Second, the larger potential would result in a decrease in the 
driving force and less current flow from the conductance change. 

13.11.3 Spines represented as series resistors 

In figure 13.35 the spine was represented by three compartments, each 
of which consisted of a parallel resistor and capacitor along with the ap-
propriate internal resistor. Because of the extremely small surface area 
of each compartment, the value of each of these parallel resistors is very 
large and the value of each of the capacitors is very small. The current 
flow (either resistive or capacitive) across the spine membrane and into 
the extracellular space is therefore negligible. This is illustrated in fig-
ure 13.36. The result of this analysis is that the rather complex model of 
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Figure 13.35 Differences in synaptic potentials in response to a synapse on the den-
dritic shaft compared to an identical synapse on the head of a spine. The spine is rep-
resented as 3 compartments (2, 3, and 4) attached to the dendrite (compartment 1) (see 
also figure 13.34). Note that when the synapse is on the dendrite (synapse A), there is no 
attenuation of potential to the spine head. The amplitudes of the potentials in all com-
partments (1, 2, 3, 4) are essentially the same (curves in lower left). When the synapse 
is on the spine head (synapse B), however, the amplitude of the synaptic potential in 4 
is greater than when the same synapse was on the dendrite. Also, the amplitude of the 
potential attenuates upon reaching the dendrite. The degree of boosting and attenuation 
depends on the properties of the spine and on the magnitude of the synaptic conductance 
change (GS = 1 nS, RI = 100 Q-cm, and RM = 50,000 Q-cm2 for this simulation). See text 
for further explanation. (After Brown et al. 1988.) 

the spine used in figure 13.35 can be greatly simplified to that of a single 
resistor, representing the internal resistance of the spine (RSp), in series 
with the synapse. (While this simplification may be appropriate for most 
spines, it might not be justified for some extremely complex spines.) 

13.11.4 The attenuation of synaptic inputs by spines 

The consequences of the above simplification become apparent when one 
considers trying to measure the synaptic conductance with a voltage clamp 
somewhere in the cell. Suppose that the voltage clamp is as close as pos-
sible to the spine (ideally in the dendrite itself), then the I-V curve of the 
synaptic input, obtained as described in chapter 13, will have a slope de-
termined by both the synaptic conductance and the conductance of the 
spine. Referring to figure 13.36, this can be stated formally as 
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Figure 13.37 The effect of a spine on the synaptic I-V curve measured by a voltage 
clamp in the dendrite. GS at the synapse is 2 nS for this simulation while the measured 
GS in the dendrite (as determined from the slope of the I-V curve) decreases for increasing 
values of RSP. (After Brown et al. 1988.) 

changed. This fact is another demonstration that the voltage attenuation 
from dendrite to spine head is negligible. 

13.11.4.1 Attenuation of synaptic current by a spine: Synaptic charge 
transfer As shown above, the effect of the spine will be to reduce the 
synaptic current measured by a voltage clamp. It follows from equa-
tion 13.11.31 that the overall synaptic conductance, as determined from 
voltage-clamp measurements, will also be reduced by the spine. In other 
words, the current flowing into the dendrite from a synaptic input at the 
spine head will be less than for an identical synapse directly on the den-
drite. The amount of this reduction will again depend upon the relative 
magnitudes of Gs and 1 /Rsp. The equation for this is 

Iden — (Vden-Es) 

1/Gs + Rsp' 
(13.11.32) 

where Iden and Vden are the current and potential in the dendrite, respec-
tively. If Rsp is small compared to 1/G5, then the reduction in Iden by the 
spine will be negligible. 

It is often convenient to consider the transfer of charge from a synaptic 
input into a neuron, or from one region of a neuron to another, rather 
than the flow of current. There are several reasons for this. First, the 
ability of a neuron to reach threshold from combined synaptic inputs is 
dependent more on the total charge injected by the synapses than on the 
peak amplitudes of their currents or potentials. Second, peak amplitudes 
of summated synaptic inputs are highly dependent on latency fluctua 
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tions of the individual synapses, whereas the charge injected is insensi-
tive to such fluctuations. Third, by the same reasoning, peak amplitudes 
are more sensitive to noise in the measurement system than is charge. 
And finally, as discussed in more detail below, measurements of synaptic 
charge from electrotonically remote synapses are distorted much less by 
the cable properties of the neuron than are measurements of the time 
course and peak amplitudes of synaptic potentials (or currents). 

Synaptic charge can be calculated from the current by 
ROO 

as = 
Jo 

PSCdt, (13.11.33) 

or from the potential by 

Jn°° PSPdt 
ds = ^ , (13.11.34) 

KM 

where qs is the synaptic charge. The amount of charge injected by the 
synapse may be different under current- and voltage-clamp conditions 
because of differences in driving force (i.e., there may be a greater de-
polarization at the subsynaptic membrane during the synaptic response 
under current clamp than under voltage clamp, leading to a smaller driv-
ing force and less injected charge). 

It is important to recognize that the charge measured in the soma, by 
either of the above two equations, for a synaptic response in the dendrites 
may not be equal to the total charge injected by the synapse. The more 
distal the input, the more it is filtered by the membrane properties of 
the dendrites. It has been shown (Carnevale and Johnston 1982) that the 
attenuation of charge from point A to point В in a neuron is the same as 
the steady-state attenuation of potential from point В to point A. Thus 
the attenuation of charge is determined by the DC electrotonic distance of 
the synapse. (Remember that charge is stored by capacitors. Even though 
there can be current flow across a capacitor, there is no loss of charge. The 
loss of charge results only from current flow across a resistor—hence the 
dependence of charge transfer on DC properties.) As an example of charge 
attenuation from a distal synapse, consider a synapse located at the end 
of the dendritic tree. The amount of attenuation of charge from the end 
of the dendrites to the soma is the same as the amount of attenuation of 
a steady-state potential from the soma to the end of the dendrites—this 
can be quite small for dendrites with short I . In contrast, the amount of 
attenuation of an EPSP or EPSC from the end of the dendrites to the soma 
is determined by the AC properties of the neuron. This means that the 
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faster the synaptic conductance change or the faster the membrane time 
constant, the more the time course of the synaptic potential or current 
will be slowed and the more its peak amplitude will be attenuated. Thus, 
the measurement of charge rather than peak amplitude of distal synaptic 
inputs has the advantage of being less affected by the cable properties of 
the neuron. 

What is the effect of a spine on synaptic charge transfer? From the 
principle that charge transfer is dependent on steady-state voltage atten-
uation, it follows that the loss of charge from spine head to dendrite will 
be equal to the voltage attenuation from dendrite to spine head. Because 
of the short electrotonic length of a spine, this will be nearly zero. There-
fore, a spine will not attenuate the transfer of charge from a synapse to 
the dendrite. It is possible, however, that the amount of charge injected 
by a synapse on the head of a spine will be less than if the synapse were 
directly on the dendrite. The reduction in charge will again be dependent 
on the relative magnitudes of Gs and 1 /Rsp, in an identical way as given 
by equation 13.11.32. 

13.11.4.2 Examples of voltage boosting, voltage attenuation, and 
charge transfer for a typical spine In this section examples of voltage 
boosting, voltage attenuation, and charge transfer for a typical spine will 
be illustrated. Figure 13.38 depicts the conceptual model to be used for 
these calculations. All potentials will be referenced to the resting potential 
so that Es = 60 mV. For the purpose of this example, assume that the 
synaptic conductance Gs = 1 nS (or Rs = 1 GQ), the spine resistance 
Rsp = 100 MQ (or Gsp = 10 nS), and the input resistance of the neuron 
at the attachment point of the spine to the dendrites Rden = 100 MQ. We 
will also assume that the spine can be adequately represented by a single 
resistor. The figure below is a circuit model for a synapse at the head of 
a spine attached to a dendrite. 

1. Synapse directly on dendrite. The amplitude of the EPSP for a syn-
apse with the above values attached directly to the dendrite (i.e., 
Rsp = 0) can be calculated using the simple voltage divider equation 
derived in appendix A: 

EPSPden = 60 m V — ^ — = 60 mV 1 0 0 

l/Gs + Rden HOO 
= 5.5 mV, 

where EPSP^n is the amplitude of the EPSP in the dendrite. 
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Г 

XSPZ 

Figure 13.38 Diagram and circuit model for a synapse at the head of a spine attached 
to a dendrite. Rden represents the total input resistance of the neuron as measured at the 
base of the spine. Dendritic capacitance is ignored for this example. 

2. Synapse on spine. If the synapse is at the head of the spine, the 
EPSP in the dendrite will now be 

Rden EPSPden = 60 mV 

= 60 mV 

1 /Gs+Rsp+Rd en 
100 

1200 
= 5.0 mV. 

Adding the spine therefore reduces the amplitude of the EPSP in the 
dendrite by about 9%. 
The amplitude of the EPSP at the head of the spine (EPSP*p) can be 
similarly calculated by 

(Rden + Rsp) EPSPSp = 60 mV 

= 60 mV 

1 /Gs + Rsp+Rd en 
200 
1200 

= 10.0 mV. 

Adding the spine has thus increased the amplitude of the local EPSP 
by 83% while the amplitude of the EPSP in the dendrite has actually 
decreased by 9%. 

3. Charge transfer. Since we have represented the spine as a single 
resistor for this example, there is clearly no loss of charge from the 
spine head to the dendrite. In other words, all of the charge entering 
the spine will transfer to the dendrite. What is illustrated instead 
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in this example is the effect of the spine on the amount of charge 
injected by the synapse. 
Charge is calculated by integrating the synaptic current, or 

rOO 

as = hdt Jo 

If we let the current be represented by the alpha function, then 

qs= Г (^tel-°lt)-Gs(Vm-Es)dt1 Jo 
or 

qs = (e/a) -GsWm-Es). 

Remember that current is in coulombs (C)/sec and charge is in C. 
Let a =1000 sec -1 and 1/a = 0.001 sec, which represents a synaptic 
waveform with a time-to-peak of 1 msec. 

(a) Synapse on dendrite. The charge injected into the dendrite for 
a synapse on the dendrite (Rsp = 0) is 

r 00 

qs = hdt 
Jo 
, , . 60 mV = ( e / a ) 

1/Gs+Rden 

= 2 72 x КГ3 sec • 6 0 X 1 ( H ^ . / ^ x i u sec 1 1 0 0 x l 0 6 

= 1.5 x 1(Г13 C. 
(b) Synapse on spine. The charge injected into the dendrite for a 

synapse at the head of a spine is 
r 00 

IIs = Isdt 
Jo 
, , , 60 mV 

= ( e / a ) 1/GS +Rsp +Rd en 
60 x 1 0 - 3 

= 2.72 X10-3 sec 1 2 0 0 x l 0 6 

= 1.4 x 10"13 C. 
The difference between the charge injected for a synapse on the 
dendrite and that for a synapse on the spine is therefore only 
about 8%. 
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The above examples illustrate that placing a synapse on a spine instead 
of directly on a dendrite can boost the amplitude of the local EPSP at the 
subsynaptic membrane while having much less effect on the amount of 
charge injected by the synapse. The attenuation of potential from the 
spine head to the dendrite is also illustrated. The reader is encouraged 
to try other values for Gs, Rsp, and Rden to see how these principles are 
dependent on the chosen parameters. 

13-12 Simimary of important concepts 

1. Difference between excitation and inhibition. 
2. Analysis of I-V curves. 
3. Use of reversal potential for determining conductance ratios. 
4. Effects of poor space clamp. 
5. Theory of Magleby and Stevens. 
6. Spatial summation. 
7. Temporal summation. 
8. Characteristics of electrical synapses. 
9. Unique properties of NMDA receptors. 

10. Compartmental models. 
11. Charge transfer. 
12. Effects of dendritic spines on synaptic signals. 

13.13 Homework problems 

1. The conductance of an inhibitory synapse is 100 nS with a reversal 
potential of -70 mV. The conductance of an excitatory synapse is 
20 nS with a reversal potential of 0 mV. 

(a) Draw the I-V curves (on graph paper) for these two synaptic 
inputs. 



412 Chapter 13. Synaptic Transmission III: Postsynaptic Mechanisms 

(b) If the two inputs were stimulated together, draw the resultant 
I-V curve one would obtain under voltage clamp. Is this com-
bined response excitatory or inhibitory? Assume that thresh-
old is -50 mV and that the EPSP and IPSP have the same time 
course. 

2. You are recording from a pyramidal neuron in the olfactory cortex 
and stimulating the main excitatory inputs to this neuron (nerves 
from the olfactory bulb). You give a high-frequency stimulus train 
to the nerves and discover that the amplitudes of the EPSPs are in-
creased for a period of time after the train. The increase in the EP-
SPs lasts longer than facilitation and post-tetanic potentiation but 
less time than long-term potentiation, so you call this phenomenon 
medium-term potentiation or MTP. The "raw" data from your exper-
iments are in the figure below. Use these to answer the following 
questions. 

(a) Using the current-clamp data, describe quantitatively the time 
course of decay of MTP. 

(b) Calculate Gs and Es from the voltage-clamp results given for 
control and MTP. 

(c) Assuming that the postsynaptic channels responsible for the 
EPSP are permeable only to Na+ and K+, calculate values for GK 
and GK/GNU during control and MTP. 

(d) What are the likely mechanisms responsible for MTP? Would 
you describe these mechanisms as being pre- or postsynaptic? 

a) 
test EPSPs 

Vm (mV) 

0 10 20 30 40 50 

time (min) 
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b) control 
EPSCs EPSCs at 30 min 

+20 mV 
-40 mV 

Г 

+20 mV • 

-40 mV 

-100 mV * -100 mV , 

C) 

1 nA 

A E, 

1 1 1 Г 
50 60 70 80 90 100 

ДЕК 

At a postsynaptic cell, application of transmitter A results in changes 
in Na+ conductance ( AGNU) , and application of transmitter В results 
in changes in K+ conductance (AG*). Both transmitters generate 
synaptic currents according to Ohm's law. The equilibrium poten-
tials for Na+ and K+ of the cell are ENa = +50 mV, EK = -100 mV. 

(a) At rest, the ratio of ionic conductances is GK : GNU - Gci = 
1 : 0.8 : 15. = 1 5 ' W h a t i s t h e r e s t i n S potential of this 
postsynaptic cell? 

(b) Plot the current-voltage relations (AI vs. V) of the synaptic cur-
rent when (label the axes with the appropriate units): 

i. transmitter A is applied, making AG^a = 0.02 S/cm2 

ii. transmitter В is applied, making AG к = -0.02 S/cm2 

iii. transmitters A and В are applied together, making AG и a = 
0.02 S/cm2 and AG* = -0.02 S/cm2 
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(c) What are the reversal potentials of the postsynaptic signals for 
stimuli (i), (ii), and (iii) described in part (b)? 

4. Postsynaptic voltage responses to presynaptic stimuli (s) are recorded 
from synapses A and В under current-clamp conditions (see figure 
below). Postsynaptic current responses to presynaptic stimuli are 
recorded from synapses С and D under voltage-clamp conditions 
(parts С and D in figure). Numbers on the left of each trace indicate 
the membrane voltage of the postsynaptic cell. 

s s 

С D 

J _L 
s s 

(a) What are the reversal potentials for synapses A-D? 
(b) For each synapse (A-D), is the postsynaptic signal accompanied 

by a conductance increase or a conductance decrease? Explain 
your answers briefly. 

5. The traces shown in the figure below represent synaptic currents 
measured under voltage clamp. The given voltages are the holding 
potentials with respect to the resting potential. 
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Id (nA) 
-40 mV 
-60 mV 

+30 mV 
OmV 

0 25 50 75 100 125 150 

time (msec) 

(a) What are the conductance and the reversal potential for this 
synaptic input? 

(h) Is the synapse likely to be excitatory or inhibitory? 
(c) What is the approximate input resistance of the cell? 
(d) What is the approximate decay time constant of the synaptic 

current? 
(e) Is the decay time constant voltage dependent? Show the calcu-

lations that led to your answer. 
(f) If Vrev is not equal to Es, what does this tell you about this 

synapse? 

6. The I-V curves shown were determined for two different synapses 
on the same cell. Both have identical kinetics and are located on the 
soma, the site of the recording. 

(a) What are the conductances and reversal potentials for synapses 
A and B? 

(b) If threshold is at - 5 0 mV, are the synapses excitatory or in-
hibitory? 

з 
2 
1 
0 

- 2 

- 3 
- 4 
- 5 
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(c) Can you determine the resting conductance of the cell from the 
above I-V curves, and if so, what is it? 

(d) If A and В were stimulated simultaneously, draw the I-V curve 
that would have been obtained, and calculate the conductance 

, and reversal potential. Is it excitatory or inhibitory? 
(e) Is synapse В governed by a conductance-increase or conduc-

tance-decrease mechanism? 
(f) If your answer to (e) is conductance increase, draw an I-V curve 

for a conductance decrease mechanism with the same reversal 
potential. If your answer to (e) is conductance decrease, draw 
an I-V curve for a conductance-increase mechanism. Whichever 
your answer, is the I-V curve you draw for an excitatory or an 
inhibitory synapse? 

7. At a postsynaptic membrane, we may think of an EPSP as a small 
increase in Na+ conductance (AGNU) that generates a synaptic cur-
rent according to Ohm's law. Therefore, if we measure the syn-
aptic current AIjsja as a function of clamped membrane voltage Vm, 
Aljsja = (Vm - ENa)AGNa, which is plotted here. 

Г 3 
- 2 

- - 4 
L - 5 

(a) What does the slope of the line represent? What is the reversal 
potential for this synaptic current? 

(b) Now let us add a simultaneous K+ conductance increase of the 
same size (AGK = AGNO)- Trace the figure and add to it a curve 
for the K+ current, AIK, vs. membrane voltage. Place an x on 
the Vm axis at the reversal potential for the combined Na+ and 
K+ current and explain your choice of location. At the resting 
potential, would this current produce an IPSP or an EPSP? 

(c) Now suppose that the K+ conductance increase is ten times 
larger than the Na+ increase (AGK = 10AGMO)- Again trace the 
figure and add to it a curve for the K+ current, AIK vs. membrane 
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voltage. Place an x on the Vm axis at the reversal potential for 
the combined Na+ and K+ current and explain your choice of 
location. At the resting potential, would this current produce 
an IPSP or an EPSP? 

8. You have found that two putative neurotransmitters (X and Y) cause 
depolarization of isolated retinal horizontal cells and that both re-
sponses reverse at 0 mV. You want to determine whether X and Y 
use the same or different ligand-gated channels. You obtain the fol-
lowing results. In voltage clamp at Vrest, a saturating concentration 
of X alone causes a 2 nA inward current, and a saturating concentra-
tion of Y alone also causes a 2 nA inward current. Also, Grest = 10 nS 
and Vrest = -100 mV. Assume that there is no desensitization and 
that the neuron is passive (no voltage-dependent conductances). 

(a) If X and Y use the same channels, calculate the expected mem-
brane potential (under current clamp) with X alone, with Y alone, 
and with X and Y together. Similarly, calculate the expected to-
tal current under voltage clamp at Vrest when X and Y are applied 
together. 

(b) Repeat part (a) for the expected results if X and Y use different 
channels. 

9. An investigator from another lab reports that in addition to the ef-
fect you have shown, drug X causes an increase in measured con-
ductance and a shift in the reversal potential of excitatory synaptic 
currents on mature cerebellar neurons in culture. He suggests that 
an increase in transmitter release presynaptically would increase the 
conductance with no effect on the reversal potential and proposes 
that drug X is likely to have a postsynaptic effect on the transmitter-
gated ion channels. You suspect he has misinterpreted the data and 
do some experiments to test your idea. Your data from a complete 
anatomical and physiological analysis of a typical neuron are shown 
below. 
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compartment length (^m) diameter (цт) 
0: soma — 10 
1:1° dendrite 530 2.50 
2: 2° dendrite 210 1.57 
3: 2° dendrite 210 1.57 
4: 3° dendrite 120 0.99 
5: 3° dendrite 120 0.99 
6: 3° dendrite 120 0.99 
7: 3° dendrite 120 0.99 

(a) Use the voltage-clamp data shown to calculate the measured 
synaptic conductance (Gs), synaptic reversal potential (VVev). 

and input resistance (RN) before and after the addition of drug 
X. 

before drug X during drug X 

(b) You know that in this cell, drug X causes a change in the mem-
brane time constant (т т ) from 17 msec to 57 msec. Calculate 
the space constant (Л) for each segment before and after the 
addition of drug X. See the table above and use Ri = 70 Q-cm. 
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(c) Assume that the neuron can be represented by an equivalent 
cable. List the requirements for this to be the case (consider all 
assumptions of the model). Calculate the electrotonic length 
(I) and electrotonic distance of the synapse (X) before and after 
addition of drug X (use the data in the table). 

(d) Do your data support or refute the hypothesis that drug X causes 
a change in reversal potential of the synaptic response in these 
cells? Explain briefly. (Hint. Calculate the synaptic equilibrium 
potential (Es) before and after drug X.) 

(e) Explain briefly how drug X could alter the synaptic conductance 
measured from the soma if its only effect is to block voltage-
insensitive (non-ligand-gated) potassium channels. 

10. Draw the expected I-V curve for a conductance-decrease PSP that has 
a AGs = 10 nS and Es = - 90 mV in a neuron with a resting potential 
of - 70 mV. Is this PSP likely to be excitatory or inhibitory? 

11. You are recording intracellularly from a pyramidal neuron and stim-
ulating an excitatory synaptic input to this neuron. You depolarize 
the cell and find that the EPSP reverses at around 0 mV. Also, with 
the neuron at the resting potential, you give brief current pulses and 
measure a decrease in the input resistance of the neuron during the 
EPSP. You think that you understand the properties of this EPSP until 
you do the next experiment, the results of which confuse you mo-
mentarily. You find that the amplitude of the EPSP decreases when 
you hyperpolarize the neuron from rest. You quickly recognize that 
there are at least two explanations for this result. Describe two hy-
potheses that you believe can account for these results and outline 
briefly the additional experiments you would do to test them. (Hint. 
You don't need to propose anything exotic to answer this question. 
The outlined results could easily be obtained (and probably have 
been) from many types of CNS neurons. You can assume a single 
presynaptic fiber releasing a single neurotransmitter and with the 
neuron having fairly common properties for a neuron in the CNS.) 

12. You are voltage-clamping a neuron that has an input resistance (com-
pletely passive) of 100 MQ and a resting potential of -60 mV. It has 
two separate synaptic inputs that occur on the cell body: Input A has 
a conductance of 10 nS and a reversal potential of 0 mV while input 
В has a conductance of 20 nS and a reversal potential of -100 mV. 
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(a) Draw on graph paper the I-V curves of the resting neuron, input 
A, and input B. 

(b) If inputs A and В have identical kinetics and are activated to-
gether, what is the total I-V curve for inputs A and B? What is 
the conductance and reversal potential of this combined syn-
aptic response? What would be the total input resistance of the 
neuron during the peak of this synaptic response? 

(c) If input A has a time to peak of 1 msec and a decay time constant 
of 4 msec while input В has a time to peak of 3 msec and a decay 
time constant of 10 msec, and they are activated together as 
above, draw the I-V curves for the combined synaptic responses 
at 1 msec, 3 msec, and 6 msec from the onset of the synaptic 
responses. Assume a linear rise time and a single exponential 
decay for the synaptic currents. 

13. (a) From the figure, calculate the slope conductance of the neuron 
before and during the application of transmitter X. 

:8
7;]1ПППППГ¥1ПЛЛПППШГ 
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(b) Is the response to the transmitter a conductance increase or a 
conductance decrease? 

(c) What (if anything) can you say about the reversal potential ol 
this response and whether it is likely to be excitatory or in-
hibitory? 

14. Refer to the following figure. 
dendrite 

spine 

"pPSP 

h 
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(a) If for the excitatory synapse GS = 1 nS, RDEN = 100 Mfi, and 
RSP = 500 MQ, calculate VSH and VDEN- Assume steady-state 
conditions, ES =0 mV, and ER = - 7 0 mV. 

(b) If the inhibitory synapse is halfway between the spine head and 
the dendrite, GSI = 5 nS, and ESI = -70 mV, what are the new 
values for VSH and VDEN1-



14 Extracellular Field Recordings 

14.1 Introduction 

Most of what we have presented up to now in this book has involved 
the principles of cellular neurophysiology from the perspective of trans-
membrane electrical events. The electrical signals we have discussed have 
been measured from the inside of neurons with respect to the outside (or 
from the outside with respect to inside in the case of cell-attached patch 
recordings of single channels). An important topic that once dominated 
the field of neurophysiology and is still quite important is that of elec-
trical signals measured in the extracellular space. These signals are gen-
erated by the electrical fields produced by the activity of single neurons 
or groups of neurons and are typically measured between two points in 
the extracellular space rather than across the membrane. The signals are 
called extracellular field potentials. Examples of extracellular field poten-
tials include the relatively simple case of extracellular recordings of action 
potentials along a nerve fiber, the more complex case of field potentials 
associated with activity of a group of neurons within a particular region 
of the brain, and, the most complex case of all, electroencephalographic 
or EEG recordings of gross brain activity from the scalp. 

A full quantitative treatment of this subject would be enormously com-
plex and is well beyond the scope of this book. Our goal in this chapter is 
to provide the conceptual framework along with a semiquantitative anal-
ysis of a few specific examples. Because the focus of this book is on 
cellular neurophysiology, the examples discussed will be those in which 
extracellular field recordings are used to infer the activity of neurons and 
synapses rather than the activity of large brain regions (i.e., the EEG). 
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14.2 Potentials in a volume conductor 

The extracellular fluid constitutes a conductive medium surrounding neu-
rons. When neurons are at rest, the membrane is uniformly polarized 
and there is no net current flow anywhere. An active neuron, however, 
is nonuniformly polarized. That is, the dendrites may be at a different 
potential from the soma, the soma may be at a different potential from 
the axon, and, as the action potential propagates along the axon, differ-
ent regions of the axon may be at different potentials from one another. 
These spatial nonuniformities in potential produce current flow from one 
part of a neuron to another through the extracellular space. The extra-
cellular fluid can therefore be considered a volume conductor. The flow 
of current in this volume conductor establishes electrical fields that can 
exert a force on electrical charge in the conductor. This force is what we 
measure in the form of a potential difference (see appendix A). 

In previous chapters we assumed that the extracellular space was at 
ground, or zero, potential, implying that the extracellular fluid has zero 
resistance. This was an approximation that proved useful for the deriva-
tions and was justified because the resistivity of the extracellular fluid is 
typically much lower than that of the membrane. If, however, the fluid 
were actually at zero potential everywhere, then the entire extracellular 
environment of the brain would be isopotential, there would be no field 
potentials, and there would be no EEG. Taking the other extreme, if the 
extracellular space were a perfect insulator, then there would be no trans-
membrane current flow (nothing to carry current) and there would be no 
nervous activity whatsoever. This would also produce a flat EEG but for 
different reasons. Clearly then, there is current flow in the extracellular 
fluid during activity of neurons and this flow of current produces spatial 
gradients of potential. 

14.2.1 Action potential along a nerve fiber 

Referring to figure 14.1, assume initially that the axon is uniformly polar 
ized. If an action potential is somehow elicited at A, then the membrane 
potential at A will momentarily reverse polarity. A will now be at a dif-
ferent potential from the rest of the axon, and local currents will flow as 
indicated in the diagram. Because the current flow is into the axon at A, 
it is called a current sink, while the site where the current exits is called 
a current source. If we were recording extracellularly at point A (with 
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Figure 14.1 Action potential propagation along an axon. In the upper diagram an action 
potential is initiated at A and the current flow (I) from A to В is indicated. The bottom 
three diagrams illustrate a time sequence (fi < t2 < Гз) for the propagation of an action 
potential from A to В to C. The recording at В indicates a positivity (1), a negativity (2), 
and a positivity (3) corresponding to this time sequence of AP propagation (see text for 
further explanation). 

respect to a distant ground electrode), we would record a negative po-
tential (negativity) during the action potential, while at point В we would 
record a positivity. 

In this example the action potential is not stationary but will propa-
gate along the axon from left to right. The location of current sinks (in-
ward currents) and sources (outward currents) will therefore change with 
time. As discussed above, an action potential initiated at A will produce 
an initial source or positivity at B. As the action potential propagates, 
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point В eventually becomes a sink and exhibits an extracellular negativ-
ity. With further propagation of the action potential, point В becomes a 
source again (positivity) for the action potential located at another site. A 
recording at В during the propagation of the action potential will therefore 
display a triphasic waveform (positivity^negativity—positivity), which is 
frequently seen with extracellularly recorded action potentials. 

14.2.2 Active neuron is an electric dipole 

In figure 14.2 we have illustrated the situation for a neuron with apical 
dendrites. Let us assume for the moment that the dendrites are passive 
and that an action potential is initiated in the soma. As before, the soma 
would be a sink while the dendrites would be a source. Because there 
is a conductance change occurring in the soma to produce the sink, it 
is termed an active sink (by active, we mean a change in conductance, 
and the reason for this added terminology will become clearer shortly), 
while the dendrites are a passive source. The neuron can be considered 
an electric dipole} because during the action potential the dendrites are 
positive with respect to the soma. 

Synaptic inputs to various locations on a neuron will also set up electric 
dipoles. For example, excitatory synaptic inputs to the apical dendrites 
will produce an active sink in the dendrites and a passive source in the 
soma (figure 14.2). In contrast, inhibitory input to the soma produces an 
active source in the soma and a passive sink in the dendrites. Because 
these extracellular signals are not stationary in either time or space and 
because many neurons may be active together or in various phase relation-
ships, extracellularly recorded field potentials can be quite complicated. 

14.2.3 Volume conductor theory 

The mathematical derivation for volume conductor theory can be obtained 
from a number of excellent sources (Plonsey 1969; Stevens 1966) and will 
not be repeated here. Although the derivations are elegant in a mathemat-
ical sense, they have less practical value for neurophysiologists, because it 
is very difficult to apply the theory in a rigorous way to specific biological 
problems. For example, to use the mathematics to predict quantitatively 
the electrical fields in a volume conductor consisting of active neurons 
would require knowing the precise geometry and conductivity (as a func-
tion of time) of each neuron in the volume as well as the geometry and 

1An electric dipole is simply a quantity of positive and negative charges separated by 
some distance. 
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Figure 14.2 Current sources and sinks in a neuron with dendrites. An action potential 
is stationary in the soma in (A); an excitatory synaptic input to the dendrites is depicted 
in (B). The arrows indicate the direction of extracellular current flow (see text for further 
explanation). 

conductivity of the extracellular space. Such data are seldom, if ever, 
available, so gross simplifications are usually made. The result is simply 
a qualitative application of the theory to a particular situation and thus 
a qualitative prediction of the expected electrical fields. The latter is all 
that we will attempt here. 

From an observation point in a volume conductor (see figure 14.3), the 
measured potential (with respect to a distant ground) will depend on the 
solid angle made with the dipole. The solid angle is directly analogous 
to its two-dimensional counterpart. It depends on the physical size of 
the dipole and the distance between the observation point and the dipole. 
Remember also that the dipole need not be one-dimensional but could 
be a sheet of dipoles or a dipole layer. In the simple example shown in 
figure 14.3, the measured potential at the observation point could be posi-
tive, negative, or zero depending on its position with respect to the dipole. 
If there are many dipoles in the volume conductor, the superposition prin-
ciple (see appendix A) can be invoked and will lead to the prediction that 
the measured potential at the observation point would represent the lin-
ear sum of that contributed by each dipole individually. This of course 
assumes that the individual dipoles are independent of each other, which 
is probably a reasonable assumption. In any event, as the geometry of 
the dipoles in the volume conductor gets more complicated, it is easy to 
see how the predictions of what the potential would be at any given ob-
servation point could become difficult to make. In fact, if the observation 
point is on the surface of the scalp and the dipoles are from neurons in 
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Figure 14.3 Electrical field in a volume conductor. Top of figure represents some type 
of nervous tissue in which there is a separation of charge (negative on the left, positive on 
the right) and two observation points (filled circles). The dashed lines represent the solid 
angle (assuming 3-dimensions) subtended by the dipole and the observation point. The 
observation point on the left would measure a negative potential with respect to a distant 
ground while the one on the right would measure a positive potential. The dotted line in 
the middle represents the zero potential axis. The bottommost part of figure schematizes 
a measurement point on the skull and the summation of numerous such dipoles from the 
underlying cortex. 

the underlying cortex, which is folding and curving, the predictions are 
indeed extremely difficult to make. 

14.3 Classification of fields 

If one is recording extracellularly from a particular area of the brain, what 
would be the electric fields associated with the activation of a group ol 
neurons by a simultaneous synaptic input? This is a common problem 
in neurophysiology. There are three main types of geometrical arrange-
ments of neurons that produce characteristic field potentials: the open 
field, the closed field, and the open-closed field. They will be discussed 
separately in the following sections (see also Hubbard et al. 1969). 
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14.3.1 Open field 

The open field is encountered when neurons are organized in a laminar 
array in which the dendrites are facing in one direction and the somata 
in the other. This type of field is typically encountered in the cerebellum, 
neocortex, and hippocampus. If this array of neurons is activated by a 
synchronous synaptic input (for example, by stimulation of an afferent 
pathway), a dipole will be established between the dendrites and the so-
mata. This is illustrated in figure 14.4. As discussed in section 14.2.3, 
the potential measured at an observation point will depend on the solid 
angle made with the dipole layer. In the case of an action potential in the 
cell body layer, the field would be negative in the soma and positive in 
the dendrites. Recordings from an open field will be discussed further in 
section 14.4.1. 

Open Field 

Figure 14.4 Diagram of open and closed fields. Dotted lines represent zero potential 
lines for each type of field (see text for explanation). (After Hubbard et al. 1969.) 

14.3.2 Closed field 

The closed field is also illustrated in figure 14.4. It consists of a spherical 
array of neurons in which the somata are either at the center of the sphere 
with the dendrites directed toward the periphery or at the periphery with 
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Open-Closed Field 

Figure 14.5 Diagram of an open-closed field. (After Hubbard et al. 1969.) 

the dendrites directed toward the center. The synchronous activation 
of such a field produces dipoles with spherical symmetry (for example, 
a positive core and negative periphery). The polarity of a measurement 
made within the sphere of symmetry would depend on its location within 
this spherical dipole. A measurement from outside the field, however, 
would record zero potential—the dipoles within the sphere would cancel. 

14.3.3 Open-closed field 

The open-closed field (see figure 14.5), as expected from its name, is a 
combination of the open and closed fields. It consists of a spherical array 
of neurons embedded in a laminar array. The resulting field potentials 
would also be a combination of the two types of fields. Recordings out-
side the sphere would be similar to those from the open field, whereas 
recordings within the sphere would combine the fields generated from 
the neurons in both the open and closed arrays. 

14.4 Semiquantitative theory for extracellular fields 

In this section we will attempt a semiquantitative analysis that should 
help explain the origin of the dipoles and the approximate relationship 
between the extracellularly recorded potentials and the transmembrane 
electrical events that give rise to the extracellular potentials. 

In figure 14.6, a circuit diagram is illustrated that depicts the simplified 
or lumped features of an active neuron and the measurement of potential 
in the extracellular space. At point A a conductance change has occurred 
(an action potential) that produces an inward current (Im). Rint is the 
lumped internal resistance of the neuron between A and B, and Rext is 
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Figure 14.6 Lumped circuit diagram for the origin of electrical fields. "Inside" and 
"outside" refer to that of a hypothetical neuron or axon. An action potential is initiated 
at A and the resulting current flow is indicated (see text for further explanation). (After 
Hubbard et al. 1969.) 

the lumped extracellular resistance between A and В (Ra,B and С А,В are 
the usual membrane elements). Because current must always flow in a 
complete circuit (or loop), the inward current at A flows through the inside 
of the neuron and exits at B. To complete the circuit, the current flows 
in the extracellular space through Rext. Assuming that we have a distant 
ground electrode in the extracellular fluid, current will also flow from В 
to ground and from ground to A. 

From this diagram one can easily obtain the polarity of the extracellular 
field potentials by observing the direction of the current flow and remem-
bering that the potential drop across a resistor (positive to negative) is 
in the direction of current flow. Point В will be positive with respect to 
ground, point A will be negative with respect to ground, and В will be pos-
itive with respect to A. This simple diagram, then, is a useful tool with 
which to determine the expected polarity of extracellular field potentials. 

But what about the time course of the extracellular field potentials? 
Because the transmembrane current Im draws current from the extracel-
lular space, the time course of the inward current at A will dictate the time 
course of the extracellular potential across Rext- The time course of the 
extracellular field potential will be roughly proportional to Im, or 

For electrical events that are relatively fast with respect to the mem-
brane time constant (e.g., the action potential and fast EPSPs), most of 

VA ос Im oc -VB. (14.4.1) 
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the current exiting at В will be capacity current across С в. Thus for fast 
conductance changes (Ag fast with respect to т т ) , the time course of the 
extracellular field potential is roughly proportional to the first derivative 
of the transmembrane potential, or 

T dVm T/ 0(1 ~dF ^ B' 

This would obviously not be true for slower events, because a steady cur-
rent flow would produce a steady extracellular potential. 

The above analysis yields the important concept that the extracellular 
field potential has a time course that is approximately equal to the trans-
membrane current Furthermore, for fast events the extracellular field 
potential is roughly equal to the first derivative of the transmembrane 
potential. 

14.4.1 Typical extracellular recordings in an open field 

Extracellular field potentials have probably been used in the hippocampus 
more than anywhere else to infer the activity of neurons and synapses. 
The orderly anatomical arrangement of the neurons in the hippocampus 
(figure 14.7) and the highly laminated pattern of inputs and outputs makes 
the hippocampus an almost perfect open field structure. Examples of 
extracellular field recordings from the CA1 region of the hippocampus 
are shown in figure 14.8. Stimulation of the Schaffer collaterals produces 
an EPSP in the dendrites and, if sufficiently strong, an action potential in 
the soma. The corresponding field potentials are illustrated in figure 14.8. 
The field potential in the dendrites corresponding to the EPSP is called the 
population EPSP (or pEPSP) while the potential corresponding to the action 
potential is called the population spike (or pSpike). 

Remember from the previous section that the time course of the pEPSI* 
is roughly the same as that of the synaptic current (This should be ob-
vious if one compares the time course of the pEPSP in figure 14.8 to thai 
of intracellularly recorded EPSPs illustrated in chapter 13.) In figure 14.9, 
superimposed traces of pEPSPs resulting from increasing stimulus inten 
sities are illustrated. At higher intensity the peak of the pEPSP is con 
taminated by a source due to the occurrence of a pSpike. If time-to-peak 
of the synaptic current is constant, then the peak of the synaptic curreni 
(and thus the pEPSP) will be roughly equal to the slope of the rising phase 
times the time-to-peak, or 
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Figure 14.7 Diagram of hippocampal slice. Entorhinal cortex (EC), dentate gyrus (DG), 
and CA3 and CA1 subfields are labeled. The synaptic pathways—perforant path (PP), 
mossy fibers (MF), and Schaffer collaterals (Sch)—are also labeled. 

peak of field EPSP = slope x time-to-peak 

and thus for a constant time-to-peak 

slope of field EPSP oc peak Im . 

This is a very useful relationship. Peak measures of field EPSPs are often 
contaminated with pSpikes, pIPSPs (or population IPSPs), and polysynap-
tic events. They would thus be poor reflections of synaptic current. A 
measure of the initial slope, however, can be made quite easily and, as the 
above analysis illustrates, will be roughly proportional to the peak cur-
rent. Furthermore, because the slope is measured from the initial part of 
the field, the synaptic current that it represents will be dependent on the 
difference between Es and the initial resting potential. This means that 
the slope is less sensitive to the effects of nonlinear summation (see also 
chapter 13) than that of the peak. In fact, one can show that the slope 
of the field pEPSP is linearly related to synaptic conductance whereas the 
relationship between peak current and synaptic conductance is quite non-
linear (see figure 14.10). 
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Figure 14.8 Field potentials in the hippocampus due to stimulation of Schaffer collater-
als. (A) Diagram of hippocampal slice (alv = alveus; or = oriens; pyr = pyramidal cell layer; 
rad = radiatum; mol = molecular layer). (B) Enlarged view of a pyramidal neuron. Record-
ings are indicated from pyr and rad layers. Stimulation of Schaffer collaterals in rad is 
also indicated. (C) Intracellular recording at increasing stimulus intensity. At highest in-
tensity an AP is elicited (truncated). (D) Field potentials in pyr and rad layers. • indicates 
pSpike; t indicates pEPSP; and * indicates field potential associated with APs in presyn-
aptic axons (called a fiber volley). Note the sink associated with the pEPSP recorded in 
the dendrites (rad) and the sink associated with the pSpike recorded near the soma (pyr). 
(From Langmoen and Andersen 1981.) 

