Habenula
Subregions: Lateral and Medial Habenula
Lateral habenula recieves inputs from forebrain limbic regions and submits outputs to dopaminergic and serotonergic midbrains structures. Numerous studies have shown excitation of habenula to punishments and predictions of punishments, as well as omissions of predicted rewards and predictions of reward omission. The habenula is also implicated in other functions including stress, anxiety, pain, learning and attention (Hikosaka 2009)
http://www.scholarpedia.org/article/Epithalamus
Image and Location
Neurosynth structure image: n/a
Neurosynth connectivity image:
Image from Ide Li 2011:
(Habenula in blue)
Images from Savitz 2011:
Image from Lawson 2013:
Image of connectivity (Hong, Jhou, Smith 2011)
Searches
Searches so far:
Most important references
Matsumoto, M., & Hikosaka, O. (2009). Representation of negative motivational value in the primate lateral habenula. Nature neuroscience, 12(1), 77-84. doi:10.1038/nn.2233
Matsumoto Hikosaka 2009
Hong, S., Jhou, T. C., Smith, M., Saleem, K. S., & Hikosaka, O. (2011). Negative Reward Signals from the Lateral Habenula to Dopamine Neurons Are Mediated by Rostromedial Tegmental Nucleus in Primates. Journal of Neuroscience, 31(32), 11457-11471. doi:10.1523/JNEUROSCI.1384-11.2011
hongjhousmithetal11.pdf
Ide, J. S., & Li, C.-S. R. (2011). Error-related functional connectivity of the habenula in humans. Frontiers in human neuroscience, 5(March), 25. doi:10.3389/fnhum.2011.00025
ideli11.pdf
Bromberg-Martin, E. S., Matsumoto, M., Hong, S., & Hikosaka, O. (2010). A pallidus-habenula-dopamine pathway signals inferred stimulus values. Journal of neurophysiology, 104(2), 1068-76. doi:10.1152/jn.00158.2010
brombergmartinmatsumotohongetal10.pdf
Lawson, R. P., Seymour, B., Loh, E., Lutti, a., Dolan, R. J., Dayan, P., … Roiser, J. P. (2014). The habenula encodes negative motivational value associated with primary punishment in humans. Proceedings of the National Academy of Sciences, 1–6. doi:10.1073/pnas.1323586111
LawsonetAl14
Lawson, R. P., Drevets, W. C., & Roiser, J. P. (2013). Defining the habenula in human neuroimaging studies. NeuroImage, 64, 722–7. doi:10.1016/j.neuroimage.2012.08.076
LawsonetAl13
Shelton, L., Becerra, L., & Borsook, D. (2012). Unmasking the mysteries of the habenula in pain and analgesia. Progress in neurobiology, 96(2), 208-19. Elsevier Ltd. doi:10.1016/j.pneurobio.2012.01.004
SheltonetAl12
Stamatakis, A. M., & Stuber, G. D. (2012). Activation of lateral habenula inputs to the ventral midbrain promotes behavioral avoidance. Nature neuroscience, 15(8), 1105–1107. doi:10.1038/nn.3145 :
Stamatakis&Stuber12
Shabel, S. J., Proulx, C. D., Trias, A., Murphy, R. T., & Malinow, R. (2012). Input to the Lateral Habenula from the Basal Ganglia Is Excitatory, Aversive, and Suppressed by Serotonin. Neuron, 74(3), 475–481. doi:10.1016/j.neuron.2012.02.037
Shabel12
Amat, J., Sparks, P. D., Matus-Amat, P., Griggs, J., Watkins, L. R., & Maier, S. F. (2001). The role of the habenular complex in the elevation of dorsal raphe nucleus serotonin and the changes in the behavioral responses produced by uncontrollable stress. Brain Research, 917(1), 118–126. doi:10.1016/S0006-8993(01)02934-1
Amat01
Li, B., Piriz, J., Mirrione, M., Chung, C., Proulx, C. D., Schulz, D., Henn, F., et al. (2011). Synaptic potentiation onto habenula neurons in the learned helplessness model of depression. Nature, 470(7335), 535–9. doi:10.1038/nature09742
LiPirizetAl11
Friedman, A., Lax, E., Dikshtein, Y., Abraham, L., Flaumenhaft, Y., Sudai, E., Ben-Tzion, M., et al. (2011). Electrical stimulation of the lateral habenula produces an inhibitory effect on sucrose self-administration. Neuropharmacology, 60(2-3), 381–7. doi:10.1016/j.neuropharm.2010.10.006
FriedmanLaxEtAl11
Pobbe, R. L. H., & Zangrossi, H. (2008). Involvement of the lateral habenula in the regulation of generalized anxiety- and panic-related defensive responses in rats. Life sciences, 82(25-26), 1256–61. doi:10.1016/j.lfs.2008.04.012
PobbeZangrossi08
Parent, a, Gravel, S., & Boucher, R. (1981). The origin of forebrain afferents to the habenula in rat, cat and monkey. Brain research bulletin, 6(1), 23–38. Retrieved from
http://www.ncbi.nlm.nih.gov/pubmed/7470948
Parent, a. (1979). Identification of the pallidal and peripallidal cells projecting to the habenula in monkey. Neuroscience letters, 15(2-3), 159–64. Retrieved from
http://www.ncbi.nlm.nih.gov/pubmed/119192
Araki, M., McGeer, P. L., & Kimura, H. (1988). The efferent projections of the rat lateral habenular nucleus revealed by the PHA-L anterograde tracing method. Brain research, 441(1-2), 319–30. Retrieved from
http://www.ncbi.nlm.nih.gov/pubmed/2451982
Strotmann B, Heidemann RM, Anwander A, Weiss M, Trampel R, Villringer A, Turner R (2014) High-resolution MRI and diffusion-weighted imaging of the human habenula at 7 tesla. J Magn Reson Imaging 39:1018–1026.