I i I 
Figure 14.9 Measurement of the slope of pEPSP. Simultaneous intracellular and extracel-
lular recordings. The extracellular recording is from rad (see figure 14.8), and the slopes 
of the pEPSPs are indicated for responses at the three different stimulus intensities. Note 
the positive going inflection in the largest pEPSP (arrow). This corresponds to the source 
in the dendrites associated with the AP in the soma. 
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Figure 14.10 Plot of peak and slope of EPSP (left) and plot of peak and slope of EPSC 
(right) vs. synaptic conductance. Note that the slope is almost linearly related to the 
synaptic conductance whereas the peak voltage and current associated with the EPSP show 
pronounced nonlinear summation. (From simulations by Erik Cook.) 

The presentation in the previous sections illustrated the concepts under-
lying field potentials and how they can be used to get rough approxima-
tions of intracellular events. Additional methods of analysis are available, 
however, that allow more precise information regarding neuronal activ-
ity to be extracted from field potentials. Although field potentials, when 
measured at a single location, are useful for determining changes in intra-
cellular events, they are poor at determining the location of actual current 
flow into and out of a neuron. The current source-density analysis of field 
potentials, however, allows one to determine the net extracellular current 
flow into and out of active neuronal tissue as a function of distance. 

Recalling from chapter 4, the transmembrane current along a nerve fiber 
is equal to the second spatial derivative of membrane potential, or 

where К is a proportionality constant. The membrane current im is in 
units of current/area or current density. 

Recall that for an action potential propagating along the nerve fiber (a 
uniform, nondecrementing wave, see chapter 6) 

14.5 Current source-density analysis 

(14.5.2) 

d2vm 1 d2V7 m (14.5.3) дх2 в2 в2 dt2 " 
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For this propagating wave in one dimension, the extracellular field poten-
tial (which is proportional to im from equation 14.4.1) would be propor-
tional to the second derivative of the action potential and would thus be 
the triphasic waveform, which we also determined on purely qualitative 
grounds in section 14.2.1. 

If we are interested in the analyzing neural activity in a volume of tis-
sue with current flowing in three dimensions, equation 14.5.3 must be 
expanded to 

where ф is now the extracellular field potential. The beauty of the open 
field structure presented in the preceding sections is that it allows us 
to make an approximation to the above equation that greatly simplifies 
the analysis. If the volume of tissue is laminated, consisting of two-
dimensional planes of uniform anatomy (for example, a layer of somata 
and several layers of uniform synaptic inputs), we can assume that the 
change in potential within each of these planes or laminae is zero and 
Э _ 
э у 2 az2 и" 

Equation 14.5.4 can then be reduced to one dimension, where the x 
dimension is along the length of the neuron from soma to dendrites. This 
equation states that the membrane current (as a function of time) is equal 
to the second spatial derivative of the field potential (also as a function 
of time). Let's see how this can be determined. 

Figure 14.11 illustrates a typical open field arrangement of neurons in 
which field potentials are measured at a number of locations (filled cir-
cles) along the л: axis, each separated by a constant Ax. The second spatial 
derivative of the field potentials can be determined from these measure-
ments using standard finite difference formulas. Take measurements at 
point Vo, Va, and Vb\ they are related to each other by 

Vo = V(x,t), 

Va = V(x -Ax , t ) , 
and 
Vb = V(x + Ax,t). 

The first spatial derivative can be obtained by 
dV(t) = Vb-Vg 

dx 2Ax 1 

(14.5.4) 
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Figure 14.11 Diagram for current source-density analysis. The dots represent points 
for measuring the extracellular fields, and Ax represents the distance between them. 

and the second spatial derivative is obtained by 

where im(t) is called the current source-density (CSD) function. The above 
analysis assumes constant conductivity of medium. 

The relationship between the field potentials measured in the hippocam-
pus and the corresponding CSD function is illustrated in figure 14.12. 
Note that the location of synaptic input would be difficult to localize 
from the field potentials in figure 14.12A. From the CSD function in fig-
ure 14.12B, however, the location of maximum synaptic current can be 
easily identified by the first maximum inward current density (denoted 
by the * in radiatum). Similarly for the action potential, the maximum 
current sink can be easily localized from the CSD function (denoted by 
the * in the cell body layer). The CSD function thus provides consid-
erable information regarding the location of sources and sinks (current 
flow in and out of the neuron) and is quite useful for locating the sites of 
synaptic inputs in dendrites or the sites of action potential initiation. 

d2v(t) 
dx2 

Vh-Vp _ Vq-V* 

Ax 
Vb-Vo-Vo + Vc 

Ax2 

Уъ + Vg- 2Vo _ 
Ax2 = im(t), 

a 

(14.5.5) 
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Figure 14.12 Relationship between field potentials and CSD in hippocampus (from 
Richardson et al. 1987). (A) Field potentials at different distances from the cell body 
layer (which is at 0 ^m) in response to stimulation of the Schaffer collaterals. (B) CSI) 
function calculated from the field potentials in (A) as described in the text. (C) Field po 
tentials at two locations (the *'s in (A)). The arrow indicates the positive going pSpike in 
radiatum. (D) CSD at same two locations as in (C). 

14.6 Summary of important concepts 

1. Sources and sinks. 
2. Analysis of extracellular current flow. 
3. Relationships between extracellular fields and intracellular poten-

tials. 
4. Current source-density analysis. 
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14.7 Homework problems 

1. Assume that you are recording extracellularly in the hippocampus: 

(a) If your recording electrode is in the cell body layer, would you 
measure a sink or a source during the arrival of an antidromi-
cally activated action potential? Would it be active or passive? 
What would be the potential with respect to a distant ground 
electrode when the action potential arrives? 

(b) If your electrode is in the dendrites near the site of the synaptic 
inputs and you stimulate these inputs, what is the shape of the 
field potential approximately equal to? Why would you want 
to measure the slope of the field potential? What is the slope 
proportional to? 

(c) Briefly (and qualitatively) describe how and why you would do 
a current source-density analysis? 

2. (a) Draw the expected field potentials at sites A and В for a fast 
GABAergic IPSP to the soma. Label each site as a sink or source, 
active or passive. Show the expected relationship between the 
field potential at the soma and the intracellular potential mea-
sured with a microelectrode. 

(b) Draw the expected field potentials at A and В for a conductance 
decrease EPSP at the soma. 



15 Cellular Neurophysiology of 
Learning and Memory 

15.1 Introduction 

In tills chapter we will introduce some of the general concepts and basic 
principles in the field of synaptic plasticity and cellular mechanisms of 
learning and memory. This is an exciting and rapidly changing area of 
neuroscience, but this chapter is not intended to be a review of the field. 
Instead, the concepts and principles that we will cover will be those that 
are well established and which form the underpinnings of the field. We 
will not cover much in the area of invertebrate learning, but will use ex-
amples mostly from the mammalian literature, particularly the hippocam-
pus. As there is much current interest in trying to use the results from 
cellular studies of synaptic plasticity to understand behavioral learning, 
we will also discuss briefly some of the data linking the two. The chap-
ter will end with a description of how, using certain rules for changes in 
synaptic strengths, a simple neural network can store information. 

15.1.1 Spine shape changes as a substrate for synaptic plasticity 

We begin this chapter by repeating the idea proposed by Rail and others 
many years ago that changes in the shape of a spine (in particular, an 
increase in the diameter of the neck of a spine) might form the basis for 
synaptic plasticity and learning (see also chapters 4 and 13). In this sec-
tion we will use the theories developed in chapters 4 and 13 to determine 
whether changes in the shape of a spine are likely to produce changes in 
a synaptic input. The principles derive directly from those discussed in 
chapter 13. Whether or not changes in spine shape can affect the syn-
aptic response depends on the relative magnitudes of Gs and 1 /Rsp. We 
will first examine several different values for these parameters and then 
consider which combinations are the most realistic. 
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Figure 15.1 Diagram and circuit model for a synapse at the head of a spine attached to 
a dendrite. Rden represents the total input resistance of the neuron as measured at the 
base of the spine. This model is only valid for the steady-state analysis of spines, because 
the capacitance of the dendrites is not included. 

From the simplified model of a spine shown in figure 15.1, the total 
resistance (RT) of the spine with an active synapse on the head is given by 

RT = Rsp + 1/G5, 

while the total conductance is 

— = — + — or 
GT GSp Gs

 1 

GT=GSPЪ ( 1 5 Л Л ) 

Сrsp + Сrs 
From equation 15.1.1 it can be seen that if Gsp is small relative to Gs 

(e.g., a large Rsp might be associated with a long, skinny spine), then the 
effectiveness of the synapse is negligible. That is, there is little or no 
synaptic current to measure. On the other hand, if Gsp is large relative 
to Gs, then changes in Gsp as a function of learning would be relatively 
ineffective for altering the efficacy of the synapse. These principles will 
be illustrated more clearly in the examples below. 

15.1.1.1 Examples for spine shape changes and synaptic plasticity 

1. First, assume that the synaptic conductance and the spine conduc-
tance are matched, or Gs — 1 nS and Gsp = 1 nS. During synaptic 
activity the total conductance will be 

GT = 0.5 nS. 
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If during learning Rsp is cut in half, or Gsp = 2 nS (as would be 
expected if the diameter of the spine neck increased), then 

GT = 0.67 nS, 

and the measured synaptic conductance is increased by 34%, a sig-
nificant increase in the synaptic response. 

2. Second, assume that the synaptic conductance is much smaller than 
the spine conductance (i.e., large neck diameter), or Gs = 1 nS and 
Gsp = 10 nS. Thus during synaptic activity 

GT = i y = 0.9 nS. 

If during learning Rsp is cut in half, or Gsp = 20 nS, then 

GT = = 0.95 nS, 

and the measured synaptic conductance is increased by only 5.6%. 
In this example changes in the shape of the spine have relatively 
little effect on the synaptic response. Achieving a larger synaptic 
response requires an increase in Gs. 

3. Third, assume that the spine conductance is much smaller than the 
synaptic conductance (i.e., long, skinny spine), or Gs = 1 nS and 
Gsp = 0.1 nS. Thus during synaptic activity 

GT = 0.091 nS. 

If during learning the synaptic conductance increases so that now 
Gs = 2 nS while Gsp remains the same, then 

GT = 0.095 nS, 

and the measured synaptic conductance is increased by only 4.8%. 
In this example changes in the synaptic conductance have relatively 
little effect on the synaptic response because the spine is restricting 
so much of the current flow to begin with. In order for a significantly 
larger synaptic response to occur, there must be an increase in Gsp. 
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So which of the above examples (two of which are extreme cases) is 
most likely to reflect physiological behavior? Based on anatomical recon-
structions of variously shaped spines, example #2 is most likely to reflect 
the case for spines in the CNS. In other words, using any of a wide range 
of possible membrane properties for spines and their synaptic conduc-
tances, the conclusion is that Gsp » G5. If this is true, then it is unlikely 
that changes in the shapes of spines are the substrate for learning—at 
least not in the purely electrical sense as envisioned by Rail. Changes in 
the shapes of spines may still be associated with synaptic plasticity or 
with development, but most likely for other reasons. 

15.1.2 Summary of the possible effects of dendritic spines (refer also 
to chapter 13) 

1. There is very little attenuation of potential from dendrite to spine 
head. 

2. There may be attenuation of potential from spine head to dendrite. 
3. A spine may increase the amplitude of the local synaptic potential 

at the subsynaptic membrane. This could be important if there are 
voltage-gated or voltage-sensitive channels in spines. 

4. There is very little loss of synaptic charge from spine head to den-
drite, but there may be a small difference in the amount of injected 
charge for a synapse on a spine vs. a synapse on a dendrite. 

5. It is unlikely that changes in the diameter of the spine neck alter the 
amplitude of a synaptic response. 

6. Spines may provide chemical isolation from the dendrite. 

15.2 Long-term synaptic plasticity 

The two most prominent forms of long-term synaptic plasticity are long-
term potentiation (first introduced in chapter 11) and long-term depres-
sion. Each will be discussed in turn in the following sections. 

15.2.1 Long-term potentiation 

Long-term synaptic potentiation, or LTP, is a long-lasting increase in the 
amplitude of a synaptic response following brief, high-frequency activ-
ity of a synapse. LTP was first described in hippocampus by Bliss and 
Lomo (see Bliss and Lynch 1988) and has subsequently been observed at 
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most excitatory synapses in the CNS. LTP represents a set of mechanisms 
(some of which may be present at all chemical synapses) responsible for 
increasing and maintaining the strength of a synaptic connection. LTP 
was discussed briefly in chapter 11 with respect to the use of methods of 
quantal analysis for exploring pre- vs. postsynaptic changes during LTP. 
In this chapter we will describe some of the properties of LTP and why it 
is an attractive cellular mechanism for certain aspects of memory. 

15.2.1.1 Definitions LTP is loosely defined as an enduring, activity-
dependent increase in synaptic efficacy. Short-term forms of plasticity 
such as facilitation and post-tetanic potentiation are considered a differ-
ent class of. phenomena because they last on the order of milliseconds 
to minutes, compared with LTP, which persists on the order of an hour 
or more. There may be multiple mechanisms associated with LTP—for 
example, mechanisms responsible for the early vs. the later parts of the 
potentiation—but for the most part all are currently considered under the 
general label of LTP. The very early part of potentiation, lasting from a 
few minutes up to -30 min, has been given its own label of short-term 
potentiation or STP,1 because it can be mechanistically separated from 
LTP. No doubt more such separations will be made in the future as the 
different mechanisms involved in the phenomena of what is now called 
LTP become known.2 

For ease of discussion, it is useful to separate LTP into two phases: the 
induction and maintenance phases. The induction phase is that which 
occurs during and shortly after the high-frequency stimulation used to 
initiate LTP. It consists of all the steps and mechanisms that lead to the 
long-lasting changes that are associated with LTP. The maintenance phase 
is that period following the induction in which the change in synaptic effi-
cacy is expressed. The onset kinetics of LTP are not known reliably because 
of the difficulty in separating LTP from STP and PTP, but all indications 
are that for certain forms of LTP the expression begins within minutes or 
less of the induction phase. Some forms of LTP, however, may take up to 
30 min or more to be expressed. The duration of LTP is also not known, 
although current data suggest that LTP is not permanent but decays over 
a time course of days to weeks. It is also worth noting that the mecha-

*STP was also called at one point decremental LTP. 
2 A different terminology for LTP has been fostered by B. L. McNaughton and colleagues. 

They prefer to use the term long-term enhancement or LTE to distinguish it clearly from 
post-tetanic potentiation or PTP. Although this distinction makes sense, few people have 
adopted it and so the most common term in the literature is LTP. LTP and LTE are just 
different acronyms for the same set of phenomena. 
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nisms responsible for the early expression of LTP may not be the same as 
those at longer times following induction and that the characteristics, as 
well as the mechanisms, of LTP may be different at different synapses. 
15.2.1.2 Induction paradigms As presented in chapter 11, LTP is typi-
cally induced by a short train or burst of stimulation to a set of afferent 
fibers. In the hippocampus this may consist of a 1 sec train of 100 Hz 
stimulation repeated several times or some variation thereof (e.g., 50 Hz 
for about 20 sec or up to 200 Hz for about 0.5 sec). Other stimulation 
paradigms that have been used to try to better mimic physiological fir-
ing patterns consist of shorter trains of high-frequency stimulation re-
peated several times. A popular paradigm is a 100 Hz train for 50 msec 
(5 pulses) repeated 8-10 times in succession at intervals of 200 msec. 
Because hippocampal neurons in vivo frequently fire in short bursts of 
high-frequency activity and because 200 msec is the approximate period 
of the theta rhythm in the EEG, this stimulus paradigm is quite attractive 
as an input pattern that the neuron may actually receive during physio-
logical activity. Interestingly enough, it is also quite effective in eliciting 
LTP in hippocampal neurons. As we will see in section 15.2.1.7, some 
forms of LTP can also be induced by pairing depolarization of the post-
synaptic neuron with single stimuli to the presynaptic fibers. Whatever 
the stimulus paradigm used, however, one measures LTP by recording the 
amplitude of the synaptic response before and after the period of high-
frequency stimulation. This is illustrated in figure 15.2. 

15.2.1.3 EPSP vs. E-S potentiation Most studies of LTP in hippocampus 
have been done using field potential recordings (see chapter 14). Mea-
surements of the pEPSP (actually the slope of the pEPSP, for the reasons 
explained in chapter 14) and the pSpike are made before and after high-
frequency stimulation. An observation made during some of the earliest 
studies of LTP was that the amplitude of the pSpike appeared to increase1 

by a greater amount than did that of the pEPSP. In fact, in many ex 
periments there was LTP of the pSpike without any change in the pEPSI\ 
This was curious because the EPSP is what triggers the action potential 
in each neuron. An increase in the pSpike should reflect an increase in 
the number of neurons firing in response to increases in the EPSPs in the 
individual neurons. Because in some experiments the pSpike appeared to 
increase by an amount more than that expected from the increase in the 
pEPSP, it was felt that some process in addition to LTP of the EPSP must 
be taking place, and this process was called EPSP-to-spike potentiation or 
E-S potentiation. 
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Figure 15.2 Typical induction paradigm for LTP and time course for different phases 
of potentiation. HFS (high-frequency stimulation) is used to represent any of a number 
of induction paradigms mentioned in the text and is not drawn to scale. After HFS the 
amplitude of the pSpike, pEPSP, EPSP, or EPSC typically increases. The initial increase can 
be due to a combination of PTP, STP, or LTP. The duration of PTP is about 1 min, STP 
about 30 min, and LTP hours or longer (see text for further explanation). 

If one plots the amplitude (or slope) of the pEPSP vs. stimulus inten-
sity, one obtains a monotonic, roughly sigmoidal-shaped, curve called an 
input-output or I/O curve. The shape of the I/O curve basically reflects 
the number of fibers activated at the different stimulus intensities and 
the pEPSPs that result from these activated fibers.3 During LTP, the I/O 
curve shifts to the left along the stimulus intensity axis, suggesting that 
at a given intensity, and with the same number of fibers activated, the 
resulting pEPSP is larger in amplitude (see figure 15.3). One can obtain a 
similar relationship if one plots pSpike vs. stimulus intensity before and 
during LTP (dotted line in figure 15.3). 

One can also plot the pSpike vs. pEPSP. This is a kind of I/O curve for 
the pSpike in that it reflects the relationship between the amplitude of the 
pEPSP, which drives the pSpike, and that of the pSpike itself. If during LTP 
the larger amplitude pEPSP was all that accounted for the larger pSpike, 
then one would predict that there would be no change in the pSpike vs. 
pEPSP curve. That is, the larger pEPSP produced by activating the same 
number of fibers would simply elicit a larger pSpike. This is not the case, 
however, as there is also an upward shift in this curve during LTP, sug-
gesting that for any given amplitude pEPSP there are more neurons firing. 
This is what is called E-S potentiation. The time course of E-S potentiation 

3It is important to remember that a larger pEPSP resulting from a higher stimulus inten-
sity is due to a larger number of activated fibers (i.e., spatial summation of their individual 
EPSPs), and not to larger EPSPs at individual synapses. 
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Figure 15.3 Hypothetical input-output (I/O) curves for pEPSPs and pSpikes before and 
during LTP (left). The control curve is the same for both the pEPSP and the pSpike. Exam-
ples of I/O cuves to illustrate the concept of E-S potentiation are shown at the right. 

is similar to that for LTP of the pEPSP, but the mechanisms underlying E-
S potentiation are not entirely clear. One possibility is that changes in 
the excitability or threshold of the postsynaptic neurons may be partly 
involved so that for a given EPSP a neuron is more likely to fire. One 
interesting finding is that E-S potentiation may sometimes be restricted 
to the inputs being stimulated (i.e., synapse specificity, discussed in sec-
tion 15.2.1.5) suggesting that if there are changes in excitability, they may 
be localized to limited regions of the dendrites. 

15.2.1.4 Neuromodulation As would be expected, LTP can be modu-
lated by a number of neurotransmitter systems. These include norepi-
nephrine, acetylcholine, serotonin, dopamine, adenosine, and many of 
the neuroactive peptides. One of the interesting features of the modu-
lation is that it appears to be different at different synapses. For exam-
ple, in the hippocampus norepinephrine enhances LTP at the perforant 
path synapses in the absence of high-frequency stimulation, enhances 
LTP at mossy fiber synapses with high-frequency stimulation, and has no 
effect on LTP at Schaffer collateral synapses (see chapter 14 for descrip-
tion of synaptic pathways in hippocampus). Another interesting example 
is acetylcholine (ACh). ACh enhances LTP at Schaffer collateral synapses 
and inhibits LTP at mossy fiber synapses. Combinations of these neuro-
transmitters may also have important effects on LTP, as has been sug-
gested for norepinephrine and ACh in visual cortex. 

The detailed mechanisms by which LTP is modulated by these neuro-
transmitters are not known. Given the complex actions of these neuro-
transmitter systems, however, their effects on LTP induction and mainte-
nance are likely to involve multiple second-messenger systems. 

15.2.1.5 Synapse specificity and homosynaptic vs. heterosynaptic LTP 
One of the important features of LTP is that the enhancement in the am 
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plitude of the EPSP is, for the most part, confined to the stimulated path-
way and is thus input specific or synapse specific. In other words, the 
fibers given high-frequency stimulation are the only inputs to a neuron 
that show potentiation (illustrated in figure 15.4). This result implies that 
a generalized change in the postsynaptic neuron is not responsible for 
LTP, because that would produce potentiation at most if not all synaptic 
inputs. Using another term to describe this feature, LTP is generally con-
sidered to be homosynaptic. 

test HFS test 
I Mill I 

к К 

jA Ai 
test test 
I I 

К к 

Figure 15.4 Input specificity for LTP. Both synapses 1 and 2 are tested before and after 
HFS, but only synapse 1 receives HFS and only synapse 1 displays LTP. 

Heterosynaptic LTP describes a condition in which LTP induced by stim-
ulation in one pathway results in LTP being induced in another, nonstim-
ulated, pathway. For example, LTP induced at the mossy fibers in CA3 of 
the hippocampus could induce LTP at commissural fibers under certain 
conditions. In most cases, though, LTP is homosynaptic. 

As mentioned previously, E-S potentiation can show input specificity, 
but it is likely to be less restricted spatially than LTP of the EPSP. For 
example, E-S potentiation may occur for all inputs to a limited region of the 
dendrites whether or not they are stimulated during the induction phase, 
while synapses separated by some distance on the dendrites (for example, 
apical vs. basilar) may show synapse specificity of E-S potentiation. This 
would suggest that if there are generalized changes in the postsynaptic 
neuron associated with E-S potentiation, then they are confined to certain 
regions of the neuron. 

15.2.1.6 Cooperativity A stimulus intensity threshold usually exists 
for the induction of LTP. That is, in the absence of other manipulations 
a minimum number of input fibers must be activated to induce LTP. Mc-
Naughton and his colleagues concluded from this finding that there is a re-
quirement for some type of cooperative interaction among afferent fibers. 
What that cooperative action is will become clearer in later sections when 
induction mechanisms are discussed. A plot of LTP magnitude vs. stim-
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ulus intensity (figure 15.5) reveals a curve that begins at some nonzero 
value of stimulus intensity. This requirement for the stimulus intensity 
to exceed some threshold level for LTP induction has been called cooper-
ativity. 

In addition to a threshold for LTP induction, the magnitude of LTP also 
shows saturation. At extremely high stimulus intensities, or after repeat-
edly inducing LTP at lower stimulus intensities, a maximum amount of po-
tentiation is achieved such that further episodes of high-frequency stim-
ulation fail to elicit more LTP. This is called LTP saturation. 

LTP 

saturation 

LTP 

pEPSP stimulus intensity 
(no. of active fibers) 

Figure 15.5 LTP vs. stimulus intensity. The amount of LTP as a function of the amplitude 
of the pEPSP used during HFS is shown on the left. The fact that there is a stimulus 
threshold for the induction of LTP has been called cooperativity. The amount of LTP will 
also saturate (right) at very high stimulus intensities or with repeated episodes of HFS at 
lower stimulus intensities. 

15.2.1.7 Associativity If LTP represents a cellular mechanism for learn-
ing and memory, then one might expect that there would be a cellular ana-
log to Pavlovian or classical conditioning involving LTP. Levy and Steward 
were among the first to use an induction paradigm for LTP analogous to 
that for classical conditioning (see Bliss and Lynch 1988). They stimulated 
two separate input pathways to the same set of postsynaptic neurons (i.e., 
the contralateral and ipsilateral perforant pathways to the dentate gyrus 
studied in vivo) and demonstrated that LTP could be induced in the weaker 
contralateral pathway only if its stimulation was paired with stimulation 
of the stronger ipsilateral pathway. The weak pathway was considered 
analogous to the conditioned stimulus (CS) and the strong pathway to 
the unconditioned stimulus (UCS) in a typical classical conditioning ex-
periment (refer to section 15.3.2). A similar experiment involving two 
different sets of Schaffer collateral fibers was later performed in vitro by 
Barrionuevo and Brown. The LTP induced in this type of experiment was 
called associative LTP, and the general phenomenon is called associativity 
(see figure 15.6). 
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Figure 15.6 Associative LTP. S represents a strong (high-stimulus intensity) input and W 
a weak intensity input from the Schaffer collaterals. The corresponding pEPSPs measured 
in stratum radiatum of CA1 are given in (A). In the upper row of traces, 5 W responses are 
superimposed on the left followed by 18 W responses after a tetanus (HFS) was given to W 
(middle). A second, identical tetanus to W again elicits only PTP (right). In the second row 
of traces, 5 W responses (left) are followed by 7 W responses after a tetanus was given to S 
(middle). Note that there is no potentiation of W, only a small depression. 5 W responses 
are superimposed again after returning to control levels (right). In the third row of traces, 
11W responses are superimposed (left) after a tetanus was given simultaneously to S and 
W. 5 W responses 2 min (middle) and 15 min (right) after the tetanus indicate that LTP 
in W was induced. In the bottom row of traces, 5 W responses are shown at 30 (left), 45 
(middle), and 60 min (right) after tetanus to indicate the duration of LTP. The amplitudes 
of the pEPSPs as a function of time for all of the above traces are plotted in (B). Note 
that LTP in W was only induced when W received a tetanus at the same time as S. (From 
Barrionuevo and Brown 1983.) 
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It was also found that LTP was not induced if stimulation of the strong 
pathway preceded that of the weak pathway. Stimulation of the weak 
pathway could precede stimulation of the strong, but only by a fairly short 
period of time. The temporal contiguity requirements are therefore fairly 
strict, and the maximum LTP is induced when stimulation of the weak and 
strong pathways overlaps at least partly in time (see figure 15.7). 

A distinction should be drawn between cooperativity and associativity. 
Cooperativity implies that there is a minimum number of input fibers that 
must be activated for the induction of LTP in those fibers. Associativity, on 
the other hand, implies that LTP can be induced in a limited set of input 
fibers only when they are stimulated in conjunction with another, larger 
set of input fibers. Although associativity implies that cooperativity also 
exists, the converse is not true: Cooperativity does not necessarily imply 
associativity. 

This concept can be illustrated in the following hypothetical example 
(figure 15.8). In part A the I/O curves for this fictitious experiment are 
shown before and after high-frequency stimulation (HFS) and the induc-
tion of LTP. HFS was given at the intensity indicated (/i), and a larger-
amplitude pEPSP would be observed following HFS when tested at this 
same stimulus intensity. Suppose, however, that a lower stimulus in-
tensity (/2) was used to test for LTP (after HFS was given at the higher 
stimulus intensity, /i). In this case one would conclude that LTP had not 
been induced, because the pEPSP amplitude would be the same as before 
HFS. This is an example of an experiment in which cooperativity might 
exist (there could be a stimulus intensity threshold for the induction of 
LTP) but not associativity. LTP was not expressed in the smaller subset 
of fibers even though they were stimulated in conjunction with the rest 
of the fibers during HFS. The result of this fictitious experiment implies 
that, in addition to a requirement that a minimum number of fibers be 
stimulated for the induction of LTP, there could also be a requirement 
that a minimum number of fibers be activated for the expression of the 
LTP. Therefore, at least in theory, the presence of cooperativity does not 
necessitate the presence of associativity. 

An experiment in which both cooperativity and associativity exist is il-
lustrated in figure 15.8B. In this experiment LTP would be observed after 
HFS at virtually any intensity of stimulation throughout the I/O curve. The 
extreme case would be the observation of LTP in a single input fiber. For 
example, according to the scheme shown in figure 15.8A, if one tested for 
the expression of LTP at a single input fiber after inducing LTP by HFS at 
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Figure 15.7 Temporal contiguity requirements for associative LTP. The locations of 
three stimulating electrodes and one recording electrode are shown in (A). S represents 
a strong stimulus-intensity input, and W1 and W2 are weak inputs. The timing of the 
three pairing protocols are indicated in (B). The square pulse represents a 100-Hz train 
of that duration. The results of the three stimulus patterns are shown in (C). Note that 
only the forward pairing patterns produce LTP. (From Kelso and Brown 1986.) The plot 
at the bottom illustrates another experiment in which LTP is plotted as a function of the 
time between the onset of the train given to W and the onset of the train given to S (i.e., 
interstimulus interval or ISI). (From Brown et al. 1989.) 
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a high stimulus intensity, one would conclude that no LTP had been in-
duced. On the other hand, in the scheme shown in figure 15.8B, LTP would 
be measured in even a single fiber. Some forms of LTP indeed appear to 
be expressed in single input pathways. Whether or not LTP is expressed 
in single fibers, such as illustrated by the hypothetical experiments of 
figure 15.8, would suggest different underlying mechanisms for the LTP. 

A cooperativity without В cooperativity with 
associativity associativity 

stimulus intensity stimulus intensity 

Figure 15.8 Hypothetical I/O curves for experiments in which LTP is cooperative but 
not associative (A) and both cooperative and associative (B) (see text for explanation). 

15.2.1.8 The Hebb rule for synaptic plasticity In 1949 Donald Hebb 
proposed what has proven to be an extremely important idea for the study 
of learning. He suggested that the efficacy or "efficiency" of a synapse 
would increase when there was concurrent activity in the pre- and post-
synaptic elements. Specifically, he suggested that (Hebb, 1949, p. 62) 

When an axon of cell A is near enough to excite cell В or repeat-
edly or persistently takes part in firing it, some growth process 
or metabolic change takes place in one or both cells such that 
A's efficiency, as one of the cells firing B, is increased. 

and that these changes in synaptic efficacy could form the basis of learn-
ing. This deceptively simple idea has far-reaching implications for our 
understanding of the cellular mechanisms of learning. It has been quant i-
fied and put into the form of a learning "rule" and then incorporated into 
numerous computer models for learning and memory. It has also guided 
numerous investigations into the mechanisms underlying synaptic plas-
ticity. 

A relatively simple quantitation of the Hebb rule would be the following. 
Suppose we let synaptic efficacy be defined as a synaptic weight or WAH, 
where WAB represents the weight or strength of the synaptic connection 
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from neuron A to neuron B, and let VA and VB be the frequency of firing 
of neurons A and B, respectively. By the Hebb rule, the change in synaptic 
weight (AWAB) would be 

AWAB = F(VA,VB), 

where F(VA, Vb) is some function of the firing rates of A and B. One type 
of function could be simply the product of the individual firing rates, or 

AWAB = K(VA • VB), (15.2.2) 

where к is just a numerical constant whose value is small. There are many 
other possible functions for specifying changes in synaptic weight accord-
ing to the Hebb rule, and each has important functional implications. The 
reader interested in further discussion of this topic should consult the 
suggested reading list for this chapter. 

From an input-output point of view, there are several ways of imple-
menting the Hebb learning rule. This was nicely put forth by Sejnowski 
and Tesauro (1989) and is illustrated in figure 15.9. In (a) there are just 
two neurons and one synapse. When neuron В is fired repeatedly by the 
activity of neuron A, some change takes place such that the strength of 
the synaptic connection is increased. In this example there must be some 
mechanism for sensing firing rate in neuron В before enhancing the syn-
aptic weight. The simplest way for this to occur would be for the sensing 
of the association and the mechanism for the change in efficacy to be 
located in neuron B. 

о — о А В 

(b) 

А В 

' " c m Q 
A I В 

Figure 15.9 Three different implementations of the Hebb learning rule (see text for 
explanation). (From Sejnowski and Tesauro 1989.) 

In (b), neuron В feeds back and makes a synaptic connection onto the 
synapse of neuron A. In this case the presynaptic element senses the 
firing rate of neuron В along with its own firing, and some change takes 
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place to increase synaptic efficacy. The feedback from neuron В could 
be an actual synaptic connection or some type of retrograde message or 
signal (i.e., chemical or electrical). 

A final scheme for implementing the Hebb rule is depicted in (c). In this 
case there is an interneuron (I) that senses the firing rates of neurons A 
and B. A change in the excitability of I would result in an overall increase 
in the efficiency of neuron A in firing neuron B, as specified by the Hebb 
rule. Although the cellular mechanisms would differ for each of these 
implementations, they are all functionally equivalent forms of the Hebb 
rule. 

The first experimental support for the existence of a Hebb-like learning 
rule came more or less simultaneously from a number of groups working 
on induction mechanisms for LTP (reviewed in Brown et al. 1990). They 
found that if the postsynaptic neuron was hyperpolarized to prevent ac-
tion potentials during the HFS, LTP was not induced, whereas if the neuron 
was depolarized during HFS, LTP was induced. In contrast, if the postsy-
naptic neuron was depolarized to fire action potentials in the absence of 
any synaptic stimulation, then LTP was not induced. There did not appear 
to be any specific requirement for action potentials, as proposed by Hebb, 
but there was a requirement for both depolarization in the postsynaptic 
neuron and firing of the presynaptic axons. Although this work was first 
done using Schaffer collateral synapses, Hebbian-type learning rules have 
also been described for LTP at perforant path and mossy fiber synapses 
in hippocampus. An experiment testing for a Hebbian rule is illustrated 
in figure 15.10. 

From the results of such experiments, it was proposed that the strong 
pathway in the associative LTP experiments might simply be providing the 
postsynaptic depolarization that appeared necessary for the induction of 
LTP. An important experiment to test this idea was to pair postsynaptic 
depolarization with a single (weak) stimulus to the afferent fibers. At 
some synapses—for example, Schaffer collaterals and perforant path (but 
not mossy fibers)—LTP is induced with this paradigm (figure 15.11). 

The cellular mechanisms underlying this Hebb rule, and also the mech-
anisms for associative LTP, will be discussed in the next section. 
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Figure 15.10 Experiment that tested the Hebbian rule for synaptic plasticity. (A) HFS 
(100 Hz) given under voltage clamp (left) and HFS given with a depolarizing current in-
jection (right). (B) The EPSPs and EPSCs before and 20 min post tetanus are indicated. 
LTP was elicited when HFS was given in conjunction with postsynaptic depolarization. (C) 
EPSP amplitude is plotted as a function of time for the different stimulus protocols. (D) 
Summary data are shown from two pathways (W1 and W2) at different times following 
HFS given separately to each pathway. On the left the mean increase in the EPSP when a 
voltage clamp was applied to the postsynaptic cell during HFS is indicated. On the right is 
the same experiment except that a depolarizing current pulse was given to the cell during 
the HFS to Wl. (From Kelso et al. 1986.) 
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Figure 15.11 Pairing postsynaptic depolarization with a single weak stimulus (with the 
pairing repeated every 20-30 sec) induces LTP at some synapses. 



458 Chapter 15. Cellular Neurophysiology of Learning and Memory' 

15.2.1.9 Cellular mechanisms for long-term potentiation Currently, 
LTP can be broadly categorized into two forms, those that require the acti-
vation of NMDA receptors for their induction and those that do not. These 
have been called NMDA-receptor-dependent (NMDA) and NMDA-receptor-
independent (non-NMDA) forms of LTP. There maybe other distinct forms 
of LTP, for example, those that might require activation of metabotropic 
glutamate receptors or a particular second messenger system, but this is 
an active area of research and it will take time for these questions to be 
completely sorted out. There are also many controversial aspects to the 
mechanisms for both the induction and expression of LTP, and we will try 
and confine ourselves here to discussing what is most generally agreed 
upon by current researchers in the field. 

NMDA-receptor-dependent vs. NMDA-receptor-independent LTP The 
common mechanism that seems to underlie all forms of LTP is that induc-
tion depends on a rise in intracellular Ca2+ in the postsynaptic neuron. 
The induction of both NMDA LTP and non-NMDA LTP can be blocked by 
the postsynaptic injection of Ca2+ chelators. Chelating Ca2+ after the 
induction phase, however, has no effect on expression. The rise in in-
tracellular Ca2+ during the induction phase may occur from an influx 
through NMDA receptors, an influx through voltage-gated Ca2+ channels, 
or release from intracellular stores. The two most common mechanisms 
studied so far are those involving Ca2+ influx through NMDA receptors 
or through voltage-gated Ca2+ channels. Not surprisingly, Ca2+ influx 
through NMDA receptors is believed to be the initial trigger for NMDA 
LTP, while Ca2+ influx through voltage-gated Ca2+ channels may be the 
trigger for non-NMDA LTP. NMDA LTP has been studied extensively a l 
the Schaffer collateral and perforant path synapses in the hippocampus 
but has also been observed in neocortical neurons and elsewhere. Non-
NMDA LTP, on the other hand, has been studied less extensively but has 
been observed in some invertebrate preparations, in peripheral ganglia, 
in dorsolateral septal nucleus, in neocortex, in the amygdala, and in the 
hippocampus at Schaffer collateral, commissural/associational, perforani 
path, and mossy fiber synapses. 

For NMDA LTP the general scheme for LTP induction involves depolar-
ization of the postsynaptic neuron to relieve the Mg2+ block of NMDA 
receptors and influx of Ca2+. The requirement for postsynaptic activity 
results from the need for sufficient depolarization to unblock the NMDA 
receptors, whereas that for presynaptic activity results from the need to 
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have glutamate released from the presynaptic fiber to activate the NMDA 
(and non-NMDA) receptors. It is assumed that non-NMDA LTP can occur 
at many of these same synapses when there is sufficient depolarization to 
allow Ca2+ influx through voltage-gated Ca2+ channels (see figure 15.12). 
There also is a requirement for presynaptic activity under these condi-
tions, but what that requirement might be is not entirely clear. Under 
certain conditions both NMDA and non-NMDA LTP can show input speci-
ficity, cooperativity, associativity, and Hebbian rules for induction. 

Figure 15.12 Induction mechanisms for NMDA and non-NMDA LTP. For NMDA-rec-dep 
LTP, Ca2+ entry through NMDA receptors during the HFS is believed to initiate LTP. For 
NMDA-rec-indep LTP, Ca2+ may enter through voltage-gated Ca2+ channels to initiate LTP. 
Ca2+ may also be released from intracellular stores. 

There are many proposed biochemical mechanisms for the induction 
and expression of LTP. Most prominent among them is that there is a 
persistent activation of one or more protein kinases associated with the 
expression of LTP. Such a mechanism could lead to the persistent phos-
phorylation of one or more proteins that are involved in synaptic trans-
mission or in initiating gene expression. It is worth noting that many of 
the mechanisms associated with LTP may also be important during devel-
opment whereby new synapses are made and existing synapses are either 

NMDA-rec-dep LTP 

NMDA-rec-indep LTP 
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strengthened or weakened. Also suggested are changes in second mes-
senger systems during the induction phase that may lead to longer-term 
changes during maintenance. A considerable amount of work is needed 
in this area before a coherent picture can be drawn for the molecular 
mechanisms of LTP induction and expression. As mentioned previously, 
it is likely that different molecular mechanisms may be involved during 
different phases of LTP. 

Another important question is whether the changes associated with the 
expression of LTP are located at the pre- or postsynaptic side of the syn-
apse. This was also discussed in chapter 11. Various methods of quantal 
analysis have been used to test for changes in transmitter release or for 
changes in postsynaptic responsiveness to transmitter. Given the diffi-
culty of performing a proper quantal analysis in a cortical neuron, it is not 
surprising that different groups have reached somewhat different conclu-
sions. The bulk of the evidence, however, appears to favor increases in 
transmitter release accounting for at least part of the increase in synaptic 
efficacy during LTP. These conclusions are based on work in Aplysia, cray-
fish, and hippocampus. In hippocampus it has also been suggested thai 
there are changes in both quantal content (m) and quantal size (q). Given 
that both the pre- and postsynaptic structural elements appear to develop 
in concert (Lisman and Harris 1993), it would again not be surprising if 
changes occur on both sides of the synapse during LTP. 

In chapter 11 we discussed facilitation of transmitter release during 
paired stimuli and reviewed the evidence that facilitation resulted from 
changes in m. One method of testing for pre- vs. postsynaptic changes 
during LTP is to test for changes in paired-pulse facilitation (PPF) during 
LTP. The assumption would be that if both facilitation and LTP result 
from changes in transmitter release, m, then they might interfere with 
one another and lead to decreases in PPF during the expression of LTP. For 
example, the number of quanta released can be described by the equation 
m = np, where n is the number of release sites and p is the average 
probability of release at each site (chapter 11). Presumably, PPF results 
from a transient increase in p following the first stimulus. If LTP is also 
due to an increase in p, then one would predict a decrease in PPF during 
LTP. In other words, as p - 1 during LTP, there would be no further 
increase in p during PPF. It is also possible, however, that LTP could 
result from increases in n. Increases in n with LTP and increases in p 
with PPF would cause multiplicative increases in m and not be expected 
to interfere with one another. Changes in PPF with LTP would therefore 
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be suggestive of some type of presynaptic mechanisms for LTP, but the 
lack of change in PPF would have no similar predictive value. 

PPF has been measured many times before and during LTP, and, on 
average, there appears to be no change. In some experiments, however, 
there are decreases while in others there are increases during LTP, and the 
direction of this change appears to depend on the initial magnitude of PPF. 
The results therefore do not support a simple scheme whereby LTP results 
in increases in p, but instead a more complicated set of mechanisms with 
perhaps changes in both n and p so that the changes in n are accompanied 
by different values of p. Nevertheless, these experiments as well as the 
results of quantal analysis (chapter 11) support the hypothesis that at 
least part of the changes associated with the expression of LTP occurs 
presynaptically. The results of quantal analysis, however, also support a 
partial postsynaptic mechanism and thus again changes on both sides of 
the synapse are most likely involved in the expression of LTP. 

If Ca2+ influx into the postsynaptic neuron is an initial trigger for LTP 
and if at least part of the change in synaptic efficacy during LTP is due to 
increases in transmitter release, then it follows that there must be some 
signal or message relayed from the postsynaptic neuron to the presynap-
tic terminal for the expression of LTP. This has been suggested to be some 
type of retrograde messenger or chemical signal that is released from the 
postsynaptic neuron following Ca2+ influx, diffuses to the presynaptic 
terminal, and initiates some biochemical change leading to an increase in 
transmitter release. Nitric oxide, arachidonic acid, and carbon monoxide 
are among the proposed candidates for such a retrograde messenger for 
which some evidence exists. Retrograde communication could also take 
place at the active zone through proteins that span the cleft from pre- to 
postsynaptic sides of the synapse. Regardless of the mechanism, what 
seems clear is that in addition to some type of retrograde signal, there 
must also be presynaptic activity. The retrograde signal is probably not 
sufficient to confer the synapse specificity discussed in previous sections 
for both NMDA and non-NMDA LTP. 

15.2.2 Long-term depression 

Most of the above discussion has focused on LTP because more is known 
about LTP than other forms of plasticity. Another type of long-term plas-
ticity that has been observed, however, is long-term depression, or LTD. 
LTD has been described in the cerebellum, where it may play a role in 
motor learning, in neocortex, and in hippocampus. Under certain condi-



462 Chapter 15. Cellular Neurophysiology of Learning and Memory' 

non-associative LTD 

input 1 

input 2 

associative LTD 

input 1 1 

input 2 II 

assoc 

• • • • non-assoc 

Figure 15.13 Schematic diagram (not to scale) for the induction of associative and nonas-
sociative LTD. In nonassociative LTD, trains of stimuli (input 2) lead to a depression in 
the nonstimulated input (1). In associative LTD, stimuli to input 1, which are out of phase 
with the trains in input 2, also lead to a depression of the synaptic response. The plot 
at the bottom shows the change in EPSP amplitude (for single stimuli) seen under the 
indicated conditions. 

tions stimulation of afferent fibers can lead to an enduring depression 
of synaptic efficacy (see figure 15.13). LTD, at least in the hippocampus, 
can have either associative or nonassociative properties, and can be either 
homosynaptic or heterosynaptic, depending on the conditions. There is 
also good evidence that a rise in postsynaptic Ca2+ is again an initial trig-
ger for LTD. One possibility is that smaller increases in Ca2+ lead to LTI) 
while larger increases lead to LTP. 

Some examples of LTD have been called "anti-Hebb" because they are 
induced under non-Hebbian conditions. For example, such non-Hebbian 
conditions might exist when there is activity in the presynaptic fibers but 
not in the postsynaptic neuron, or when there is activity in the postsy-
naptic neuron but not in the presynaptic fibers. It has long been believed 
that for learning to occur there must be some type of LTD-like mechanism 
for reducing synaptic strength. Otherwise (if there was nothing but LTP), 
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there would be a continual increase in synaptic strength until saturation 
occurred. At the point of saturation, no further learning would occur. 
Moreover, on theoretical grounds it has been demonstrated that more in-
formation can be stored in a system in which there are both increases and 
decreases in synaptic strength. 

If correlated activity in the pre- and postsynaptic elements leads to in-
creases in synaptic efficacy as discussed above, while uncorrelated activ-
ity leads to decreases in efficacy, then the simple algorithm for synaptic 
weight changes presented by equation 15.2.2 should be modified to ac-
count for both increases and decreases in synaptic efficacy. There have 
been many suggested algorithms, but the two that have received the most 
attention are the covariance rule of Sejnowski (1981,1989) and the sliding 
modification threshold rule of Bienenstock et al. (1982). Which of these 
(or any of the other) algorithms best mimics real synapses remains to be 
determined, but this is currently an active area of research. 

The covariance rule can be stated fairly simply. If the activity in the 
pre- and postsynaptic elements is correlated, synaptic weight is increased, 
while negatively correlated activity leads to decreases in synaptic weight. 
Uncorrelated activity has no effect on synaptic weight. This covariance 
rule can be expressed as follows: 

A W A B = k[(VA -VA)(VB-VB)1 (15.2.3) 
where AWAB represents the change in synaptic weight, VA and VB repre-
sent the activities of the pre- and postsynaptic neurons, respectively, and 
VA and VB represent the average values of the activities or firing rates of 
neurons A and B. From equation 15.2.3, if the activities of A and В are 
correlated in time, then the change in weight will be positive, while if they 
are negatively correlated, the weight change will be negative. If there is 
no correlation, then there will be no change. The relationship between 
synaptic weight changes and activity for the covariance rule is illustrated 
in figure 15.14. 

The sliding modification threshold rule or BCM rule (for Bienenstock, 
Cooper, and Munro 1982) can also be stated rather simply. This rule is 
similar in certain respects to the covariance rule in that correlated activ-
ity in the pre- and postsynaptic neurons leads to enhancement in efficacy, 
while negative correlation leads to depression. It differs, however, in sev-
eral important respects. First, the relationship is nonlinear. Second, there 
can be a threshold for depression as well as for enhancement. And third, 
the threshold for LTP vs. LTD varies as a function of the average activ-
ity of the postsynaptic neuron. In other words, the higher the average 
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postsynaptic activity 

Figure 15.14 Plot of covariance rule. The abscissa represents the postsynaptic activity 
that is correlated with, or in response to, presynaptic activity. 

background activity of the postsynaptic neuron, the higher the threshold 
for enhancing synaptic efficacy. Conversely, the lower the average back-
ground activity, the lower the threshold for an LTP-like process. This is 
illustrated in figure 15.15. The variation in threshold (6м) varies nonlin-
early with postsynaptic activity, as given below. 

where ф is the nonlinear function relating changes in synaptic weigh! 
resulting from the correlated activity of neurons A and В (св) and the 
average correlated activity (c^); DS is a local variable for synapse AB\ and 
6m is the modification threshold for LTP vs. LTD (see figure 15.15). 

Because of the importance of postsynaptic Ca2+ in initiating LTP as well 
as LTD, one attractive idea is that if such a sliding modification threshold 
for LTP vs. LTD does exist in neurons (and there is some experimental 
support for it), the changing threshold may be related to changes in Ca*-'' 
levels or to changes in a neuron's ability to buffer intracellular Ca2+. There 
are certainly many other possible mechanisms including changes in the 
sensitivity of NMDA receptors. 

15.3 Associative and nonassociative forms of learning 

Any discussion of the cellular neurophysiology of learning and memory 
should include at least a brief review of some of the simple forms of learn 
ing that have been described at the behavioral level. It is for these forms of 

AWAB = <T>(CB,CB)DB 

and 

(15.2.4) 

6U = c2 (15.2.5) 
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Figure 15.15 Sliding modification threshold rule for synaptic plasticity. The higher the 
average activity levels in the postsynaptic neuron, the more activity that is necessary to 
induce LTP (i.e., the larger the Ом)-

learning that the cellular analogs and mechanisms are being investigated. 
Certainly, the various forms of short- and long-term synaptic plasticity 
discussed in this book, as well as changes in many cellular processes, are 
likely to be involved at some level in these forms of learning. It is the 
challenge of neurophysiology to determine what the relationships are be-
tween neuronal events and behavior. Only brief definitions of a few of 
the more important simple forms of learning will be provided here, and 
the interested reader is referred to several excellent reviews listed in the 
bibliography for this chapter. 

15.3.1 Habituation 

Habituation refers to a decrease in some response (e.g., a behavioral re-
sponse) following repeated elicitation of the response. At the cellular 
level, repeated stimulation of a synaptic input can lead to a decrease in 
the amplitude of the EPSP (figure 15.16). Habituation is not simply syn-
aptic depression as discussed in chapter 11. There are several unique 
features that define habituation (Kandel and Spencer 1968). For example, 
a weaker stimulus habituates faster whereas a strong stimulus may not 
produce any habituation at all. Also, presentation of a strong stimulus 
during habituation can restore the original response amplitude (this is 
called dishabituation). The duration of habituation can be from minutes 
to weeks. 

15.3.2 Classical conditioning 

Classical or Pavlovian conditioning refers to a type of learning in which a 
stimulus (conditioned stimulus, or CS) that does not normally produce a 
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Figure 15.16 Hypothetical habituation experiment showing response decrement of EPSP 
with repeated stimulation. 

Figure 15.17 Diagram of classical conditioning. Repeated pairings of the CS with the 
UCS produces a response from the CS (dashed line) that was not present before the pair-
ings. 

response is paired with a stimulus (the unconditioned stimulus, or UCS) 
that does reliably produce a response (the UCR). Following repeated pair-
ings of the CS followed by the UCS (each pairing is called a reinforcement), 
the CS begins to elicit a response (the conditioned response, or CR) that 
mimics the UCR (figure 15.17). In the original experiments of Pavlov, the 
CS was a bell and the UCS was the presentation of meat; the UCR was 
salivation. After the bell was repeatedly paired with the presentation of 
meat, the bell began to elicit saUvation in the absence of meat. 

Alpha conditioning refers to a similar paradigm except that the CS elic-
its a response before conditioning, and the pairing of the CS with the UCS 
serves to strengthen the response. Pseudoconditioning refers to a CR that 
develops (or is strengthened) by repeated presentations of the UCS or 
repeated unpaired presentations of the CS and UCS. Pseudo-alpha condi-
tioning is more commonly called sensitization and is simply the strength-
ening of a preexisting CR by repeated presentation of the UCS or unpaired 
presentations of the CS and UCS. 

An example of sensitization at the cellular level made famous by Dr. 
Eric Kandel, a pioneer in this field, is from the marine mollusk Aplysia. 
Dr. Kandel and his colleagues demonstrated that repeated stimulation of 

ucs 
CS ^ ^ after pairing CS with UCS 

ucs 
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a sensory neuron results in habituation (or homosynaptic depression) of 
the resulting monosynaptic EPSP in the motor neuron. After habituating 
the EPSP, they found that stimulation of an entirely different set of sen-
sory neurons resulted in an increase in the amplitude of the habituated 
sensory-to-motor neuron connection. The increase in the EPSP amplitude 
will occur even in the absence of prior habituation. This increase in re-
sponse amplitude due to a completely different stimulus was considered 
a cellular analog to behavioral sensitization. In more cellular terms it has 
also been called heterosynaptic facilitation. Both habituation and sensi-
tization are considered nonassociative forms of learning, whereas classi-
cal, alpha, and operant conditioning (see the following) are all associative 
forms of learning. 

15.3.3 Instrumental or operant conditioning 

Operant conditioning is a kind of trial-and-error learning in which the 
organism is rewarded, or receives a reinforcement, for a particular behav-
ioral response. The reward could also involve the avoidance of punish-
ment. Cellular analogs of operant conditioning are much more difficult 
to study because the behavioral responses involved are not usually under 
experimental control. 

15.4 Role of hippocampus in learning and memory 

The hippocampus is thought to play a fundamental role in certain forms 
of learning and memory. This notion derives primarily from the study 
of surgical cases in which bilateral removal of the hippocampus for in-
tractable epilepsy led to profound and selective loss of memory. The 
most famous of these cases is the patient called H. M. Following removal 
of both hippocampi (and some surrounding temporal cortex), H. M. lost 
the ability to learn new information, although memories from up to a year 
before surgery and short-term memory are relatively unimpaired. H. M. 
can also learn new motor skills. 

Subsequent to these surgical cases, the hypothesis for a role of the 
hippocampus and medial temporal lobe in memory has been strengthened 
by studies of human amnesties, who have selective damage to this area 
of the brain from a variety of causes, and from patients with Alzheimer's 
disease. Because LTP was first described in the hippocampus and because 
LTP has been extensively studied in the hippocampus, an intense effort 
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Figure 15.18 Theta rhythm during walking. Note that when the animal is still the EEG 
changes and shows sharp waves (from Churchland and Sejnowski 1992). 

is being made to understand the relationship between the hippocampus 
and memory and, in particular, the relationship between LTP and memory 
in the hippocampus and elsewhere. 

The fact that H. M. (and other patients with similar lesions) are able to 
learn certain motor skills (without even remembering that they have done 
so) has led to a division of human memory into two broad categories, one 
involving memories for events, facts, and people, and the other involving 
procedures and skills. These have been called declarative and procedural 
memory, respectively. The hippocampus and the medial temporal lobe 
are associated only with declarative memory. These structures are not 
considered to be involved in the permanent storage of memory but only 
in the facilitation of memory storage elsewhere. 

The theta rhythm (figure 15.18) is a 4-8 Hz, rhythmic field potential that 
can be recorded from the rat hippocampus during exploratory behavior. 
A number of theories have been proposed for how the theta rhythm (also 
called rhythmic slow activity) can be involved in memory storage (Buzsaki 
1989; see also Buzsaki and Vanderwolf 1985). As mentioned previously, 
brief bursts of synaptic inputs at theta frequencies (i.e., 5 Hz) are very 
effective in eliciting LTP. 

Other more direct studies that have attempted to link LTP with memory 
have used antagonists for the NMDA receptor and shown that both LTP 
and learning are impaired. The learning paradigms included the eight arm 
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radial maze, the Morris swim test, the delayed match-to-sample task, or 
various types of odor discrimination, which are all thought to require the 
hippocampus. Also, a correlation has been suggested between the amount 
of LTP at perforant path synapses and the ability of an animal to perform 
on some of these learning tasks. More recent experiments, which repre-
sent an exciting new approach for the study of molecular mechanisms 
of learning, have involved so-called genetic "knockout" experiments. In 
these experiments transgenic mice have been made that lack a gene which 
encodes a particular protein thought to be critical for the induction or 
maintenance of LTP. These animals have been shown to have learning 
difficulties in addition to impaired LTP. 

The hippocampus is considered the highest level of association cortex. 
All sensory modalities have projections to the entorhinal cortex, which 
then project to the hippocampus through the perforant path. The rather 
brief and simplistic view of the hippocampus and memory outlined in 
this section, along with the role of the hippocampus as an associator, 
leads to what will be presented in the final section of this chapter. We will 
discuss one highly simplified and theoretical model as an example of how 
a neural network might learn and store information. We will also show 
how various forms of this model bear some rudimentary resemblance to 
different regions of the hippocampus. 

15.5 Computational model for learning and memory 

The intent of this section is not to present a unified theory for how mem-
ory is processed or stored in the hippocampus; nor is it our intent to 
foster this model as a realistic representation of hippocampal function 
over other excellent models of the hippocampus available in the litera-
ture (e.g., Rolls 1989a, b; Treves and Rolls 1994). Our purpose is instead 
to discuss a single example from a general class of models for information 
storage. We choose this particular model for discussion because it can be 
easily understood by all readers and because it attempts to embody some 
of the known hippocampal structure and physiology, including a funda-
mental role for synaptic inhibition. The model assumes that memory is 
stored as changes in synaptic weights throughout the network, and de-
rives originally from Marr (1971) with recent refinements by McNaughton 
and colleagues (1987,1989). 
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15.5.1 Correlation matrix 

To understand fully the principle of memory storage in this model, it 
is necessary first to examine what is called a correlation matrix This is 
illustrated in figure 15.19. There are two sets of binary inputs, the X 
inputs and the У inputs, mapping onto a 6x6 square matrix. The value 
for each element of the input vectors is either 1 or 0 (on or off, active or 
inactive). Multiplying the X and У vectors gives the values for the matrix 
elements that are shown in figure 15.19A. (The elements in each row of 
the matrix are obtained by multiplying the corresponding X element by 
each element in the У vector. A 1 is obtained only if both the X and У 
elements are 1.) 

Once the elements of the matrix have been established, the X vector is 
multiplied by this matrix (the corresponding X element multiplies each 
row element of the matrix) to obtain a new matrix. If each column of this 
new matrix is summed, an output vector with value of 330300 is obtained. 
A critical feature of this correlation matrix, and for the model as a whole, 
is that if this output vector is divided by the sum of the X input vector (i.e., 
3 in this case), then a vector of 110100 is obtained, which is identical to the 
input vector У. In other words, having established the correlation matrix 
by multiplying X and У, one can "recall" the У vector by multiplying the 
matrix by the input vector X. 

Y INPUTS 
Y INPUTS 1 1 0 0 0 1 Y4 

1 0 0 1 1 0 Y3 1 0 0 1 1 0 Y3 

A Y INPUTS в 0 0 1 0 1 1 Y2 с 0 0 1 0 1 1 Y2 A 1 1 0 1 0 0 Y1 в 1 1 0 1 0 0 Y1 с 1 1 0 1 0 0 Y1 

X 0 0 0 0 0 0 0 X 0 1 0 0 0 1 0 1 1 X 0 0 1 0 0 0 1 0 1 1 
i 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 I 1 0 0 0 1 1 0 0 0 1 
N 0 0 0 0 0 0 0 N 1 1 0 1 0 1 1 1 1 N 1 1 1 0 1 1 1 1 1 1 
P 1 1 1 0 1 0 0 p 0 0 1 1 1 0 1 0 0 P 1 0 0 1 1 1 0 1 0 1 
U 1 1 1 0 1 0 0 и 1 1 1 1 1 1 1 1 1 U 0 1 1 1 1 1 1 1 1 1 
T 1 1 1 0 1 0 0 T 1 0 1 1 1 0 1 1 0 T 0 1 0 1 1 1 0 1 1 0 
s XI s X3 X2 X1 s X4 ХЗ X2 X1 

Figure 15.19 Correlation matrices after storing 1 (A), 3 (B), and 4 (C) pairs of inputs. 
Multiplying the X and Y vectors establishes each matrix according to the rules: A matrix 
element becomes 1 if the corresponding X and Y elements are 1. If the matrix element is 
already 1, it remains 1 regardless of the corresponding X and Y values. Once the matrix 
is established, each Y vector can be recalled by multiplying the matrix by the paired Л 
vector, summing each column of product values, and then dividing the total by the sum 
of the X vector elements. For example, in (A) multiplying XI times the matrix and then 
adding together the resulting elements in each column yields the product vector 330300. 
The sum of the XI vector elements is 3, so dividing the product vector by 3 gives 110100, 
the original Y1 vector. The division is integer division so that any quotient less than I 
becomes 0. In (C) the problem of saturation is illustrated in that storage of the Х4, У1 
pair causes errors in the recall of Y3 given X3. See text for further explanation. (From 
McNaughton 1989.) 
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In figure 15.19B there are 3 sets of X inputs and three sets of У inputs. 
If the XI vector is multiplied by the YI vector, the X2 vector by the Y2 
vector, and so forth, in an identical fashion to that discussed above, the 
matrix shown in figure 15.19B is obtained (note that the maximum value 
of each of the matrix elements is 1). This matrix now has "stored" infor-
mation about each of the input vectors Y. For example, if X3 is multiplied 
by the matrix and the columns are summed as before, an output vector 
of 322332 is obtained. Dividing this vector by the sum of the elements in 
X3 gives 100110, which is the same as УЗ (note that each element of the 
output vector can be either 1 or 0 and a quotient less than 1 is set equal 
to 0). Similarly, multiplying the matrix by X2 and dividing the output 
vector by the sum of X2 yields У2, and multiplying the matrix by XI and 
dividing the output vector by the sum of XI yields У1. Again, we were 
able to recall each of the У input vectors by multiplying the correlation 
matrix by the corresponding X input vector. 

We can also illustrate the idea of saturation by adding another set of 
inputs X4 and У4. Multiplying these inputs together alters the matrix 
in such a way that errors are now introduced. This is illustrated in fig-
ure 15.19C. Multiplying the matrix by one of the X input vectors, as we 
did before, will lead to an output vector that is slightly different from 
the corresponding У vector. The matrix has thus exceeded its maximum 
storage capability. 

15.5.2 Neurophysiological implementation of the correlation matrix 

The correlation matrix obviously has some interesting features. It is also 
easy to imagine how the input vectors could be groups of axons and the 
matrix itself a set of postsynaptic neurons. If the group of axons repre-
senting the У vector strongly excites the postsynaptic neurons such that 
when а У axon is active it will always fire the neuron, then a simple Heb-
bian learning rule is implemented whereby the synaptic "weight" of an X 
input onto any neuron will be changed from 0 to 1 (i.e., it will now fire 
that particular neuron) if and only if the X axon is active along with the 
corresponding У axon. Extending the analogy, the Y axons would repre-
sent the UCS and the X axons the CS in a classical conditioning paradigm. 
This is illustrated in figure 15.20. 

Recall that one of the key features of the correlation matrix is the di-
vision or normalization of the output vector. This can be plausibly im-
plemented in a simple neural-like circuit by adding inhibition. Inhibitory 
interneurons generally are excited by large numbers of inputs and project 
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Figure 15.20 Neurophysiological implementation of a correlation matrix. In (A), a hcl-
eroassociative network is depicted in which the X vectors are represented by weak syn-
aptic inputs and the Y vectors by strong synaptic inputs ("detonator synapses") to an 
array of 6 neurons. The Y synapses fire the neuron when they are active, while the Л' 
synapses are strengthened when they are active in conjunction with an active Y synapse. 
A strengthened X synapse will then fire the neuron the next time it is active and recall the 
corresponding Y in the same way as in the correlation matrix illustrated in figure 15.19. 
The division function of the correlation matrix is implemented by inhibitory interneurons 
that receive feedforward connections and inhibit each of the neurons by an amount that 
is dependent on the total activity in the input fibers. In (B) and (C) two different imple 
mentations of an autoassociative network are illustrated. In an autoassociative network 
there are only X input patterns, which get stored via the interspersed strong synapses (H) 
or through feedback synapses (C). Once stored, the patterns can be recalled even if some 
elements of the input pattern are missing. This is called pattern completion (see text for 
further explanation). (From McNaughton 1989.) 

diffusely to large populations of target neurons. If we assume that an in-
hibitory interneuron receives excitation from each of the X inputs and 
inhibits each of the postsynaptic output neurons, then the division or 
normalization function can be readily realized. The inhibitory neuron 
will thus provide information to each postsynaptic neuron that is depen 
dent on the total number of active inputs (i.e., the sum of the X inputs). 
This simple neural network, which functions as the correlation matrix 
discussed in the previous section, is called a heteroassociative network. 

An important feature of this network is something called pattern com-
pletion. If, after this network has been "conditioning" with pairs of inputs, 
an X input vector is presented that only partially represents one of the 
original X vectors, an output vector will be obtained that completely rep 
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Figure 15.21 Pattern completion by an autoassociative network. In (a) the two faces 
used for training the network are illustrated. In (b) the two patterns used to elicit an 
output are illustrated. The outputs are shown in (c) and (d) after different numbers of 
patterns were stored by the network. Recall in (d) is poorer because of saturation. (From 
Kohonen 1978.) 
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resents the appropriate Y vector. In other words, the matrix was able to 
"recall" the entire pattern of Y inputs even though it was given only partial 
information. This feature of the network is illustrated in figure 15.21. 

The features of the heteroassociative network can also be demonstrated 
with only one set of inputs if the outputs from the neurons are allowed to 
feed back onto themselves in a reentrant or recurrent excitatory circuit. 
This is also illustrated in figure 15.20. In this case the network forms a 
kind of reverberatory loop in which the feedback fibers carry information 
about the inputs back onto the same set of neurons. This is called an 
autoassociative network and is important theoretically because it does 
not require any additional inputs other that those that are to be stored by 
the circuit. 

In figures 15.22 and 15.23 the hippocampus is illustrated in simplified 
anatomical detail as well as in a kind of neural network arrangement. The 
dentate and CA1 regions bear remarkable similarity to the heteroassocia-
tive network, whereas the CA3 region, with its extensive recurrent col-
laterals, incorporates features of the autoassociative network. Whether 
the hippocampus functions in this way, or even whether the associative 
networks can perform in the ways illustrated above if implemented with 
more realistic neurons and synapses, remains to be determined. Never-
theless, the discussion of this model is a useful exercise for appreciating 
how theoretical principles of general network function can help stimulate 
neurophysiological thinking at the cellular level. 

Figure 15.22 Schematic diagram of a cross section of the hippocampus. The dentate 
and CA1 areas appear to approximate heteroassociative networks. Because of the re 
current excitation among CA3 neurons, CA3 has been compared to an autoassociative 
network. Note the inhibitory interneurons depicted in dentate and CA1 making diver 
gent connetions with the principal neurons. Similar inhibitory interneurons, which are 
activated by both feedforward and feedback connections, also exist in CA3. (From Rolls 
1989a.) 
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Figure 15.23 Memory circuits in the hippocampus. The anatomical arrangement of 
neurons and synaptic connections illustrated for a slice of the hippocampus in figure 15.22 
is redrawn. NE, 5-HT, and ACh are potential memory modulators. An inhibitory neuron 
that could function as a divisor or for normalizing inputs is depicted only for the dentate. 
Similar inhibitory interneurons, however, exist in both CAl and CA3 regions. 

15.6 Summary of important concepts 

1. Effects of dendritic spines on synaptic signals. 
2. EPSP vs. E-S potentiation. 
3. Heterosynaptic vs. homosynaptic. 
4. Cooperatively vs. associativity. 
5. Hebb rule for learning. 
6. NMDA-receptor-dependent and NMDA-receptor-independent LTP. 
7. LTD. 
8. Habituation, sensitization, and classical conditioning. 
9. Memory storage by a correlation matrix. 

15.7 Homework problems 

1. Your colleague recently demonstrated that during LTP of a gluta-
matergic synapse (the Schaffer collaterals in the hippocampus) there 
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was an increase in the non-NMDA component of the synaptic re-
sponse while the NMDA mediated component of the response was 
unchanged. The assumption was that the NMDA and non-NMDA re-
ceptors are adjacent to each other on the spine head (as shown in 
the figure below) and that the only explanation for the results is that 
the number of activated non-NMDA receptors must increase during 
LTP. (If the number of both types of receptors increased, then there 
would be an increase in both components of the response.) The ex-
planation for LTP, then, is that there is an increase in Gs for the 
non-NMDA response with no change in Gs for the NMDA response. 
Show that there may be an alternative explanation for these results 
and that a change in spine neck resistance could differentially en-
hance two separate components of a synaptic input to the same 
spine head (i.e., non-NMDA and NMDA components). Assume that 
Gs for the non-NMDA component is 10 x 10"9 S, Gs for the NMDA 
component is 1 x 10"9 S, Es for both components is 0 mV, the spine 
neck resistance is 100 x 106 Q before LTP and 50 x 106 Q during 
LTP, all synaptic conductance changes are steady-state, and you can 
voltage clamp to the resting potential (-70 mV) the dendritic shaft 
at the base of the spine. 

(a) Calculate the non-NMDA synaptic current that reaches the den-
dritic shaft before and during LTP. 

(b) Calculate the NMDA synaptic current that reaches the dendritic-
shaft before and during LTP. 

(c) Explain why this alternative mechanism may or may not accoun t 
for your colleague's results. 

2. You wish to study an excitatory synapse for which no previous in-
formation is available. You are able to record intracellularly from 
the soma of the postsynaptic cell, stimulate action potentials in the 
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presynaptic nerve, and freely vary the composition of the extracel-
lular medium. In your answers to the following questions, be very 
specific in describing your experiments, and generate hypothetical 
results where necessary. 

(a) Test for the chemical vs. electrical nature of the synapse. Your 
results should be consistent with a chemical mode for trans-
mission. 

(b) Test the hypothesis that neurotransmitter quanta are released 
independently of each other. 

(c) Test the hypothesis that evoked release follows a Poisson pro-
cess. Determine the appropriate parameters for the Poisson 
equation. 

(d) Calculate from a series of 100 trials the expected number of 
single quantal releases, and compare this value to your experi-
mental data. 

(e) Test for the relative permeability of the postsynaptic channels 
to Na+, K+, Mg2+, Cs+, and Tris+. All these ions are partially 
permeable. 

(f) Test for the degree of nonisopotentiality of the synapse from 
the recording site. 

(g) Measure the peak conductance and kinetic properties of the 
synaptic response. 

3. LTP is normally measured as an increase in an EPSP following brief, 
high-frequency stimulation. An observation of a sustained increase 
in intracellular Ca2+ levels following application of excitatory amino 
acids has been made, and this observation suggests that a long-term 
change in voltage-gated Ca2+ channels can occur. The investigators 
proposed a hypothesis that LTP might be expressed through a long-
lasting change in postsynaptic voltage-gated Ca2+ conductances. If 
voltage-gated Ca2+ currents make a substantial contribution to EPSP 
amplitude, increased Ca2+ channel activity after tetanus might me-
diate the expression of LTP. 
To test the hypothesis that a change in Ca2+ channel activity is 
solely responsible for the expression of LTP, you use the technique 
of whole-cell patch clamping in thick hippocampal slices to mea-
sure both EPSPs under current clamp and EPSCs under voltage clamp 
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from CA3 ceils. You stimulate afferent fibers that ychi believe syn-
apse electrotonically close to the soma for voltage clamping. In a 
typical cell, you measure a control EPSP amplitude of 10 mV, and 
after tetanus the EPSP amplitude is 20 mV. Under voltage clamp and 
before tetanus, you measure an excitatory synaptic conductance of 
10 nS with a reversal potential of 0 mV. 

(a) Assuming the above hypothesis is correct (i.e., that a change 
in Ca2+ channel activity is solely responsible for expression of 
LTP), will EPSCs measured under voltage clamp be potentiated 
as were the EPSPs following tetanus? 

(b) Draw the I-V curve of EPSCs at various potentials (e.g., - 90 to 
+20 mV) before and after tetanus. 
You further test this hypothesis by making cell-attached patch-
clamp recordings of single Ca2+ channels in С A3 neurons be-
fore and after a tetanic stimulation that produces LTP of EPSPs. 
You are able to measure ensemble averages of single Ca2+ cur-
rents activated by voltage steps from a holding potential of 
-80 mV. Results of one experiment are shown in the follow-
ing table. 

Command Unitary Current Peak Ensemble Current 
Potential (pA) (pA) 

(mV) Control Tetanus Control Tetanus 
-60 -1.5 -1.6 — -0.1 
-50 — — -0.04 -0.2 
-40 -1.2 -1.1 -0.12 -0.39 
-30 — — -0.39 -0.75 
-20 -0.9 -0.88 -0.75 -0.93 
-10 — — -0.93 -0.88 

0 -0.7 -0.72 -0.9 -0.72 
10 — — -0.7 -0.55 
20 — — -0.5 -0.35 
30 — — -0.25 -0.15 

(c) What is the conductance of this calcium channel? 
(d) Draw the activation curves for this channel, before and after 

tetanus. Assume a reversal potential of +40 mV and that the 
calcium current can be approximated by Ica = dcaiVm - Eca)• 
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(e) Is the effect of tetanus on the characteristics of this channel 
consistent with the LTP hypothesis? 

(f) Under current clamp, at what holding potentials would LTP not 
be observable? 

4. The following correlation matrix has stored 3 pairs of X, У inputs. 
What У vector would be obtained by presenting the given X vector? 

Y 

1 0 0 1 0 1 1 
0 1 0 0 0 1 
1 1 1 1 1 1 
0 1 0 1 0 1 
1 1 1 1 1 1 
0 1 0 1 1 0 
X 

5. What types of LTP are being illustrated in A and В of the figure below? 
Explain your answer. 

pEPSP pEPSP 



А Basic Electricity and Electrical 
Circuits 

A.1 Introduction 

As do most fields of science, neurophysiology involves the art of measur-
ing things. The things that neurophysiologists typically want to measure 
are electrical signals such as action potentials and synaptic potentials, 
or the membrane currents responsible for these potentials. Under ideal 
circumstances, the physical act of measuring a neurophysiological event 
would have no effect on the electrical signal of interest. Unfortunately, 
this is seldom the case in neurophysiology. One of the purposes of this 
appendix is to provide the theoretical and practical framework with which 
to determine how intrusive the measurement one wants to make really is. 
Also, this section should provide some understanding of electrical circuits 
for those readers who have a poor background in this area. An intuitive 
grasp of concepts of electricity and electrical circuits is helpful for un-
derstanding some of the basic theory in cellular neurophysiology. This 
appendix should also serve as a useful reference. The reader, however, is 
encouraged to review the more thorough treatments of the subject mate-
rial in the references listed for this appendix. 

The goal of this appendix is twofold. The first goal is to provide the 
reader with enough basic understanding to evaluate some of the method-
ology and techniques associated with neurophysiology. The second goal 
is to help the reader become facile at analyzing the electrical circuit mod-
els that are used throughout this book. The appendix is divided into four 
main parts. After the introduction, various terms that are frequently used 
with measuring systems are listed and defined. The third section defines 
the most useful terms, concepts, and laws for dealing with electricity and 

^ electrical circuits. The final section describes some of the basic circuits 
used for neurophysiological recordings. 
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A.2 Definitions related to measuring systems 

Measurement The assignment of numerals to objects or events according 
to rules.1 

Instruments All devices whose primary task is measurement or that em-
ploy a measurement component to carry out a task. 

Variables Manifest themselves as forms of energy (e.g., voltage, amper-
age, temperature). 

Properties Characteristics of things that manipulate energy (e.g., resis-
tance, capacitance, thermal capacity). 

Value Is used when relating magnitude to true zero. 
Amplitude Is used when relating magnitude to the average value. The 

average value is also called the DC, mean, or baseline value. It is 
often assumed to be, or set equal to, zero. 

Peak value Greatest positive or negative deviation from zero. Maximum 
value is used for positive peak value; minimum value for negative 
peak value. These same two points when measured from the av-
erage value are called the positive and negative peak amplitudes, 
respectively, and the measure between the two is the peak-to-peak 
amplitude. (Note: A distinction is rarely made anymore between 
value and amplitude, and the two are usually used interchangably. 
A good example of an instance where the distinction should be made 
is when one measures the membrane potental before and during an 
action potential (see figure A.1). The peak value of membrane po-
tential during the action potential might be +30 mV while its peak 
amplitude might be +100 mV, assuming a resting potential, or aver-
age value, of -70 mV.) 

Average amplitude The average deviation (without respect to sign) from 
the average value. It is calculated by averaging the absolute magni-
tude of the signal during the entire period of observation, or 

Vavg = J fQ W(t)\dt. 

xBy convention, capital letters are usually used to represent constant parameters (e.g., 
an equilibrium potential such as En a) and peak values (e.g., G5); small letters are used to 
represent parameters that are functions of other parameters (e.g., a sodium conductance 
that is a function of time and voltage such as дыа)- For simplicity, however, voltage will 
always be represented by V. Other exceptions to this rule are discussed in chapters 3 and 
4. 
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+30 mV 

peak value 

OmV 

peak amplitude 

- 7 0 mV 1 

Figure A. 1 Action potential measurements illustrating the difference between value and 
amplitude (see text for further explanation). 

As an example, for a sine wave, 

= 0 . 6 3 7 Vpeak-

Root mean square (RMS) amplitude A value found by taking the square 
root of the average of the squares of the deviation from the average 
value over the chosen time interval (refer to figure A.2), or 

RMS amplitude is also the effective value used in power calculations. 
The RMS amplitude of a waveform will produce the same heating in 
a resistor as an identical DC current (or voltage), or 

Pavg = f f o P(t)dt 
Power = i2R or V2/R, so 

Vavg = £ ff Vpeak (s in (Vt)d(Vt 

2Vr 
тт 

VRMS = 

p - I f 7 V2(t)dt ravg — j Jo r 
= Veff

2/R 
Veff = VRMS = ^f So V2(t)dt. 

The average power is proportional to the average of the square of 
the current (or voltage) over a given interval. The current (or voltage) 
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RMS 
amplitude 

<V 

max 
value - | f-

average 
amplitude 

min 
value 

Figure A.2 Diagram of different types of electrical measurements (see text for further 
explanation). (Adapted from lectures by J. W. Moore.) 

equivalent is the square root of the average of the squared ampli-
tude. 
For a sine wave, 

Accuracy The degree to which a measurement indicates the true magni-
tude of a measurable quantity. 

Precision The resolution and reproducibility of a measurement; implies 
nothing about accuracy. A measurement can be precise without be-
ing accurate. The reverse, however, is usually not true. Accuracy 
generally implies precision. Ideally one would want a measuring de-
vice to be accurate and precise. Unfortunately, most measuring de-
vices in neurophysiology are precise without being accurate. For ex-
ample, a recording amplifier may make extremely precise measures 
of the membrane potential but be consistently in error by many mV 
due to an unknown junction potential at the ground electrode, a 
poorly adjusted capacitance neutralization circuit, or a poorly ad-
justed DC offset. 

Linearity Refers to the constancy by which a measuring system treats all 
inputs with respect to their magnitudes (refer to figure A.3). Ideally 
one wants the output of a measuring device to be equal to some 
constant times its input (output = К x input). 

VRMS = ( — f Vpeak2(sintt)t)2dO)t 7Г Jo 
_ Vpeak 

" V2 
= 0 . 7 0 7 Vpeak-
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H v n a m i r saturation 

output 

j 
input 

Figure A.3 Linearity of measuring systems. The amplitude of the output measure (for 
example, current, voltage, or power) as a function of the input amplitude. 

Dynamic range The range of input signals between saturation of output 
and the minimum acceptable signal level. The latter is usually de-
termined by noise (refer to figure A.3). Dynamic range is often a 
function of the gain of the system (among other things). One wants 
to make sure that a measurement is made within an adequate dy-
namic range of the measuring device. The concept of dynamic range 
is easily explained by using the familiar example of the speakers 
attached to your stereo. With a relatively high setting on your vol-
ume control (the "gain" of the system), the speakers will not repro-
duce sounds very well that are of low amplitude, and you will often 

. hear hiss or noise mixed in with your music. In contrast, extremely 
high-amplitude sounds can reach saturation of the response of your 
speakers and produce garbled noises and poor reproduction of the 
recorded music. For optimal performance you set the gain or vol-
ume control to a middle range that is adequate for most soft sounds 
while being below saturation for the loudest parts of the input sig-
nal. Such a setting will utilize the maximum dynamic range of your 
system. 