https://www.ncbi.nlm.nih.gov/pubmed/24259421
Link to Endnote
Structure
Lateral hypothalamus
GPb (Globus pallidus border); other cells in pallidal region
Entopeduncular nucleus (excitatory projection) (Main pathway in rats; in monkeys peri-pallidal cells and lateral hypothalamus appear to be the main inputs)
Olfactory tubercule
Vertical limb of diagonal band nucleus
Lateral preoptic area
SN pars reticulata
Outputs
LHb:
Primarily outputs through RMTg, which projects to
SNc
VTA
DRN
Habenula has reciprocal connections with:
-Lateral hypothalamic area
-Thalamic nuclei
-Dorsal and median raphe nuclei
Nucleus of diagonal band
Ventral pallidum
Substantia innominata
MHb:
Interpenduncular nucleus
Functions
Summary list
-Reward
-Stress
-Fear/Anxiety
-Pain
-Addiction
-Sleep
-Higher level cognitive functions: feedback and prediction errors
Learning signals for negative valence (punishment)
Habenular neurons show excitation to a target predicting an aversive stimulus or a stimulus predicting no reward, which precedes inhibition in dopamine neurons for reward omission (Matsumoto Hikosaka 2007). This habenula-VTA pathway is now thought to go through the RMTg. Habenula neurons also show excitation to conditioned stimuli predicting negative valence rewards or reward omissions (Matsumoto Hikosaka 2009)
Effects of stimulation
* Deep brain stimulation of habenula neurons decreased sucrose self-administration levels (Friedman, Lax et al 2011)
* DBS of habenula also led to aversion of a context associated with stimulation of that region
Effects of lesions
*Lesions of habenula increased sucrose seeking behavior, resulting in delayed extinction for substitution of sucrose with water (Friedman, Lax et al 2011)
Effects of microinjection
Optogenetics
(Shabel, Proulx, Trias et al 2012)
Other
Anxiety and stress responses; learned helplessness
Effects of stimulation
Reduced synaptic potentiation of habenula neurons caused by deep brain stimulation decreased helpless behavior in rats
Increased synaptic potentiation of habenula neurons projecting to VTA in learned helplessness (Li, Piriz, Mirrone et al 2011)
Effects of lesions/inactivation
Habenular lesions eliminated the differential rise in DRN serotonin for rats exposed to inescapable/escapable shock (Amat, Sparks et al 2001)
Habenula lesions impaired acquisition of inhibitory avoidance while facilitating escape in a T-Maze (Pobbe Zangrossi 08)
Optogenetics
(Stamatakis, Stuber, 2012)
Exposure to aversive stimuli increased LHb synaptic drive onto RMTg neurons
Optogenetic stimulation of LHb to RMTg pathway increased passive avoidance behavior and conditioned avoidance
LHb-RMTg pathway also serves as a punishment; mice given optogenetic stimulation of that pathway while consuming sucrose made significantly fewer nose pokes to get sucrose
Effects of microinjection
*Injection of kainic acid (an excitatory amino acid) into habenula facilitated acquisition of inhibitory avoidance while impairing escape behaviors. Inhibitory avoidance is thought to be related to anxiety behaviors, while one-way escape is more related to fear. (Pobbe Zangrossi 08)
Other
Studies activating
Coordinates
Coordinates (x, y, z):
[4, -22, 4] , [-4, -22, 4]
Say how overall coordinates were derived here: hand-drawn ROI on MNI 152 (close to average of studies below)
Specific study coordinates (if not too many)
Study | Description | x | y | z |
Ide 2011 | Stop error > Stop success | -14 | -20 | 10 |
Ullsberger 2003 | Negative > Positive Feedback | -4 | -24 | 7 |
Shelton 2012 | Activation to late phase pain | 4/-4 | -23 | 4 |
Hennigan 2015 | E-Shock > neutral trials | -1 | -29 | -2 |
(Ullsberger activations reported in Talairach coordinates -5,-25,8, converted to MNI for table)
(Hennigan activations reported in Talairach coordinates -2,-29,0, converted to MNI for table)
Ide Li activations include thalamus
ROI:
habenula_roi.zip
List of Studies
Specific, key studies
Study list: Coordinate based
Neurosynth results for coordinate(s)
<list studies here from Neurosynth database>