Fidelity The degree to which the ratio of output to input (the "gain") is 
constant for all frequencies of input. Frequency response is a mea-
sure of the fidelity of an instrument or system (refer to figure A.4). 
For example, suppose the fidelity or frequency response of an FM 
tape recorder used for recording intracellular signals is in the range 
of 5 kHz. This means that the tape recorder will reproduce accu-
rately the resting potential and synaptic potentials but will likely at-
tenuate particularly fast action potentials that have frequency com-
ponents greater than 5 kHz. 
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frequency 

Figure A.4 Frequency response of measuring systems. The gain (output/input) is plot-
ted as a function of frequency. 

A.3 Definitions and units for electrical circuits 

Much of what is in this section is presented in far greater detail in most 
introductory physics texts. One particularly good source (Halliday and 
Resnick) is listed in the references for this appendix. 

A.3.1 Electromotive force (EMF, unit = volt) 

One volt (V) is the potential difference between two points that requires 
the expenditure of 1 joule of work to move one coulomb of charge between 
the two points. We will use the symbol E for EMF sources. 

A.3.2 Coulomb 

A coulomb (C) is the quantity of charge (q) that repels an identical charge, 
1 meter away, with a force of 9 x 109 newtons (nt); or is the charge experi-
encing a force of 1 nt in an electric field of 1 V/m. The elementary charge 
i±e) is 

e = 1.602 x 10"19 C. 

From Coulomb's law, 

F L _ 
' 47Г60 Г 2 ' 

where = 9 x 109 nt-m2/C2 and во = the permittivity constant (8.8.1 
x 10"12 F/m). 
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A.3.3 Faraday 

Faraday's constant is the magnitude of charge on one mole of electrons, 
or 

F = NAe, 

where NA = Avogadro's number (6.023 x 1023 molecules/mol). Therefore, 
F = 96,495 C. 

A.3.4 Current 

Current is defined as the rate of flow of electrical charges, or 

. _ dq 
l~ dt ' 
One ampere (A) is the flow of one C/sec. Positive current is defined as 
current flowing in the direction outward from the positive pole of a battery 
toward the negative pole (even though electrons are flowing in the opposite 
direction). 

A.3.5 Ohm's law 

Ohm's law states that the ratio of voltage to current is a constant: 

R = V/i, (A.3.1) 

where 1 ohm = l f i = l Also, 

G = i/V, (A.3.2) 

where 1 mho or 1 siemen (S) = 1 y. (Note: Resistance is usually defined 
as the product of the resistivity of a conductor times its length divided 
by the cross-sectional area, or R = Ril/A, where Ri is given in Q-cm (see 
also chapter 4). Ohm's law is one of the more important concepts in 
electrophysiology. Any conductor that has a linear current-voltage (I-V) 
curve is said to be ohmic. Not all conductors have linear I-V curves. Most 
neurons, for example, have nonlinear or nonohmic I-V relations. 

In describing the resistance (or Ohm's law) properties of neurons, one 
either injects current and measures the resulting change in voltage (a cur-
rent clamp) or changes the voltage to different values and measures the 
current necessary to hold (or clamp) the voltage to these values (a volt-
age clamp). With a current clamp, voltage is the dependent variable and 
current is the independent variable, V = / ( / ) ; with a voltage clamp the 
current is the dependent variable and voltage is the independent variable 
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current clamp 

Ice 
Steady-state V-I plot 

voltage clamp 

Steady-state I-V plot 

'ohmic 

Vc 

Nonohmic I-V plot 

Figure A.5 Schematized steady-state V-I and I-V curves for a typical neuron (see text 
for further explanation). 

or I = f(V). The resulting V-I or I-V curves should be plotted accord-
ingly, and examples are given in figure A.5. Only a narrow region of the 
V-I or I-V curves of a neuron can usually be considered ohmic. 

A.3.6 Capacitance 

Capacitance refers to the ability to store charge, or 

С = q/V, (A.3.3) 

where 1 Farad (F) = 1 y. Some important equations for the relationships 
among capacitance, charge, current, and voltage are 

a 

i 

i 

V 

so 

= С • V, and 
_ dq 

dt' 
ndV , - C - , a n d 

= IJidt. 

(A. 3.4) 

(A.3.5) 

(A.3.6) 

(A.3.7) 

Capacitance is also defined as the quantity of charge required to create 
a given potential difference between two conductors (or parallel plates), 
or 

С = €о(Ка • a/d), (A.3.8) 

where €o is the permittivity constant, Ka is the dielectric constant, a is 
the surface area of parallel plates, and d is the distance between plates. 

For a neuron, the lipid membrane acts as an insulator between two 
conductors—the intra- and extracellular solutions. From equation A.3.8 
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we can see that as the surface area of the parallel conductors (plates) 
increases, the capacitance increases. For a neuron, this means that as 
the surface area of the membrane increases so will the surface area of 
the conductors, and, therefore, larger neurons have larger capacitances. 
Also, from equation A.3.8 we can see that the capacitance decreases as the 
distance between the conductors (plates) increases. The lipid membrane 
has a fairly uniform thickness so this is unlikely to vary much in differ-
ent parts of a neuron or among neurons. The myelin wrapping around 
an axon, however, will greatly increase the distance between conductors 
and thus decrease the capacitance. The insulation between the nodes of 
Ranvier in myelinated axons will therefore not only increase the effective 
transmembrane resistance in the internodal region but also decrease the 
capacitance. A decrease in the myelin sheath, such as occurs in demyeli-
nating diseases, results in an increase in capacitance. This can lead to 
a further reduction in the conduction of an action potential from node 
to node (refer to chapter 7 for a description of saltatory conduction in 
myelinated nerves). 

Another concept that is sometimes difficult to grasp is that there is 
never any actual movement of charges directly across the insulator be-
tween the two plates of a capacitor. For this reason there is no current 
flow across a capacitor for an applied DC voltage even though a sepa-
ration of charge is induced by the voltage (q = CV). When the voltage 
changes with time, however, charge increases and decreases (positive on 
one side and then the other) with time on each side of the conductor as if 
current were actually flowing across the capacitor (i = C-dV/dt). There is, 
however, no actual loss of charge across the capacitor—the charge merely 
shifts from one side to the other by way of the rest of the circuit. 

A.3.7 Kirchhoff s laws 

An understanding of Kirchhoff s laws will be useful in analyzing circuit 
models for neurons as well as for understanding the circuits used for 
measuring electrophysiological signals. 

1. Current law: The algebraic sum of all current flowing toward a junc-
tion is zero (i.e., charge can neither be created nor destroyed). By 
convention, positive current flows into a node or intersection and 
negative current flows away from a node (see figure A. 7). 

2. Voltage law: The algebraic sum of all potential sources and voltage 
drops across passive elements around a closed conducting path or 
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CT Ci+C2 

j L . J_ 
c r " Ci + c2 
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== C2 

Capacitors in Series Capacitors in Parallel 

Figure A.6 Adding capacitors in series and in parallel. (The black dots are frequently 
used to represent points of connection to other circuits.) 

Ri 
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R3 

h + /2 + /3 - /4 = 0 E-IRi- IR2 -IR3 = 0 
Figure A.7 Kirchhoff s current and voltage laws (see text for further explanation). 

"loop" is zero (conservation of electrical energy, refer to figures A.7 
A.9). This is just another form of the first law of thermodynamic: 
By convention, positive current produces a voltage drop across 
resistor with polarity (+ to - ) in the direction of current flow (se 
figure A.7). The relevant equations for figure A.8 are 

£I - J IKI - ( J I+J2)K 3 = 0, 

E2 - / 2 t f 2 - t f i + /2)Дз = 0, 

and 

V 3 = ( / i + / 2 ) * 3 . 
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f i t f f2 

Figure A.8 Kirchhoff s laws in a multi-loop circuit. 

Ri 

RT = Ri + R2 

R2 

RT = № 

Resistances in Series Resistances in Parallel 

Figure A.9 Adding resistors in series and in parallel. 

A.3.8 Voltage source 

An ideal voltage (potential) source is one that will maintain an absolutely 
unchanging value despite any value of load resistance across its output 
terminals (i.e., one that has zero internal or source resistance; refer to fig-
ure A. 11). A battery is the simplest example of a voltage source. Another 
(not so simple) example is a voltage clamp. 

Ri 

Vm 

R z > Vout = V i n ( I ^ _ ) 

Figure A.10 Voltage divider circuit. 
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Voltage Source Current Source 

Figure A.11 Current and voltage sources. For a voltage source, Rin 0. For a current 
source, RM « oo. ET is the total (internal) EMF of the voltage source while IT is the total 
(internal) current of the current source. The intersecting circles on the right are often 
used to represent a current source. 

A.3.9 Current source 

An ideal current source is one that maintains an absolutely unchanging 
value of current despite changes in the load resistance across its output 
terminals (i.e., it has an infinite internal or source resistance, refer to fig-
ure A.ll). When one injects current into a neuron, one wants the current 
to be constant regardless of the input resistance (or changes in input re-
sistance) of the neuron. This is achieved via a circuit that acts as a current 
source. A current clamp is simply a current source at which one can vary 
the amplitude of the injected current. 

Other potentially useful theories of electrical circuits include Thevenin's 
theorem and the superposition principle. Thevenin's theorem simply states 
that any circuit of linear elements (e.g., resistors, capacitors, voltage and 
current sources) can be replaced by a series combination of an ideal volt-
age source and a linear impedance. One practical application of Thevenin's 
theorem in neurophysiology is in the use of an input resistance to reprc 
sent a neuron. No matter how complex the neuron, we can let it (at least 
the linear portion) be represented by a single resistor (RN) in series with 
the resting potential (£r). 

The superposition principle states that in any circuit of linear elements 
with more than one source of voltage or current, the current in any branch 
of the circuit is simply the linear sum of the currents due to each of the 
sources being treated individually. The superposition principle also has 
many practial applications in neurophysiology, including the summation 
of synaptic potentials, the analysis of field potentials (chapter 14), and 
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the "two-port" network analysis of dendrites (chapters 4 and 13). The 
reader is referred to the bibliography for additional information about 
these theorems. 

A.3.10 Voltage and current measurement 

An ideal voltmeter is one with an infinite internal resistance. The mea-
surement is made in parallel with the circuit, and the voltmeter will ideally 
draw zero current from the circuit. The measurement of voltage should 
therefore not alter the voltage or current flow in the circuit. 

An ideal ammeter is one with zero internal resistance. The measure-
ment of current is made in series with the circuit, and the ammeter will 
ideally add zero potential difference to the circuit (refer to figure A. 12). 
Again, the measurement of current should not alter the voltage or current 
flow in the circuit. 

Figure A. 12 Current and voltage measurement. Ideally, the current through the volt-
meter on the right will be ^ 0 while the voltage across the ammeter on the left will also be 
» 0. (A circle with an arrow inside is frequently used to represent a meter or measuring 
device.) 

A.3.11 Impedance 

Impedance is the ratio of forcing quantity to resulting moving quantity. 
For electricity, 

Z = E/if 

where E and i can be functions of time or frequency and Z is the impedance. 
This is the more general form of Ohm's law where E and i can be any 
waveform that can be represented by exponentials. (Note: A detailed dis-
cussion of impedance and AC circuits is beyond the scope of this book, 
and the reader should consult the references given for this appendix for 
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I 
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Figure A.13 Measurement of input impedance. A sinusoidal voltage source (the circle 
with the ~ inside) is applied to a circuit and the input current is measured. The input 
impedance is the ratio E/i (see text). 

further reading.) In AC circuits Z will have real and imaginary compo-
nents, but Z = R if the forcing function (E) is not a function of time or 
frequency (i.e., DC). Also, 

1/Z = Y = Admittance. 

A.3.12 Input impedance and input resistance 

The terms input impedance and input resistance refer to the ratio of the 
input forcing function to the resulting flow of energy through the system 
(refer to figure A.13). 

ZN = E/i. 

The concept of input impedance and input resistance follows directly 
from Thevenin's theorem. Assume that the box in figure A.13 represents 
a neuron. No matter how complicated the neuron, a single parameter 
(input impedance) can be measured by applying a voltage and measuring 
the resulting current or by injecting a current and measuring the resulting 
voltage. Note that the input impedance of a neuron is not equal to its 
input resistance. Input resistance is the steady-state measure of input 
impedance. The input impedance is a function of the frequency of the 
applied current or voltage. For example, the input impedance of a neuron 
for a 1 kHz sine wave of injected current will be much less than for a 1 Hz 
sine wave. The input impedance measured after the voltage has reached 
a steady state following a step change in injected current is defined as the 
input resistance. 

A.3.13 Source impedance 

The source impedance of a device is also called the output impedance. The 
value of the source or output impedance is important when connecting 
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one device to another for the purpose of making a measurement. Typ-
ically, the source or output impedance should be much lower than the 
input impedance of the measuring device (see section A.3.16). 

A.3.14 Filters 

Electrical filters are frequently used in neurophysiology to remove un-
wanted high-frequency noise. When computers are used to digitize elec-
trical signals one must ensure that the signal is filtered at 1/2 (or less) 
of the maximum rate of digitization to minimize aliasing noise (Nyquist 
frequency). These would be applications of low-pass filters. In measure-
ments of extracellular electrical signals, it is also sometimes useful to 
filter out low-frequency changes in potential. This would be an example 
of a high-pass filter. Filters that pass low frequencies, high frequencies, 
and a band (or specific range) of frequencies can be made from simple RC 
circuits (see figure A. 14). The nerve membrane acts as a low-pass filter, 
because it behaves as a parallel resistor and capacitor (figure A.15). 

l 

v 

High Pass 

Figure A.14 Circuit for high-pass filtering. 

logf 

\ Л Л Л 1 -

£ 0 v 

Low Pass 

Figure A.15 Circuit for low-pass filtering. 

logf 

A plot of gain (output/input) of a system vs. log(frequency) is called 
a Bode plot (see figure A. 16). It is a common way of representing the 
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frequency response of a system. The gain in a Bode plot is usually given 
in decibels (db), where gain in db = 20 log( Vout / Vm). Using the gain at zero 
frequency (DC) as the reference or 0 db point, the gain of the system will 
decrease at higher frequencies for a low-pass response. The steepness 
of the falloff in gain with higher frequencies is often given in "poles" so 
that an 8-pole filter has a steeper slope than a 4-pole filter and is thus a 
better filter. The frequency response of a system is usually given as the 
frequency at which the gain has declined by 3 db or by 1 / л/2. This is also 
sometimes called the corner frequency. 

A high-pass filter in series with a low-pass filter yields a band-pass filter 
(shaded area in figure A.16). A notch filter passes all frequencies except 
for a very narrow range (often near 60 Hz). 

Figure A.16 Bode plot for low, high, and band pass filters. 

A.3-15 Response of resistors and capacitors to different forcing func-
tions 

The relevant equations are 

V = IRt 
1= V/R, 
i = CdV/dt, 

and 
V = £ J idt. 

With the above equations one can derive the response of resistors (R) and 
capacitors (C) to different forcing functions. For example, what is the re-
sponse of a capacitor to a step of current, a step of voltage, or a rami) 
of voltage? In figure A. 17 we illustrate the responses of a resistor and 
a capacitor to the forcing functions one is most likely to encounter in 
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neurophysiology. When resistors and capacitors are combined in electri-
cal circuits, the overall circuit response depends on the responses of each 
of the individual elements. 

2 „ H e m e n t R e s p o n s e 
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Figure A.17 Forcing functions and their responses for different circuit elements. 
(Adapted from lecture notes by J. W. Moore.) 
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Figure A. 18 Cell membrane with a voltage or current step input. 
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For example, in the parallel RC circuit of figure A.18, if the forcing 
function is a voltage step (£), then IR = E/R,ic = C d £ / d t , and/д+ic = Un-

The response of a nerve membrane to a voltage step, such as that pro-
duced by a voltage clamp, is relatively simple. The capacitance current 
is ideally an impulse response, and the current flow across the resistor 
mirrors the voltage step. (In reality, of course, the impulse response is 
slowed by the finite frequency responses of the voltage generating and 
current measurement devices as well as the series resistance associated 
with the measurement electrodes (see next section) and ends up being a 
sum of exponentials.) The total current flow is just the sum of the two 
currents (see figure A. 19). 

E -
Vout 

ic 

0 

time 

Figure A. 19 Response of cell to a voltage step. 

If instead the forcing function is a current step (i), then the response is 
a bit more complicated and requires the solution of a simple first-order 
differential equation. This is shown below: 

IR = Vout IR, 

and 

ic = CdVoUx/dt; 

i = lR + ic = Vout/R + CdVout/dt; 

i-R = Vout + RC 
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i-R — Vout — RC 

fVout dVout = Г* dt_. 

Jo i - я - V o u t Jo R C ' 

- [ i n = 
i-R - Vput _ 0-t/RC. 

i-R ~e 

and finally, 

Vout = i-R (l - e~t/RC>). 

Tliis is the so-called first-order response of a nerve membrane to a step 
of current (figure A.20). The voltage response to a step of current is a sin-
gle exponential for isopotential cells and multiexponential for nonisopo-
tential neurons (see chapter 4), and is also sometimes called the charging 
curve. 

Figure A.20 Voltage response of cell to a current step. This is sometimes called a 
charging curve (see text for further explanation). 

A.3.16 Measuring biological signals 

The measurement of the electrical signals from biological tissue involves 
three main stages. The first involves the interface or junction between 
current flow via ions in solution and current flow via electrons in wires. 
This first stage usually involves some type of electrode. The types of 
electrodes are extracellular (glass or metal), intracellular (glass), and patch 
(glass). The second stage of the measurement involves the preamplifier. 
This is a device used to match the source impedance of the electrode to the 
input impedance of the measuring device or amplifier (see section A.4.2.3). 
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Figure A.21 Stages of a measuring system for biological signals. 

capacitance of the cell, respectively. Ejp and RJP are the potentials and resistances of the 
liquid-liquid junction and the liquid-silver wire junction. CP is the pipette capacitance. RS 
is the resistance of the electrode. It is usually called the series resistance (Rs) for patch 
electrodes, and tip resistance (Re) for intracellular electrodes. The amplifier represents 
a patch-clamp amplifier (see section A.4.4). (The inverted triangles at the bottom of the 
circuit elements are frequently used to represent connections to ground.) 

The third stage involves the final amplifier and output device where the 
actual measurement of the signal takes place. 

A great deal has been written about techniques for constructing elec-
trodes used in neurophysiology, and the reader is referred to several ref-
erences given at the end of this appendix. There are several practical con-
siderations, however, that are important to mention here because they are 
relevant to the discussion of circuits that will follow (refer to figure A.22). 
The actual point of junction between the solution and the wire in the cir-
cuit (usually a silver/silver chloride (Ag/AgCl) wire) has resistance to cur-
rent flow and a potential across the interface (liquid-junction potential). A 
well-chlorided silver wire will minimize this resistance and potential bul 
not eliminate them. Some circuitry for neutralizing the junction potential 
(DC offset) will therefore be necessary. 
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Figure A.23 Measuring the membrane potential (Vm) with a low input resistance device. 

Glass microelectrodes also have a resistance and a potential associated 
with their tips, and these are usually much more of a concern than those 
associated with the silver/silver chloride wire. The resistance of a micro-
electrode can be very high. As an example, we can make a rough calcula-
tion of the tip resistance of a microelectrode filled with 3 M KC1, using the 
equation RE = RD/A. Let Ri = 5 Q-cm, I = 0.2 cm (the length of the tip), 
and A = 1 /jm2 (the opening of tip). Putting these numbers into the equa-
tion gives a tip resistance of 100 MQ, a typical value for an intracellular 
microelectrode. This tip resistance is also a nonlinear function of current 
passed through the electrode. The resistance can get very large depend-
ing on the amplitude and polarity of the current being passed through the 
electrode. The tip potential can also vary considerably with time or with 
the amount of current passed. The electrode tip in solution also has a ca-
pacitance resulting from the two solutions (conductors) on either side of 
the glass wall. These electrical characteristics of microelectrodes necessi-
tate the use of special circuitry. The need for a preamplifier is explained 
in the following, and a brief description of bridge balance and negative 
capacitance circuitry is given. 

Figure A.23 illustrates the equivalent circuit associated with measuring 
the membrane potential from a neuron. RM, CM, and ER are the usual 
membrane parameters described first in chapter 3. RE is the electrode 
resistance, and RNOSC and VOSC are the input resistance and meter associ-
ated with a voltage measurement device. Let's assume that this voltage 
measurement is being done by an oscilloscope. Some typical values for 
RE a n d RNosc a r e RE = Ю 8 Q a n d RNOSC = 10 6 Q. 

Using these values, Vqsc can be written in terms of the circuit parame-
ters: 



502 Appendix A. Basic Electricity and Electrical Circuits 

It can be seen then that the measured membrane potential will be only 
l/100th of the actual value because of the relatively large source resis-
tance of the microelectrode compared to the input resistance of the os-
cilloscope. The optimal situation for this type of measurement is for the 
source or output resistance to be very low and the input resistance to 
be very high. This can be achieved with a preamplifier as shown in fig-
ure A.24. Here the preamplifier is actually a follower or buffer amplifier, 
which will be described in more detail in the next section. The pream-
plifier (at least the first stage) has a high input resistance, low output 
resistance, and usually a gain of 1. Higher gain is achieved by adding 
additional amplifier stages in series with the first stage. 

With an input resistance of 1012 Q and an output resistance (R0ut) of 
100 Q, for the preamplifier and with it placed between the electrode and 
the oscilloscope, the equation for the measurement of membrane poten-
tial can now be rewritten as 

V0 = 
1 RNVm = 

R e + RN 1 .0001 
Vm, and Vosc = RN0sc Vm 

Rout + RNq, 
Vn 

With the high input resistance of the preamplifier or headstage, the mea-
sured Vw will now be very close to the actual Vm across the cell membrane. 

Vm Г 
Re 

W \ A -

=t=c„ 

d > V0^Vm_ 

RN « 101 2ft ~ Q) 

Figure A.24 Measuring Vm with high-impedance buffer amplifier. 

The other problems with microelectrodes mentioned above, namely the 
tip resistance and tip capacitance, can be addressed with special circuitry, 
as illustrated in figure A.25. When current is passed through a microelec-
trode, a large potential develops across the electrode tip. This potential 
is in series with the membrane potential so that the measured potential 
is the sum of the membrane potential Vm and the electrode potential Ve. 
With an electrode of 50 MQ and a current of 1 nA, Ve will be 50 mV, which 
would obviously be significant when measuring a membrane potential on 
the order of 50-100 mV. The voltage drop across the electrode can be 
subtracted from the total signal using a so-called bridge circuit as shown 
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in figure A.25. This circuit merely subtracts a signal proportional to the 
applied current from the total output voltage of the preamplifier. The 
adjustment is made manually and is possible because the time constant 
of the microelectrode is usually much smaller than that of the cell. 

The capacitance of the electrode is in parallel with the electrode resis-
tance and causes the membrane potential to be low-pass filtered by the 
electrode. This can cause significant loss of fidelity of the measurement, 
especially if one is measuring fast changes in membrane potential such 
as during the action potential. One way to compensate for this electrode 
capacitance is to feed back into the input a signal that represents the 
loss associated with the electrode capacitance. This is done by taking the 
output of the preamplifier and feeding it through a capacitor and adding 
it back to the input. This is called negative capacitance or capacitance 
compensation and is also illustrated in figure A.25. 

A.4 Amplifiers and voltage-clamp circuits 

A.4.1 Ideal amplifier 

The intent of this section is not to describe in detail the design and use 
of operational amplifiers, but to provide some minimal level of analysis 
and understanding of several very common circuits in neurophysiology: 
a) the inverter, b) the noninverter, and c) the follower. With a knowledge 
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of these simple amplifier circuits, the means by which voltage and patch 
clamping are achieved can more readily be appreciated. 

A schematic diagram of an ideal amplifier is shown in figure A.26. The 
amplifier has two inputs and an output that is equal to the gain (A) times 
the difference between the two inputs. 

Figure A.26 Ideal amplifier. 

A is called the open loop gain of the amplifier. It is very large and is 
independent of frequency over a given range. The input impedance of 
the amplifier is considered infinite, and the output impedance zero, for 
most applications. If indeed these ideal characteristics are met by such an 
amplifier, then it can be used for a number of extremely useful circuits. 

A.4.2 Practical circuits 

Figure A.27 Inverting amplifier, E is the small "error" voltage between the + and - inputs 
to the amplifier. The high gain of the amplifier makes this very small and negligible for 
most applications. 

A.4.2.1 Inverter The first step for analyzing the circuit shown in fig-
ure A.27 is to write the equations for voltage and current at the input and 
output terminals using Ohm's and Kirchhoff s laws. 

At the input terminal 

a is usually very small so that the negative input to the amplifier is at 
essentially the same potential as the positive input. This configuration 
is thus sometimes called a virtual ground. If, as stated above, the input 
impedance of the amplifier is very large (i.e., RN = «>), then 

Vi-IiRin = e. (A.4.9) 

(A.4.10) 
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At the output terminal, 

V0-I0Rf = s, (A.4.11) 

and 

V0 = -AS. (A.4.12) 

These equations can then be combined to solve for the output (V0) in terms 
of the input signal (Vi). First, we will combine equations A.4.9, A.4.10, and 
A.4.11, and then rearrange to obtain 

Then we will eliminate £ by using equation A.4.12: 

Vo ~ (-VolA) VJ - {-VQ!A) 
Rf Rin 

What follows is just a step-by-step rearrangement of the above equa-
tions. 
(VQ + VQ/A) _ (Vj + Vo/A) 

Rf Rin 

AVp + V0 = _ / AVj + V0 \ 
AR/ V ARin )' 

AVp | V0 _ AVj V0 

Rf Rf Rin Rin' 

AVp I Vo [ Vo _ -AVj 
Rf Rf R^ Rin ' 

. . (l+A 1 \ A 

Vo Г (1 + A)Rjn + Rf~\ = zA 
Vi L RfRin J Rin 

Vo Г(1+А)Ят + Я/1 
^ L ARf J " ' 
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and 

Vo Г(1+А)Л 
Vi L ARf [ 

As mentioned above, we will assume that the internal gain (A) of this 
ideal amplifier is very large. We can therefore consider the above equation 
in the limit as A - oo, or 
as A - oo 

This is an extremely important result. It says that the output of this 
amplifier configuration is just the negative of the input times the ratio 
of the feedback resistor to the input resistor. This proves to be a very 
useful and easily implemented circuit, although for best results the gain 
is usually limited to the range of 1 < gain < 50. 

Figure A.28 Noninverting amplifier. 

A.4.2.2 Noninverter The noninverting amplifier (shown in figure A.28) 
is also a useful circuit. The noninverting amplifier, however, is often more 
difficult to build and design than the inverter for reasons that are beyond 
the scope of this book. (To achieve a noninverting amplifier it is often 
easier to use two inverters in series.) The overall gain for the noninvert-
ing amplifier (equation A.4.14) is given below; its derivation is left as a 
homework exercise. 

and the overall gain of this inverter is 

(A.4.13) 

V/ 

(A.4.14) 
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A.4.2.3 Follower The follower amplifier is one of the most useful and 
versatile circuits one will encounter, second only perhaps to the inverter 
(figure A.29). It is also by far the easiest to implement. The equations for 
the follower can be derived as follows: 

V0=A(Vi-V0), 

V0=AVi-AV0, 

V0(l+A)=AVu 

and 

As before, we can consider the above equation in the limit, or as A — oo, 

V0 = Vi. (A.4.15) 

Figure A.29 Follower amplifier. 

The above result appears trivial and raises the question of the purpose 
of this circuit. The main purpose of this configuration is as an impedance 
buffer (it is thus also called a buffer amplifier). Because of its high input 
impedance and low output impedance, the follower can be inserted into 
a circuit without drawing any current. Its main use is to buffer (or match) 
high-impedance sources (microelectrodes) with low-impedance measur-
ing devices or recorders (see figure A.24). 

A.4.3 Voltage-clamp circuit 

In figure A.30 a simplified circuit diagram of a two-electrode voltage clamp 
is illustrated using the ideal amplifiers described in the previous sections. 
The equivalent circuit of the cell is given with two electrodes attached. 
One electrode (Re) is connected directly to a follower (the preamp), which 
in turn is connected to the negative input of the ideal amplifier. The out-
put of this amplifier is connected to the cell through the second electrode, 
which is represented by Ra, and is called the access resistance to the cell. 
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Figure A.30 Simplified two-electrode voltage-clamp circuit. The arrows attached to Ra 
and Re represent electrodes in the cell. The resistance of the Ra electrode is often called 
an access resistance (see text for further explanation). 

At the positive input, we apply the potential we want to "clamp" the cell 
to, or the clamp potential, Vc. The circuit equations can be written for 
this voltage clamp in a similar manner as in the previous sections: 

=A(VC-Vm), 

Vm = Vo- IclRa, 

Vm=A(Vc-Vm)-IclRa, 

Vm = AVC - AVm ~ IclRa, 

Vm + AVm = AVC - IclRa, 

and 

As before, we consider this equation in the limit as A gets very large, thai 
is, if A is large, 

This is a very important result. It says that if A is large compared to 
IdRa, then the membrane potential will be clamped at whatever potential 
(Vc) is applied to the positive input of the clamp amplifier. There arc 
many practical considerations in the design of a voltage clamp having to 

(A.4.1 (>) 
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do with frequency response, or with how fast the membrane potential 
will be clamped to the applied potential, that are beyond the scope of this 
book. The basic theory of the voltage clamp, however, is quite simple 
given a little knowledge of the basic building blocks of amplifier circuits. 

One practical consideration worth mentioning is something called se-
ries resistance. In the case of the two-electrode voltage clamp shown in 
figure A.30, series resistance would represent the resistance of the ex-
tracellular fluid between the membrane and the ground wire in the bath. 
This would be added to figure A.30 by putting a resistor (Rs) between the 
ground triangle and the membrane. The clamp current Ici flows across 
the membrane and then across this resistor so that the error in Vm caused 
by this series resistance is dependent on the product of Rs •hi. Equa-
tion A.4.16 now becomes 

Rs is said to be "outside the feedback loop" and thus the error term is not 
affected by the gain of the voltage clamp. 

Note that the circuit in figure A.30 requires two electrodes. A modi-
fication of the basic voltage clamp that requires only a single electrode 
is called a switched or discontinuous voltage clamp. This type of voltage 
clamp uses a single electrode for both current passing and voltage record-
ing, but switches or time shares the electrode between these two modes 
(Smith et al. 1985). Another method for doing voltage clamping with a 
single electrode is described in the next section. 

A-4.4 Patch-clamp circuit (current-to-voltage converter) 

(A.4.17) 

or, in the limit as A gets very large, 

Vm = Vc ~ IclRs- (A.4.18) 

Щ лЛЛЛ 

Figure A.31 Patch clamp circuit (see text). 

The concept behind the patch-clamp amplifier is actually derived from a 
very early circuit used in voltage-clamp systems, called the virtual ground 
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circuit. This circuit converted the total current flow to ground into a volt-
age signal that could be measured and was thus called a current-to-voltage 
converter. The basic principle of such a circuit (but with the ground con-
nection replaced with Vc) is illustrated in figure A.31 and can be derived 
as follows: 

V0-Vc = -ipRf, (A.4.19) 

and 

Vp = Vc, (A.4.20) 

where Vv is the pipette potential (again, assuming that A is large). 
The output voltage of the amplifier is simply the product of the current 

through the patch (or whole cell) and the value of the feedback resistor. 
It is obviously important to choose the proper size of feedback resistor 
depending on the amplitude of the current one wishes to measure. For 
example, single-channel currents of a few pA would require a feedback 
resistor of at least 10 Gfi to produce measurable signals in the tens of 
mV range. On the other hand, whole-cell currents of around 0.1 nA would 
require a feedback resistor of about 100 MQ. 

From the characteristics of the ideal amplifier described in the previous 
sections, the potential at the electrode, or the patch (Vv), will be approxi-
mately equal to the potential applied to the positive input of the amplifier 
(Vc). Changing the membrane potential across the patch or across the 
whole cell is therefore simply a matter of changing the potential applied 
to the amplifier. The polarity of the potential applied to the electrode, 
however, will depend on the configuration of the membrane under the 
electrode. For example, in the whole-cell mode one would obviously ap-
ply -70 mV to the patch electrode to clamp the cell to near the resting 
potential. On the other hand, one would apply 0 mV to the patch electrode 
to clamp the membrane to near rest if one were recording in the so-called 
cell-attached patch configuration (refer to chapter 8). 

Furthermore, in the cell-attached patch mode one must consider that 
the resting potential of the cell is in series with the patch potential. Ex-
cising the patch from the cell or using high K+ in the bath to zero the 
membrane potential is usually necessary to control the patch potential 
accurately in such cases. Different configurations of the patch clamp 
(cell-attached, excised-patch, inside-out, outside-out, whole-cell, and per-
forated-patch) are illustrated in chapter 8, and the reader is referred to 
Sakmann and Neher (1983) for further technical details of patch clamping. 
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Figure A.32 Circuit diagram for a patch-clamp electrode in the whole-cell mode. 

There are a number of sources of error in patch clamping (especially in 
the whole-cell mode) that should be mentioned. Some of these can be best 
explained by referring to figures A.22 and A.32. The pipette resistance (Rs 
in figure A.22) is a series resistance that is "outside the feedback loop." As 
such, it will produce an error in the membrane potential in a similar way 
to that described above for series resistance of the extracellular space. In 
other words, the actual potential across the membrane will differ from 
the clamp potential Vc by a factor IciRs- For example, if Rs = 20 MQ and 
Id = 1 nA, the error will be 20 mV. Obviously, one cannot clamp very 
well using a patch clamp when large currents are involved. There are two 
additional sources of error, however, associated with the presence of this 
series resistance. 

1. When a step change in potential is applied to Vc, the potential across 
the membrane will be low-pass filtered by the Rs and C^. For exam-
ple, if Rs is as above and См is 100 pF, then the time constant of this 
filter will be 2 msec. To reach a steady-state membrane potential 
after a step command to Vc would require at least 10 msec (5 times 
the time constant). 

2. The effect of Rs and См is also to filter membrane signals. All mem-
brane signals, such as synaptic currents, will be low-pass filtered by 
Rs and CM (also by Cv and Cm). The corner frequency or -3db point 
of this filter will be equal to 

= 80 Hz. 

This would represent a significant amount of filtering for many fast 
synaptic signals. 
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A.5 Summary of important concepts 

1. Ohm's law. 
2. Definitions for and understanding of capacitance. 
3. Kirchhoffs laws. 
4. Voltage-divider circuit. 
5. Input impedance (and resistance). 
6. Measurement of membrane potential with high-impedance electrode. 
7. Analysis of simple two-electrode voltage-clamp circuit. 
8. Analysis of simple patch-clamp circuit. 

A.6 Homework problems 

1. Using Kirchhoffs laws and the relations V = £ fidt and i = C^r, 
show that parallel capacitors sum and series capacitors sum as re-
ciprocals. 

2. Using figure A.8 and Kirchhoffs laws, derive V3 in terms of £1, Ej, 
R\, R2, and R3. 

3. Using Kirchhoffs laws, derive the equation for a voltage divider in 
figure A. 10. 

4. Derive the equation for the gain of the following circuit (i.e., V2/V1) 
in terms of R\, i?2, Яз, Я4. 

+ v2 

5. Derive the gain equation (V0/Vi) for the noninverting amplifier in 
figure A.28. 
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6. For the voltage-clamp circuit 

Vm Rm 
? — У Л Л Л 

Rf 
v W — 

Vc 

Re 
лЛЛЛ 

(a) Derive the equation for Vm as a fvmction of Vc. (Hint. You can 
assume that the overall gain of the upper differential amplifier 

(b) If you want Vm to equal 50 mV, determine what Vc must be with 
the following values: R{n = 103 Q, Д/ = 105 Q, Ra = Ю7 Q, 
Re = Ю7 Q, Rm = 107 Q, and Cm = Ю"9 F. 

7. For the circuit below, the applied signal is a sawtooth voltage and 
A is. a current measuring device. If the sawtooth voltage goes from 
0-10 mV in 100 msec, what is the waveform of the measured current 
(both amplitude and time course for 2 full cycles)? Let С = 10"6 F 
and remember that i = CdV/dt and V = 1/C J idt. 

8. For the patch-clamp circuit below, what potential must be given as Vc 
to clamp the membrane (across CW) in the steady state to -10 mV? 
Assume that Ei (resting potential) = 0 mV, Rs (series resistance) = 
30 MQ, Rf (feedback resistor) = 1 GQ, and RN = 100 MQ. At steady 
state, what will V0 be? 

i s 
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(a) Derive an equation for Vm (the actual transmembrane potential) 
in terms of Vc, A, Ra, Rs, and Ici. Assume that the output of 
amplifier A is just A times the difference between its inputs and 
that Ri = R2 = R3 = Д4. 

(b) If Vc = 100 mV, A = 100, Rs = 1 Mf}, Ra =100 MQ, and 
Id =1 nA, what is Vm in mV? What if Rs is 20 MCI? 



в Optical Methods in Cellular 
Neurophysiology 

B.l Introduction 

The purpose of this appendix is to present the basic concepts underlying 
some of the optical methods commonly used in cellular neurophysiology. 
This appendix is not intended to substitute for a physics course in optics 
or for a more in-depth study of microscopy that may eventually be under-
taken by the serious student. The authors thought it would be useful for 
the student to have access to a beginning reference source for some of 
the optical methods he or she is likely to encounter in neurophysiology. 

B.2 Definitions 

B.2.1 Optics 

Light Visible light composes a small part of the electromagnetic spectrum 
(figure B.l). All electromagnetic waves in a vacuum travel at the same 
velocity (c = 2.998 x 108 m/sec) and differ only in their wavelength 
(Л) and frequency (/), that is, 

с = Л • / . 

The velocity of light in a material substance depends on the wave-
length of the light and the nature of the material. Visible light is 
typically considered in the range of 400-700 nm (figure B.l). Light 
is characterized by its wavelength, amplitude, phase, and plane of 
polarization. 

Polarization Light is a transverse electromagnetic wave. (A transverse 
wave is one in which the displacement of the medium by the wave 
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Figure B.l The electromagnetic spectrum with the visible region expanded. 

is perpendicular to the direction of propagation. Only transverse 
waves can be polarized.) There are three perpendicular vectors that 
describe light: the electrical and magnetic vectors, E and B, and the 
Poynting vector, S. S is in the direction of propagation while E and 
В oscillate at right angles to S (and to each other). Light is said to be 
polarized if E oscillates in certain ways and is linearly polarized if E 
oscillates in a single plane. Typically, a source such as a lamp will 
emit light at all angles of polarization from 0° to 180°. Polarized 
filters will pass light predominantly at a particular angle of polar-
ization. 

Phase If one views light as a sine wave, then it also has a certain phase 
associated with it. For example, two sine waves that are 180° out 
of phase will cancel each other. Similarly, two light rays that are in 
phase will sum. Light normally contains waves of all phase relation-
ships. When light from one source is split and then recombined, 
interference may result such that local maxima and minima occur in 
the combined light. 

Reflection Light will reflect from a surface at the same angle as the inci-
dent light. 

Refraction The bending of light when traveling from one medium into an-
other (e.g., from air into water). The light bends because the velocity 
of light differs in the two media. The relationship between the angle 
(all angles are measured from a line perpendicular to the surface) of 
incident light in the first medium (/) and the angle of refracted light 
in the second medium (R) is given by SneU's law (figure B.2): 
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sin I _ пг 
sinR ~ n\ 

where пг is the refractive index of medium 2 and rt\ is the refractive 
index of medium 1. The refractive index of one medium with respect 
to another varies with wavelength. 

reflected or refracted beams. 

Snell's law is thus derived from the definition of n or 

v i = П2 
V 2 П Г 

and 

с с til = — and П2 = —, 
Vi V2 

where v\ and are the velocities of light in the two media. 
The refractive index for some common media are as follows: 

Medium Refractive index, n 
"air LOO 

glass 1.52 
water 1.33 
immersion oil 1.51 

In general, materials show different refractive indexes at different 
orientations and hence are "nonisotropic." Also, the refractive index 
of materials is wavelength dependent. 
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Refraction of light at spherical surfaces (thin lens) Parallel light inci-
dent to a lens will refract at both surfaces, forming a focal point 
(figure B.3). The focal length (/) of a lens in air is 

-j = ( n - l ) ( - - - ) , (B.2.1) 
/ Vn r2J 

where n is the refractive index of the lens and r\ and r2 are the 
radii of the two surfaces of the lens. The focal length of a lens is 
also defined by the distance of the object from the lens (о) and the 
distance of the image from the lens (i) by 

1 1 1 
т = - + / О I 

focal point of lens 

magnification 

Figure B.3 Focal point of a lens, chromatic and spherical aberrations, and magnification. 

Chromatic aberration Because the refractive index of a material varies 
with wavelength, the focal point of a lens will be different for differ-
ent wavelengths (see equation B.2.1). This will cause image distor-
tion when light of more than one wavelength is used to Ouminate 
an object (see figure B.3). 

Spherical aberration Light rays at the periphery of the lens will be re-
fracted more than rays in the center (i.e., the amount of refraction 
depends on the angle of the incident light). This will prevent the fo-
cal point from being sharp and will produce distortion of an image 
(see figure B.3). 

chromatic 
aberration 

spherical 
aberration 
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Resolution The least distance between two points that can be distin-
guished. A common definition for resolution is from Sir George Airy 
and states that two point light sources are just resolved when the 
bright center of the diffraction pattern of one source just touches 
the first dark ring of the diffraction pattern of the other. 

Magnification The ratio of the image size (I) to the object size (O). This 
is also equal to the ratio of the distance of the image from the lens 
(i) to the distance of the object from the lens (о) or the ratio of the 
distance of the image from the focal point (i - f ) to the focal length 
(/) of the lens, or (see figure B.3) 

M = н = ~ = l-T-- ( B - 2 - 2 ) O o f 

B.2.2 Microscopy 

Stereo microscope A microscope with two separate image-forming paths, 
one for each eye. The stereo microscope is characterized by a long 
working distance, good depth perception, no lateral inversion of the 
image, and (usually) low magnification. 

Compound microscope The compound microscope uses two lenses for 
image forming. The first lens (objective) forms an intermediate im-
age of the object that is then enlarged further by the second lens 
(eyepiece) to form a virtual image for observation (see figure B.4). 
The optical tube length of a compound microscope is the distance of 
the primary image formed by the objective to the focal point of the 
objective (i - f in figure B.3 and equation B.2.2). The primary image 
is arranged so that it occurs at the focal point of the eyepiece. The 
final image has the same orientation as the primary image (inverted 
from the object) and is enlarged. The position of the final image can 
be considered at infinity so that it can be viewed at any position. The 
total magnification of the microscope (final image size/object size) 
is therefore simply the product of the magnification of the objective 
and the magnification of the eyepiece, or 

final image size 
MT = — . 

object size 
_ primary image size final image size 

object size primary image size = MobjXMeyep. 

(B.2.3) 

(B.2.4) 



520 Appendix В. Optical Methods in Cellular Neurophysiology 

•RETINA 

Figure B.4 Diagram of compound microscope. (From Delly 1980.) 

• Upright compound microscope An ordinary compound micro 
scope in which the objectives and eyepieces are above the speci-
men and the light source is below the specimen (see figure B.4). 
For focusing, either the microscope stage (i.e., the specimen) 
moves up and down or the objectives and eyepieces move up 
and down. These are called stage-focusing and fixed-stage mi 
croscopes, respectively. 

• Inverted compound microscope A compound microscope in 
which the light source is above the specimen and the objectives 
are below the specimen. These are usually fixed-stage micro-
scopes with movable objectives. 
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Objectives These are the most important parts of a compound micro-
scope. They are differentiated on the basis of 

• Magnification (See equation B.2.2.) 
• Numerical aperture (NA) The numerical aperture is one of the 

most important characteristics of an objective lens. It deter-
mines the maximal resolution of the microscope. The NA of 
an objective is also a measure of the light-gathering ability of 
the lens. It is defined by the angular aperture (the angle of the 
cone of light coming into the objective) and the refractive index 
of the medium in which the lens operates (e.g., air, water, or 
immersion oil), that is, 

where n is the refractive index and a is the angular aperture (see 
figure B.5). The maximum possible angular aperture would be 
180°, so the maximum possible NA would be 1 in air, 1.33 in 
water, and 1.51 in oil. One cannot achieve these values in prac-
tice, but they illustrate the importance of the working medium 
for obtaining high NAs. The highest NAs are normally achieved 
with oil immersion objectives. 

Figure B.5 Numerical aperture of an objective lens in air (left) or in oil (right). The cover 
slip is glass. (Adapted from Bradbury 1989 by permission of Oxford University Press, 
copyright © 1991 Oxford University Press.) 

• Working distance The distance from the focal plane in the spec-
imen to the surface of the objective for immersion objectives 
with no coverslip. Otherwise, the working distance depends 
on the refractive index of the coverslip and the immersion and 
mounting media. 

NA = n sin a/2, (B.2.5) 

NA= n sin(a/2) NA= n sin(<x/2) 
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• Degree of optical correction Most objectives are corrected to 
some degree for chromatic and spherical aberrations. Objec-
tives are usually classified by the number of wavelengths for 
which the corrections have been made. There are achromat 
objectives, which have chromatic corrections at 2 wavelengths 
and spherical corrections at 1 wavelength; semiapochromatic or 
fluorite objectives, which have chromatic and spherical correc-
tions at 2 wavelengths; and apochromat objectives, which have 
chromatic corrections at 3 wavelengths and spherical correc-
tions at 2 wavelengths. 

• Spectral filtering properties Specify which wavelengths are 
passed through the lens. 

Resolution The resolving power of a microscope in the x,y dimensions 
(i.e., within the plane of focus) is diffraction limited (see previous 
discussion of resolution) and is determined by the NA of the objec-
tive and the wavelength of light, or 

R(x,y) = 1 . 2 2 ^ , (B.2.6) 

where R is the distance between two just resolvable points in the 
specimen. The above equation assumes that the numerical aperture 
of the light condenser matches that of the objective. Otherwise the 
equation for resolving power is 

R(x,y) = 1.22 
NAobj + NAcond 

Illumination methods One of the more important and least understood 
aspects of microscopy is specimen illumination. Improper illumi-
nation will result in a reduction in resolution, poor image quality 
due to scattered light, and poor color reproduction. The essential 
components of a typical light source (see figure B.6) are the lamp, a 
field diaphragm, an aperture diaphragm, and one or two lenses for 
focusing the light. The goal is to provide a cone of light that fills the 
aperture of the objective. A cone of light larger than the aperture 
of the objective results in excessive scattered light, whereas a cone 
smaller than the aperture of the objective reduces the resolution of 
the microscope. The two most common methods of illumination are 
source focus and Kohler. 
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KOHLER 

Figure B.6 Kohler illumination for a compound microscope. (From Bradbury 1989 by 
permission of Oxford University Press, copyright © 1991 Oxford University Press.) 
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In source focus illumination, one lens (substage condenser) is used to 
focus the light source directly on the specimen. The lamp itself must 
have a uniform surface so that the specimen is properly illuminated. 
In Kohler illumination the lamp is at the focal plane of the lamp 
condenser, which then projects a uniform beam of parallel light. 
The iris or field diaphragm, placed on the other side of the lamp 
condenser from the lamp, is uniformly illuminated and becomes a 
virtual light source. The aperture diaphragm is at the focal plane of 
the substage condenser so that an image of the lamp is at the plane of 
the aperture diaphragm and at the back focal plane of the objective. 
The specimen, however, is uniformly illuminated because the virtual 
light source of the field diaphragm is focused on the specimen by the 
substage condenser. Details of how to adjust for Kohler illumination 
should be obtained from the particular microscope manufacturer. 

Depth of field The distance from the nearest to the farthest focal planes 
considered in focus. It can also be considered the resolution of the 
microscope in the z or depth dimension and is given by 

R(z) oc * NA2' 

Depth of focus Depth of focus refers to the distance around the image 
on a film plane that is considered in focus. Depth of focus (dfocus) is 
related to depth of field (dfieid) by 

dfocus = MT
2 • Afield 

Brightness Brightness is dependent on the magnification and NA by 

NA2 
brightness ос (B.2.7) 

Mobj 

Empty magnification From equation B.2.6, the maximum resolution of 
a microscope is dependent on the NA of the objective and not on 
the total magnification. Magnification beyond a certain value (ap-
proximately 1000 x NAobj) increases the size of the image but adds 
nothing to the resolution. One simply gets a larger, fuzzier image. 
This is called empty magnification. 

Contrast enhancement techniques In addition to having adequate res 
olution, there must also be sufficient contrast of a specimen for 
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proper viewing. A number of techniques are commonly in use for 
enhancing the contrast of specimens viewed through a compound 
microscope. These are briefly described below. 

• Dark field The central portion of the light beam is blacked out 
so that only light scattered by the specimen enters the aper-
ture of the objective. The specimen appears as a bright object 
against a dark background. A modification of this method in 
which different colors are substituted for the dark and light 
fields is called Rheinberg differential color illumination. 

• Phase contrast The principle behind phase contrast enhance-
ment is that the incident light beam is split into two (deviated 
and primary) beams with the deviated beam passing through a 
transparent medium to change its phase relationship with the 
primary beam. The two beams then pass through the specimen 
and recombine to produce an image. The specimen itself fur-
ther changes the phase relationships between the two beams 
so that when they are recombined the edges and fine details 
produce interference (local maxima and minima) that enhance 
the contrast of the specimen. 

• Interference contrast (Nomarski) In the interference contrast 
method, there are again two beams of light (object and refer-
ence). The object and reference beams are recombined before 
they reach the eyepiece. The specimen alters the phase of the 
object beam so that when the two beams are recombined inter-
ference occurs, which in turn enhances the contrast of the spec-

1 imen. The Nomarski system merely refers to the method of sep-
arating the two beams. The Nomarski method of interference 
contrast gives an excellent (but artificial) three-dimensional ap-
pearance to the specimen. 

• Modulation contrast (Hoffman) The Hoffman modulation con-
trast system provides similar contrast-enhancing capabilities to 
Nomarski, but is simpler to use and less expensive. The Hoff-
man system also has a longer depth of field and can be used with 
relatively thick specimens as compared to Nomarski. Modifica-
tion to the light condenser and objective are necessary along 
with the use of a polarizing filter. 

Fluorescence microscopy Fluorescence is the ability of some materials 
to emit light of a longer wavelength when excited by light of a shorter 
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wavelength. The wavelength of the emitted light is normally longer 
than that of the exciting light (Stokes law). Fluorescence microscopy 
refers to the use of a compound microscope to excite and visualize 
fluorescent materials. All of the principles of microscopy discussed 
thus far hold for fluorescence microscopy except that there are a 
number of additional components to the fluorescence microscope 
that need to be considered. 
The principal parts of a fluorescence microscope are the light source, 
which supplies sufficient light at the proper wavelength, the excita-
tion or primary filter, which transmits light at only the wavelengths 
needed to excite the fluorescent material, and the barrier or sec-
ondary filter, which transmits light at the emitting wavelengths of 
the fluorescent material. The arrangement of these components in 
a transmission fluorescence microscope is illustrated in figure B.7. 
It is usually desirable to have the excitation light incident to the 
specimen and the emitted light reflected from the specimen so that 
the illumination and observation are made from the same side of 
the specimen. This is called epifluorescence and is also illustrated 
in figure B.7. For epifluorescence there is an additional key compo-
nent called the epHllumination mirror, chromatic beamsplitter, or 
dichroic mirror. The dichroic mirror reflects the short-wavelength 
light from the excitation filter and transmits the longer-wavelength 
light to the barrier filter for subsequent observation. The brightness 
of the image for epifluorescence varies with NA4 of the objective 
rather than with NA2 (compare with equation B.2.7). 

Video microscopy The use of a video camera to visualize, record, and an-
alyze images from a light microscope is becoming quite common in 
cellular neurophysiology. Depending on the application, the video 
camera can range from a relatively inexpensive black-and-white cam-
era to a very expensive, cooled, charge-coupled device (CCD) camera. 
The camera is usually mounted on the microscope with a trinocu-
lar head, tetraocular head (upright microscopes), or from the side 
(inverted microscope). In these cases, one can view the specimen 
through the eyepieces or through the camera, depending on the po-
sition of a mirror. The output of the camera can be viewed with a 
standard video monitor or on a computer screen after the video im-
age is converted to digital form. A few of the most common terms as-
sociated with video microscopy are described below (see also Inoue 
1986). 
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Figure В.7 Diagram for measuring simultaneous epifluorescence and transmitted flu-
orescence. (From Rost 1992 by permission of Cambridge University Press, copyright © 
1992 Cambridge University Press.) 

• NTSC The video standard adopted by the National Television 
Systems Committee. The standard is 525 horizontal scan lines 
and 60 fields/sec, with each field consisting of 262.5 lines. A 
frame consists of two interlaced fields. 

• Frame rate A frame consisting of 525 lines (2 fields) will be 
repeated 30 times/second. The maximum time resolution of 
video microscopy is therefore 1/30 sec or 33 msec. There are 
also two other common standards (PAL and SECAM) that use 
625 lines-50 fields/sec. Unfortunately, all are incompatible with 
each other. 

• Frame grabber The hardware used for acquisition and storage 
of a video frame in digital form. This normally consists of 
analog-to-digital (A/D) conversion hardware and digital mem-
ory for storing the data. 
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• Pixels Picture elements in a digitized video frame. During the 
A/D conversion, each horizontal scan line is converted into a 
series of discrete sample values, which are called pixels. The 
number of total pixels in the image determines its spatial reso-
lution. 

• Gray levels The brightness levels of the pixels. If each pixel 
carries 2 bits of brightness information, then there will be 4 
(or 22) gray levels. If there are 8 bits of information for each 
pixel, then there will be 256 (or 28) gray levels, and so forth. 
Similarly for color, if each pixel is 8 bits, then there can be 25(> 
different colors. There is no reason to display more than about 
256 gray levels because normally that is all the human eye can 
distinguish. 

• Contrast (image) enhancement In addition to the various meth-
ods of contrast enhancement for the microscope discussed ear-
lier, there are many methods for enhancing the contrast of a 
video image. These include simple analog methods as well as 
sophisticated digital image enhancing techniques. One of the 
simplest methods for image enhancement is to decrease the 
overall brightness levels in the image. For example, if most of 
the differences in contrast within a specimen occur in a nar-
row range of gray levels, then the rest of the brightness levels 
from the image can be subtracted out so that the entire dynamic 
range of the recording system can be used to explore the rela-
tively narrow range of brightness differences within the image. 

• Nyquist frequency When analog signals are digitized, the rale 
of digitization must be at least twice that of the highest-fre-
quency components in the analog signal. Otherwise, spurious 
noise will appear in the digitized signals. For example, if the 
analog signals are low-pass filtered at 10 kHz, then the A/I) 
sampling rate must be at least 20,000/sec. Also, in digitized 
images the sampling rate (or pixelization) should be 2.3 times 
denser than the resolution of the optics. Otherwise, high spa-
tial frequencies in the original image will appear at lower fre-
quencies in the digitized image. This is called aliasing. It is 
interesting to note that the digitization done by the photore-
ceptors in the eye exactly matches the Nyquist theorem, thai 
is, the density of photoreceptors is 2.3 times larger than the 
resolving power of the lens. 
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• Photodiode A special diode that converts light energy into an 
electrical signal. The output from a photodiode array would 
be equivalent to a digitized video image (although at reduced 
spatial resolution) with each photodiode representing one pixel. 

• Photomultiplier A device that is extremely sensitive to low lev-
els of light. A photomultiplier will generate electrical signals 
for brief flashes of light consisting of only a few photons. 

Confocal microscopy A microscope system in which illuminating light is 
focused through a pinhole and then on the specimen, and the trans-
mitted (or reflected) light from that point in the specimen is focused 
to a point in the detector (see figure B.8). Such a microscope is thus 
"confocal." The confocal microscope can be explained in the follow-
ing way:1 a light source emits light that is parallelized by means of 
a collector lens. A system of two achromatic lenses and a pinhole, 
which is positioned in the focal point of both achromats, form a 
point light source. The second achromat parallelizes the light com-
ing from the point source and this light is directed onto the specimen 
after it has passed a beamsplitter (for reflected light) or a dichroic 
mirror (for fluorescence). Light reflected or emitted (in the case of 
fluorescence) by the specimen passes the beamsplitter or dichroic 
mirror and is detected by a photomultiplier tube after it has been 
imaged via the achromatic lens and a second pinhole. It is important 
that in the objectives both pinholes overlap and are "confocal." This 
ensures that only light from a very small region around the illumi-
nation focal point is detected and all other light is blocked by the 

' pinhole. An image of a specimen is detected pointwise by scanning 
the stage under the objective. The data are stored in a computer 
and afterwards images are reconstructed. The confocal microscope 
has a lateral resolution that is slightly higher than a conventional 
microscope (by a factor of 1.414) while the depth (z) resolution can 
be an order of magnitude higher. Modern confocal microscopes use 
lasers for illumination sources. One reason is that it is easier to 
scan the laser beam than the stage. Also, lasers produce intense 
monochromatic light, which eliminates chromatic aberration. 

Light sources The most common types of light sources are tungsten-
filament lamps, gas-discharge lamps, and lasers. The considerations 
for choosing a light source include intensity, spectral density, and 

description from Johannes Helm 
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detector 

Figure B.8 Diagram of a confocal microscope (see text for description). 

stability. Tungsten-filament lamps are the most common method of 
illumination for most forms of microscopy. Gas-discharge lamps 
and lasers are used for fluorescence microscopy. The two mosl 
common gas-discharge lamps are mercury and xenon arc lamps. 
The mercury arc lamp has much higher emission intensity than the 
xenon arc, but the highest emission is concentrated in a few narrow 
bands of wavelengths. These wavelengths may or may not corre-
spond to the fluorophore (fluorescent molecule or dye) being used. 
The xenon arc lamp has lower intensity but broader band emission 
than the mercury arc lamp. Lasers emit pure monochromatic light, 
which may be ideal for some fluorescence microscopy applications, 
in particular, for confocal microscopy. 
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B.3 Optical probes 

Optical techniques have been used for many years to monitor different 
aspects of neuronal function. They have a number of advantages: They 
are relatively noninvasive, are fast responding, can be "imaged," giving 
information about more than one location and can be used to supple-
ment electrical measurements. As early as 1968 several groups reported 
that when an action potential was generated in a large axon (typically 
squid or crab) there were intrinsic changes in light scattering and bire-
fringence of the axon. Furthermore, when the axon was stained with a 
dye there were extrinsic changes in fluorescence or light absorption as-
sociated with changes in membrane potential.2 The intrinsic light signals 
are often small, whereas the fluorescence and absorbance associated with 
the use of dyes are generally larger and easier to measure. Much effort 
has thus been spent on the design of these dyes, which are also called 
optical or molecular probes. 

In addition to those that measure membrane potential, there are also 
optical probes available that bind to specific ions or molecules and change 
the intensity of their absorption or fluorescence emission as a function 
of the concentration of the particular ion (e.g., Ca2+). Variations in the 
design of some of these molecular probes have also led to so-called caged 
compounds, in which previously bound ions or molecules are released 
from these probes upon illumination of light at particular wavelengths. 

B.3.1 Potential-dependent light signals 

Birefringence refers to the ability of an object to have different values of 
refractive index for polarized light at different planes of polariza-
tion. Birefringence is defined as the difference between the refrac-
tive index with the plane of polarization parallel to the optic axis and 
the refractive index with the plane of polarization at 90° to the optic 
axis. If an axon is placed at an angle of 45° to the plane of polariza-
tion of incident light, there will be light transmitted with a plane of 
polarization at 90° to that of the incident light. The intensity of this 
transmitted light is taken as a measure of the birefringence of the 
preparation, and has been found to decrease transiently during neu-
ral activity. The birefringence signal is usually indicated as a change 

2There are also intrinsic light scattering and reflected signals associated with neural 
activity that can be recorded from the surface of a mammalian brain (see Lieke et al. 1989). 
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in the intensity of this transmitted light during activity divided by 
the resting intensity, or AI/I. The measurement of birefringence is 
most useful for linear structures like axons. For spherical cells the 
birefringent signals at different angles tend to cancel each other. 

Light scattering (also called turbidity) refers to the ability of a neuronal 
preparation to scatter light at different angles from the incident 
light. Depending on the angle of measurement, the intensity of the 
scattered light (AI/I) can either increase or decrease during nerve 
activity. 

Fluorescence refers to the change in fluorescence emission intensity as a 
function of the membrane potential of a dye-stained neuron (usually 
indicated as AF/F). 

Absorbance refers to the change in the absorption of incident light at a 
particular wavelength as a function of the membrane potential of a 
dye-stained neuron (usually indicated as AI/I). 

Thousands of potentiometric dyes have been tested for monitoring neu-
ronal activity via changes in fluorescence or absorbance. The useful dyes 
have been classified into two groups. Those of one group, called permeani 
dyes, cross the membrane as a function of the transmembrane potential; 
those classified as impermeant dyes are bound to the membrane and sense» 
the potential either directly or indirectly (Cohen et al. 1989; Salzberg 1989; 
Tsien 1989). Permeant dyes produce relatively large changes in optical 
signals but are slow to respond (high msec range) while impermeant dyes 
yield smaller signals but respond much faster to changes in membrane 
potential (/jsec range). 

Some of the problems associated with the use of any dyes on live tissue 
are possible pharmacological effects, dye bleaching, and photodynamic 
damage. Photodynamic damage results from the generation of toxic fret» 
radicals when the dye is illuminated in the presence of oxygen. In some 
cases this damage can be quite severe and limit the usefulness of the dye. 

B.3.2 Concentration-sensitive fluorescent probes 

By far the most common use of optical probes in cellular neurophysiology 
is for measuring the concentration of molecules (usually ions) inside neu-
rons. Monitoring changes in ion concentrations can be useful for deter-
mining physiological functions and for providing information about neu-
ral activity. There are fluorescent indicators available for Ca2+, Na+, pi I, 
K+, CI", and Mg2+ as well as more exotic indicators for cAMP and protein 



B.3. Optical probes 533 

50nrfv 

3 ms 

Figure B.9 Absorption change (top) for a dyed axon during action potential (bottom). 
(From Ross et al. 1974 by permission of the Biophysical Society, copyright © 1974 Bio-
physical Society.) 

kinase С (see the chapter by Poenie and Chen in Herman and Lemasters 
1993). 

The use of such indicators involves either injecting a membrane-im-
permeant dye inside the cell or applying a membrane-permeant form of 
the dye (if available) to the outside of the cell. The latter is usually the 
acetoxymethyl (AM) ester form of the dye molecule. This ester form is 
membrane permeant, but the ester gets removed by cytosolic esterases, 
leaving the membrane-impermeant form of the dye "trapped" inside the 
cell. The cell is then illuminated at the appropriate excitation wavelength 
for the particular dye, and the fluorescence emission intensity is measured 
(see fluorescence microcopy described in section B.2.2). 

Although changes in concentrations of ions can be readily monitored 
by this method (i.e., as AF/F), it is difficult to calibrate the magnitude 
of the change unless the dye can be used for ratioing. The ratiometric 
method for measuring ion concentration is best explained by illustrat-
ing the use of ratioing for the dye fura-2. In figure B.10 the fluorescence 
emission intensity for fura-2 as a function of excitation wavelength and 
Ca2+ concentration is illustrated. At 360 nm excitation fura-2 emission 
is insensitive to changes in Ca2+ concentration. At 340 nm excitation, 
however, the emission intensity increases with increasing Ca2+ concen-
tration, and at about 380 nm excitation the emission decreases with Ca2+ 

concentration. 
In principle, it is possible to determine the concentration of Ca2+, in-

dependent of dye concentration, optical pathlength, and instrumentation 
parameters, by determining the ratio (R) of emission intensities at the two 
wavelengths (e.g., 340 and 380 nm) or 
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R = ^340/^380-

This leads to the equation (Grynkiewicz et al. 1985) 

[Ca2+]ln = K d * - R m i n . ^ , (B.3.8) 
Kmax — К ЬЬ2 

where Rmin is the ratio at 0 [Ca2+]m, Rmax is the ratio at saturating concen-
trations of Ca2+, Ka is the dissociation constant for fura-2, and S/2/Sb2 
is the ratio of emission intensities at 380 nm for fura-2 in 0 [Ca2+] to 
fura-2 in saturating [Ca2+]. When fura-2 is used intracellularly, there is 
also a viscosity correction factor that is multiplied by R in equation B.3.8 
because its spectra depend on the presence of ions and proteins in the 
solution. (Ratioing of fura-2 with 360 and 380 nm (or even 390 nm) wave-
lengths is also quite common, because objectives that pass 340 nm are 
usually quite expensive.) 

It is possible to determine the magnitude of changes in [Са2+]щ us-
ing single-wavelength excitation (usually 380 nm) if the initial or resting 
concentration of Ca2+ is known (usually through the use of ratioing as 
just described). The equation for determining [Ca2+]m based on single-
wavelength excitation is given by (Lev-Ram et al. 1992) 

r r a 2 + -, _ [Ca2+]rest + Kd(AF/F/(AF/F)max) 
[Ca ]in" (1 -(AF/F/(AF/F)max)) ' (B'3J) 

where (AF/F)max is determined from the calibration of the microscope 
and imaging setup. 

B.4 Photoactivated "caged" compounds 

In neurophysiology it is often useful to induce a sudden change in the 
concentration of an ion or other biologically important molecule. For ex 
ample, a sudden increase in [Ca2+]in could be useful for studying neuro* 
transmitter release, or a sudden decrease in [Ca2+]m might allow one to 
determine the timing requirements for a rise in [Ca2+ ]in during the induc-
tion phase of LTP. Also, sudden increases in second-messenger molecules 
like cAMP, cGMP, or GTP would permit high time resolution of certain 
chemical processes. "Caged" compounds were developed for just such 
purposes and represent molecules that contain a photosensitive mask 
ing or caged group that inhibits the activity of the biologically relevant 
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Em = 510 nm 
с о 43.5 цМ free Ca2+ 

250 300 350 400 450 
Wavelength (nm) 

Figure B.10 Excitation spectra (emission at 510 nm) for fura-2 in different concentra-
tions of free Ca2+. (From Molecular Probes 1993.) 

molecule. With the photolytic removal of the masking group, the biologi-
cally active molecule becomes released and available for action. 

Caged compounds have been developed for most nucleotides, amino 
acid neurotransmitters, and Ca2+ buffers. In the case of Ca2+ buffers, 
compounds have been developed in which, upon photolysis, Ca2+ can be 
released from the caged buffer molecule or the buffer itself can become 
active, bind Ca2+, and reduce the free Ca2+ concentration. 

1. Snell's law. 
2. Magnification. 
3. Numerical aperture and relationship to resolution. 
4. Fluorescence microscopy. 
5. Pixels. 
6. Gray levels. 
7. Confocal microscopy. 
8. Optical probes. 

B.5 Summary of important concepts 



с Short Answers to Homework 
Problems 

Chapter 2 

2. (a) 10~8 

(b) 3.1 x 1(T5 

(c) 2.02 x 1(T4 

3. (a) The final concentrations (mM) are: 
a b 

R+ 150 
K+ 193 257 
CI" 343 257 

(b) -7.2 mV 
(c) Yes, H2O will flow from b to a. 

4. (a) PK = 5.9 x 10"7 cm/sec. 

PNa = 7.99 x 10"9 cm/sec. 

(b) Vrest = - 8 9 mV. 

(C) If Рк/Рыа - о, Vrest = +64.7 mV. 

If PK/PNU = 1, Vrest = - 4 . 9 6 mV. 

5. (a) PK > Pea-
(b) PK < Pea-
(c) [ Щ i n > [K+]out. 

(d) [Ca2+]m < [Ca2+]out-

6. (с) ^ = 0.03. 
PK 
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7. (a) Outward rectified 
(b) -59.5 mV 

8. (a) The neuron is not at ECE; the principle of space-charge neutral-
ity is obeyed. 

(b) 
inside (mM) outside (mM) 

9. (a) 

K+ 200 100 
Na+ 10 100 
ci- 100 200 
A" 110 0 

EK = - 17.5mV,£Na = 0 ,Ea = -

Inside Outside 
K+ 200 100 
Na+ 10 90 
ci- 100 200 
A- 110 0 
Ca2+ io-4 5 

(b) -3.5 mV 

Chapter 3 

2. (a) In darkness, Vrest = -86 mV. Under constant light, Vrest 

43 mV. 
(b) gCi increases 5.14-fold. AgCi = 0.37 x 10"8 S. 
(c) 2 mV hyperpolarization 

3. (a) At rest, ga = 0.029 S and gh = 0.0077 S. During excitation, 
ga = 0.029 S and gb = 0.4 S. 

(b) Vrest = -42.7 mV. 
(c) Vp = +51.2 mV. 

Chapter 4 

1. (b) RN = 3 x 105 Q. 
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(c) V(oo ,0) = 3 m V . 

V(oo,A) = 1.1 mV. 

V(<x>,10 A) = 0.00014 mV. 

(d) ^ ( - y - . o ) = 2 .04 mV. 

3. (a) GN = 2.56 nS. 
(b) Gi = 1.57 pS. 
(c) Bi = 6 x 10~4 (open circuit). 

5. (a) 225 ft; 450 ft; 591 ft. 
(b) 3.7 mV; 3.7 mV; 6.5 mV. 

6. (a) No 
(b) Yes 
(c) Yes 

7. V0 = +84 mV. 

8. (a) 1.414 
(b) 0.354 
(c) 1.414 
(d) 1 

9. (a) Rpj — 2 x 109 Q. 
(b) CN = 12.6 pF; т = 25 msec. 
(c) i. p = 5.6. 

ii. GN = 3.3 x 10"9 S; = 3 mV. 
(d) RN = 2.6 x 108 ft; P = 2.8. 

10. (a) True 
(b) False 
(c) False 
(d) False 
(e) False 

11. (a) 1 = 2. 
(b) X = L. 
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(C) VL/VO = 0.266. 
( d ) A i o h z = 0 . 2 6 c m . 

12. (a) Li = 0.85. 

I 2 = 0.65. 

(c) GN = 9 x 10~9 S. 
(d) p = 0.8. 
(e) VM = -181 mV with bias current and +41 mV with 2 nA current. 

13. (a) GS = 56.5 x 10"9 S. 
(b) 5 GD = 13.5 x 10~9 S. 
(c) Goo = 1.26 x 10~8 S. 
(d) GN = 82.6 x 10 -9 S. 
(e) VM = 51 mV. 

14. (a) GN = 20 nS. 
(b) Gden = 10 nS; p = 1. 
(c) Л = 0.01 cm. 

r f s 8 x 109 Q/cm. 
rm = 8 x 10s Q-cm. 
RM = 2510 Q-cm2. 
r = 14 jum. 
тт = 2.5 msec. 

(d) V(CO,L) = 3 2 . 4 m V . 

(e) ТГ(°°.Л) = 18.4 mV. 
18. (a) GN = 4.48 x 10"3 S. 

(b) At a, V = 223.4 mV; at b, V = 78.9 mV; at с, V = 78.9 mV; and 
atd, V = 113.1 mV. 

0 .434( t 2 - t i ) 
l o g ( V 2 / V ! ) • 

20. (a) RN(sphere) = 9 mV; RN(inf) = 11.3 mV; RN(semi) = 22.6 mV; 
RN( fin) = 29 mV. 

(b) в = 14 cm/sec; t = 7.5 msec. 
21. (a) True, false, false, true. 
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(b) True, false, true, true. 
22. (a) n̂ew — 6.6 ЦШ. 

(b) L = 0.9. 
(c) 30% 
(d) Greater than 

23. (a) DA = 1.6 x 10-4 cm; LA = 0.7; LB = 3.5. 
(b) n(A) = Ю10 0 ; G N ( A ) = 1.2 x 10"9 S; rt(B) = 2.6 x Ю 1 0 ft; 

GN(B) = 0.96 x 10"9 S; GN = 3.2 x 10"9 S. 
(c) Vrev = +283 mV. 

Chapter 5 

3. (a) Cl-
(b) aA = 0;a c = 0.042;aF = 0.137;я/ = 0.672; andaK = 1. 
(c) Constant field model 

4. (a) A = single energy-barrier model; В = either; С = constant field 
model; D = either; and E = single energy-barrier model. 

(b) 24 
(c) +2 

(d) -34.8 mV 
5. (a) Activated by depolarization 

(b) gy = 571 nS; Ty = 80 msec. 
(c) тM = 1.256 msec; AV = 40 mV. 

vp /со T У°О A 0 
(mV) (mA/cm2) (msec) (unitless) (msec-1) (msec-

-20 0.6 1 1 1 0 
-40 0.3 1.5 0.75 0.5 0.17 
-60 0.1 2 0.5 0.25 0.25 
-80 0 1.8* 0.35* 0.19* 0.37* 

-100 -0.05 1.5 0.25 0.17 0.5 
* Extrapolated values from the graph. 

8. (a) Vrest = - 6 0 mV; V*imulus = +16 mV. 
(b) Vrest = - 6 0 mV; V*timulus = +16 mV; Vs

(
t^ulus = 55.4 mV. 
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Chapter 6 

1. (b) For condition 1, ^e
a

a k = ^ S/cm2. For condition 2, /£e
a
ak = 

-0.55 mA/cm2. For condition 3, /£е
я
ак = -0.25 mA/cm2, and 

for condition 4, /£е
а
ак = +0.39 mA/cm2. 

4. 1.554 mA/cm2 

5. (a) K+ 

(b) ci-
(c) No contribution 
(d) At t = 1 msec, V = - 5 0 mV, gCi = 6.8 nS and gNa = 0. V = 

+ 150 mV, gci = 16.5 nS. 
At t = 7 msec, V = -50 mV, gCi = 0 and = 2.3 nS. V = 
+ 150 mV, ̂ ci = 0 and дпл = 5.6 nS. 

6. (a) Leakage conductance 
9. (a) At rest, x = 12; at threshold, x = 5.5; and at AP peak, x = 0.18. 

(b) Vrest = - 7 7 . 8 m V . 

10. (a) If VP = 100 mV, gK„ = 83.3 mS/cm2. 
If VP = 85 mV, gKoo = 82.4 mS/cm2. 
If VP = 60 mV, gKoo = 71.4 mS/cm2. 
If VP = 25 mV, gK« = 47.6 mS/cm2. 

(b) 
Vp(mV) a„(sec_1) 0w(sec -1) 

100 833 0 
85 714 0 
60 600 25 
25 435 66 

1 1 . (b) [Ca 2 + ] in = 1 . 7 8 Д/М; [ С Г ] Ш = 2 . 0 8 7 m M . 

12. (a) 1.87 x Ю10 channels/cm2 

(b) 1.07 x Ю - 1 1 S/channel 
(c) Activated by hyperpolarization 

13. (a) 1.02 x Ю10 channels/cm2 

(b) lOOpS 
14. (b) 0Na is not ohmic. 
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Chapter 9 

l . 

2. 

0 if x < 2 
F(X) = - U x - 2 ) if 2 ^ x < 6 

. 1 if x > 6 

' 0 if x < 0 
F(X) = - i * 

2 - JFX3 if 0 < x < 3 
. i if x > 3 

(a) 
' 0 if x < 0 Ч о . „ . Fix) = • f * ' 1 - 2 

if 0 < x < 1 
if x > 1 

4. 
5. 

(b) I 
(c) The median is 0.9129; for the upper quartile, Fix) = f ; and for 

the lower quartile, F(x) = The semi-interquartile range is 
0.2621. 

(b) у = 6.25 nS, and N « 42 (channels) 
(a) At V = -100 mV, 0.025%; at V = -50 mV, 0.5%; and at V = 

0 mV, 9.1%. 
(b) 8,000,000 
(c) -7,500 pA, -9.1 x 10s pA, -22.75 nA 
(d) 167 pA, 498 pA, 1017 pA 

Chapter 10 

1. (a) 
-2956 2956 

Q-80 = ' 
0.73 -0.73 
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-243 243 
Q + 2 0 = 

109 -109 

3. 

4. 
6. 

7. 

(b) At V = - 8 0 mV, Щ = -65 pA and т = 0.34 ms. At V = +20 mV, 
Hi = -18.6 nA and т = 2.8 ms. 

(c) т ( -80 mV) = 0.34 msec. т(+20 mV) = 2.8 msec 

( a l Q - f " ' 0 0 d « Q - 0 

(b) Topen = 0.01 sec. 
Tciosed = 0.5 sec. P i (oo ) = 1.96%, and P2(°°) = 98.04%. 

(c) - 2 x Ю"10 A 
(d) 1.4 x Ю -11 A 
(f) 5 ( 0 ) = 3 . 8 4 x 1 0 - 2 1 A 2 • s e c , a n d FC = ^ = 2MO.ODS = 16 HZ 

( a ) Q = ( 0.0736 -0.0736 ) (SCC_1) 

(b) P i (oo ) = 2.6%, andP2(«>) = 97.4%. 
(c) N = 2500. 
(b) 2nd power function of a single exponential. 
(a) Aj = 0, Л2 = -6.63 sec-1, and A3 = -158 sec -1. 
(b) Mean open lifetime = 6.7 msec; mean blocked lifetime = 

200 msec; and mean closed lifetime = 100 msec. 
(c) /с, = 1.06 Hz, and fC2 = 25 Hz. 
(a) 

Q = 

- f e - 3 fe-3 0 0 

fe3 -(кз + к.г) fe-2 0 
0 k2 - ( k 2 + k - i ) fe-i 
0 0 k i - k i 

l — 

8. 

<ь> T i = T 2 = Т з = J ^ f c a n d T 4 = ir-
(a) Ai =0, Л2 = -55 sec-1, and Аз = -445 sec-1. 
(b) fC2 = 8.75 Hz. / c 3 = = 70.9 Hz. 
(a) 0.4 nS 
(b) 20 pA 
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(С) 

10. (a) 

11. (d) 

12. (a) 

a = 0.0044 sec"1; 0 = 0.0029 sec-1; kBXB = 0.022 sec-1; and 
к-в = 0.02 sec-1. 
Macroscopic current: т = Sum of five channels: т = 
+70 : hi = 5.03 nA; +50 : щ = 1.88 nA; 0: щ = -0.25 nA; 
- 5 0 \vi = -0.91 nA, and - 7 0 : jJi = -0.63 nA. 

Q = 

13. (a) 
(b) 

Ai = 0; Аг = -6.5 sec-1; and Аз = -158 sec 
fci = 100 sec-1; k2 = 20 sec -1. 

- l 

Q = 

(c) 

(d) 
14. (a) 

(b) 
(c) 

\ 
6.67 msec 
10 msec 
-24 nA 

150 100 0 0 0 0 50 ) 
10 -45 10 0 0 25 0 
0 20 - 8 0 40 0 20 0 
0 0 30 - 5 0 20 0 0 
0 0 0 40 - 4 0 0 0 
0 50 20 0 0 -120 50 
10 0 0 0 0 50 - 6 0 ) 

Ti = 15.9 msec; тг = 0.8 msec. 
a = 290 sec-1, /3 = 29 sec. 

-290 290 0 \ 
Q = | 29 -1029 100 

0 100 -100 

15. (b) 0.32 msec 
(с) P = 0.04 
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Chapter 11 

2. (a) 3 or 4 failures 
(b) 42 times 

4. (a) Mean amplitude = 1.0 mV. 
(b) Independent 
(c) r = 0.27/sec. 

5. (b) Direct: rrid = 1.21; failures: т/ = 1.27. 
(с) 18 times 

6. (a) 10.6 nS 
(b) 5.8 
(c) 3 

7. (b) Before LTP: 3.33; during LTP: 5.0 
(c) Before: p = 0.0067; after: p = 0.01. 
(d) Poisson: 29 before LTP and 149 during LTP; binomial: 29 before 

LTP and 153 during LTP. Yes. 
9. (a) mean mEPSP = 0.6 mV; a = 0.18. 

(b) mean EPSP = 1.46 mV; a = 0.93. 
(c) vtf = 2.6; rrid = 2.4; m c v = 2 .5 . 

(d) 1 or 2 failures 
10. EPSPEPSpfSP° = Aexp(-t/10) +Pexp(- t /60) . 

Chapter 13 

1. (b) GT = 120 nS; ET = - 5 8 mV; inhibitory. 
2. (a) Tdecay = 17.4 min. 

(b) Gs for control and MTP is 37.5 nS. 
Es for control is -22 mV. 
Es for MTP is +20 mV. 

(c) GK = 18.8 nS, GK/GNU = 1 (control); GK = 8.6 nS, GK/GNa « 0.3 
(during MTP). 
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3. (a) Vrest = - 6 4 . 3 m V . 

(b) i. AIA = -2.3 mA/cm2. 
ii. ДIв = -0.7 mA/cm2. 

iii. AI - -3.0 mA/cm2. 
(c) (i) = +50 mV; (ii) = -100 mV; (iii) does not exist. 

4. (a) Reversal potentials: A = - 5 mV; В = - 4 0 mV; С = - 7 0 mV; and 
D = - 6 0 mV. 

(b) A: conductance increase; B: conductance decrease; C: conduc-
tance decrease; D: conductance increase. 

5. (a) GS = 100 nS; EREV = - 2 0 mV from rest. 
(b) Inhibitory 
(c) RN s 50 MO. 
(d) Tw == 44 msec. 
(e) No. 

6. (a) A: GA = 50 nS; Vrev = 0 mV. B: GB = 75 nS; Vrev = - 6 0 mV. 
(b) A is excitatory, В is inhibitory. 
(c) No 
(d) VREV = - 3 6 mV; Ga+B = 125 nS; excitatory. 
(e) Conductance increase. 
(f) Excitatory. 

7. (a) AGNA; + 5 0 m V . 

(b) EPSP. 
(c) IPSP. 

8. (a) VM = - 3 3 mV; Ict = 2 nA. 
(b) VM = -20mV; Ici = 4 nA. 

9. (a) 
Before During 

GS = 2.5 nS 3.2 nS 
Vrev = 91 mV 76 mV 
RN = 226 Ш 636 MQ 

(d) ES = - 7 0 mV before, +70 mV after. 
12. (b) GSA+B = 30 nS, ESA+B = -67mV; RM = 25 МП. 
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13. (a) Gslope = 2.2 x 10"8 S. 
14. (a) Vden = - 6 6 mV; Vsh = - 4 4 mV. 

(b) Vden = -68.2 mV; Vsh = -51.1 mV. 

Chapter 15 

1. (a) and (b) 
Control: /non-NMDA = -0.35 nA; /NMDA = -0.064 nA. 
LTP: /ПОП-NMDA = -0.47 nA; /NMDA = -0.067 nA. 

4. У = 001011. 

Appendix A 

2 V3= R3(EiR2 + E2RI) 

4. V2/Vi = 

R1R2 +R1R3 +R2R3' 
R3R4 

R4(R 1 + R 3) + R3(R 1 + R 2) + R1R2' 

6 (я) V - Rin - I c l R a b. ( a ) V m -
A + R,„ 1 + Rin 

(b) Vc = 51 mV. 

8. Vc= - 1 3 mV; V0 = -113 mV. 
9. (b) Vm = 98 mV; Vm = 79 mV. 
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Chapter 2 

l . 

RT,_ [C]out 1.98 c a l m o l 4.2 joules [С]оШ 

Т Ы = чГпюГ 96,ООО С cal 2 3 l 0 g l 0 Т с й 

= 5.83 x Ю " 2 ^ l o g l^m = 5 8 ( m V ) log10 

2. Membrane capacitance = С = $ = 1 juF/cm2 = 10 - 6 y ^ f • 
Charge carried by each ion (z = 1) = e = 1.6 x Ю - 1 9 С 
= (96,000 C/mol)/(6.02 x 1023/mol). 

(a) The number of ions needed to charge up 1 cm2 membrane by 
100 mV 

4 X 1 cm2 С • V x 1 cm2 10"6 С 1 л 1 2 ч n = = i
 = 1.6 x 10~19 С = ( Ю Ш ) 

= 10-12 mol. 

г . , ». 10"12 mol Fraction of uncompensated ions = — — — — , , ,—г (0.1 mol/L) x 10"3 L/cm3 

= 10"8. 

(b) Sphere of radius 10 ц т 
Surface area = 4тга2 = 4(3.14) (0.001 cm)2 

= 1.26 x 10_s cm2. 
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4 о 4 Q Total volume = -тга 3 = -(3.14)(0.001 cm)3 

= 4.19 x 10"9 cm3 

Moles of uncompensated ions for the whole spherical surface 
= lO"12 mol/cm2 x 1.26 x 10"5 cm2 = 1.3 x 10"17 mol. 
Total moles of ions in the sphere = 10"4 mol/ cm3 x 4.19 x 
10"9 cm3 = 4.19 x 10"13 mol. 

1 3 x 10"17 

Fraction uncompensated = ————гт = 3.1 x 10"5. 4.19 xlO"1 3 

(c) Cylindrical surface area = 2тта2 + 2тга1 

= 2(3.14)(0.0001 cm)(0.0001 + 0.01) cm = 6.34 x 10"6 cm2. 

Cylindrical volume = тта21 = 3.14 x Ю"10 cm3. 

Moles of uncompensated ions on the cylindrical surface 

= 10"12 mol/cm2 x 6.34 x 10~6 cm2 = 6.34 x 10"18 mol. 

Total moles of ions in the cylinder 

= 10"4 mol/cm3 x 3.14 x Ю"10 cm3 = 3.14 x 10~14 mol 

6 34 x 10"18 
Fraction uncompensated = -1—;—-—гт = 2.02 x 10"4. 3.14 x 10~14 

3. Let X be the concentrations of K+ and СГ moving from b to a. 

(a) ^ 
K^ + X _ Clb - X 150+ X _ 300-X 
Ц - Х ~ Cl~ +X ~ 300-Х ~ 300 + X' 

Solve for X, 45,000 + 450X + X2 = 90,000 - 600X + X2. 

X = 45,000/1,050 = 42.85 43 mM. 

The final concentrations (mM) a b 
R+ 1 5 0 
K+ 193 257 
СГ 343 257 

257 257 
(b) VM = V« - VB = 581og10 = -581og10 Щ = +7.2 mV. 
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(с) Yes, total ions in a = 150 + 193 + 343 = 686, and in b = 257 + 
257 = 514. Thus, H20 will flow from b to a. 

4. Using the constant field model, the unidirectional fluxes and mem-
brane permeabilities are related by the following expressions: 

(a) J e f f l u x = P 1 I ^ L 

l-e-t' 

/influx = • 
1 - e s 

At Vm = "90 mV, T- VmF 
RT _ -3.55 

1 - е - * 1 - ^ f " 1 -e3-5 5 

l - e - 5 

PK = 

PK = 

Ш 

0.105 x e3-55 = 3.65. 

/efflux 8.8 x 10~12 mol/cm2-sec [K+]m x 1.05 140 mMx 1.05 
5.9 x 10"7 cm/sec. 

/influx 5.4 x 10-12 mol/cm2-sec 
[K+ ]out x 3.65 2.5 x 10"6 mol/cm3 x 3.65 

= 5.9 x 10"7 cm/sec. 

So PK obtained from efflux agrees with that obtained from in-
flux. 
p = /influx = 3.5 x 10~12 mol/cm2-sec 

N a ~ [Na+ lout x 3.65 " 120 x 10"6 mol/cm3 x 3.65 
= 7.99 x 10"9 cm/sec. 

(b) If CI- are passively distributed across the membrane, then 
v = RT PK[ K+]out + P^q [Na+]out 

rest F Pjc[K+]i„ + PNa[Na+lin ' 
P^a = 7.99 x 10~9 

PK 5.9 x 10"7 

„ . 2.5 + 0.013x120 
Vres< " 5 8 1 ° g 140+ 0.013x9.2 

= -89 mV. 
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(c) If PK/PNa~0, 
RT. [Na+]out c o l 120 _. _ , , 

= W ] - = 5 8 1 o g 92 = + 6 4 - 7 m V -

If PK/PNU = 1, 

i/ Я Г , - [ K + W + [Na+]оШ n o l „ 2 . 5 + 120 
Vrest = T ^ [K+]in + [Na+]m = 5 8 1 ° g ШТ92 = "4-96 mV-

5. (a) At the resting state, Рк > Pea because RMP depends more on 
[K+]out than on [Ca2+]out. 

(b) During the peak of the AP, PK < Pea because AP overshoot 
depends more on [Ca2+]out than on [K+]out-

(c) [K+]in > [K+]out, because at rest, PK > PCa and Vrest = -30 mV, 
which should be close to Ек, thus 58 log ^ is negative; there-
fore, [K+] in > [K+]out. 

(d) [Ca2+]m < [Ca2+]outi because PK < Pea during AP and AP « 
+20 mV. Thus, 

ECa = 29 log [
гУ 2

27Г i s P° s i t i v e => tCa2+]in < [Ca2+]out. 
Jin 

(e) The hyperpolarization is most likely caused by increasing Рк 
because Vrest is between Ек and Eca• Ек is more negative than 
Vrest- Рк t will result in more hyperpolarization. It is also possi-
ble that the hyperpolarization is caused by decreasing Pea, but 
this is less likely because Рк > Pea at rest. There isn't much 
room for Pea to decrease. 

6. (a) NPE applied within membrane; ionic movements independent 
of one another; E is constant and so V is linear in the membrane. 

(b) Curves were calculated with [CWtCW values of 0/100,10/100, 
100/100, 100/3.333, and 100/0. 

2 -| / (nA) 
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(с) From the data, 
Vm = -68 mV when [K+]out = 5 mM, thus, 

5 + 4 3 0 ^ 
-68 = 58 log PK 

270 + 1 2 ^ 

PNa 
PK 

= 0.03. 

7. (a) Eci = -58 log — 

The /-V relation is outward rectified. Because [Cr]out > [Cl~]jn, 
it is easier for CI" ions to flow from outside to inside than from 
in to out. Hence it is easier for let to flow from inside to outside 
because lei = -1. 

(b) Jout + PNa[ Na+ Jout + Ра[СГ Jin 
PK[ K+]in + PNa[ Na+]in + Ра[СГ ]out 

1(6) + (0.019) (337) + (0.381H41) 
1(168) + (0.019)(50) + (0.381)(340) 

= -59.5 mV. 

8. (a) The neuron is not at ECE because 

Vm = 58 log 

= 58 log 

[K+]ta 150 [СГ Jout 
" 150 [СГ]ш 

250 
50 " [K+]0Ut 

The principle of space-charge neutrality is obeyed because: 

Inside (+)150 + 10 = 160 = (-)50 + 110; 

outside (+)150 + 100 = 250 = (-)250. 
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(b) CI" will flow from outside to inside down its concentration gra-
dient, and K+ will flow with СГ (outside — inside) to maintain 
space-charge neutrality. 
The final equilibrium concentrations of K+ and СГ can be cal-
culated by Donnan's rule: 

[K+]in [Cl-Jout 
[K+]out " [CHin ' m U S ' 

150 + X = 250 -X 
150-X " 50 + X ' 
X mM of KC1 flows from outside to inside. 
Therefore, X = 50 mM. 

Therefore, the final equilibrium concentrations are 

Inside (mM) Outside (mM) 
~K+ 200 Too 

Na+ 10 100 
CI" 100 200 
A" 110 0 

(c) The final equilibrium potentials: 

EK = 58 (mV)log^j j = -17.5 mV. 

En a = 0 because the membrane is impermeable to Na+. 

Eci = - 58 (mV)log = -17.5 mV. 

V^t = EK = Eci = -17.5 mV. 

9. (a) At rest, PK : PNA : PCL : PA : PEA = Рк-СА = 1 : 0 : 1 : 0 : 0. The 
membrane is permeable only to K+ and СГ, the neuron is not in 
ECE because = Щ * = although space-charge 
neutrality is satisfied. 
To reach equilibrium, ^ ^ = X mM KC1 must flow into 
the neuron. 
150 - X 50+ X v „ 
l ^ = 2 5 0 ^ X ^ X = 5 0 m M ' 
Thus, the final concentrations at equilibrium are as follows: 
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Inside Outside 
K+ 200 
Na+ 10 
CI- 100 
A" 110 
Ca2+ 10"4 

100 
90 

200 
0 
5 

ECE is satisfied because ( J jgfc = gg) = ( = Ц ) and 
space-charge neutrality is satisfied. 
Inside: 200 + 10 + 2 x 10"4 = 100 + 110. 
Outside: 100 + 90 + 2 x 5 = 200. 
Vrest (at equilibrium) = EK = Ea (because membrane is perme-
able only to K+ and CI" and PK : PCi = 1). 
Therefore, Vrest (at equilibrium) = 58log ^ = -17.5 mV. 

(b) At the onset of stimulus, PK-ca = 1:10:1:0:0. 

Vm = 58 log 1(100)+ 10(90)+ 1(100) 
1(200)+ 10(10)+ 1(200) = +20 mV. 

Vm = 58 log 
1(100)+ 10(90)+ 10(100) 
1(200)+ 10(10)+ 10(200) -3.5 mV. 

20 m V -

-3.5 mV -

-17.5 m V -

- 1 0 1 2 3 4 5 

time (sec) 
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Chapter 3 

1. / = PzFl 

(dl \ 
KdVJi-

[C]ine5 [Clout ̂  the slope conductance at rest = (-777) \dv //-0 ei-l 

_ „ zF d (,, 
PzFRfdv\V 

Pz2F2 

RT V 

[ C ] i n e x p ( ^ ) - [ C 3 0 U t \ 

« Ф Й Й - 1 J 

d /[C]inexp(g)-[CWN 

dV\ exp ДО)-1 

[ C ] i n e x p ( ^ ) - [ C ] o u t \ dv 
I dV 

(As I — 0, second term = 0) 
PZ2F2 

RT v [ ( [ C ] i n e x p ( ^ ) - [ C ] o u t ) 

( - l ) ( e x p ( ^ Q - l ) exp (zFV\ zF dV 
V RT ) RT dV 

( (zFV\ Л'1 r„, /zFV\ zF dV 

Pz3F3V (zFV\ ( (zFV\ Y 
е х р ( я г ) г К я г ) " 1 ) 

. - l 
R2F2 

out 
+ [Clin 

/ [ С ] щ е х р ( ^ ) - [ С ] 

Л e x p ( # ) - l 

(As / - 0, first term = 0) 

p 2 3 f 3 V exp [dm 
R2F2 exp -1 

Pz2F2l [Clout 
RT (exp(g)- l )" 

(As / - 0, V = f f thus [С]от = exp [C]in.) 
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2. (a) In darkness, 
w дкЕк + дма^ма + QClEq 
^rest - ~ ~ ~ — 

9K + GNA + 9CI 

(1H-90) + (0.005)(50) + (0.1) (—50) 
1 +0.005 + 0.1 

= -86 mV. 
Under constant light, 
v = ( l)(-90) + (20)(50) + (0.1)(-50) 

rest 1 + 20 + 0.1 

= 43 mV. 

(b) When the interneuron is stimulated in darkness, the photore-
ceptor is depolarized by 10 mV. Thus, 

Vm = - 8 6 + 10 = - 7 6 mV 
(l)(-90) + (0.005)(50) + ( f f ) (-50) 

1 + 0.005 + ® 1 

^ = 0.514. 
9K 
Therefore, gC\ increases 5.14-fold ( ^ : 0.1 - 0.514). Qualita-
tively, it is obvious that gCi must increase because Vrest (dark) 
= -86 mV, Eci = - 5 0 mV, and a depolarization (pushing Vm 
from - 8 6 mV toward Eci = -50 mV) must be accompanied by 
9c\ increase (Ohm's law). 
In darkness, Rm is ohmic and equals 108 Q, thus 

9K + 9NU + 9ci = ^г- = Ю"8 S л т 

and gK : дма :gci = 1: 0.005 : 0.1. 

11.05 gCi = 1<Г8 S, therefore, gC\ = 0.09 x 10"8 S. 

When the interneuron is stimulated, 
Ьвсх = (5.14 - 1)0.09 x 10"8 S 

= 0.37 x 10~8 S. 
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(с) д а is constant between -100 and +50 mV, and the interneuron 
stimulation gives the same synaptic Agci- Thus, 

^ = 0 . 5 1 4 . 
дк 

= (1H-90) + (20)(+50) + (0.514)(-50) 
m 1 + 20 + 0.514 

= 41 mV. 

The voltage response is a 2 mV hyperpolarization. 
If you interpret the question as gci is constant and the interneu-
ron has no effect (i.e., is always 0.1), then Vm = 43 mV, and 
thus interneurons cause no voltage response. 

3. (a) From the figure, ga = slope of А, дъ = slope of B. 
At rest: 
* = - ° - 0 2 9 s> 

* - 0 0 0 7 7 s-
During excitation: 
* = ^ = ° - 0 2 9 S -

4 m A = 0.4 S. 

vr rest — 

10 mV 
(b) The resting potential of the cell: 

daEg + дьЕь 
da+db 

(0.029)(-70 mV) + (0.0077)(+60 mV) 
0.029 + 0.0077 

-2.03 + 0.462 = -1.568 
0.0367 ~ 0.0367 

= -42.7 mV. 

(c) The peak membrane potential during excitation: 

v = g a E a + g b E b = (0.029)(-70 mV) + (0.4)(60 mV) 
p g a + дъ 0.029 + 0.4 

-2.03 + 24 
0.429 = +51.2 mV. 
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4. (a) See graph below. 

о 

(mV) _ 6 0 

- 8 0 - 1 

3 -i 

2 -

Im 1 " 

(пА/щп2) 0 _ 

-1 -
- 2 -

- 2.7 

1.7 

sT -1 
1.9 

i i i i i | i i i i | 
0 300 600 

time (msec) 

(b) Instantaneous current equals 0 because there is no change in 
instantaneous when V is stepped from +50 to +100 mV. 

Vm 
(mV) 

100 

50 и 

im И 
(пА/цт2) 0 J_ 

— 0.7 

I Г" —1—I—1— 
300 

time (msec) 

—I 
600 

Chapter 4 

1. (a) 
erfc(oo) = l -e r f (oo) 

= 1 - J L (from table of integrals) 

= 1 - 1 = 0 . 
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erfc(O) = l -er f (O) 

erfc(-oo) = l - e r f ( - o o ) 

- - i [ - J > 4 

2 f~x _ 2 

erf(-x) = J^ e y dy 

2 f° 2 

2 fx _ 2 = J в y dy = -erf(x). 

(b) 
KN = V(oo,0)/I0 

_ / i \ 
2 V 2 \2тга3 / 2/ 

/2000 Q-cm2 • 60 Q-cm 1 
" V 2 ' 2л- • (25 x Ю - 4 cm )3/2 

= 245 Q-cm3/2/785 x 10"6 cm3/2 

= 3 x 105 а 
(с) Steady-state voltage response 

V(oo,x) = = IQRNe-XIA 

= 10 x 10"9 A • 3 x 105 Q • e~xtK 

= 3 x Ю - 3 V • e~x,K = 3 mVe-x/A. 
Therefore, 

V(oo,0) = 3 mV, 
V(oo,A) = 3e"A/A = 3 x 0.3678 = 1.1 mV, 

V(oo, ЮЛ) = 3 • e~10 = 3 x 0.0000454 = 0.00014 mV. 
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(d) Transient-state voltage response at x = 0, 

V(t, 0) = r M e r f ( t / T m ) i / 2 

IQRN • erUt/Tm)112 = 3 m V • e r f ( t / T m ) 1 ' 2 . 

Therefore, 
1/2 

v ( ^ , o ) = 3 m V - e r f ( | ) 

= 3 erf(0.707) = 3 x 0.68 = 2.04 mV. 

2. 

V = Aiex+A2e~x, 
% -

V = Ai cosh(X) + Аг sinh(X), 
dV — = Ai sinh(X) + Аг cosh(X), Лл 

D2V 
= A i cosh(X) + Ai sinh(X) = V. 

V = Ai cosh(I - X) + АГ sinh(L - X) 

= ^ (eL~x + ex~L) + ^ (eL~x - ex~L). 

3. (a) 
Gn = G M = (TT/2)(RmRi)-LL2DW 

= (7Г/2Н5000 Q-cm2 • 75 Q-cm)-1/2(l x 10"4 cm)3/2 

= у 1.63 x 10 -9 S 
= 2.56 nS. 

(b) 

GL = ND21 AR 
m 

n 1 x 10~8 cm2 _ тт 12 
4 5000 Q-cm2 2 

= 1.57 pS. 
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<c> BL = Gi/Goo 
= 1.57 x 10~12/2.56 x 10~9 = 6 x 10 -4 (sealed end). 

4- dVm(x,t) _ 
Эх " ~ П 1 и 

dij _ 
дх ~ ~lm' 

d2Vm _ dk_ . 
дх2 ~ Пдх~П1т' 

• • . • _ C>Vm Vm Im — 1С + ^ionic — Cm + at r m 

= + Л 2 ^ = T m ^ f + vm. Let A = ^ and 
Tm = rmcm, then - - Vm = 0, where X = х/Л, Г = t / т» . 

5- (A) Rn = ±(RmRi)ll2d-v2 
TT 

= —(707)1~3/2 
TT 

= 225 Q (infinite). 
= 2(225)= 450 Q (semi-infinite). 

GN = ( ^ ) t a n h ( I ) , 

. / (05)5000\ 1 / 2 o c , 
л = ( " г о о о г ) = 3 - 5 3 c m -

* = ^ = ^ = 1 2 7 - 3 ° / c m -

G n = (3.53)(127.3) t a n h ( 1 ) 

= 0.00223(0.76). 
RN = 591Q (finite). 

(b) е-л/л . 1 0 m y = 3.7 m v (infinite). 

= 3.7 mV (semi-infinite). 
v = ^ 7 7 7 7 = 6.5 mV (finite). cosh(l) 

6. (a) (100 mV)e"2A/A = 13.5 mV 

or - 70 mV + 13.5 = -56.5 mV. No. 
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(b) A(new) = 2Л (old), 
(100 mV)e-2Aold/Anew = (100mV)<T2Aold/2Aold 

= 36.7 mV, 
or - 70 mV + 36.7 = -33.3 mV. Yes. 

(c) For A, 
2 x diameter — V2A0id = Anew, 

(100)e"2Aold/1'41Ao,d = 24.2 mV, 
or - 70 mV + 24 .2 = - 4 5 . 8 mV Yes. 

For B, Anew = 2V2A0id, still Yes. 
7. I = 1 for all 3 cables. Assume Vrest = 0 mV, then Ема = +100 mV. 

V(oo,L) = 100 mV = VoC°Sh(^ " X ) - Уо~~г7тг - V0
 1 

cosh(I) cosh(l) "1.54" 
Vo = 100(1.54) 

= 154 mV above rest or +84 mV above zero. 

8. a\ = 5 /urn; аг = 10 цт. 

(а) в ос •sfa = Ку/а, 

(.RmRj/2)1'2 

(b) Rn = 2nd312 ' 

RN2 _ 4'2 _ 412 

RN, 4 n a\12 
a 

= = 2-3/2 = 0-354 

/ 4 1 a R 
(с) A = 2Rt ' 
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(d) j . 

9. (a) Surface area of sphere, S = 4NA2 = 12.6 x 10~6 cm2, so 
R n ^ q 9 a 

12.6 x 10~6 cm2 

(b) For CN, 

CN = CMXS 

= (1 x 10"6 F/cm2)(12.6 x 10"6 cm2) 
= 12.6 pF. 

T = RNCM = RMCM = 25 msec. 

Calculate and plot single exponential response with the steady-
state value 

= (10-11)(2 x 109) = 20 mV. 

(c) 

p /гаЬЫ (RmRi/2)1'2 
RM (cable) = ^3/2 

= 0.36 x 109 Q. 
i. P = GD/GS = RS/RD = 2/0.36 = 5.6. 

ii. GN = GS( 1 + p) = (0.5 x 10"9)(6.6) = 3.3 x 10"9 S. 
RN = 3.0 x 108 Q, 

so 
V55 = 3.0 mV. 
Because p > 5, the response is close to that for a semi-
infinite cable (error function). Plot an error function with 
VSS = 3.0 mV along with the exponential curve with VSS = 
20 mV. Also, plot both again but on same graph with nor-
malized amplitudes to illustrate different time courses. 

(d) Reduce RM of soma by 1/2, so RS = 1 x 109 Q and 

RN= ^cab le = 2.6 X 108 Q. 
R s + "cable 

P = GS/GD = 2 . 8 . 

10. True, false, false, false, false. 
11. (a) I =1 cm/0.5 cm =2. 
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(b) X= 0.5 cm/0.5 cm = 1. 
(0 VL/VO = = 0.266. 
(d) 

Aiohz = ADC 
1+Jl + ( 2 t t / t w ) 2 

= (0.5 cm)0.52 = 0.26 cm. 

AC signals attenuate more with distance than DC (i.e., smaller 
Л). 

n / ч г h h i 300 100 
12" ( a ) I l = A7 + Al7 = 500 + 400 = 0 - 8 5 -

, h . hi 200 100 
Лг Л21 = 500 400 = 

(b) It can be reduced to a soma and 2 equivalent finite-length cables. 

(c) G = -r^tai ih(I) . Л n 

G i - win*)tanh(ii) 

1 tanh(Li) (0.05)(200)/(ttx Ю-8) 
t t x Ю-» . 

= — j q — t a n h ( L j ) . 

Gi = 2.2 x 10~9 S. 
G2 = 1.8 x 10"9 S. 

^dendrites = Gi + G2 = 4.0 X 10"9 S. 

4TTIZ 
G s o m a = Щ 0 0 0 = 5 , 0 x 1 0~ 9 s" 

GN = 4.0 + 5.0 = 9 x 10"9 S or RN = 111 MQ. 

(d) p = 4.0/5.0 = 0.8. 
(e) RN = 1.1 x 108 Q. 

Vm = Vrest ± (/ ' RN). 

I • RN = 111 mV. 

Vm = -181 mV with bias current and 41 mV with 2 nA current. 
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13. (a) Soma conductance Gs = 
Rn 

4nr2 

Rm 
4 x 3.14 x (30 xlO"4)2 cm2

 9 G 5 = 2000 f № = 56.5x10 S. 

(b) From example 4.3 in text, GD = 2.7 x 10"9 S; 

5GD = 5 x 2.7 x 10~9 S = 13.5 x 10~9 S. 

(c) Input conductance of an infinitely long axon connected to soma 

G o o — 

(d) 

1 тт 
ЛоП 2 \ 

dp3 

RmRi 
= 1.59 (2 x 10~4)3 cm3 

2000 Q-cm2 • 60 Q-cm 
= 1.54 x 0.8 x 10 -8 S = 1.26 x 10 -8 S. 

GN = о—н 5GD + Goo Km 
= 56.5 x 10"9 S + 13.5 x 10"9 S + 12.6 x 10~9 S 
= 82.6 x 10"9 S. 

(e) When 10 nA is applied to the cell, the steady-state voltage re-
sponse 

10x1 O-9 A 
V ( 0 0 ) = / 0 / G " = 82.6 x 10~9 S = ° Л 2 1 V = 1 2 1 m V -
Therefore, the steady-state membrane potential 

Vm = V(oo) + Vrest 
= (121 mV) + ( -70 mV) 
= 51 mV. 

14. From graph, I = 0.5 nA and V = 25 mV. 

(a) RN = | | = 50 M£L 

GN = 1 /RN = 20 nS. 

(b) Я soma = 100 Mfi; Gsoma = Ю nS. 
GN = Gsoma + Gden• So, Gden = Ю nS. 
p _ Gden _ 10 _ J 

Gsoma 10 
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(с) GN (finite cable) = ~ ~ tanh(I) = Gden 
Л n 

0.01cm. 

П = ^ t a n h ( 1 ) = ( 1 0 x l 0 - 9
6 ) ( 1 0 - 2 ) ° / C m 

& 8 x 109 Q/cm. 

Л = V*m/n, SO 
r m = \ 2 n = (10~4 cm2)(8 x 109 Q/cm) 

= 8 x 10s Q-cm. 

Rm = 277-arm = 2тт(0.0005 cm) (8 x 105 Q-cm) 
= 2510 Q-cm2. 

«soma = 4^7, SO 

r = = 1.41 x 10~3 cm 
4TrJ?Soma 

= 14 цт. 

Tm — CmXm — CmRm = 2.5 msec. 

WV«»,X) = v/osh(L-X)=50mVcosh^ 
cosh(L) cosh(l) 

= 32.4 mV. 
(e) For semi-infinite cable at x = A, 

V(oo,x) =V0e~x/K. 

V(oo, A) = 50 iriVe'1 = 18.4 mV. 

15. Assumptions: 

(a) Uniform Rm 

(b) Uniform Cm 

(c) Passive (linear) 
(d) Same I at ends 
(e) Sealed end or open end 
(f) Uniform Vm for initial condition. 



568 Appendix D. Complete Solutions to Problems 

(g) Ro = 0. 
(h) radial 1 = 0. 
(i) 3/2 power rule applies, 
(j) Soma isopotential 

16 
Lda = 111 = ill/Ли = 10 cm/5 cm = 2. 
Ldb = Lu = 1. 
Ldc = L13 = 0.67. 

GU = A-tanh(L) = T ^ ( . 9 6 4 ) 

= 4.6 x 10~3 S. 

" ( 2 Ш 0 - 2 3 Х 1 0 " 4 5 ' 
CO 

G l 3 = (3)T327)= 5 - 9 X 1 0 " 4 S -
Gn = Gn + G12 + Gi3 = 5.42 x 1(T3 S. 

= 0.185 V. 

. . coshd - X ) 0.185 .ft „ 
= cosh(L) = cosh(2l = m 

= - ^ T = 120mV. cosh(l) 
yc = 150 mV. cosh(.67) 

17. (a) See answer to problem 15. 
(b) See figure 4.15. 

18. (a) (ciad)312 = (adb)312 + (ad c)3 / 2 , 

(0.75)3/2 = (0.39)3/2 + (0.55)3/2, 

0.65 = 0.24 + 0.41 = 0.65. 
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Therefore, 3/2 power rule applies. 

L a c = i s i + i*L = 1 + _L = i.7. 
a c A ad A dc 5 4.3 

L ^ = + = 4 + 33 _ 1 7 
a Aa^ Â i? 5 3.6 

Therefore, both ends are at the same I , so 
^ / «. 4 1

 f u/г^ tanh(1.7) Gjv(ata) = ————- tanh(L) = (Aad)(ri) v 7 (5 cm)(42 Q/cm) 
= 4.48 x lO"3 S, or RN = 223.4 Q. 

(b) 1 x 1(T3 A; Vin = IR. 
At a, Vin = (10"3)(223.4) = 223.4 mV. 
At b, 

coshd - X) A cosh(O) 
Vin = Vo T-TTT— = 223.4 _4 mv = 78.9 mv. cosh(I) cosh(1.7) 
At c, Vm = 78.9 mV, because с is at the same I . 

x _ 4 cm 
Л 5 cm At d,X = f = | ^ = 0.8( so 

Vin = 223.4 C 0 S h ( 1 J - ^ 8 ) = 113.1 mV. cosh(1.7) 

19. From the exponential equation, Vm = Voe~t/T, and lnVm = InVo -
a r . 
Convert to common log, logVm = log Vo- so the slope of the 
graph on common log coordinates is 

slope = l Q g ^ - ! ° g V / l 
t2 -11 

log(V2/Vi) 

t2~t 1 " 

From (1) above, 

1 1 1 
slope = - — • - , or 

= ° - 4 3 4
 = 0-434(t2 - h ) 

slope log(V2/Vi) 
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20. (а) Ддг(sphere) = Rm/4na2 = 0.9 x 108 Q, so Vm(ss) = 9 mV. 

RN(inf) = {R™Ri/*l112 = 1.13 x 108 Q; Vm(ss) = 11.3 mV. Lira51*-

KN(semi) = 2RN(M) = 2.26 x 108 Q; Vm(55) = 22.6 mV. 

RN (fin) = Ancoth(L) 
2 

77 (RmRi)1,2(dr3/2 coth(I) 

= —(104102)1/2(2 x 10"4)~3/2 coth(I) TT 
= 2.9 x 108 O; Vm(ss) = 29 mV. 

Refer to figure 4.16 for shapes of curves, 
(b) A = 0.0707 cm; r m = 10 msec. 

в = — = 14 cm/sec, Tm 

X = 2Г-0 .5 . 

At X = 1, T = 0.75, so 

t = (0.75)(10 msec) = 7.5 msec. 

(c) 

semi-infinite and finite 

V (mV) 

time 

21. (a) True, false, false, true, 
(b) True, false, true, true. 
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22- (a>dnew3/2 = d\l2+d\l2 + d\l2+d%\ 
dnew = (13/2 + 23/2 + З3/2 + 43/2)2/3 

= (1+ 2.83 +5.2+ 8)2/3 

= 6 . 6 цт. 
п* т/ / 1/ cosh(L - X) (B) VM(OO,X) = VO COSH(I) , 

Vm (<*>,!) = n ? cosh(O) 
Vo cosh(L)' 

cosh(I) = = 1.43, 

I = 0.9. 

(c) 30% 
(d) Greater than 

23. (a) dA = ( l3 '2 + l 3 ' 2 ) 2 ' 3 = 1.6 x lO"4 cm. 

1л = T 1 + ^ = 0.5 + 0.2 = 0.7. Ад Aaj 

J _ 1b _ 6 0 0 6 0 0 _ -> r 

B Ав Ад, 400 300 

G n ( A ) = 0.05 x lOio tanh(0.7) = 1.2 x 10"9 S. 

= 0.04 x 2^6X1010 t a n h ( 3 ' 5 ) = ° - 9 6 X 1 0 " 9 S" 

GN = (1 + 1 + 1.2) x 10"9 = 3.2 x 10"9 S. 

RN = 1 /GN = 310 MQ. 

(c) For A (X = I), 

(V Г ) cosh(0) г P (Vrev-£r)cosh(() 7) - Es - Er, 

Vrev — Er = 1.26(.E$ - Er), 
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Vrev = + 3 1 m V . 

For В (X=1.5) 
cosh(2) 

( V r e v - £ r ) c o s h ( 3 5 ) -Es-Er, 

Vrev = +283 mV. 

Because LB > 2, it acts like a semi-infinite cable, so 

= Voe~x/L, and (Es - Er) = (Vrev - Er)e~1'5; 

Vrev = +288 mV. 

(d) A larger than B; A faster rise than B; A shorter half width than 
B; A same decay time constant as В. 

Chapter 5 

1. (a) The driving forces of ion flux: 
i. Concentration gradients of ions 

ii. Electric field or electrical potentials: (1) Ions always flow 
from regions of high concentration to regions of low con-
centrations; and (2) cations flow from regions of high elec-
trical potential to regions of low electrical potential—anions 
flow in the opposite direction. 

(b) EK = 58(mV) log = - 5 8 mV. IA Jin 

ENa = 58(mV)log[
r^f+

+
]-OUt = +58 mV. 

[Na Jin 

IK is outward rectified because [K+]in > [K+]out, so it is easier 
for K+ to flow outward (down the concentration gradient) than 
inward. INU is inward rectified because [Na+]out > [Na+]m, thus 
it is easier for Na+ to flow inward (down the concentration gra-
dient) than outward. 
ГС1 2. (a) out = 1 because all curves go through the origin, i.e., 
L̂ -Jin 
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Ei = ^ ь Щ Н = 0 whenh = 0 for аП <5. zF 

(b) da = 0.1 
5b = 0.2 
5C = 0.3 
5d = 0.4 
5e = 0.5 
5f = 0.6 
5g = 0.7 
5h = 0.8 
5i = 0.9 

[C]i, 

energy barrier closer to the inside of the mem-
brane, therefore inward rectified 

energy barrier closer to the outside, thus out-
ward rectified 

[Clout (с) I = zfjSfco[Clout (e6zFV'RT - e-*u-5)FV/*r\ > since 

= -zFfiko[C]omez5FVIRT (e~zFV'RT - l ) . 

= 1 

3. (a) Given [C]i„ = a, aB = 0.028. 
[Clout 

Ев = -90 mV (from figure), then 

- S O m V . f l o g w k =>z = - l . 

Therefore, the most likely ion is Cl~, since it is the only perme-
able biological ion having z = -1. 

(b) EA = 58 log ад, thus 

^=log_1 ( !)= a n t U o g(if)= 0 ' 
a c = log"1 = 0.042, 

a F = log"1 = 0.137, 

a j = l o g _ 1 = o - 6 7 2 -

а с - 1 0 ^ ( ^ = 1. 
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(c) Constant field model. Energy barrier model cannot because it 
does not predict a straight line for K+ (when ^ ^ = a* = 1). 
When [Clout > [C]in (a < 1), it is easier for СГ to flow ki 
( W — outward rectified). When [C]out < [C]m (a > 1), it is 
easier for СГ to flow out (Jin — inward rectified). 

4. (a) A = single energy-barrier model; В = either; С = constant field 
model; D = either; and E = single energy-barrier model. 

(b, For ion a, Ea - - 8 0 m V = g t a [ C a l | ^ ' - - 8 m V l o g ^ . 

Therefore, - log"1 ^ = 24. 
LWJin " j o 

сто (c) Ее = +40 mV = Y mVlog24, 
C O 

г = x 1.38 = 2 z = +2. 40 
(d) From part a, [CJout = 24[Ca]in = 24 x 10 mM = 240 mM. 

Eb = -40mV = 581ogi§^, 

[Cblout = (log-1 ^ j p ) [Cb]in 

= 0.204 x 100 mM = 20.4 mM. 
Ed = + 2 0 m V = 5 8 1 o g ^ ^ ( LwJin 

[Cdlout = (log"1 I I ) [Q]i„ 
= 2.21 x 100 mM = 221 mM. 

v ro, Pg[Cg]i + Pb[ Cblout + PdCaU, 
rest P a [ C a ] 0 U t + Pb[Cb]i + Pd[Cd]i 

since za = - 1 ,гь = zd = +1. 
1 x 10+ 10x20.4 + 0.5 x 221 

rest - o g 1 x 2 4 0 + 10 x 1 0 0 + 0 .5 x 1 0 0 
324 

= 58 l o g — = -34.8mV. 

5. (a) Iy(V, t) is activated by depolarization because y«,(V) is larger 
at depolarized voltages. Iy (V, t) is an outward current because 
depolarization (activation) from -60 mV to -20 mV (step off-
set) causes a time-dependent outward current. 
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(b) The value of Iyoo(V) at the step offset is about 20 nA. Since 
Iyoo(V) = yco(V) -gy(V-E)f thus 
20 nA = и ( - 2 0 ) - loo (-60) 

= Уоо(-20)ду[-20 + 70] - Уоо(-60)ду[-20 + 70] 

= gy[l x 50 mV - 0.3 x 50 mV] 
= ~gy x 35 mV 

Therefore, g y = 20 nA/35 mV= 571 nS. 
ту can be measured from figure A as the time to reach 63% of 
the steady-state I y (V, t). From I y (V, t) at step offset, 
r y = 0.08 sec 

= 80 msec 

(c) For spherical neuron 

TM = RMCM = 4NA2RN • CM 
= 12.56(10"3 cm)2 • 108 fl x 10"6F/cm2 

= 1.256 msec 

Steady-state voltage response elicited by current step 
AV = &I RN = 0.4 x 10"9 A x 108 Q 

= 40 mV. 
The neuron depolarized from -60 mV to - 2 0 mV. From (b), 
approximately 20 pA of Iy(V,t) will be activated by this de-
polarization, and since this 20 pA current is outward, it will 
hyperpolarize the neuron about 2 x l 0 _ 1 1 A x l 0 8 f 2 = 2 mV 
with a time course т = 80 msec. 

i 2 mV 
- 3 0 -

V (mV) -40 -

- 5 0 -

0 

0 100 200 300 
time (msec) 

6. See text. 
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7. (a) The values of т and /«, at each Vc can be measured from the 
current traces: 

- 2 0 - i 

- 4 0 -
- 6 0 -

V - 8 0 -(mV) -100-

I 

Vc 

(mA/cm2) 

т — 2 

° '2] 0 J -
0-

- 0 . 2 -

т = 1.5 

Vc = - 6 0 
loo = 0.1 

Vc = - 8 0 

I CO =0 
Vc = -100 
loo = -0.05 

I 1 1 1 1 Г ~1 

(Ь) Уоо = — 

0 1 2 3 4 5 6 7 

time (msec) 

loo ^ л ^ , 2 

gy(V-EyY 
dy = 10 mS/cm , Ey = -80 mV 

oc = Уоо /Т, P = l-Уоо 
T These equations yield 

Vc loo T Уоо a fi 
(mV) (mA/cm2) (msec) (unitless) (msec-1) (msec-

-20 0.6 1 1 1 0 
-40 0.3 1.5 0.75 0.5 0.17 
-60 0.1 2 0.5 0.25 0.25 
-80 0 1.8* 0.35* 0.19* 0.37* 
-100 -0.05 1.5 0.25 0.17 0.5 

Extrapolated values from the graph. 
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• "и 
V Vi 
s 
h 

"i 1 1 Г 
- 1 2 0 - 1 0 0 - 8 0 - 6 0 - 4 0 - 2 0 

V (mV) 

г l.o 

'u a; 
СЛ 

rH 0.5 < 
CQ. 
О 

L0.0 

8. (a) From the slopes of the /-V relations in part A of the figure, at 
rest, дк/дма = 5. During stimulus, gKlgNa = 0.25, EK = 
- 8 0 mV, ENa = +40 mV. 
Therefore, 

Vrest — 
дкЕк+дмаЕма = 5(-80) + 1(40) 

дк +дыа 6 
= - 6 0 mV; 

^stimulus = f 2 5 + ^ ^ = + 1 6 mV. 

The voltage response is shown below. 

60-i 
4 0 -
20 

V (mV) 0 -
- 2 0 

- 4 0 
-60-J 

Vsr ( * ) 

Vrest 
I I I I I I I 
0 2 4 6 8 10 12 

time (sec) 

(b) At rest, дк/dNa = 5. Immediately after stimulus onset (*), 
9к!9na = 0.25. 10 seconds after stimulus onset (oo), 
вк : gNa : gca = 1:4:8. 
Therefore, 

Vrest = - 6 0 mV; 

^stimulus = + 1 6 mV; 
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V (oo) 
stimulus 

дкЕк + gNaENa + дСа^Са 
дк + дыа + дса 

( -80)+4(40)+ 8(80) 
13 = 55.4 mV. 

Immediately after the stimulus onset, Vm moves from Vrest = 
-60 mV to Vstimuius (*) = +16 mV. This depolarization fully 
activates Yca (i.e., Уоо moves from 0 to 1) and depolarizes the 
52 neuron to Vstimuius (00) = +55.4 mV with exponential time 
course of т = 1 second. Voltage response is shown in the plot 
below. 

V (mV) 

60 -| 
4 0 -
20-
0 -

- 2 0 -
- 4 0 -
- 6 0 - 1 

Vsf(oo) 

VstM 

Vrest 
I 1 1 1 1 1 1 
0 2 4 6 8 10 12 

time (sec) 

Chapter 6 

1. (a) [Na+ lout ENa INa oc (•- 50 - ENa) 
1 150 mM +40 mV > -50 inward 
2 30 0 > -50 inward 
3 10 - 2 7 > - 5 0 inward 
4 1 -85 < -50 outward 

(b) /Ре
а
ак = - 1 mA/cm2 normal: [Na+]out = 150 mM 

- 1 mA/cm2 = dva
ak(-50 - 40) => g ^ = ^ S/cm2. 

For the other conditions: 

2. C a k = <^(-50 - 0) = - .55 mA/cm2. 

3. C a k = jJ)(-50 - (-27)) = -0.25 mA/cm2. 
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4- С * = <J j ( - 5 0 " ( " 8 5 » = + 0 - 3 9 mA/cm2. 

(c) [Na+]out is adjusted so that ENa = - 5 0 mV. Now if Vm is 
clamped to -20 mV, INU will flow out. Thus the observed in-
ward current cannot be In a- EK ~ - 9 0 mV and Eci « - 8 0 mV 
for frog muscle => thus IK, ICI are outward too. The observed 
inward current cannot be IK or la-

ic) ECa = 291og jPr = +70 mV. Thus, when Vc = - 2 0 mV, ICA 
flows inward. Thus it is possible that the observed inward cur-
rent is ICA-

2. дк = 9Kn4 = (24.3 mS/cm2)(0.891 - 0.376е"{/1-7 ™*с)4. 
t (msec) дк (mS/cm2) 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
00 
0 

2.59 
6.29 
9.58 

11.88 
13.33 
14.19 
14.68 
14.96 
15.12 
15.20 

15.315 
0.239 

0 2 4 6 8 10 

time (msec) 

3. gNa = дЫатък. 



580 Appendix D. Complete Solutions to Problems 

t m = 0.963 (1 - e~t/0-252) h = 0.605 g-f/°-84 gNam?h 
0.5 0.8306 0.336 13.52 
1 0.9448 0.1839 12.75 
1.5 0.9605 0.1014 6.526 
2 0.9626 0.0559 3.525 
2.5 0.963 0.0308 1.945 
3 0.9629 0.01701 1.074 
3.5 0.9629 0.0094 0.5935 
4 0.9629 0.00517 0.3264 
4.5 0.963 0.00285 0.1799 
5 0.963 0.00157 0.0991 

DNA = DNAM3H 

= (70.7 mS/cm2) (0.963(1 - e~t/0-2S2))3 (0.605 e~t/0'S4) 

For the largest value of gNa, = 0. 
at 

Thus, ^ = j - [38.2 (l - г-'/0.252)3 (e-t/0.84) j = q 

yields gmax occurs at 0.6 msec and gmax = 13.4 mS/cm2. 
4. According to figure 5 of Hodgkin's and Huxley's paper (1952d), 

Поо (-60 mV) « 0.88. 

hoo = gKooni(V-E) 
= (36 mS/cm2) (0.88)4(0 - (-71)) 
= 1.554 mA/cm2. 

5. ENa = 58log ^^r- = -189.34 mV, 
EK = 58 log 0.046/65 = -182.7 mV, 
Eci = -581og0.04/112 = -t-200 mV. 

(a) At rest, Vm = -182 mV. Thus the cell is permeable primarily 
to K+ because Vrest is very closed to EK (slightly permeable to 
Na+ and a tiny bit permeable to СГ). 

(b) During the peak of action potential, Vpeak = 198 mV, thus the 
cell is permeable primarily to Cl~ because Vpeak is very closed 
to Eci (slightly permeable to K+). 
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(c) Since the pump ratio is 1 and z (Na+) = - z (СГ), it is a neutral 
pump — no contribution to the resting potential of the cell. 

(d) At t = 1 msec, 

V = - 5 0 mV 0 a = f M ^ = 6.8nS. 
gNa = 0 because I^a (1 msec) = 0. 

V = +150 mV Sci = - f i § y ± = i6.5nS. 
gNa = 0 because INa (1 msec) = 0. 

At t = 7 msec, 
V = -50 mV gci = 0 because Ici (7 msec) = 0. 

_ 0.3235 nA _ 0.325 nA _ о э „ г 
UNa ~ - 5 0 - ( - 1 8 9 ) ~ 139 mV ~ " 

V = +150 mV gci = 0 because Ici (7 msec) = 0. 

_ 1.9 nA 1.9 nA _ г с „ с 
0Na ~ i 5 0 - ( - l 8 9 ) ~ 339 mV ~ n : > ' 

(a) The small sustained current is due to leakage conductance gL. 
(b) Between -30 and - 5 mV, 

Vc I - gNa t (slope of В > slope A) 

(c) Between - 5 and +57 mV, Vc t — gNa does not change too much 
(slope В « slope С almost constant), but (V - E^a) J as Vc t, 
thus I Ma A. 

(d) Vth is between -40 and - 3 0 mV because no 1ма, h at Vc = 
-40 mV, but they appear at - 30 mV 

inward Vc < +57 mV 
(e) ENa ~ +57 mV because INa = 0 Vc = 57 mV 

outward Vc > +57 mV 
(f) No reversal of the late outward current when Vc = -65 mV 

because it can only be activated above -30 mV. 

/(nA) 
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7. 

8. 

< °1 г 
- 7 0 J -J 

(a) 

(b) 

(c) 

(d) 

(e) 

Vm (mV) 
i 

- 1 0 0 

TEA blocks IK 

EN g = Vc = 0 m V - / N f l = 0 

EK = VC = 0 mV - IK = 0 

ENA =ЕК = VC = 0 mV - INA = IK = 0 

l 1 1 1— 
0 2 4 6 

time (msec) 

i I 
8 10 

.5 msec, normal 

- 5 0 

4.5 msec, Na+-free 

0.5 msec, normal 

t INa IK dNa 9K 
0 0 0 0 0 

0 . 2 5 - 0 . 3 8 0 . 1 1 5 . 9 2 

0 . 5 - 0 . 8 5 0 . 1 6 1 3 . 3 2 . 4 

0 . 7 5 - 1 . 0 3 0 . 2 2 1 6 . 1 3 . 3 
1 - 1 . 0 1 0 . 2 9 1 5 . 8 4 . 4 

1 . 2 5 - 0 . 9 0 . 3 6 1 4 . 2 5 . 5 

5 - 0 . 0 7 1 . 3 3 1 . 2 2 0 
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gNa = INa 
V - 6 0 ' 

dK IK 
V+70' 

1.5-1 
1.0 

f 0.5 H 
(mA/cm2) 0 0 

-0 .5 -
- 1 . 0 -

-1 .5-1 

0Na 

time (msec) 

9. (a) Let дк/дыа = x. 

At rest, V = -70 mV = ( * ) ( £ g ) + 

1 + x 

= (~80)x + (+50) 
1 + x 

- 7 0 - 70x = - 8 0 * + 50, 

x = 12. 

At threshold,-60 = ( - 8 0 ) x + 5 ° , 1 + x 

- 6 0 - 60x = -80л: + 50, 

x = 5.5. 

A t A P p e a k , + 3 0 = - 8 0 x + 5 ° , 
1 + x 

30 + 30x = -80x + 50, 
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(b) At time Г, 
5x(-80) + 50 (5 x 12H-80) + 50 Vr rest = -77.8 mV. 5x + 1 61 

Threshold and Уреак do not exist. The axon is in refractory pe-
riod. 

/(mA/cm2) 

40 /60 
V(mV) 

10. (a) Vc = 100 mV, 

Ikoo = 15mA/cm2 = gKco(V -EK), 

gKoo = (15mA/cm2)/[100 - (-80)] mV 
= 0.0833 x 10"3 x 103 S/cm2 

= 83.3 mS/cm2. 

Vc = 85 mV, 

13.6 mA/cm2
 2 

в к ~ ~ 85 + 80 mV = « 2 - 4 m S / c m -

Vc = 60 mV, 

_ 10 mA/cm 
9 K x " 60 + 80 mV 

Vc = 25 mV, 

= 71.4 mS/cm2. 

dKoo = 
5 mA/cm2 

25 + 80 
= 47.6 mS/cm . 
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(b) Since gK 0 = nigK, 

Vr 

100 
85 
60 
25 

1/4 

[ W ] W = 0 . 9 6 
№ ] " 4 = 0.87 

Since n4(t) = [Поо - [(Поо - no)e~t/T]]4, 

т can be estimated by measuring time to reach [0.63]4 of the 
IK oo. 

(0.63)4 = 0.16, thus 
т = time to reach 0.16 of I^oo. 

Vc т n 
100 mV 1.2 msec 
85 mV 1.4 msec 
60 mV 1.6 msec 
25 mV 2.0 msec 

Since cxn = поо/тп , /?п = (1 - П о Л / т п . 

Therefore, 

Vc = 85 mV; 

Vc = 60 mV; 

Vc = 25 mV; 

1.2x10" -3 

= 0 . 

1 
1.4x10" -3 

= 0 

0.96 
= 1.6x10--3 

0.04 
1.6x10-•3 " 

0.87 
2.0x10" -3 

0.13 
2x l0~ 3 

= 600 sec"1 

= 25 sec"1 

= 435 sec-1 
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11. (a) 
Im 

(mA/cm2) 
lea + Ici(l) 

120 

Vm (mV) 

(b) From the right figure, ECa = + 100mVand£Ci = -80 mV. Thus, 

[ 4 > = ant i log^? = 2807.2 because z = +2. 
[Ca ]m 29 

[Ca2+]m = [Ca 2 + ] O ut / 2807 .2 = 2+1 

[Ci] 

5 mM 
2807.2 

= 1.78 x 10"3 mM = 1.78 цМ. 
—RC) m = antilog-^r- = 0.042. 

[ C r i o u t ° 58 

[Cl"]in = [Cl~]0ut x 0.042 = 50 mM x 0.042 = 2.087 mM. 

12. (a) Q = Iq I dt = i(10AiA/cm2)(3msec) 
= 1 5 $ . msec 
= 15 x 10 -6 x 10"3 A • sec/cm2 

= 15 x 10 -9 C/cm2 

= 9.37 x 1010e/cm2. 

Five gating changes are required to open one K+ channel. 
_ Q 9.37 x Ю10 e/cm2 , c_ i n l 0 , , . 2 D = — = = 1.87 x 101U channels/cm. ze 5 x e 

( b ) ^ = 2 x 10"1 S/cm2 

2 x 10-1 S/cm2 

У = D 1.87 x 1010 channels/cm2 

= 1.07 x 10"11 S/channel 
= 10.7 pS/channel. 



Chapter 10 answers 587 

(с) The K+ current is activated by hyperpolarization because Ig is 
inward and only hyperpolarization can result in a net inward 
electric field. 

+ + + + + + + + + + + + out 
v h y p e r p o l . - ^ E | — Tg\ inward 

in 

13. (a) The total amount of charge movement carried by the gating 
current equals to the area underneath the Ig trace. 
Q = 2.625 цА • msec/cm2 

= 2.625 x lO"6 x lO"3 A • sec/cm2 

= 2.625 x lO"9 C/cm2 

XT , . , Q 2.625 x 10"9 C/cm2 

Number of charges = - = 1.6 x 10~19 С ' 

= 1.64 x lO10 particles/cm2. 
Two gating particles are required to open a channel. 

1.64 x lO10 0.82 x Ю10 

CD = channel density = _ 2 x 80% 
= 1.02 x Ю10 channels/cm2 

(because from -70 mV to -10 mV only opens 
nels). 

(b) From part В of the figure, g N a is 1 S/cm2. 

0.8 S/cm2 

0.8 

of the chan-

Thus, у = dNa = 

CD 1.02 x 1010/cm2 = 10"10S = lOOpS. 

(c) 

Ig 
{цА/ст2) 

3H 
2 -
1 -
0 -

-1 -
- 2 -

- 3 J 

T 
4 

time (msec) 
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(b) gNa is not ohmic because the instantaneous I-V relation is not 
linear. This nonlinearity can be explained by both the constant 
field model (I-V is inward rectified with positive equilibrium 
potential) and the energy barrier model. 

(c) See dashed curves in the figure below. Data points for dashed 
curves are obtained by adding Ik to I^a- h is linear and its 
slope is determined by дк(0.5 msec) = 1 mS/cm2, which gives 
a straight line from -80 mV (EK) to IK(0 mV) = (1 ms/cm2) (0 -
(-80)) =0.08 mA/cm2. 
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15. (a) 

%ff/%n -0.5 -

Vc(mV) 

Vc (mV) 

JNa 
( m A / c m 2 ) 

- Г 

9 
( j iA/cm 2 ) 

10 

I I L 

Q1/Q0 = 0.6 
J L I I I L 

T a 2 
Q2/Qo = 037 

0 1 2 3 4 5 6 

t ime (msec) 
10 

(b) The major difference is that the Hodgkin and Huxley model 
predicts that the relaxation of is3 times faster than that of 
the J®ff, because only one m particle needs to be moved from 
a permissive to a nonpermissive state to close a channel. Ex-
perimental results show that the relaxation time courses of 
and I®ff are about Jhe same. This indicates that the Hodgkin 
and Huxley mpd^l is not completely correct in describing de-
tailed meehanisms of Na+ channel gating. The movements of 
gating particles, for example, may not be totally independent 
from each other. 
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Chapter 7 

1. (a) See solid line in plot below. 

Vm (mV) 
- 1 0 0 

_10o J / ( P A ) 

(b) Give step depolarizations from different holding potentials to a 
fixed voltage that activates INU maximally (i.e., т<*> = 1). Then, 

p̂eak hoo = for different holding potentials. 
Jpeak (max) 

Give step depolarizations to different values from a very nega-
tive holding potential (i.e., hoo = 1). 

p̂eak (Ут(тах) - ENa) moo = for different step potentials. 
jpeak(max) (Ут ~ ENa) 

(c) Slow depolarization in voltage range of - 80 to 0 mV. Depending 
on kinetics, could cause oscillations or new resting potential. 

(d) See dashed line in above plot. 
2. See graph below. Solid line is Vm under control conditions; dashed 

line is after addition of 4-AP. 
- 2 0 - | 

Vm (mV) 
- 4 0 -

- 6 0 -

—80 ~1 1 1 Г 
time (arbitrary) 
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3. See figure below. 

4. See figure below. 

и J и и и 

IАИР blocked 

5. (a) To distinguish a low-threshold (T) from a high-threshold (L) cal-
cium current, at least five of the following points should be 
made in some descriptive detail: 

i. Hold at hyperpolarized potentials (—100 mV) and step 
positive (for T); measure activation (and inactivation) prop-
erties. 

ii. Hold at depolarized potentials (~ -40 mV) and step positive 
(for L). Subtract these currents from those above. 

iii. Peak vs. steady-state. Discuss inactivation properties. 
iv. Dihydropyridines (L), low concentration of Ni2+ (T), low con-

centration of Cd2+ (L). 
v. cAMP increases L. 

vi. ACh increases T, decreases L. 
vii. Single-channel conductances (8 vs. 25 pS in Ba2+); above 

properties using single-channel measurements. 
(b) i. Chord conductance = 875 nS. 
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ii. Yes 
iii. I-V curve nonohmic at depolarized potentials; conductance 

decreases at depolarized potentials; better fit by GHK tur-
rent equation (see text). 

6. (a) Solid line in left graph below for a); dashed line for b); and right 
graph for c). 

Vm (mV) Vm (mV) 

(b) Solid lines (superimposed) for a) and c); dashed line for b). 

Vm(mV) 

(c) a) = Ik(a)\ b) = Ik(d) \ с) = 1 к т -
(d) See graph. 
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gi is a leakage conductance; gx is potentially a function of 
voltage and time (has m and h in equation). Get gi and EL 
from measuring I-V curve with respect to the zero current 
level from a hyperpolarized holding potential. 
Get g x from peak current responses in I-V curve taken from 
hyperpolarized potentials. Tail currents from maximum 
response will yield gx. Slope of total I-V curve near reversal 
will also yield gx. Ex can be taken from total I-V curve. 
Determine m<x> by giving depolarizing steps from negative 
holding potential and plotting g x ( V ) /g x , as described also 
in problem 1. Determine hoo by giving a depolarizing step to 
a fixed positive potential from different holding potentials 
and plotting ipeak(V) //peak(wax). This is assuming that m 
and h have different rates of activation. 

(b) See solid curves on graph below. 
(c) See dashed curves on graph below. 

3 -| 

2 -

/(nA) 

0 J 

Vc(mV) | 

8. Ix = moohoogx(Vm - Ex). 

Iy = moohoogy(Vm - Ey). 

7. (a) i. 

u. 

in. 
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Vm (mV) ШОО HOO Ix l y (x!0~u) 
- 8 0 0 0.95 0 0 
- 7 0 0.025 0.825 - 1 2 4 + 12.4 
- 6 0 0.1 0.7 - 3 8 5 +56 
- 5 0 0.18 0.5 - 4 5 0 +90 
- 4 0 0.295 0.295 - 3 9 2 + 104 
- 3 0 0.5 0.15 - 3 0 0 + 105 
- 2 0 0.7 0.1 - 2 4 5 + 112 
- 1 0 0.83 0.03 - 7 5 +45 

0 0.93 0 0 0 

Make a plot from values in table (see graph). 

9. From notes. 
10. From notes. 
11. Hyperpolarization activated current. Could be IKUR), IQ, or ICIM-

12. In Sequence: IK(A) i Ica(T)> LNA(slow)T LNA(fast)I ICA(N,L) for depolar-
izing phases, and I K W , IK(DR), H(O, HW), IKIAHP) for hyperpolar-
izing phases. 

Chapter 9 

1. The pdf is f ( x ) = \ (for 2 < x < 6.) 
If x < 2 , P ( X <x) = 0, 
and if x > 6, P(X < x) = 1. 
If 2 < x < 6, P(X < x) is the shaded area, which is \(x - 2). 
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Hence the cdf is 
2-| 

FU) 1 -

F(X) = 
0 if x < 2 
i ( x - 2 ) if 2 < x < 6 
1 if x > 6 

2. If x < 0, then F(x) = 0; and if x > 3, F(x) = 1. 
If 0 < x < 3, 

F(x) = f f ( x ) d x = J | ( 3 x - x 2 ) d x 

= i x 2 - —x 3 + С 3 27 

Since F(0) = P(a < 0) = 0, С = 0. Thus F(x) = f x 2 - ^ x 3 . Note 
that F(3) = 3 - 2 = 1. 
The cdf is 

2 

F(x) 1 -

F(x) = -
0 if x < 0 
\x2 - ^ x 3 if 0 < x < 3 
1 if x > 3 

Then P(X > 2) = 1 - F(2) = j^. 
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3. (a) If 0 < x < 1, Fix) = 1 1 x d x = | x 2 + C. 

F(0) = 0, and so С = 0, 

F(x) = Ix2; Fi 1) = 

I f x > l , Fix) = ^ d x = --^+D. 

Fil) = and soD = 1. 

Hence the cdf is 
2 

F(x) 1 -

Fix) = I*2 
i - SF 

if x < 0 
if 0 < x < 1 
if x > 1 

As x — oo, F(x) — 1 - 0 = 1 . 

4 
5" 

(c) For the median, Fix) = i.e., \x2 = i.e., x2 = §. 
The median is ^/f « 0.9129. 
For the upper quartile, Fix) = f , i.e., 1 - -gfr = | f 

sox 3 = f , i.e., x « 1.1696 
For the lower quartile, Fix) = i.e., f x 2 = 
so x2 = i.e., x « 0.6455. 
The semi-interquartile range is |(1.1696 - 0.6455) = 0.2621. 
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4. (A) 

From data CTIn criN
2 Щ 

О цМ Glu 0 0 0 
ljuMGlu ±0.7 nA 0.49 (nA)2 2 nA 
2 цМ Glu ±1.0 nA 1.00 (nA)2 5 nA 
3 juM Glu ±0.7 nA 0.49 (nA)2 8 nA 

№ (nA) 

(b) alN
2 =Im,-m2/N. 

At w = 0 (origin in the above plot), ^(cr/ iV
2) = I\. 

h = (slope of the curve at Ц[ = 0) 

5. P„(V) = 

= O 5 ( r ^ = 0 2 5 n A 

2 nA 

v - h - ° - 2 5 n A _ fi or n c 

y~ V-ENa~ (10 - 50) mV ~ 

А ^ ( о 7 „ 2 ) = 0 1 ; JV = i f . 
From the graph, щ* (maximum cr/N2 or when щ(спы

2) = 0) is 
approximately 5.2 nA. 
. . 2 x 5.2 nA , . N = —TTTTZ—:— » 42 channels. 0.25 nA 
There are 42 glutamate-gated channels in the neuron. 

P(V) 
a(V)+P(V)' 

(a) At V = -100 mV, 

<x = 500 e+100/S0 = 3694 sec"1, 
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P = 50e-1 0 0 / 2 5 = 0.9 sec"1. 

P . ( - 1 0 0 mV) = = 0.025%. 

At V = - 5 0 mV, 

a = 500 e+ 5 0 / 5° = 1359 sec"1. 

P = 50e~S0l2S = 6.77 sec -1 . 

P r o ( - 5 0 m V ) = 1 3 5 ^ 7
6 7 7 =0.5%: 

At V = 0 mV, 

a = 500 e~° = 500 sec -1 , 

0 = 50e° = 50 sec -1, 

Р ~ ( 0 т У ) = 5 0 ^ 0 = ° - 0 9 1 = 9 Л % -
(b) The mean whole-cell current at steady state 

Vi = NPZ50h, 

-100 nA = AT(0.005)(25 pS)(-50 - 50) mV, 

-100 x10 _ 9 A N = (0.005 x 25) x 10"12 S x ( -100 x lO"3) V 
= 8, ООО, ООО. 

(c) ^ ( - 1 0 0 mV) = NP^100)h 
= (8 x 106)(0.00025)(25 x 10 - 1 2) 

( - 1 0 0 - 5 0 ) 1 0 - 3 

= -7500 pA. 
W(OmV) = +8 x 106(0.091)(25 x 10"12) 

(-50) x 10"3 

= 9.1 x 105 pA. 

(d) cr2 = y2(V - Ei)2NPoo{l - Poo)-

V = -100 mV. 
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(25 x 1СГ12)2(-100 - 50)210"6 x 8 
xlO6 (0.00025) (0.99975) 

28,118 x 10 -24. 
167 x 10~12 A = 167 pA. 
(25 x 10~12)2(-50 - 50)210"6 x 8 

xlO6 x (0.005)(0.995) 
248750 X 10"24 A. 
498 x 10"12 A = 498 pA. 
(25 x 10_12)2(0 - 50)210-6 x 8 

xlO6 (0.091) (0.909) 
1,033,987.5 xlO"2 4 . 
1017 x Ю - 1 2 A = 1.017 pA. 

6. Single-channel gating transition is a "memoryless" Markov process 
because the lifetime of the channel in each state, once entered, is 
exponentially distributed. For an n-state channel, the pdf for the 
fc-th state is Pk(t) = For the two-state scheme, P i (0 = 
<xe~at, P2(t) = ре-Р1. 
Mathematically, a "memoryless" random process is defined as: 
Prob[lifetime at к state > t + ti \ lifetime at к state > ti]. 
= Prob [lifetime at к state > t]. 
It can be shown that exponential pdf is the only lifetime distribution 
that satisfies this "memoryless" definition. Since channel lifetime in 
each state follows exponential distribution, channel gating transi-
tion is a "memoryless" process, often called the Markov process. 

<r2(-100) = 

|cr| (—100) = 
<r2(-50) = 

o-(-500) = 
<72(0) = 

<r(0) = 

Chapter 10 

1. (a) At V = - 8 0 mV, 

ex = 2956 sec-1, 0 = 0.73 sec -1. 

' - a a \ ( -2956 2956 
Q-80 = ' 

P -P Ъ.7Ъ -0.73 
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At V = +20 mV, (x = 243 sec -1 , p = 109 sec"1. 

-243 243 
Q+20 = 

109 -109 

(b) V = - 8 0 mV, Pi(oo) = P 0.73 = 0.00025. 
<x + p 2956 + 0.73 

Ш = Ny(V - E)Pi(oo) 

= 10s • 20 x 10_12(S)(—80 - 50)Ю-3(V)(0.00025) 
= - 6 5 pA. 

108 
At V = +20 mV, Pi(oo) = = 0.31. 

243 + 109 

iH = 10s • 20 x 10-12(S)(20 - 50)10_3(V)(0.31) 
= -18.6 nA. 

(c) 
2 0 1 Г 

Vc (mV) 
- 8 0 J — 1 

-0.065 n 

- 1 8 . 6 -

/(nA) 

-80.6 -1 

т = 2.8 msec (т = 0.34 msec 

-1 1 1 
10 12 14 

time (msec) 

T ( -80 mV) = a + P 
1 

т(+20 mV) = 

2956 + 0.73 
0.34 msec. 

1 
243 + 109 
2.8 msec. 
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2. (a) Q 
- k 2 кг 

kixA -kixA 

each element is in sec - 1 

detQ = k2kiXA - kixAk2 = 0 

- 1 0 0 1 0 0 
2 - 2 

(b) T0pen — — 

T closed = 

1 
k2 100 sec-1 

1 1 

= 0.01 sec. 

= 0.5 sec. 
k\xA 2 sec - 1 

At steady state, the probability of the channel in open state: 
kixA 2 

Pl(oo) kiXA + k2 2 + 100 
in closed state: 

k2 100 
P2( oo) = 

kiXA + k2 2 + 100 

= 0.0196 = 1.96%; 

= 0.9804 = 98.04%. 

Therefore, the open time is about 2%; 
the closed time is about 98%. 

(c) 

Ц1 = y(V - ENa)Pi(o°) -N 
= 10 x 10 -12 S(-50 - 50) mV(0.02)10,000 
= - 2 x 10~10A. 

(d) 

<TN2 = Y2(V-£NA)2NPI(~)P2(OO) 

= (10 x 1(Г12 S)2 [ ( -50 - 50) mV]2 

(10,000) (0.02) (0.98) 
= 1.96 x l O - 2 2 A2, 

lajvl = 1.4 x 10 - 1 1 A noise. 
(e) 

/ (pA) 

ю-5м 
0 

On 

- 2 0 0 

] ~ L 

I 1 1 1 
0.00 0.02 0.04 0.06 

time (sec) 
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1 

kiXA + кг 
1 

0 + 100 
= 0.01 sec. 

(f) 

frequency (Hz) 

2щу(У-Ег)а _ 2my(V-Ei)k2 
( ' (a + 0)2 (klXA + k2)2 

2(-2 x 1Q~10)(1Q x 10~12)(-50 - 50) • 100 
(2 + 100)2 

= 3.84 x 10"21 A2 sec. 

f c = = 2тг(0.01) sec = 1 6 H z ' 

3. (a) In the presence of Ю - 4 M glutamate, Vm = - 4 0 mV, 

fci (-40) = 2000 e"1 = 736 sec -1 M"1, (к г х А = 0.0736 sec"1). 

fc2(-40) = e* = 2.71 sec"1. 

= ( -k2 кг \ ( -2.71 2.71 \ ^ 
\ kiXA -kiXA ) \ 0.0736 -0.0736 ) l S e C 

® P ' ( ° ° > " I S T T B • 2 .7I*+CK0736 " 0 0 2 6 = < " > » > 

" I D R T F E - 2 .71 2 : 7 O!O736 - ° - 9 7 4 " 9 7 ' 4 % ( С 1 О Т Я " 



Chapter 10 answers 603 

(с) At rest, the neuron is only permeable to K+, thus Vm = Ек = 
-80 mV, gK = ± = 10"7 S. In the presence of 10~4 M gluta-
mate, Vm = -40 mV. Therefore, 

дкЕк + gNaENa 
дк + дыа 

Vm = -40 mV = 

-40 mV = (дк/дыаН- 80 mV) + (+40 mV) 

дк/дма = 2. 

(дк/дма) +1 

Therefore, gNa = | l 0 " 7 S = 5 x 10"8 S 

N = gNa 5 x 10"8 S 50,000 
20 x 10 - 1 2 20 

= 2500 
YNa 

4. (a) See text. 
(b) The whole-cell IK and its activation curve are given below. 

VH = 0 

Vc = - 5 0 III 
Уоо 

- 8 0 - 4 0 0 

Vm (mV) 

The time course of the onset of IK follows a 2nd power function 
of a single exponential. 

k 2 IK(t) oc (l-e~t/T) . 

5. ENa = 58 log [Na+]out 

[Na+]m 
= 58 log 2 = 17.5 mV. 

Since fc+i and k_i are much faster than a and /J, the channel can be 
approximately described with a two-state transition scheme. 



604 Appendix D. Complete Solutions to Problems 

(a) 
[A] 

Vc = - 8 0 mV 
*.]J 

Vc = +50 mV-

(b) The approximate relaxation time constant т = 
(c) 

10000 
S(0) 

S(0)/2rk 
1000 

S(f) 
(A2 sec) 100 

1—I—J—I—•—I—I—I—r~i—I—| 
1 2 5 10 100 1000 10000 

frequency (Hz) 

6. (a) Q = 

-(100 + 50) 50 100 ^ 

5 - 5 0 

10 0 - 1 0 

- 1 5 0 - Л 50 100 

detQ - А/ = 5 - 5 - Л ' 0 = 0 

10 0 - 1 0 - Л 

-(150 + Л) (5 + Л)(10 + Л) + 1000(5 + Л) + 250(10 + Л) = 0. 

Л(Л2 + 165Л + 1050) = 0. 

Ai = 0. 
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-165 + V(165)2 - 4 • 1050 _ __ _x A2 = = -6.63 sec . 

-165 - V(165)2 - 4 • 1050 i r o , Л3 = ——Y = -158 sec . 

(b) Mean open lifetime = = По = 6.7 msec, 

mean blocked lifetime = ^ = I = 20° msec, 

mean closed lifetime = = ^ = 100 msec. 

<c) S ( f ) = S( 0) 

/ c i = Z ^ = M 3 = i.oeHz, 

fc2 — 

2тс 2tг 

-Лз 158 = 25 Hz. 

1 2 5 10 100 1000 

frequency (Hz) 

- f c - 3 к-з 0 0 

fe3 - ( feB + fc-2) k-2 0 
0 k2 -(.k2 + k-i) fe-i 
0 0 ki - f c i 

(b) Mean lifetimes of the channel in each state: 
1 
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T2 = 

T3 = 

T4 = 

8. (a) Q = 

1 
кз + Ь г ' 

1 

к2 + к_Г 

JL_ 
кГ 

( -(300 + 50) 50 300 
50 -50 0 

100 0 - 1 0 0 

-350 50 
50 -50 

100 

300 
0 

0 - 1 0 0 

det |Q-AI | = 
- 3 5 0 - A 50 

50 - 5 0 - A 
100 0 

300 
0 

- 1 0 0 - A 
= 0 

-(350 + A)(50 + A)(100 + A) + (100)(50 + A)(300) 
+ (100 + A)(50)(50) = 0. 

-(350 x 50 x 100 + 57,500Л + 500Л2 + A3) 
+1,500,000 + 30,000A + 250, ООО + 2,500A = 0. 

A3 + 500Л2 + 25,OOOA = 0. 

A(A2 + 500A +25,000) =0 . 

A = 0. 

-500±V(500)2 - 4 x 2 5 , 0 0 0 -500±390 - 5 5 A = -445 

Eigenvalues: Ai =0, A2 = -55 sec-1, Аз = -445 sec -1 

(b) Ti = — y—• — oo does not exist. 
Ai 

t 2 = = 0.0182 sec = 18.2 msec. 

t 3 = = 0.0022 sec = 2.2 msec. 445 

fc2 * 2TTT2 
= 8.75 Hz. 

fc3 — 2ТГТЗ = 70.9 Hz. 
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S(f) 

(A2 sec) 

9. (a) 

У = 

fc = 70.9 

frequency (Hz) 

-20 pA 
(V-Et) ( - 4 0 - 10) mV 

= 0.4 nS. 

(b) At Vm = +60, 

1000 

h = y(V — Ei) = (0.4 nS)[(60 — 10) mV] 
= 0.4 x 50(10-9 • 10"3 S • V) 
= 20 pA. 

(c) Mean open lifetime 
1 

a + kBxB 

= -^ (3 + 2 + 5 + 2 + 5 + 6 + 3 + 2 + 5 
18 

+8 + 3 + 5 + 2 + 2 + 3 + 4 + 5 + 3)(100 msec) 
= 3.78 x 100 msec. 

Mean blocked lifetime (gap with a burst) 

= = -^-(4 + 8 + 5+ 5 + 3 + 3+ 7 + 2 + 4 +5 K-B 15 
+3 + 5 + 5 + 11 + 5)(100 msec) 

= 5 x 100 msec. 
Mean closed lifetime (gap between bursts) 

I 
P 
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= | ( 3 5 -h 35) 
= 35 x 100 msec. 

Mean open time per burst 
1 
a 

= | (23 + 21 + 24) (100 msec) = 22.7 x 100 msec. 

a = 0.0044 sec"1. 
P = 0.0029 sec"1. 

kBXB = 0.022 sec"1. 
к-в = 0.02 sec"1. 

V=-40 mV 

V=+60 mV ' - „ " [ м и ш ш ш и л 
I I I I I 

0 5 10 15 20 
time (msec) 

10. (a) Macroscopic current: relaxation time constant т = Sum 
of five channels: т = 

(b) The macroscopic current relaxation involves N channels opened 
and closed at random intervals with decreasing open probabil-
ities with respect to time, i.e., 

i ш 
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Since individual channels undergo both opening and closing 
transitions (a and /J), according to rule 6, т = 
The five channels in figure 10.4C are in special situations: (1) 
they all are in open state at t = 0 (synchronized), and (2) once 
they are closed, they never open again. Therefore, the relax-
ation of the ensemble of these channels involves transition from 
open to closed (oc) but not vice versa (/}). Thus т = which 
is equivalent to the time constant of the open time distribution 
function. 

11. See graph for answers to (a), (b), and (c). 

V 
+70 mV-

+50 
0 

-50 

2 7 
1.5 1 

9 

7 F V 
9̂5 II 7T 

-70 
0.5 0.5 0.5 

2 pA 

0.15 [_ 

10 msec 
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1 /a l/P a P a+B 
1.5 3.7 666 272 0.29 

1.17 6.25 857 160 0.16 
0.83 6.5 1200 154 0.11 
0.5 8.5 2000 118 0.056 

0.25 8.5 400 118 0.029 
Pi (oo) a t - 3 0 m V = 0 . 0 8 

l 1 1 1 1 
- 8 0 - 4 0 0 40 80 

Vh 

- 8 0 

y = ( 5 5 ^ v = 28pS 

(d) щ = NPih = NPiy(V - E) E = 8 mV, т = 

+70 m = 
+50 hi = 

0 Щ = 
- 5 0 ju/ = 
- 7 0 m = 

104(0.29)28(62) 
104(0.16)28(42) 
104(0.11)28(-8) 
104(0.056)28(-58) 
104(0.029)28(-78) 

5.03 nA, 
1.88 nA, 

-0.25 nA, 
-0.91 nA, 
-0.63 nA. 
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5 .03 - i 

/(nA) 

0 J 

_ Л 

12. (a) 

/ -150 100 50 \ 
Q = 10 -10 0 

V 5 0 - 5 / 

det(Q - AI) = 0 

- 1 5 0 - Л 100 50 
10 - 1 0 - Л 0 
5 0 - 5 - Л 

= -(150 + Л)(10 + Л)(5 + А) + (5) (50) (10 +Л) +1000(5 +Л) 
Ai = О, 
Лг = -6.5 sec-1, 
Л3 = -158 sec -1. 

(b) Mean open lifetime should follow exponential pdf. 
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frequency (Hz) 

13. (a) 

OC4I1I2 loop : ki x 25 x 50 x 10 = 50 x 50 x 50 x 10. 
ki = 100 (sec"1). 

OC4C3I1I2 loop : 100 x 10 x 20 x 50 x 10 = 50 x 50 
xk2 x 20 x 10. 

k2 = 20 (sec -1). 

(b) 
-150 100 0 0 0 0 50 

10 - 4 5 10 0 0 25 0 
0 20 - 8 0 40 0 20 0 
0 0 30 - 5 0 20 0 0 
0 0 0 40 - 4 0 0 0 
0 50 20 0 0 -120 50 
10 0 0 0 0 50 - 6 0 
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(c) т = — = —~г = 6.67 msec. <l\\ 150 
(d) In pronase, Ii and I2 disappear. qu = fci = 100 sec-1, т = 

хщ = 10 msec. 
14- (a) 

Ш = Npy(V - E) = 105(0.2 - 0)(20 pS)(-40 - 20) mV 
= -24 nA 

(b) From the figure: 

fci = 10 sec"1 - Ai = -62.8 see"1, 

fc2 = 200 sec"1 Л2 = -1257 sec"1, 

T\ = 15.9 msec, 

T2 = 0.8 msec. 
10-41 

[A] (M) 
0 J J 

0 

/(nA) 

- 2 4 1 1 1 1 1 1 
0 10 20 30 40 50 

time (msec) 

(c) fc_1 = 1000 sec-1, fci = 100 sec"1. 

I Ai + A2| = 163 + 12571 = 1320 sec"1 = a + j3 + к_ ь 

a = 10 therefore, a = 290 sec"1; 0 = 29 sec. 

-a a 0 " " -290 290 0 
Q = fi -(/? + k-i) k-i = 29 -1029 100 

0 fci -fci 0 100 -100 

1 
2 3 0 4 0 5 

2 OCm ~(AM + 2PM+2PH) 2 Pm 0 л 
3 0 2AM ~(2AM + Pm) Pm 0 
4 0 0 3 a m "3 (Xm 0 
5 AH AH 0 0 - 2 ( x h 
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(b) Mean open lifetime = ^ = щ ^ щ = (3xlooo!ioo) 
= 0.00032 sec = 0.32 msec. 

(c) IN = NPh = NPy(V - ENa), 

- 2 nA = 10,000 P (lOOpS) (0 - 50) mV. 

- 2 x 10~9A 
10,000 x 100 x 10"12 S(-50) x 10"3 V 
- 2 x 1Q-9 A 
- 5 xlO" 8 A 

= 0.04. 

Chapter 11 

1. For binomial model, 

Nn' 

For failures, N0 = N( 1 - p)n, or $ = (1 - p)n, and 

ln(N0/AO = n • ln(l - p). 

Remember m = np, so ln(A/o/JV) = (m/p) ln(l - p), and 

For variance, a 2 = m( l - p), 

CV = aim or CV2 = a2/m2 = —-,and m 

m = (1 - p)/CV2. 

2. (a) No = Ne~m 

= 500 e"5 

= 3.37 (3 or 4 failures). 
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(b) N = Nm2e~m 

2! 

(500)(25)g~5 

2 

= 42.1 (approximately 42 observations). 

3. limPn(k) = lim n ! pk(l-p)n~k 
n-oo n-oofe!(n-k)! 

= lim — — p k ( l - p ) n k 
n-oo k\(n-k)\ 

= lim — - p)n~k = lim -— (1 - m/n)n. n-00 fe! n-oo fe! 

Л m\w , n ( m \ n ( n - 1 ) ( m \ 
l 1 - - ^ ) = 1 - i i ( » ) + — ( » 

Expand (1 - m/n)n in a series: 

n (m\ t n ( n - l ) (m\2 

) 
n(n - 1 )(n - 2) / m \ 3 

3! \ n / + ' ' ' ' 
As n — 00, 

Л ш \ п m2 ж 3 
1 - l - m + — — =e m . 

\ n J 2! 3! 

Substitute e~m for (1 - m/n)n in above, and 
£ 

l im n _oo binomial = = Poisson. 
(a) From table, mean amplitude = 1.0 mV. 
(b) From table, 

9 intervals at 0.5 ms 
8 intervals at 1.0 ms 
7 intervals at 1.5 ms 
6 intervals at 2.0 ms 
5 intervals at 2.5 ms 
5 intervals at 3.0 ms 
4 intervals at 3.5 ms 
2 intervals at 6.0 ms. 

Construct a histogram from the above table. A plot of log(histogram) 
vs. t results in a straight Une so mEPPS are independent 

(c) From semilog plot in (b), calculate the slope of the straight line. 
From text fi(t) = re~rt, so 
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10ё(У2/У\) 

0.434(^2 ~ h ) 
5. (a) See figure below. 

= 0.27/sec. 

6 

4 -

2 -

0 
0.1 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 

(b) Direct method: m = ^ = 1.21. 
Failures method: m = ln(N/N0) = ln(25/7) = 1.27. 

2 0 0 ( 1 24)3e~1-24 

(c) N3 = 3 2 . I = 18.4 (or 18 times). 

6. From table, mean EPC = 0.84 nA. 

(b) From text, CV = сг/mean. From list of EPCs, 

a = = ( Z(epp-mean epp)2 1 / 2 

17 

= 0.35 

CV = 0.35/0.84 = 0.42. 

1 m = = 5.8. 
CV 2 

(c) N0 = Ne~m 

= 1000 e~5 S = 3. 

(d) (1) Noise level too high. 
(2) Release not Poisson. 
(3) Too few trials. 

7. (a) Presynaptic because (1) no change in amplitude, and (2) then1 

was a doubling in the frequency of mEPSCs. 

(b) m (before) = ^ = 3.33. 
0 .6 
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m (LTP) = ^ = 5.0. 
0.6 

(c) m = np. 

Before: 3.33 = 500(p) so p = 0.0067. 

During LTP: p = 5.0/500 = 0.01. 

(d) For Poisson: 

m = ln(N/N0) or e~m = ^ and N0 = Ne~m. 

1 =Ne~333, and 

N = 28.02 (or 29 before). 

N = e+5'° = 148.4 (or 149 during LTP). 

For binomial: 

ln(Np/N) = p_ 
l n ( l - p ) m' 

No N = 

8. 

(1 _ p)m/p 

= 28.34 (or 29 before) 
= 152.2 (or 153 during LTP). 

Yes, depends on statistic, although both are close in this case. 
Binomial is better at higher release rates (i.e., during LTP m is 
larger so binomial should be used). 

P(l , t + At) = P(0,t) - P d . A t ) 
= e~rt • rAt. 

.. P(l , t + At) dP(l,t) e~n-rAt pdf = lim — = — t t — = — At—о At dt At 
= re~rt. 

9. (a) Mean mEPSP = 0.6 mV; cr =0.18. 
(b) Mean EPSP = 1.46 mV; cr =0.93. 
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(С) Ш/ = ln(14/l) = 2.6. 
m d = 1.46/0.6 = 2.4. 

m c v (сг/mean)2 2 ' 5 ' 
Nonlinear summation a factor for md and mcv-

(d) Use ma = 2.4 = np. 

p = 2.4/10 = 0.24. 

No = 1.55 (or 1 to 2 failures). 

10. The equation is 

EPSP(t)-EPSPo л , п , = Aexp(-t/10) +Pexp(-t /60), 
EPSPo 

where A = P = 1. This is obtained by plotting EPSP
p̂
)
Sp^PSP° vs. time on 

semilog paper and "peeling" exponentials to obtain time constants 
of 10 and 60 sec and the coefficients A and P. 

Chapter 12 

1. Refer to text. 
2. Refer to text. 
3. (a) Im s Vi-V2, refer to text. Iciamp includes Im but also the current 

flow in the other direction from the synapse and the transmem-
brane current between /ciamp and V2. 

(b) Slow onset to ICA\ nonlinear relationship between ICA and EPSP; 
delay in EPSC during Ica\ off response bigger than on response; 
short delay from tail current to EPSC. 
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Chapter 13 

1- (a) See the figure below. 

2. 

(b) Add graphically from the figure above, or 

GT = Gi + GE = 120 nS. 

Ej = GJEJ + GEEE 
GT 

= - 5 8 mV. 

Because ET is negative to threshold the response is inhibitory. 
(a) Decay is exponential with time constant of 17.4 min. 
(b) Gs for control and MTP is 37.5 nS. 

Es for control is -22 mV. 
Es for MTP is +20 mV. 

(c) Slope = GK%Na • Control slope = 0.5. 
GK + GNa = 37.5 nS (from (b)). 
GK = (0.5)(37.5) = 18.8 nS. 
GNa = 18.8 nS. 
GK/GNU = 1 during control. 
MTP slope = 0.23. 
Gk = (0.23)(37.5) = 8.6 nS. 
GNa = 37.5 - 8.6 = 28.9 nS. 
GK/Gnu = = 0.3. 
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(d) MTP is caused by a change in the reversal potential in depo-
larizing direction due to a decrease in the permeability of the 
channel to K+ ions and an increase in permeability to Na+ ions. 
Mechanism is postsynaptic. 

3. (a) Eci = -58log 15 = - 6 8 mV. 
У _ GKEK + GNAENA + GgEci 

GK + GMCI + Gci 
(-100)(1) + (50H0.8) + (—68) (15) 

1 + 0.8 + 15 
-100 + 4 0 - 1020 _ 

= 16Л = -64.3 mV. 

(b) i. Synaptic current evoked by transmitter A: 
AIA = AGNA(VM-ENA) 

= (0.02 S/cm2)(-64.3 - 50) mV 
= -2.3 mA/cm2. 

ii. by transmitter B: 
AIB = AGK(VM-EK) 

= (-0.02 S/cm2)(-64.3 + 100) mV 
= -0.7 mA/cm2. 

iii. by transmitters A + B: 
AI = AIA+AIB = (-2.3 mA-0.7 mA)/cm2 = -3.0 mA/cm2. 

(c) Reversal potential for stimuli: 
i. Vrev = Ема = +50 mV. 

ii. VREV = EK = - 1 0 0 m V . 
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iii. Vrev does not exist. 
4. (a) Reversal potentials: A = -5 mV; В = -40 mV; С = -70 mV; D = 

-60 mV. 
(b) A: Conductance increase because when VM > VREV, AV is hy-

perpolarizing, which leads to Д/outward or AI is positive. AG = 
rr-^i— is therefore also positive. 
B: Conductance decrease, similar argument as A. 
C: Conductance decrease 
D: Conductance increase 

5. (a) GS = 100 nS. VREV = -20 mV from resting. (Obtained from plot 
of peak synaptic current vs. holding potential.) 

(b) Inhibitory 
(c) RN = 30 MQ. (Obtained from plot of holding current vs. holding 

potential.) 
Tw ^ 44 msec. (Obtained from the time to 37% of I peak.) 
No. 
The synapse is electrotonically remote from recording site. 

(d) 
(e) 
(f) 

6. (a) A: Ga = 1 nA 
20 mV 
3 nA 

= 50 nS; Vrev = 0 mV. 

(b) 
(c) 

(d) 
(e) 
(f) 

7. (a) 

B: gB = W M = 7 5 nS> = -60 mV. 
A = excitatory; В = inhibitory. 
No. 
Vrev = -36 mV; Ga+B = 125 nS; excitatory. 
Conductance increase. 
Excitatory. 
Slope = AGNA. VREV = +50 mV. 

AI (nA) 
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(B) E = A GKEK + A GNAENA 
S A GK + A GNA 

AGNAEK + ENG) 
2Д GNA 

EK + ENA _ - 90 + 50 
2 " 2 

It is therefore an EPSP. 

= - 2 0 mV. 

(c) AGNA(10EK + ENA) 

11A GNA 

-900 + 50 
11 = -77.3 mV. 

It is therefore an IPSP. 
2 nA 

8. (a) GSXY = t ^ t—r ; = 0.02 x 10~6 = 20 nS. Sx-y 100 mV 
GS 

GS + GR 

20 
20 + 10 

ES (from rest). 

ES = 67 mV (from rest) 

or - 33 mV from zero. If X and Y use same channels), ESUm is 
the same for X alone, Y alone, or with X and Y together. Also, 
Id = 2 nA for X alone, Y alone, or with X and Y together. 

(b) If X and Y use different channels, then for X alone, Y alone, 
same as above. But for X + Y, 

20 + 20 

Esum = 4 o 7 i o £ * = 80 MV (FROMREST)' 

or -20 mV from zero. Also, 

ICIX+Y = 2 + 2 = 4 n A . 

JSx 
JSy Grest = 10 nS 

- 1 0 0 mV 
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(a) 

(b) 

GxEx + GrEr 
Gx + Gr 

20(0) + lO(-lOO) 
30 

= - 3 3 mV. 

GxEx + GyEy + GrEr 
Gx + Gy + Gr 

20(0) + 20(20) + 10(-100) 

(a) From graphs, 
Before 

50 

During Drug X 

= - 2 0 mV. 

Gs = 2.5 nS 
Vrev = 91 mV 
RN = 226 MQ 

3.2 nS 
76 mV 

636 MQ. 

(b) A = obtain Rm from Tw assuming Cm = 1 ^/F/cm2. 

Before During 
Ai = 0.12 cm 
Л2 = 0.1 
A3 = 0.08 

0.23 cm 
0.18 
0.14 

(c) Rm, Ru and Cm are constants (and uniform), soma isopotential, 
'radial = 'external = 0, passive, nontapering, all terminate same 
(open or sealed), all at same I , 3/2 power rule, Vm constant at 
t = 0. 

£ = i l + i l + i l . 
Ai Л2 A3 

Before: L = 0.8; after: L = 0.43. x = f e -

Before: X = 0.65; after: X = 0.35. 
(d) Es = Vr 

cosh(I - X) 

= 90 mV 
cosh I 

cosh(0.8 - 0.65) 

= 76 

cosh(0.8) 
cosh(0.65 - 0.35) 

cosh(0.65) 

= 70 mV (before) 

= 70 mV (after). 

Drug X does not appear to change synaptic equilibrium poten-
tial. It alters the apparent reversal potential by changing the 
electrotonic distance of the synapse from recording site. 
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(e) Drux X can alter the apparent Gs by changing the electrotonic 
distance of synapse to recording site. One would measure more 
(or less) synaptic current for a given voltage change depending 
on the "remoteness" of synapse. 

10. See figure below. It is likely to be excitatory. 

\ Г 0,4 

\ - 0.3 

\ h 0.2 
0.1 

0.0 / (nA) 

0.1 

\ - -0 .2 

\ - -0 .3 

\ L - 0 . 4 

11. Two possibilities are: 

(a) Part of the EPSP is due to activation of NMDA receptors. Hy-
perpolarization reduces the NMDA response, making the EPSP 
smaller. This can be tested by using APV, 0 Mg2+, or, under 
voltage clamp, measuring the chord conductance as a function 
of membrane potential. 

(b) The input resistance of the neuron decreases with hyperpolar-
ization, making the EPSP smaller. This could be due to some 
type of anomalous rectification. Test by trying to block AR with 
external Cs+ or Ba2+ or by measuring the I-V curve of the syn-
aptic response under voltage clamp. 

(c) At the resting potential the EPSP may be activating a voltage-
gated inward current (e.g., INU(SIOW) or Icam) that contributes 
to its amplitude. When the neuron is hyperpolarized, the EPSP 
may be below the activation range for these inward currents, 
and this would reduce its apparent amplitude. 

12. (a) See the figure below. 
(b) GSA+B = 1 0 + 2 0 = 3 0 nS; ESA+R = - 6 7 m V ; RN = 2 5 М П . 

V (mV) 
I 1 Г 

-140 - 1 2 0 - 1 0 0 
~l 1 1 Г 
30 - 6 0 - 4 0 - 2 0 
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0.8 

0.6 

0.4 
0.2 

0.0 I (nA) 
-0.2 

-0.4 
-0.6 

-0.8 

(c) At 1 msec: GA = (peak GA) while GB = (1/3)- (peak GB)\ at 
3 msec: GA = (e~2/4)- (peak GA)= 0.6 (peak GA) while GB = 
(peak GB)\ at 6 msec: GA = (e"5/4)- (peak GA) = 0.3 (peak GA) 
while GB = (e~3110)' (peak GB) = 0.6 (peak GB), so 
I s ( l msec) = GA(Vm-ESA) + GB/3(Vm-EsB), 
IS(3 msec) = 0.6 GA(VM - ESA) + GB(VM - ESB), 

/5(6 msec) = 0.3 GA(VM - ESA) + 0.6GB(VW - £,B). 
Calculate and plot I-V curves according to above equations. 

-0.6 

- - 0 . 8 

13. (a) Slope resistance at rest = ^ ^ = 100 MQ. Slope conductance 
= 1 x 10"8 S. During transmitter X, 

Gslope = 2.2 X 10"8 S. 

(b) Conductance increase response. 
(c) Inward current at -70 mV so Vrev is depolarized from rest 

Whether excitatory or inhibitory depends on Vth-

0.8 

0.6 

0.4 
0.2 

0.0 / (nA) 
-0 .2 

-0.4 

10 mV Л/ГО 

* s l o p e = 0 2 2 1 Й = 4 5 
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14. RdenEs 100 
1600 A 

= 4.4 mV from rest or - 66 mV 
^den + Rsp + Rs 

Vsh = Rden + R sp Es = 600 
1600 4 1600 ' 

= 26 mV from rest or - 44 mV. 

(b) See figure below. 

Vden Rsp/2 Rsp/2 = 2 5 0 M D 
>ЛЛЛ 

1 Gfi 

Combine Rden (i.e., 100 MQ) in series with the Rsp/ 2 on the left 
and then combine this equivalent resistance (i.e., 350 MQ) in 
parallel with 200 MQ. This leads to an equivalent resistance of 
120 Mfi in series with Rsp/2 on the right. 

= 120 + 250 
s h 1000+ 120 + 250 5 

370 = = 18.9 mV from rest or - 51.1 mV. 

For Vden use Kirchhoffs current law and then voltage divider 
equation. 
V/ Vi — Vden _ 70 —Vi 

200 250 1250 ' 
Vi - Vden 100 = Vden, 250 

V/ = 3.5 Vden, 

3.5 Vden 2.5 Vden 70- 3.5 Vden 
200 250 1250 

Vden = 1.8 mV from rest or - 68.2 mV. 
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Chapter 14 

1. (a) Sink; active; negative. 
(b) Membrane current; slope is less contaminated by other events 

than peak; peak current. 
(c) Make measurements at fixed distances along a laminar profile 

and take second spatial derivative. See text for details. 
2. (a) A = active source with positive-going waveform. В = passive sink 

with negative-going waveform. Intracellular response is hyper-
polarizing. Extracellular response is positive-going with faster 
time course (faster rise and decay) that the intracellular signal, 
because field potential is proportional to membrane current. 

(b) A = active sink. В = passive source. 

(a) and (b) 
From diagram, I = . During control: 

Gl+Ksp 

Gs (non-NMDA) = 10 x 10"9 S; ± = 108 Q; and Rsp = 100 x 
106 Q. 
So> 7non-NMDA = ( - Ю У = ~ 0 - 3 5 ^ <Le- a n cur 
rent). 
Also, Gs (NMDA) = 10"9 S; ± = 109 Q. 

Chapter 15 

1. See figure below. 

v v 
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So, 
JNMDA = Г о 7 « = - ° - 0 6 4 nA. 
During LTP: 
Rsp = 50 x 106 fi. 
So, 

-70 mV . 
'non-NMDA = iq8 + 0.5 x 108 = ~ ' 

(c) NMDA shows very little change during LTP (0.063 to 0.067 = 
6% increase), while the non-NMDA shows a big increase (0.35 
to 0.47 = 34% increase). Changes in spine neck resistance can 
therefore differentially increase the component with a conduc-
tance that closely matches the spine neck conductance, even 
though there is no change in synaptic conductance. 

2. (a) through (g) Devise experiments and make up results. All directly 
from text. 

3. (a) There should be no change in EPSC amplitude; under voltage 
clamp, there should be no change in potential and, therefore, 
no activation of voltage-gated Ca2+ channels. 

(b) There should be no change in the I-V curve before and after 
tetanus. 

and 

'NMDA 109 + 0.5 x 108 
-70 mV -0.067 nA. 

200 - i 

potential (mV) 

synaptic 
current 

(pA) 

20 



Chapter 10 answers 629 

(с) The single-channel conductance is 14 pS before and after tetanus. 

potential (mV) 
i г 

-60 -40 
- 0 . 6 

- - 0 . 8 

- -1.0 unitary 
current 

h -1.2 (PA) 
- -1.4 
- - 1 . 6 

(d) See figure below. 

normalized 
chord 

conductance 

I I г 
-60 -40 -20 

potential (mV) 

(e) Yes, the activation curve is shifted to the left, such that a smaller 
depolarization will cause greater influx of Ca2+ and produce a 
greater depolarization leading to potentiation of the postsynap-
tic response. 

(f) LTP will be observed only between membrane potentials of - 70 mV 
and -20 mV. At membrane potentials less than -70 mV, a 10-
15 mV EPSP will not activate a signficant Ca2+ current. If the 
membrane potential is above -20 mV, almost all Ca2+ channels 
will have been activated and, with time, will inactivate to some 
extent such that LTP will not be observed. 

4. У vector is 001011. 
5. (a) EPSP LTP. 

(b) E-S potentiation. 
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Appendix A 

1. (a) Capacitors in series (refer to figure below) 

IT 
CiZ^ 

C2== 

ir = i\ = i2. 

Vi = V1+V2 = -^jiTdt 

= k\h d t +~k\h d t 

h\ i T d t = (;k+h)l iTd t• 
so — = — + — 

Cr Ci C2 ' 
(b) Capacitors in parallel 

Vt = Vi = V2. 

h = ii + ii = Cr 

Cr 
so Cr 

dVi 
dt 

rdV, dV2 

= Cx + C2. 
2. Given 

EI - HRX - (H + I2)R3 = 0, 

E2 - I2R2 ~ ( J i + / г Ж з = 0 , 

and 

V3 = (/i +/2)i?3, 
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a brute-force method of solution is: 
£l =/!(/?! + R3) +12 Ш, 
E2 = h(R3) + I2(R2 + R3), 
Vi=h(R3)+h(R3), 
then I2 = 

and h = £ ' - f y 4 

V3 = I1R3 + Ei - h(Ri + R3) 

= h(R3 - Ri - R3) + Ei 

= £1- /1^1. 

h = Ъ ' 

/ _ (Ri + R3)(R2 + R3)\ = ft _ (i?2 +Я3) 
l Я32 У ^з Я3

2 Ь 

/R3
2-RiR2 - R2R3 - RiR3 - R3* \ - (K2 + Кз)£1 

Л = 

«з ' У i V 

(R2 + R3)Ei - R3E2 

RiR2 + R2R3 + RiR3 

= rRi(R2+R3)E! -RiR3E21 
3 1 L RiR2 + R2R3 + RiR3 J 

EiRIR2 + EIR2R3 + EIRIR3 - RtR2Ei - RjR3Ei + RIR3E2 

J?iJ?2 + R2R3 + R1R3 
Ei(R2R3) +E2(RXR3) 
RiR2 + R2R3 + Д1Я3 ' 

A simpler method is: 

Ei - V3 i E2 - V3 _ V3 

Ri R2 R3' 
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t + _ R^EjRz + EzRi) 
3 Ж + Т 2

+ Т 3 R1R2 + R1R3 + R2R3' 

3. Vi = I(Ri + R2) or I = 

Vi 

Vi 

4. From circuit diagram: 

h=h+ h 
h = h 
VI - HRI - I3R3 = 0 
V2 - I2R4 = 0 
I2R2 + I2R4 ~ I3R3 = 0 . 

(R1+R2) 

R2. 

Solve 

Vi = (I2 + h)Ri + I3R3 
I2R2 + I2R4 

= (/2 + 

= h(Ri + 

V2 = I2R4. 

R3 
R2R1 R4R1 

R3 

I2R2 + I2R4 

+ R2 + i?4 j . 
R3 

V2/V1 = R3R4 
R4(Ri + R3) + R3(Ri + R2) + R1R2' 

5. Derivation for noninverter: 
V0 = i(Rf + Rm) = A(Vi - Vi), and Vi = iRia, where Vi is the voltage 
at the negative input. 

(a) Easy derivation: 

A is large, so ^ = Vi - Vi ~ 0, 

so Vi ~ Vi. 

Vi (Rf + Rm) 
V0 = i(Rf + Kin) = -^(Rf + Rtn) = V, \ 
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(b) Harder derivation (but not much): 

Kin 
V f - л 

v„ 
(Rf + Rm) 

Rin 
AVj -V0 (Rf + Rin) 

Л Rin 

v .. „ (Rf + Rin) lim V„ = Vi . A-oo Kin 

6. (a) V0 = (Vc - Vm)Rf/Rta, 

Vm = V0- IdRa, 

Vm=Rf/Rin(Vc-Vm)-IclRa, 

Vm + -^-Vm - jr-Vc - IciRa, and 

V IclRg 
V m ~ l + *L i 

(b) With values given: 

Rf/Rln = 100, 

Id = Im = Vm/Rm = = 5 X 10"9 A, 

, , 100.. (5 x 10~9 Д)(107 Q) 
8 0 5 0 m V = To! c Toi • 

50.5 mV = 100VC - 5 x Ю - 2 V, and 

Vc = 51 mV. 

7. Sawtooth changes 10 mV from 0 to 100 msec; 

i = CdV/dt = (10-6)(10mV/100 msec) 
= 10~7 A for 0 < t < 100 msec. 

Sawtooth changes - 1 0 mV from 100 msec to 200 msec, 

i = CdV/dt = (10"6)(-10mV/100 msec) 
= -10" 7 A for 100 < t < 200 msec. 



634 Appendix D. Complete Solutions to Problems 

Measured current will be a square wave from 0 to 10~7 A for 100 msec 
and then to - 1 0 - 7 A for the next 100 msec, and so forth. 

8. At steady-state: 

Vc - IdRs ~ IciRn = Ei = 0, 

so 

Icl 

Vm 

- 1 0 mV 

Vc 

Vc 
RS + RN 

ICIRN + ET 
Vc n 

r7TR^Rn-
,/ 1 0 0 
V c , i 3 0 - o r 

- 1 3 mV. 

At steady state, 

— 13x1 
V0 - Vc = IdRf = 1 3 0 x l Q 6 x 109, and 

Vo = -113 mV. 

(b) For Rs = 106 Ci, 

V . . 

= 0 .099-0.00099-0.001 
= 97 mV. 

For .R$ = 20 x 106 D, 
Vm = 0 .099-0.00099-0.02 

= 78 mV. 
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electric potential, 11 
electrical conductivity, 11 
electrical coupling, asymmetrical, 393 
electrical synapses, 288 

electrophysiological properties, 392 
properties, 394 

electrical transmission 

physiological tests, 395 
electrochemical equilibrium, 20 
electroencephalographic recordings, 423 
electrogenic pumps, 32 
electromagnetic spectrum, 515 
electromotive force, 486 
electrotonic, 59 
electrotonic distance, definition, 76 
electrotonic length, definition, 76 
electrotonically compact, 97 
electrotonus, 59 
EMF, 486 
endocytosis, 291 
endplate current decay, voltage depen-

dency, 374 
energy barrier model, 124 

multiple, 127 
single, 124 

ensemble average, 220 
ephaptic coupling, 395 
epifluorescence, 526 
EPSC, 364 
EPSP, 99 
EPSP, population, 432 
equilibrium potential, 

errors, 373 
excitatory synapse, 367 
inhibitory synapse, 367 

equivalent circuit, 39 
equivalent circuit representation, 39 
error function, 67 
error function, complementary, 67 
excitation filter, 526 
excitatory postsynaptic potential (EPSP), 

99 
excitatory synapse, definition, 361 
excitotoxicity, 383 
exocytosis, 291, 347 
expected value, 231 
expression of LTP, 445 
extracellular field potentials, 423 
extracellular space, 423 
Eyring rate theory, 124, 378 
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facilitation, 309, 337, 343 
quantal analysis of, 311 

factor of asymmetry, 133 
Faraday, 487 
Faraday's constant, 15 
feedback loop, voltage clamp, 509 
feedback resistor, patch clamp, 510 
fiber volley, 434 
Fick's law, 10 
fidelity, 485 
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field potentials, 395 
electrical, 7 
semiquantitative analysis, 430 

filters, electrical, 495 
finite cable, 

definition, 75 
open circuit, 76 
open end, 76 
sealed end, 76 
short circuit, 76 
steady-state solution, 78 

first law of thermodynamics, 490 
first order response, 499 
first-order reaction, 131 
fluorescence, 532 
fluorescent indicators, 532 
fluorophore, 530 
focal length, 518 
follower, 507 
follower amplifier, 502 
forcing functions, 496 
Fourier transform, 235 
fourth power relationship, 327 
frame grabber, 527 
frame rate, 527 
frequency domain, 234 
frequency response, 485 
functional diversity of membrane cur-

rents, 183 
fura-2, 533 
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GABA, 346, 367 
GABA channels, 220 
GABA synapses, 

location, 56 
gamma distribution, 298 
gamma function, 298 
у subunits, 218 
gap junctions, 1, 287, 392 
gas constant, 15 
gate, 4 
gate model, 122, 130, 150 
gating charges, 130 
gating current, 161, 163, 165,167, 169 

blockers, 165 
gating particles, 130, 149, 161 
gating variables, 149, 150 
Gauss's law, 13 
Gaussian, 303 
Gaussian (Normal) distribution, 237, 298 
genetic knockout experiments, 469 
GHK current equation, 28, 123 

calcium currents, 192 
GHK voltage equation, 30 

glutamate channels, 367 
glutamate receptors, 

NMDA, 373, 382 
non-NMDA, 382 

glycine, 367 
Goldman, D. E., 24 
Goldman-Hodgkin-Katz (GHK) model, 26 
graded potentials, 143 
gray levels, 528 
ground, 504 

H 
h, 150 
H. M., 467 
habituation, 465 
half width, 101, 381 
headstage, 502 
Hebb rule, 454 
Hebb, D. O., 454 
heteroassociative network, 472 
heterosynaptic facilitation, 467 
heterosynaptic LTP, 449 
high threshold calcium current, 

L, 193 
N, 196 
P, 196 

high-pass filter, 495 
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Hines, M., 398 
hippocampal neurons, 
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hippocampal slice, 433, 434 
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memory, 468 
open field, 432 
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Hodgkin and Huxley equations, 153, 396 
Hodgkin and Huxley's model, 130, 149 
Hodgkin and Katz, 24 
Hodgkin and Rushton, 67 
Hoffman modulation contrast, 525 
holding current, 364 
holding potential, 364 
holding voltage, 144 
homosynaptic depression, 467 
homosynaptic LTP, 449 
human brain, 1 
hydrolysis, neurotransmitter, 358 
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hyperbolic sine, 76 
hyperpolarization activated currents, 200 
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I-V curve, 488 
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identity matrix, 253 
illumination, 

Kohler, 524 
Rheinberg differential color, 525 
source focus, 524 

immobilization, 166 
impedance, 493 
impedance buffer, 507 
impedance matching, 87 
induction of LTP, 445 
infinitesimal matrix, 253 
influx, 28 
inhibition, 
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subtractive type, 363 

inhibitory synapse, definition, 361 
input conductance, 

infinite cable, 69 
semi-infinite cable, 70 

input impedance, 494 
input resistance, 494 

definition, 62 
infinite cable, 68 
semi-infinite cable, 70 

input-output curve, 447 
instantaneous chord conductance, 44 
instantaneous conductance, 43 
instantaneous current-voltage relation, 44, 
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instrumental conditioning, 467 
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integrating synapse, 313 
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interference contrast, 525 
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ion distribution, 17 
ionic conductances, 46 
ionotropic receptors, 390 
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IPSP, 361 
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isopotential, 60 
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K + channels, 145 
kainic acid receptors, 382 
Kandel, E. R., 466 
Katz and Miledi, 312, 345 
Katz, В., 6, 324 
kinetic scheme, ligand-gated channels, 
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Kirchhoffs laws, 489 
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Laplace transforms, 297 
latency fluctuations, 307 
leaky hose analogy, 68, 79 
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length constant, 65 

AC, 82 
ligand-gated channel, 215 
light, 
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light scattering, 532 
light sources, 529 
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linear cable theory, 56 
linear membrane, 41 
linearity, 484 
linearly polarized, 516 
Llinas, R., 193, 329, 340 
local circuit, 157 
local circuit current, 157 
local circuit loops, 158 
local circuit theory, 185 
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long-term depression (LTD), 461 
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long-term potentiation (LTP), 7, 313,444 
Lorentzian, 270 
low threshold calcium current, T, 194 
low-pass filter, 495 
LTD, 461 
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LTP, 7, 313, 444 
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hippocampus, 460 
induction, 445 
maintenance, 445 
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McNaughton, B. L., 445 
mean burst length, 

scheme II, 267 
scheme III, 268 
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scheme II, 267 
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scheme II, 267 
scheme III, 268 
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scheme II, 267 
scheme III, 268 
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mean value, 482 
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membrane rectification, 121 
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membrane time constant, 61 
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momentary current-voltage relation, 159 
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muscarinic receptors, 390 
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Na+ channel, 161 
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Neher and Sakmann, 219 
Neher, E., 5, 219 
Nernst equation, 15,16 
Nernst-Planck equation (NPE), 14 
neurexins, 351 
neuromodulation, 448 
neuromuscular junction, frog, 6 
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neuronal polarization, 2 
neurons, number of, 1 
neurotransmitters, 1, 287 
neurotransmitters in CNS, 390 
nicotinic acetylcholine receptor channel, 

218, 367 
nicotinic acetylcholine, 373 
nifedipine, 193 
nimodipine, 193 
nitric oxide, 461 
NMDA receptor, 

Ca 2 + permeability, 384 
Mg2+ block, 384 
voltage dependency, 383 
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Noble, D., 159 
node of Ranvier, 185, 203, 489 
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nonisopotential synapses, 
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nonisotropic, 517 
nonlinear membrane, 42 
nonlinear summation, 433 
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nonohmic, 487 
nonpermissive state, 131 
nonselective cation currents, 205 
nonstationarity, 301 
nonuniformity, 301 
norepinephrine, 448 
normal distribution, 298 
notch filter, 496 
NTSC, 527 
numerical aperture, 521 
Nyquist frequency, 495, 528 
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off response, 335 
Ohm's law, 487 
Ohm's law for drift, 11 
ohmic, 60, 487 
open field, 429 
open loop gain, 504 
open-closed field, 430 
operant conditioning, 467 
operational amplifiers, 503 
opioids, 346 
optical correction, 522 
optical probes, 531 
optical tube length, 519 
ordinary differential equations, 398 
orthodromic stimulation, 360 
osmotic imbalance, 22 
output impedance, 494 
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paired-pulse facilitation, 310 
pairing, LTP induction, 456 
PAL, 527 

parallel conductance model, 47,149, 358 
386 

partition coefficient pf water-membrane, 
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passive distribution, 14,19 
passive membrane properties, 63, 85 
patch clamp configurations, 219 
patch-clamp, 215 
patch-clamp circuit, 509, 513 
Patlak and Horn, 276 
Patlak, J., 276 
pattern completion, 472 
Pavlovian conditioning, 465 
peak value, 482 
peak-to-peak amplitude, 482 
peeling exponentials, 94,117, 310 
pEPSP, 432 
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permissive state, 131 
phase, 516 
phase contrast, 525 
photodiode, 529 
photodynamic damage, 532 
photolysis of caged molecules, 535 
photomultiplier, 529 
pixels, 528 
plasticities, synaptic, 6 
Poisson distribution, 237, 299, 318 
Poisson model, 

first test, 302 
second test, 303 
third test, 305 
three methods, 307 

Poisson process, 240 
polarization, 515 
population EPSP (pEPSP), 432 
population spike (pSpike), 432 
positive peak amplitude, 482 
post-tetanic potentiation, PTP, 309, 343 
potassium current, 

ATP sensitive, 204 
calcium-gated, AHP, 203 
calcium-gated, C, 202 
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delay, D, 199 
delayed rectifier, DR, 198 
hyperpolarization, IR, 200 
muscarine, M, 200, 213 
other, 203 
transient, A, 198 

potentiometric dyes, 532 
power spectral density function, 235 
preamplifier, 502 
precision, 484 
probability, 250 
probability density function, pdf, 229 
probability, uniform, 294 
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protein kinases, 459 
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pseudoconditioning, 466 
pSpike, 432 

Q 
Q matrix, 253, 258, 273, 274 
Qio, 377 
quanta, 6, 293 
quantal analysis, 6, 293 
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quantal content, 299 
quantal size, 302 
quantum hypothesis, 6, 293 

statistical treatment, 293 
quisqualate receptors, 389 
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гаЬЗА, 351 
radial maze, 469 
Rail model, 85 

assumptions, 85 
Rail, W., 67, 400 

synaptic inputs, 99 
ramp command, 190 
random data, 227 
rate coefficient, 125 
rate coefficients, 124, 130,131 
ratioing, 533 
ratiometric, 533 
re-entrant network, 474 
recombinant DNA, 215 
rectification, 121 

anomalous, 124 
recurrent network, 474 
reflection, 516 
refraction, 516 
refractive index, 517 
refractory period, absolute and relative, 

161 
reinforcement, 466 
relative conductance, 369 
relaxation rate constant, 258 
relaxation time constant, 258 
residual calcium hypothesis, 312, 344 
resistance, 

internal, definition, 65 
membrane, definition, 65 

resistivity, 
specific intracellular, definition, 66 
specific membrane, definition, 66 

resolution, 519 
resolution, confocal, 529 
resolution, video microscopy, 527 
resting potential, 29, 30 
retrograde messenger, 461 
reuptake, neurotransmitter, 358 
reversal potential, 40, 365, 367 
reversal potential, synaptic, 361 
rhythmic slow activity, 468 
rise time, 101, 380 
rising phase of EPSP, 386 
root mean square, rms, 229, 483 

S 

S4 segment, 216 
Sakmann, В., 5 
saltatory conduction, 186 
saturation of LTP, 450 
SECAM, 527 
selectivity filter, 127 
sensitization, 466 
series resistance, 500, 509, 511, 513 
serotonin, 346, 448 
shape index plot, 101 
Sherrington, C.S., 287 
Sigworth, F. J., 238 
simplified I-V relations, 159 
single channel conductance, 165 
single Lorentzian, 260 
single-channel analysis, summary, 277 
single-channel conductance, 236, 359 
sink, 424 

active, 426 
passive, 426 

sliding helix model, 216 
sliding modification threshold rule, 463 
slope conductance, 41, 42 
slope of pEPSP, 433 
Smith, S. J., 329, 331 
Snell's law, 516 
sodium channel, 215 
sodium current, 

fast, 188 
slow, 188 

sodium-calcium exchanger, 18 
sodium-potassium pump, 18 
solid angle, 427 
source, 424 

active, 426 
passive, 426 

source impedance, 494 
space clamp, 144, 329, 366 
space constant, 65, 68 
space-charge neutrality, 11, 20 
spatial resolution, 528 
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spatial summation, 387 
specific membrane capacitance, 66 
specific membrane resistance, 66 
spectral filtering, 522 
spherical aberration, 518 
spike, population (pSpike), 432 
spines, 400 

theory for, 58 
squid axon, 143, 145, 147 
squid giant synapse, 324 
standard deviation, definition, 229 
standard free energy of activation, 124 
stationarity, 300 
stationary, 300 
steady-state chord conductance, 44 
steady-state conductance, 44 
steady-state current-voltage relation, 44 
steady-state probability, 131 
steady-state slope conductance, 44 
Steinberg, I. Z., 329 
Stevens, C. F., 375 
stochastic analysis, 221 
stochastic data, 227 
Stokes law, 526 
STP, 445 
strontium, 323 
superposition principle, 427, 492 
synapse, 

chemical, 1 
electrical, 1 
feedback, 2 
reciprocal, 2 
squid, 6 

synapse specificity, 449 
synapses, 

definition, 287 
number of, 1 

synapsins, 350 
synaptic conductance, errors, 373 
synaptic current, equation for, 398 
synaptic depression, 312, 343 
synaptic efficacy, 400 
synaptic integration, 56 
synaptic kinetics, 373,375, 377,379, 381 
synaptic plasticities, 6 
synaptic transmission, 

sequence of events, 290 
synaptic vesicles, 1 
synaptobrevin, 351 
synaptophysin, 349, 351 
synaptotagmin, 349, 351 
syntaxin, 349, 351 

T 
tail current, 334 
temporal contiguity, 452 
temporal summation, 388 
tetraethylammonium (TEA), 145,198,199, 

202, 203 
tetrodotoxin (TTX), 145, 163, 164, 165, 

167, 188 
theta rhythm, 446, 468 
Thevenin's theorum, 492 
thin lens, 518 
three halves power rule, 88 
three-state transition, 264 
threshold, action potential, 160, 361 
time constant, 65 
tip resistance, 500 
transgenic mice, 469 
transient solution, infinite or semi-infinite 

cable, 70 
transition matrix, 253 
transition probability, 251 
transmitter depletion hypothesis, 344 
tubulin, 348 
turbidity, 532 
two-port analysis, 370 
two-port network, 103 

U 
unconditioned response, UCR, 466 
unconditioned stimulus, UCS, 466 
unidirectional flux, 28 
uniformity, 300 
unitary currents, 219 

V 

V-I curve, 488 
valence, 12 
value, 482 
variables, 482 
variance, 

definition, 229 
poisson distribution, 299 

video microscopy, 526 
vinblastine, 348 
virtual ground circuit, 510 
voltage clamp, 

single electrode, 509 
three electrodes, 331, 356 

voltage clamp circuit, 507 
voltage clamp, synapse, 363 
voltage dependence, 131 
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voltage source, 491 
voltage-clamp circuit, 513, 514 
voltage-clamp experiments, squid axon, 

143, 145, 147 
voltage-clamp records, 144 
voltage-clamping, reasons for, 144 
voltage-gated channel, 215 
voltmeter, 493 
volume conductor, 424 

W 

Walton, K., 329 
water-membrane partition coefficient, 24 
wave equation, 156 
weight, synaptic, 454 
whole-cell mode, 510 
Wiener-Khinchin theorem, 235, 259, 260 
window current, 188 
Woods Hole, 324 
working distance, 521 

Z 

Zengel and Magleby, 312 
Zucker, R. S., 345 
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